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We present an implicit large eddy simulation (ILES) of hypersonic boundary-layer transition
for a flared cone at Mach number 6.0 and Reynolds number 10.8 × 106. The simulation is
performed using a matrix-free discontinuous Galerkin (DG) method and a diagonally implicit
Runge-Kutta (DIRK) scheme on graphics processor units (GPUs). A Jacobian-free Newton-
Krylov (JFNK) method is used to solve nonlinear systems arising from the discretization of
the Navier-Stokes equations. The ILES simulation exhibits the onset of primary and second-
mode instabilities, quite zone, followed by transition to turbulence breakdown. These distinct
characteristics of hypersonic flows on cone-like geometries are also observed in experiments. The
Stanton number distribution and the pressure fluctuation are studied for different freestream
intensities and compared with the experimental data. The results suggest that the ILES method
is capable of capturing the onset of transition and turbulence breakdown phenomena for
hypersonic turbulent flows past a flared cone.

I. Introduction

Many critical decisions in the design of hypersonic vehicles require the ability to predict accurately surface
skin friction and aerodynamic heating which, in turn, depend on complex physical processes such as shock

wave/boundary layer interaction, boundary layer separation, and laminar-to-turbulent transition. A deep understanding
of the hypersonic boundary layers, including boundary layer transition, is crucial to the design of thermal protection
systems and flight control for hypersonic vehicles. The prediction of hypersonic boundary layers presents a number of
challenges. Despite considerable efforts in experimental, theoretical, and numerical studies, many critical physical
mechanisms underlying the transition to turbulence in hypersonic boundary layers are not well understood [1, 2]. A
unique feature of a hypersonic boundary layers is the presence of a family of acoustic instability modes, the Mack modes
[3], in addition to the vorticity modes encountered in lower speed flows [4]. The Mack modes consist of high frequency,
large amplitude density fluctuations and can dominate the transition process. The different instability modes combined
with the nature of the free stream disturbances lead to many different paths to flow transition including natural transition,
disturbance-induced transition, crossflow-induced transition, separation-induced transition, shock-induced transition,
roughness-induced transition, nose bluntness entropy-layer on transition, bypass transition, and transition-reversal
phenomena [5]. These unique multifaceted characteristics of hypersonic boundary layers make prediction a very difficult
task. Gaining this understanding is often hampered by the difficulty to obtain high quality data to validate the theory and
modeling efforts.
Numerical tools for turbulence studies still rely heavily on Reynolds–Averaged Navier—Stokes (RANS) models.

RANS models are computationally affordable but are severely limited in their ability to model laminar-to-turbulent
transition. In addition, RANS turbulence closure relations based on equilibrium assumptions have met limited success
to model the rapidly distorting flow fields encountered in hypersonic shock boundary layer interactions and separated
flows. Direct numerical simulation (DNS) resolves the whole range of spatial and temporal scales of the turbulence.
In principle, DNS methods can accurately predict transition and the complex physical phenomena encountered in
hypersonic shock layers. DNS is computationally expensive for predicting hypersonic turbulent flows of engineering
interest. Large eddy simulation (LES) is an alternative approach which holds the promise to address the shortcomings
of both RANS and DNS, and enable a step-change in the prediction of complex turbulent flows. With the advent of
modern low-energy consumption highly scalable GPU architectures, both DNS and LES methods become affordable for
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a wide variety of turbulent flows. Nevertheless, RANS, LES and DNS are indispensable tools in turbulence research to
provide the detailed physics that are not possible to be observed experimentally.
In the LES approach, the large-scale eddies of the flow field are resolved and the small scales are modeled using

an appropriate model. When the small-scale eddies are directly resolved by using a fine computational grid and a
small time-step size, the method is called direct numerical simulation (DNS). DNS remains prohibitive for turbulent
flows at high Reynolds numbers due to the enormous amount of grid points required to resolve the small-scale eddies.
When the number of grid points is not sufficient to resolve the small-scale eddies but enough to resolve the large-scale
eddies, the method is called implicit LES (ILES) or sometimes referred to as under-resolved DNS (UDNS) [6]. In
recent years, the use of discontinuous Galerkin (DG) methods for ILES of transitional and turbulent flows gains
considerable attention from researchers in computational fluid dynamics [6–13]. It is shown in [14] that for moderate
polynomial degrees (between 2 and 4), DG methods introduce numerical dissipation in under-resolved computations of
convection-dominated flows, which acts as an implicit filter to dissipate the unresolved turbulent features. The numerical
dissipation is localized near the Nyquist wavenumber and applied to the smallest resolved scales, while the amount
of such dissipation depends mostly on the energy in those scales. Therefore, by choosing the element size ℎ and the
polynomial degree 𝑘 , the numerical dissipation can be tuned to filter the unresolved scales appropriately.
Although low-order numerical schemes remain prominently use in computational fluid dynamics, high-order

numerical schemes are increasingly used for LES and DNS computations of transitional and turbulent flows. Indeed, the
prediction of transitional and turbulent flows relies on resolving wave propagation phenomena and small-scale flow
features for which high-order accuracy is absolutely needed. High-order finite difference and finite element methods
have been developed and increasingly used for simulating hypersonic flows. Recently, we have developed a matrix-free
DG method for numerically solving computational fluid dynamics problems [15]. A key component in the method
is the Jacobian-free Newton-Krylov (JFNK) solver that is based on the reduced basis approximation to construct a
matrix-free preconditioner. The method is completely matrix-free in the sense that it does not need any part of the full
Jacobian matrix. The matrix-free DG method has been implemented in the open-source code Exasim [16] and applied
to hypersonic flows [17], and turbulent transonic flows [15].
The formation, propagation, and interaction of shock waves represent one of the challenging problems in hypersonic

