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Abstract

We present a general approach for devising high-order accurate finite element
methods for the Maxwell’s equations based on two different Hamiltonian struc-
tures of the Maxwell’s equations, namely, the standard formulation of the equa-
tions in terms of the electric and magnetic fields, and a wave-like rewriting of the
standard formulation in terms of the electric and the magnetic potential fields.
For each of these Hamiltonian structures, we introduce spatial discretizations of
the Maxwell’s equations using mixed finite element, discontinuous Galerkin, and
hybridizable discontinuous Galerkin methods to obtain a semi-discrete system of
equations which inherit the Hamiltonian structure of the Maxwell’s equations.
We discretize the resulting semi-discrete system in time by using a symplec-
tic integrator to ensure the conservation properties of the fully discrete system
of equations. We show that the methods provide time-invariant, non-drifting
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approximations of the total electric, magnetic charges, and the total energy.
There is a Symplectic DG method for the first formulation [J. Sci. Comput.
35, pp. 241-265, 2008] but all other methods are new. We show that there are
no Symplectic HDG methods for the first formulation. In contrast, we devise
Symplectic Hamiltonian mixed, DG, and HDG methods for the second formu-
lation. For the Symplectic HDG method, we present numerical experiments
which confirm its optimal orders of convergence for all variables and its con-
servation properties for the total linear and angular momenta, the electric and
magnetic charges, as well as the total energy. Finally, we discuss the extension
of our results to other boundary conditions and to numerical schemes defined
by different weak formulations.

Keywords: time-dependent Maxwell’s equations, symplectic Hamiltonian
finite element methods, mixed methods, discontinuous Gakerkin methods,
hybridizable discontinuous Galerkin methods.
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1. Introduction

This paper is part of a series [56l 57] devoted to the development of what
can be called the Symplectic Hamiltonian (SH) finite element methods. These
methods are developed for time-dependent partial differential equations (PDEs)
with Hamiltonian structure. To obtain the methods, we first discretize the
governing equations in space by using a finite element method which is devised
to produce a system of ordinary differential equations (ODEs) with Hamiltonian
structure. Then, we apply a symplectic, time-marching scheme to the system
of ODEs in order to ensure that the discrete Hamiltonian (the discrete energy)
is either perfectly conserved or does not drift in time. Arbitrary high-order
accuracy in both time and space can be achieved by these methods.

Several symplectic Hamiltonian finite element methods were introduced in
[56] for the acoustic wave equation, and in [57] for the equations of linear
elastodynamics. In particular, we devised the first hybridizable discontinuous
Galerkin (HDG) methods for the acoustic wave equation to display a constant
or non-drifting discrete energy [56]. In [57], we obtained the first HDG meth-
ods for linear elastodynamics that conserve both the global linear and angular
momentum and display a constant or non-drifting discrete energy.

In this paper, we continue this effort and develop SH finite element methods
for the Maxwell’s equations in a polyhedral domain €2

eE =V xH-J in Q x (0,71, (1a)
pH = —VxE in Q x (0,77, (1b)
V-(eE) =p in Q x (0,77, (1c)
V- (nH) = in Q x (0,7, (1d)



with the following boundary and initial conditions:

nx E=gg on T x (0,7T], I':=0Q, (Le)
E:Eo,H:HO oan{t:O}. (1f)

Here, E and H are the electric and magnetic fields, respectively; p and J repre-

2 sent the scalar charge density function and the vector current density function,
respectively; and € and p, the electric permitivitty and magnetic permeability,
respectively, which we assume are positive functions independent of time. The
speed of light is ¢ := 1/,/en. Other electromagnetic quantities of interest are
described in Table [l

Table 1: Glosary of electromagnetic quantities.