flows. Difficulties in simulating shock flows are that (1) at the very moment a shock is formed it poses a source of
instability in the shock region, which then leads to numerical instabilities if no treatment of shock waves is introduced;
(2) it is hard to predict when and where new shocks arise, and track them as they propagate through the physical domain
and interact with each other and with boundary layers and vortices; and (3) numerical treatment of shock waves should
not cause deterioration in resolution and reduction of accuracy in domains where the solution is smooth. In addition to
shock waves, a number of other sharp features such as contact discontinuities, high thermal gradients, and thin shear
layers may also appear in turbulent hypersonic flows. For high-order numerical methods, insufficient resolution or an
inadequate treatment to capture these shocks often results in Gibbs oscillations, which can grow rapidly and contribute
to numerical instabilities.
These above-mentioned challenges have been a driving force behind the development of shock capturing methods

designed to detect and stabilize shocks. A number of shock detection methods rely on the non-smoothness of the
numerical solution to detect shocks as well as other sharp features [18–28]. Among them, the sensor by Krivodonova et
al. [24], devised in the context of DG methods, takes advantage of the theoretical convergence rate of DG schemes for
smooth solutions in order to detect discontinuities. The shock sensor by Persson et al. [27, 28] is based on the decay
rate of the coefficients of the DG polynomial approximation. Other methods that rely on high-order derivatives of the
solution include [18–23, 25, 26], and apply to numerical schemes for which such derivatives can be computed, such as
spectral-type methods and high-order finite difference methods. The most simple shock-detection method is to take
advantage of the strong compression that a fluid undergoes across a shock wave and use the divergence of the velocity
field as a shock sensor [29–31]. Shock stabilization methods lie within one of the following two categories: limiters
and artificial viscosity. Limiters, in the form of flux limiters [32–34], slope limiters [24, 35–37], and WENO-type
schemes [38–41] pose implementation difficulties for implicit time integration schemes and high-order methods on
complex geometries. As for artificial viscosity methods, Laplacian-based [27, 28, 30, 31, 42–44] and physics-based
[18–22, 25–27, 29, 45, 46] approaches have been proposed. An assessment of artificial viscosity methods for LES is
presented in [47]. A more recent shock capturing scheme [48] aims to align mesh elements exactly along the shock
waves and employ DG methods to handle shocks.
In this paper, we perform an implicit large eddy simulation (ILES) of hypersonic boundary-layer transition for a

flared cone at Mach number 6.0 and Reynolds number 10.8× 106. Hypersonic boundary-layer transition of a flared cone
model (see Figure 1) has been experimentally investigated using BAM6QT at Purdue University [49, 50]. Recently,
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DNS studies of the flared cone were reported in [50, 51]. It was found that the formation of the primary streaks is
directly attributed to the steady streamwise vortices, which are generated by the fundamental resonance. The primary
streaks disappear when these vortices are lifted up away from the wall. When these streamwise vortices break down and
are pushed back toward the wall, the secondary streaks appear with an increased streak count in azimuthal direction.
The similarities between the streak patterns observed in the experiments and the DNS results suggest that the transition
is caused by a fundamental breakdown [51]. The ILES simulation exhibits the onset of primary and second-mode
instabilities, quite zone, followed by transition to turbulence breakdown. These distinct characteristics of hypersonic
flows on cone-like geometries are also observed in experiments. The Stanton number distribution and the pressure
fluctuation are studied for different freestream intensities and compared with the experimental data. The results suggest
that the ILES method is capable of capturing the onset of transition and turbulence breakdown phenomena for hypersonic
turbulent flows past a flared cone. The present ILES simulation is performed using the matrix-free discontinuous
Galerkin (DG) method with Jacobian-free Newton-Krylov (JFNK) solver [15]. The artificial viscosity method [29–31]
is employed to capture shocks in our ILES computation.

II. Methodology

A. Governing equations
Let 𝑡 𝑓 > 0 be a final time and let Ω ⊂ R𝑑 , 1 ≤ 𝑑 ≤ 3 be an open, connected and bounded physical domain with

Lipschitz boundary 𝜕Ω. The unsteady compressible Navier-Stokes equations in conservation form are given by

𝒒 − ∇u = 0 , in Ω × [0, 𝑡 𝑓 ) , (1a)
𝜕u
𝜕𝑡

+ ∇ · 𝑭(u, 𝒒) = 0 , in Ω × [0, 𝑡 𝑓 ) , (1b)

𝑩(u, 𝒒) = 0 , on 𝜕Ω × [0, 𝑡 𝑓 ) , (1c)
u − u0 = 0 , on Ω × {0} . (1d)

Here, u = (𝜌, 𝜌𝑢 𝑗 , 𝜌𝐸), 𝑗 = 1, ..., 𝑑 is the 𝑚-dimensional (𝑚 = 𝑑 + 2) vector of conserved quantities, u0 is an initial
state, 𝑩(u, 𝒒) is a boundary operator, and 𝑭(u, 𝒒) are the inviscid and viscous fluxes of dimensions 𝑚 × 𝑑,

𝑭(u, 𝒒) =
©­­«

𝜌𝒖

𝜌𝒖 ⊗ 𝒖 + 𝑝𝑰 − 𝝉

𝒖(𝜌𝐸 + 𝑝) − 𝝉𝒖 + 𝒇

ª®®¬ , (2)

where 𝑝 denotes the thermodynamic pressure, 𝝉 the viscous stress tensor, 𝒇 the heat flux, and 𝑰 is the identity tensor.
For a calorically perfect gas in thermodynamic equilibrium, 𝑝 = (𝛾 − 1)

(
𝜌𝐸 − 𝜌 |𝒖 |2/2

)
, where 𝛾 = 𝑐𝑝/𝑐𝑣 > 1 is the

ratio of specific heats and in particular 𝛾 ≈ 1.4 for air. 𝑐𝑝 and 𝑐𝑣 are the specific heats at constant pressure and volume,
respectively. For a Newtonian fluid with the Fourier’s law of heat conduction, the viscous stress tensor and heat flux are
given by

𝜏𝑖 𝑗 = 𝜇 𝑓

(
𝜕𝑢𝑖

𝜕𝑥 𝑗
+
𝜕𝑢 𝑗

𝜕𝑥𝑖
− 2

3
𝜕𝑢𝑘

𝜕𝑥𝑘
𝛿𝑖 𝑗

)
+ 𝛽 𝑓

𝜕𝑢𝑘

𝜕𝑥𝑘
𝛿𝑖 𝑗 , 𝑓 𝑗 = − 𝜅 𝑓

𝜕𝑇

𝜕𝑥 𝑗
, (3)

where 𝑇 denotes temperature, 𝜇 𝑓 the dynamic (shear) viscosity, 𝛽 𝑓 the bulk viscosity, 𝜅 𝑓 = 𝑐𝑝 𝜇 𝑓 /𝑃𝑟 the thermal
conductivity, and 𝑃𝑟 the Prandtl number; 𝑃𝑟 ≈ 0.71 for air, and 𝛽 𝑓 = 0 under the Stokes’ hypothesis.
In order to deal with shock waves and discontinuities, we add artificial viscosities to the physical ones as follows:

𝛽 = 𝛽 𝑓 + 𝛽∗, 𝜇 = 𝜇 𝑓 + 𝜇̄∗, 𝜅 = 𝜅 𝑓 + 𝜅∗, (4)

where 𝛽∗, 𝜇̄∗, and 𝜅∗ are the artificial bulk viscosity, artificial shear viscosity, and artificial thermal conductivity,
respectively. The governing equations numerically discretized herein are still (1)-(3), where the physical viscosities of
the fluid are replaced with those in (4). The artificial viscosities are defined in the next section.

B. Artificial viscosities
In this work, we modify the physics-based artificial viscosity approach introduced in our previous work [29, 30].

Specifically, we follow Fernandez et al. [29] without the artificial thermal conductivity which is designed for the strong
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shocks appearing in hypersonic flows. This approach relies on a shock sensor. The shock sensor, evaluated pointwise, is
constructed such that

𝑠 (𝒙) = 𝑠𝑑 · 𝑠𝝎 , 𝑠𝑑 = − ℎ
𝑘

∇ · 𝒖
𝑎∗

, 𝑠𝝎 =
(∇ · 𝒖)2

(∇ · 𝒖)2 + |∇ × 𝒖 |2 + 𝜀
, (5)

where 𝜀 is a constant of the order of the machine precision squared, 𝑘 is the polynomial degree and 𝑎∗ is the critical
speed of sound. In Eq. (5) the dilatation sensor 𝑠𝑑 is multiplied with Ducros’s indicator [52] 𝑠𝝎 to avoid adding artificial
viscosity to vortices. We define artificial viscosities as follows

𝛽∗ = 𝑠
𝑘𝛽ℎ

𝑘

√︁
|𝒖 |2 + 𝑎∗2, 𝜇∗ = 𝑘𝜇𝛽

∗ (𝒙) , 𝜅∗ = 𝑘𝜅𝑐𝑝 𝜇
∗/𝑃𝑟. (6)

Here 𝑘𝛽,𝜇,𝜅 are parameters that control the amount of artificial viscosities, and 𝑠 denotes the smoothly bounded values
of the shock sensor equations (5) and is given by

𝑠(𝒙) = ℓ
(
𝑠; 𝑠0, 𝑠max

)
, (7)

The function ℓ represents a smooth approximation to the following limiting function 𝐿 (𝑠; 𝑠0, 𝑠max) = min{max{𝑠 −
𝑠0, 0} − 𝑠max, 0} + 𝑠max. In particular, it is defined as follows

ℓ(𝑠; 𝑠0, 𝑠max) = ℓmin (ℓmax (𝑠 − 𝑠0) − 𝑠max) + 𝑠max, (8)

where

ℓmax (𝑠) =
𝑠

𝜋
arctan(100𝑠) + 𝑠

2
− 1
𝜋

arctan(100) + 1
2
,

ℓmin (𝑠) = 𝑠 − ℓmax (𝑠),
(9)

Here the first parameter 𝑠0 represents the starting point of the limiting function ℓ where it begins to increase with 𝑠,
while the second parameter 𝑠max > 0 is the upper bound of the non-negative variable 𝑠. The parameters are chosen as
𝑠max = 2 and 𝑠0 = 0.01 according to Fernandez et al. [29].
Since the original artificial viscosity fields (𝛽∗, 𝜇∗) are discontinuous, a node-averaging operator is applied to