name symbol definition
energy & 3(eE-E+uH-H)
energy flux, Poynting vector S ExH
linear momentum P eE x uH
Lorentz force F pE+J xuH
angular momentum L x x P
Maxwell’s stress o —EI+e¢cEQF+uH®H

quantities associated to the Lipkin’s zilch tensor

optical chirality [62] X $(eE-VxE+uH -V x H)
optical chirality flux X $(Ex (VxH)+ (VxE)xH)
flux of the X Xl—%(ﬁE@(VxE)+%H®(VXH)
optical chirality flux +(VXxE)® . E+(VxH)®H)
2 The SH finite element methods devised herein are of arbitrary order of ac-

curacy and are able to approximate well the integral over €2 of each of the
quantities in the rich set of conservation laws of the Maxwell’s equations listed
on Table 2| As we can see in Table [2], there are conservation laws for the linear
functional of total magnetic charge and of total electric charge, as well as for
s the quadratic functional of the total electromagnetic energy, the total linear
and angular electromagnetic momenta, the total optical chiralityﬂ its flux and
of the flux of its flux. The conservation laws for these optical chirality quantities
are related to the conservation laws found by Lipkin back in 64 [38]; see also
how optical chirality quantities are related to Lipkin’s rank-three zilch tensor,
» [0, equation(8.1)]. We prove that discrete version of the magnetic and electric
charges, and of the energy remain exactly constant or do not drift in time. To
the best knowledge of the authors, none of these properties holds for any DG

3Not to be confused with the electromagnetic helicity which was defined back in 83 [I] as
c? times the optical chirality x. For a modern definition of the electromagnetic helicity, see
[9] and the references therein.



40

45

50

55

60

Table 2: Conservation law for the (scalar or vectorial) electromagnetic quantity n, n+V - f, =
Sy, deduced from the first two Maxwell’s equations. The flux of 7 is denoted by f5, and the
corresponding sources and sinks, by Sj,.

conservation of n I Sy
magnetic charge V- (uH) 0 0
electric charge V- (eE) J 0
energy E S -E-J
linear momentum P - —F+Y(E-EVe+ H -HVp)
angular momentum L —T X o x x Sp
for p = 0,J = 0 and homogeneous media
optical chirality X X 0
optical chirality flux X X 0
flux of the ij-th entry X, 26 X 0
of the +2(~E;VH; + H,VE,
optical chirality flux - E;VH; + H,VE))

[24, [47), 30, 20, 29, 13] or HDG [I5] method for the time-dependent Maxwell’s
equations in three space dimensions. Moreover, our numerical results show that
the conservation laws for the linear and angular momenta are extremely well
approximated.

The schemes developed here are certainly not the first to be able to maintain
a constant discrete total electromagnetic energy. Examples of energy-conserving
numerical schemes are the popular finite-difference Yee’s scheme, obtained back
in the mid 60’s [64], and the splitting finite-difference schemes proposed in
[14]. However, the SH finite element methods maintain a discrete version of
the Hamiltonian structure of the original partial differential equations, which
can be exploited to systematically study the approximation of the functionals
displayed on Table

The use of symplectic time-marching methods for integrating Hamiltonian
ordinary differential equations has a long history [41l [7]. For Maxwell’s equa-
tions, SH schemes using finite-difference or finite-volume for the space discretiza-
tion have been developed, for example, in [32] 61]. However, the schemes pre-
sented here are the first SH methods to use mixed, DG or HDG methods for
the Maxwell’s equations.

In the recent work [26], where new DG discretizations to linear, symmetric
hyperbolic systems (like the Maxwell’s equations) are introduced which con-
serve exactly the energy. These methods rely on high-order accurate energy-
conserving time-marching methods whereas our methods rely on symplectic
methods. Also, the methods in [26] have to use twice as many variables as
our methods. On the other hand, our methods can only be applied to equations
with Hamiltonian structure, whereas the methods in [26] can be applied to any
linear, symmetric hyperbolic system.
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The SH finite element schemes are devised in two ways. Each way is asso-
ciated with a different Hamiltonian structure of the Maxwell’s equations. The
first is associated with the original form of the equations , which we call
the E-H formulation. It is well known that the standard DG methods for this
formulation [21], 24] 22, [30, [47, 20] 29, 13] do not make use of the Hamilto-
nian structure of the equations. Instead, they use the fact that the equations
constitute a symmetric, hyperbolic system. This results, in a natural way, in
dissipative methods which do not conserve the total energy. In this paper,
we show how to take advantage of the Hamiltonian structure of the original
Maxwell’s equations to obtain SH finite element methods. We show that such
methods can be obtained when a mixed method is used, or when a DG method
using alternating fluxes, as show in [63] for the 2D Maxwell’s equations and
other Hamiltonians systems. However, it is not possible to obtain Symplectic
HDG methods for this formulation. This motivates the second way of devising
SH finite element schemes.