(𝛽∗, 𝜇∗) to make them C0 continuous. The smooth reconstruction of the artificial viscosity field 𝛽∗ (𝒙) is done by
averaging all the multiple values of 𝛽∗ (𝒙) along the element boundaries to obtain a continuous field 𝛽∗ (𝒙). The
proposed reconstruction is particular to the DG discretization. Let 𝒙𝑛, 1 ≤ 𝑛 ≤ 𝑛𝑘𝑛𝑒, be DG nodes of a high-order finite
element mesh Tℎ, where 𝑛𝑘 is the number of nodes per element and 𝑛𝑒 is the number of elements. For every node 𝒙𝑛,
𝛽∗ (𝒙𝑛) = 1

𝐽𝑛

∑𝐽𝑛
𝑗=1 𝛽

∗ (𝒙𝑛) |𝐾 𝑗
, where 𝐾 𝑗 , 1 ≤ 𝑗 ≤ 𝐽𝑛, are all the elements in which 𝒙𝑛 is located. If a mesh node 𝒙𝑛

is located inside an element then 𝐽𝑛 = 1, and it is located on a face then 𝐽𝑛 = 2. If it is located on an edge or at an
element vertex, then 𝐽𝑛 is equal to the number of elements connected to that edge or that vertex, respectively. In essence,
𝛽∗ (𝒙𝑛) is a polynomial of degree 𝑘 on every element and continuous across element interfaces. Therefore, the present
reconstruction is different from the elementwise linear reconstruction used in [29, 30].

C. Discontinuous Galerkin method
Let Ω ⊆ R𝑑 with 𝑑 = 3 be a physical domain with Lipschitz boundary 𝜕Ω. We denote by Tℎ a collection of disjoint,

regular, 𝑘-th degree curved elements 𝐾 that partition Ω, and set 𝜕Tℎ := {𝜕𝐾 : 𝐾 ∈ Tℎ} to be the collection of the
boundaries of the elements in Tℎ. Let P𝑘 (𝐷) denote the space of complete polynomials of degree 𝑘 on a domain
𝐷 ∈ R𝑛, let 𝐿2 (𝐷) be the space of square-integrable functions on 𝐷, and let 𝝍𝑘

𝐾
denote the 𝑘-th degree parametric

mapping from the reference element 𝐾𝑟𝑒 𝑓 to some element 𝐾 ∈ Tℎ in the physical domain. We then introduce the
following discontinuous finite element spaces:

Q
𝑘
ℎ =

{
𝒓 ∈ [𝐿2 (Tℎ)]𝑚×𝑑 : (𝒓 ◦ 𝝍𝑘) |𝐾 ∈ [P𝑘 (𝐾𝑟𝑒 𝑓 )]𝑚×𝑑 ∀𝐾 ∈ Tℎ

}
,

V
𝑘
ℎ =

{
𝒘 ∈ [𝐿2 (Tℎ)]𝑚 : (𝒘 ◦ 𝝍𝑘) |𝐾 ∈ [P𝑘 (𝐾𝑟𝑒 𝑓 )]𝑚 ∀𝐾 ∈ Tℎ

}
,
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where 𝑚 denotes the number of equations of the conservation law, i.e. 𝑚 = 𝑑 + 2 for the Navier-Stokes system. Next, we
define several inner products associated with these finite element spaces as

(𝒘, 𝒗)Tℎ =
∑︁
𝐾 ∈Tℎ

(𝒘, 𝒗)𝐾 =
∑︁
𝐾 ∈Tℎ

∫
𝐾

𝒘 · 𝒗, (10a)

(𝑾,𝑽)Tℎ =
∑︁
𝐾 ∈Tℎ

(𝑾,𝑽)𝐾 =
∑︁
𝐾 ∈Tℎ

∫
𝐾

𝑾 : 𝑽, (10b)

⟨𝒘, 𝒗⟩𝜕Tℎ =
∑︁
𝐾 ∈Tℎ

⟨𝒘, 𝒗⟩𝜕𝐾 =
∑︁
𝐾 ∈Tℎ

∫
𝜕𝐾

𝒘 · 𝒗, (10c)

for 𝒘, 𝒗 ∈ V𝑘
ℎ
,𝑾,𝑽 ∈ Q

𝑘
ℎ, where · and : denotes the scalar product and Frobenius inner product, respectively.

The DG discretization of the governing equations reads as follows: Find
(
𝒒ℎ (𝑡), uℎ (𝑡)

)
∈ Q

𝑘
ℎ ×V𝑘

ℎ
such that(

𝒒ℎ, 𝒓
)
Tℎ +

(
uℎ,∇ · 𝒓

)
Tℎ −

〈
ûℎ, 𝒓 · 𝒏

〉
𝜕Tℎ = 0 , (11a)( 𝜕 uℎ

𝜕𝑡
, 𝒘

)
Tℎ

−
(
𝑭(uℎ, 𝒒ℎ),∇𝒘

)
Tℎ

+
〈
𝒇̂ℎ (uℎ, 𝒒ℎ), 𝒘

〉
𝜕Tℎ

= 0 , (11b)

for all (𝒓, 𝒘) ∈ Q
𝑘
ℎ ×V𝑘

ℎ
and all 𝑡 ∈ [0, 𝑡 𝑓 ), as well as (

uℎ |𝑡=0 − u0, 𝒘
)
Tℎ = 0 , (11c)

for all 𝒘 ∈ V𝑘
ℎ
. Here ûℎ is the numerical trace and 𝒇̂ℎ is the numerical flux. For DG methods, both the numerical trace

and flux must be continuous across element boundaries. The general form of the numerical trace and flux on the interior
faces that satisfies the continuity requirement is given by

ûℎ =
1
2
(u+
ℎ + u−

ℎ) + (u+
ℎ𝜷 · 𝒏+ + u−

ℎ𝜷 · 𝒏−) + 𝜸 · (𝒒+ℎ · 𝒏
+ + 𝒒−ℎ · 𝒏

−),

𝒇̂ℎ =
1
2
(
𝑭(u+

ℎ, 𝒒
+
ℎ) + 𝑭(u−

ℎ , 𝒒
−
ℎ)
)
· 𝒏+ + 𝝈 · (u+

ℎ − u−
ℎ),

(12)

where 𝜷 is a vector-valued function, and 𝜸,𝝈 are a matrix-valued function. Note that u+
ℎ
= uℎ |𝐹∈𝐾+ and u−

ℎ
= uℎ |𝐹∈𝐾−

denote the restriction of the numerical solution uℎ on interior face 𝐹 shared by elements 𝐾+ and 𝐾−. On the boundary
faces, the definition of the numerical trace and flux depends on the boundary conditions. For the computation performed
herein, there are two types of boundary conditions, namely, far-field condition and adiabatic wall condition. We refer to
[6, 53] for the implementation of these two boundary conditions.
Different choices of the stabilization functions 𝜷, 𝜸,𝝈 result in different DG methods. The LDG method [54]

corresponds to 𝜸 = 0, the second Bassi-Rebay (BR2) method [55] to 𝜷 = 𝜸 = 0, and the first Bassi-Rebay (BR1) method
[56] to 𝜷 = 𝜸 = 𝝈 = 0. These stabilization functions play an important role in the stability and accuracy of the resulting
DG method. Indeed, it is known that the BR1 method is not stable for elliptic problems [57]. The hybridized DG (HDG)
method [6, 53] does not define the numerical trace 𝒖̂ℎ terms of the approximate solution. In the HDG method, the
numerical trace ûℎ becomes a dependent variable to be solved together with (uℎ, 𝒒ℎ) by introducing another equation
that weakly imposes the continuity of the numerical flux. The HDG method is computationally efficient when we form
and solve the matrix system because it results in smaller matrix system than the LDG method and the BR2 method.
However, the HDG method is not suited to our matrix-free approach because computing the residual of the HDG method
involves solving nonlinear local problems for (𝒒ℎ, uℎ) in terms of ûℎ. Hence, it would be computationally expensive to
use the HDG method within the JFNK approach.
In this paper, the BR2 method is used to discretize the compressible Navier-Stokes equations in space since it is suited

to the matrix-free solution method introduced in the next section. Herein we choose 𝜷 = 𝜸 = 0 and 𝝈 = 𝜆𝑚𝑎𝑥 (ûℎ) 𝑰,
where 𝜆𝑚𝑎𝑥 denotes the maximum-magnitude eigenvalue of 𝑨𝑛 (uℎ) = [𝜕𝑭inv (uℎ)/𝜕u] · 𝒏 with 𝑭inv being the inviscid
part of the flux function 𝑭. For general convection-diffusion problems, the stabilization term 𝝈 should include both the
convection-stabilizing term 𝝈𝑐 and the diffusion-stabilizing term 𝝈𝑑 , namely 𝝈 = 𝝈𝑐 + 𝝈𝑑 , so that the resulting scheme
can be stable in both pure convection limit and pure diffusion limit. The convection-stabilizing term is usually computed
by using approximate Riemann solvers such as HLL/HLLC schemes, Roe’s scheme, and Lax-Friedrich scheme, while
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the diffusion-stabilizing term is proportional to the diffusion coefficient. Because our particular problem presented in
the next section is strongly convection-dominated, the diffusion-stabilizing term 𝝈𝑑 ∼ 1/𝑅𝑒 can be neglected. See
[6, 53, 58, 59] for additional discussion on the stabilization of DG methods.
For computational efficiency, we can eliminate 𝒒ℎ to obtain a new system in terms of uℎ only as follows. It follows

from (11a) and (12) that
𝒒ℎ = ∇uℎ + L(uℎ) (13)

where L(uℎ) ∈ P𝑘 (𝐾) is solved in an element-by-element fashion as follows(
L(uℎ), 𝒓

)
𝐾
=
〈
ûℎ − uℎ, 𝒓 · 𝒏

〉
𝜕𝐾
, ∀𝒓 ∈ P𝑘 (𝐾), (14)

for every element 𝐾 ∈ Tℎ. Since ûℎ depends linearly on uℎ, 𝒒ℎ also linearly depends on uℎ. Hence, we can substitute
(13) into (11b) to obtain the following weak form: Find uℎ (𝑡) ∈ V𝑘

ℎ
such that( 𝜕 uℎ

𝜕𝑡
, 𝒘

)
Tℎ

−
(
𝑭(uℎ,D(uℎ)),∇𝒘

)
Tℎ

+
〈
𝒇̂ℎ (uℎ,D(uℎ)), 𝒘

〉
𝜕Tℎ

= 0, (15)

for all 𝒘 ∈ V𝑘
ℎ
, where D(uℎ) = ∇uℎ + L(uℎ). The above weak formulation can be written as a system of ordinary

differential equations in matrix form as follows:

𝑴
𝑑u
𝑑𝑡

+ 𝒈(u) = 0, (16)

where u is the vector of degrees of freedom of uℎ, 𝑴 is the mass matrix, and 𝒈(u) is a nonlinear vector-valued function
corresponding to the last two terms of (15).
Finally, the semi-discrete system (16) is further discretized in time using 𝐿-stable diagonally implicit Runge-Kutta

(DIRK) schemes [60]. The use of 𝐿-stable DIRK methods for the temporal discretization is important to maintain
accuracy and stability because the DG discretization of turbulent shock flows at high Reynolds number results in very
stiff nonlinear ODE systems. If the use of an implicit time scheme allows to alleviate the CFL limitation on the timestep
size, the latter cannot be arbitrary large in practice. Whenever LES or DNS are the aim, the timestep has to be small
enough to resolve the viscous time scales

D. Jacobian-free Newton-Krylov solver
The main goal of the JFNK approach [61] is to avoid forming the Jacobian matrix and construct an effective

preconditioner to reduce the number of GMRES iterations. As discussed in great detail in [61], there are a wide
variety of preconditioning techniques from incomplete LU (ILU) factorizations, multigrid methods, Schwarz-based
domain decomposition methods, physics-based preconditioning, and matrix-free preconditioning methods. A number
of preconditioning techniques such as ILU still form matrices that are reduced in complexity as compared to the full
Jacobian. Storage and memory bandwidth limitations provide a motive for preconditioning approaches that do not
require the formation of any matrix. We employ the JFNK method to solve nonlinear and linear systems arising from
the numerical discretization of the Navier-Stokes equations.
Newton’s method is used to solve the nonlinear system of equations, 𝑹(u𝑛) = 0, resulting from the temporal

discretization of the system (16), where u𝑛 ∈ R𝑛dof is the vector of degrees of freedom of u𝑛
ℎ
and 𝑹(·) ∈ R𝑛dof is the

residual vector. We note that 𝑛dof = (𝑑 + 2)𝑛𝑘𝑛𝑒, where 𝑛𝑘 is the number of DG nodes per element and 𝑛𝑒 is the number
of elements. Furthermore, the time-stage step is given by 𝑛 = (𝑛𝑡 − 1)𝑛𝑠 + 𝑠, where 𝑛𝑡 is the 𝑛th𝑡 timestep, 𝑛𝑠 is the
number of stages for a DIRK scheme, and 𝑠 is the 𝑠th stage. For every 𝑚th iteration of the Newton method, we use
GMRES to solve the resulting linear system

𝑱(u𝑛,𝑚)𝛿u𝑛,𝑚 = −𝑹(u𝑛,𝑚), (17)

for the Newton increment 𝛿u𝑛,𝑚, where 𝑱(u𝑛,𝑚) = 𝜕𝑹(u𝑛,𝑚)/𝜕u is the Jacobian matrix. In what follows, we shall drop
the superscript 𝑚 to simplify the notation. Hence, the superscript 𝑛 should be understood as the superscript 𝑛, 𝑚 in the
remainder of this section.
We construct a reduced basis (RB) approximation [62–64] to 𝛿u𝑛 and use it as an initial guess in order to accelerate

the GMRES method. Given a reduced basis𝑾𝑛 = span{𝛿u𝑛− 𝑗 , 1 ≤ 𝑗 ≤ 𝑛rb} consisting of 𝑛rb previous solution vectors
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of the linear systems, the RB approximation to 𝛿u𝑛 is computed as the best least squares solution of the following
problem

𝛿u𝑛rb = arg min
𝛿w∈𝑾𝑛

∥𝑱(u𝑛)𝛿w + 𝑹(u𝑛)∥ . (18)

It thus follows that 𝛿u𝑛rb = 𝑾𝑛𝒂
𝑛
rb, where 𝒂

𝑛
rb ∈ R𝑛rb is the solution of the RB system, 𝑱rb (u𝑛)𝒂𝑛rb = −𝑹rb (u𝑛), with

𝑱rb (u𝑛) = (𝑱(u𝑛)𝑾𝑛)𝑇 (𝑱(u𝑛)𝑾𝑛) and 𝑹rb (u𝑛) = (𝑱(u𝑛)𝑾𝑛)𝑇𝑹(u𝑛). Forming the RB system requires 𝑱(u𝑛)𝑾𝑛

which is approximately computed by the finite difference (20). Typically, we set 𝑛rb = 5, the cost of inverting the RB
system is thus negligible. The RB approximation 𝛿u𝑛rb is used as the initial guess in the GMRES method that solves (17)
for 𝛿u𝑛. We thus obtain 𝛿u𝑛 = 𝛿v𝑛 + 𝛿u𝑛rb, where 𝛿v

𝑛 is the best least squares solution of the following problem

𝛿v𝑛 = arg min
𝛿w∈K𝑟 (𝑱 (u𝑛) ,𝒃 (u𝑛))

∥𝑱(u𝑛)𝛿w + 𝒃(u𝑛)∥ , with 𝒃(u𝑛) = 𝑹(u𝑛) + 𝑱(u𝑛)𝛿u𝑛rb. (19)

Here K𝑟 (𝑱(u𝑛), 𝒃(u𝑛)) = span{𝒃(u𝑛), 𝑱(u𝑛)𝒃(u𝑛), . . . , (𝑱(u𝑛)𝑟 𝒃(u𝑛)} is the Krylov subspace at the 𝑟th iteration.
Therefore, it follows from (18) and (19) that our method is similar to the restarted GMRES method. The main difference
between our method and the restarted GMRES method is that the restarted GMRES method uses the Krylov subspace
K𝑟 (𝑱(u𝑛), 𝑹(u𝑛)), whereas our method uses the RB space 𝑾𝑛 for the first outer iteration. Furthermore, we make
use of the reduced basis𝑾𝑛 to construct a matrix-free preconditioner to be used in the GMRES method for solving
(19). The idea lies in the construction of an approximation to the Jacobian matrix 𝑱(u𝑛) through a suitable low-rank
approximation. We refer to [15] for a detailed discussion of the preconditioner.
Our solution method requires the computation of 𝑱(u𝑛)𝑾𝑛 which can be expensive if we have to form the Jacobian

matrix 𝑱(u𝑛) and perform matrix-matrix multiplication. Instead, the product of the Jacobian matrix with any vector 𝒚
can be approximately computed by the Taylor expansion as follows

𝑱(u𝑛) 𝒚 ≈ 𝑹(u𝑛 + 𝜖 𝒚) − 𝑹(𝒖𝑛)
𝜖

, (20)

for small enough 𝜖 . We see that computing 𝑱(u𝑛)𝑾𝑛 = [𝑱(u𝑛)𝛿u𝑛−1 𝑱(u𝑛)𝛿u𝑛−2 . . . 𝑱(u𝑛)𝛿u𝑛−𝑛rb ] requires 𝑛rb resid-
ual evaluations. In actual practice, we replace 𝑱(u𝑛)𝑾𝑛 with𝑼𝑛 = [𝑱(u𝑛)𝛿u𝑛−1 𝑱(u𝑛−1)𝛿u𝑛−2 . . . 𝑱(u𝑛+1−𝑛rb )𝛿u𝑛−𝑛rb ].
Because only the first column of 𝑼𝑛 has to be computed, while the remaining columns were already computed and
stored, only one residual evaluation is required to form𝑼𝑛. By using𝑼𝑛 in place of 𝑱(u𝑛)𝑾𝑛 to compute the GMRES
initial guess and construct the preconditioner, we reduce the number of residual evaluations from 𝑛rb to 1. Henceforth,
both the GMRES initial guess and the preconditioner add little to the overall cost since its computational cost can be far
smaller than the residual evaluations required during the GMRES iterations.

E. Synthetic turbulence generation
Physically realistic boundary conditions are essential to obtaining accurate turbulence simulations. One of the most

important boundary conditions is turbulent inflow condition at the inlet, where a time-varying flow field has to be
specified for the resolved length scales. These inflow fluctuations must emulate the real turbulence for the problem being
studied because they affect the downstream flow dynamics and, in turn, the realism of the entire simulation. Therefore,
it is crucial to construct a time-varying flow field at the inflow boundary that can emulate the upstream turbulence
disturbance. In order to study the effects of free-stream disturbances on boundary-layer transition of hypersonic flows,
we employ the synthetic random Fourier method proposed by Kraichnan [65] and further developed by Bechara et al.
[66], and Bailly and Juvé [67] to generate a synthetic turbulence field at the inflow boundary.
The velocity field at the inflow boundary is given by

𝒗in (𝒙, 𝑡) = 𝒗̄(𝒙) + 𝒗′(𝒙, 𝑡) (21)

where 𝒗̄ is the mean flow and 𝒗′ is a synthetic fluctuation field

𝒗′(𝒙, 𝑡) = 2
𝑁∑︁
𝑛=1

𝑢̂𝑛 (𝑡)𝝈𝑛 cos(𝒌𝑛 · (𝒙 − 𝒗𝑐𝑡) + 𝜓𝑛 + 𝜔𝑛𝑡). (22)

Here 𝑢̂𝑛, 𝜓𝑛, 𝝈𝑛, 𝜔𝑛 are amplitude, phase, direction, and angular frequency of the 𝑛th Fourier mode, respectively. The
wave vector 𝒌𝑛 is chosen randomly on a sphere with radius 𝑘𝑛 to ensure isotropy of the generated velocity field. The
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convective velocity 𝒗𝑐 can be taken the same as the mean flow 𝒗̄. The energy spectrum for isotropic turbulence is
simulated by a von Kármán-Pao spectrum

𝐸 (𝑘) = 𝛼 𝐼
2𝑢2

∞
𝑘𝑒

(𝑘/𝑘𝑒)4

[1 + (𝑘/𝑘𝑒)2]17/6 𝑒
−2(𝑘/𝑘𝜂 )2

, (23)

where 𝐼 is the freestream intensity, 𝑢∞ is the freestream velocity, 𝑘 is the wave number, 𝑘𝑒 = 9𝜋𝛼(55Λ)−1 is the wave
number at the peak of the energy spectrum, 𝑘𝜂 = 𝜀1/4𝜈−3/4 is the Kolmogorov wave number, 𝜈 is the molecular viscosity,
𝜀 = 𝛽(𝑢∞𝐼)3Λ−1 is the dissipation rate, and Λ is the turbulence length scale. The two constants are determined as
𝛼 = 1.453 and 𝛽 = 0.3019.
The turbulence length scale is set to Λ = 10ℎmin, where ℎmin is the minimum grid length at the wall. We perform

LES computations for several different values of freestream intensity 𝐼 to study the effects of freestream disturbances on
the boundary-layer transition. The numerical results are presented in the next section.

III. Results and Discussions

A. Problem description
HBL transition of a flared cone model (see Figure 1) has been experimentally investigated using BAM6QT at Purdue

University [49, 50]. Recently, DNS studies of the flared cone were reported in [50, 51]. It was found that the formation
of the primary streaks is directly attributed to the steady streamwise vortices, which are generated by the fundamental
resonance. The primary streaks disappear when these vortices are lifted up away from the wall. When these streamwise
vortices break down and are pushed back toward the wall, the secondary streaks appear with an increased streak count
in azimuthal direction. The similarities between the streak patterns observed in the experiments and the DNS results
suggest that the transition is caused by a fundamental breakdown. However, the peak Stanton number for the DNS is
significantly larger as compared to the peak value observed in experiments. These differences arise due to the modeling
assumptions of the controlled breakdown as compared to the natural transition observed at the BAM6QT.

Fig. 1 Geometry parameters and flow conditions of the Purdue flared cone [51].

B. Flow statistics and comparisons to experiment
To study the effects of freestream disturbance on the HBL transition of the Purdue flared cone and thus better

represent the expemental condition, we carry out DNS studies of the Purdue flared cone for three different turbulence
intensities 𝐼 = 0.125%, 0.25%, and 0.5% by using our in-house code Exasim [16]. The computational grid has more
than 6 millions of quadratic hexahedral elements. The DIRK(3,3) scheme is used for temporal discretization with step
size 0.00005 and 35,000 time steps. All of the DNS simulations were performed using 48 nodes (288 V100 GPUs) of
the Summit Supercomputer and took 15 hours of run time. Figure 3 shows the side view of the computed instantaneous
pressure and temperature in comparison with Schlieren images obtained by Zhang et. al. [68]. Several similar flow
features are observed in both DNS results and experiments. Figure 4 depicts the top view of the computed instantaneous
pressure and reveals the onset of transition and turbulence. Free-stream disturbance excites the second-mode instability.
This instability is two-dimensional and similar to an acoustic wave trapped between a surface and the sonic line within
the boundary layer. As the second-mode instability packet grows downstream, formation and growth of Görtler vortices
occurs. Due to the second-mode instability and the formation of the Görtler vortices, the pressure fluctuations increase
rapidly and reach a sufficient magnitude to cause the vortices to breakdown. Transition to turbulence begins and the
flow becomes fully turbulent.
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Fig. 2 Comparison of heat transfer coefficient between our DNS results, the experimental data obtained by Chynoweth et.
al [50], and the DNS data obtained by Hader and Fasel [51].

Fig. 3 Comparison of flow characteristics between the DNS results (left) and the experiments (right).
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Comparisons with the experimental data as well as the DNS simulation [50] for the heat transfer coefficient are
shown in Figure 2. We observe that the heat transfer coefficient obtained with our DNS for 𝐼 = 0.125% agrees very well
with the experimental data for 𝑥 < 0.4 m. For 𝑥 > 0.4 m, our DNS prediction is a little higher than the experimental
data. Interestingly, the heat transfer rises rapidly during the growth of the second-mode instability and reaches its peak
when the Görtler vortices begin to form. Then it decreases rapidly when the Görtler vortices grow as these vortices carry
heat away from the cone surface, and reaches its trough when the Görtler vortices break up and transition occurs at this
location. The heat transfer rises rapidly again when the flow becomes fully developed turbulent. Our DNS results show
that HBL transition is sensitive to freestream disturbances resulting in the development and growth of the second-mode
waves and the subsequent breakdown of the Görtler vortices. The good agreement between the computed heat transfer
and the experimental data before the peak of the heat transfer coefficient suggests that the natural transition observed in
the experiments is initiated by the receptivity of HBLs to freestream disturbances.

Fig. 4 Instantaneous pressure distributions on the flared cone surface show the growth of second-mode waves and Gorler’s
vortices, as well as their breakdown to turbulence.

IV. Conclusions
We performed an implicit large eddy simulation of hypersonic boundary-layer transition for a flared cone using a

matrix-free DGmethod on graphics processor units. The ILES simulation exhibits the onset of primary and second-mode
instabilities, quite zone, followed by transition to turbulence breakdown. These distinct characteristics of hypersonic
flows on cone-like geometries are also observed in experiments. The Stanton number distribution and the pressure
fluctuation are studied for different freestream intensities and compared with the experimental data. The ILES method
was able to capture the onset of transition and turbulence breakdown phenomena for hypersonic turbulent flows past the
flared cone. The heat transfer coefficient of the ILES computation agrees well with the experimental value up to the
point of the onset of turbulence and is slightly larger than the experimental value after the breakdown to turbulence. The
ILES computation did not consider real gas effects since nonequilibrium gas effects are not significant for the free-stream
Mach number 6. Many hypersonic flows of interest involve higher Mach numbers and, in such cases, high-temperature
nonequilibrium effects need to be considered. Therefore, future work will have to take real gas effects into account for
modeling thermal and chemical non-equilibrium hypersonic flows.
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