The second is associated to a rewriting of the E-H formulation, which we
call the E-A formulation, namely,

A-—E in Q x (0,77, (2a)
cE :Vx(%VxA)—J in Q x (0,71, (2b)
V- (eE) =p in Q x (0,71, (2¢)

completed with the following boundary and initial conditions:

nxA=ga on I' x (0,77, (2d)
E:Eo,A:AO ODQX{t:O}. (26)
where A is a magnetic potential, that is, uH =V x A, and ga(t) := — Sé JE-

The above system has a different Hamiltonian structure which is associated to
a wave equation for A, namely,

" 1
eA+V><(;V><A)=J.

We shall devise a new class of mixed, DG and HDG methods to provide time-
invariant non-drifting approximations of the E-A formulation.

The remaining of the paper is organized as follows. In Section [2] we discuss
in detail the two Hamiltonian structures of the Maxwell’s equations. In Section
we present the spatial discretization methods and in Section [d] we prove that
they result in a set of ODEs with Hamiltonian structure. We then prove the
corresponding conservation laws. In Section 5] for an HDG method for the
FE — A formulation, we present the corresponding fully discrete SH methods. In
Section [6] we explore its convergence and conservation properties. Finally, in
Section [7} we discuss the treatment of other boundary conditions, and how to
devise methods for different weak formulations.
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2. The Hamiltonian structure of Maxwell’s equations

In this Section, we show that the Maxwell’s equations and are Hamil-
tonian. A dynamical system is Hamiltonian if it can be written as

F = {F, H},

where F' are the coordinate functionals, which can be identified to the space
of test functions D, H is the Hamiltonian functional both defined on the phase
affine space M, and {-, -} denotes the Poisson bracket [4I]. We recall that
the Poisson bracket is a bilinear anti-symmetric form which satisfies the Ja-
cobi identity. We then say that (M, {-,-},H) defines a Hamiltonian dynamical
system.

2.1. Notation

We begin by introducing some basic notation. The standard spaces of vector-
valued functions we are going to work with are

L*(D) :=={v: D — R*: || 12(p) < o0},
H(curl,D) :={v e L*(D): V x v e L*(D)}.

For any vector-valued function v defined in the domain 2, we denote its trace
on I' by v|r. We denote the exterior trace of v on I' by v***. The exterior trace
is defined independently of the regularity of the function v inside 2. Moreover,
even v|r is well defined, it does not have to coincide with the exterior trace v®¢.

Finally, for any given space S(o) of functions defined in the interior of €

W

where “o” represents, for example, “Q” or “curl, Q)”, we set
Strace(o: g) ;= {s€ S(0) : m x 8" =g on T},

where “trace” indicates if the trace is the standard trace or the exterior trace.
In the first case, we drop the superscript and in the second case, we write
“ext”. We use the notion of exterior trace in order to properly establish the
Hamiltonian structure of the Maxwell’s equations. In particular, the exterior
trace allows us to easily incorporate the boundary condition on the electric field
into the smooth manifold M.

2.2. FElectric and magnetic field formulation.

We assume that €, u, p, J and gg are independent of time. We also assume
that the current J is solenoidal. Thus, we can write that

J =V xJy.
The components of the Hamiltonian structure are:
(i) The phase manifold and the space of test functions:

M = L2,ewt(Q;gE) X H(CUI'I,Q)7 (3&)
D— Cao,ea:t(Q; 0) X COO(Q) (3b)



(ii) The Poisson bracket is

10F 146G 146G 16F
wae= [ (5 v () - () 7 (im)
(3¢)
+f L (LOENTT (108G (168G (1 0F
S\ M\ GE wolH ) " \CoE WoH) )
Here F = F(E,H) and G = G(E,H) are functionals on M and the

operators %, % are the functional derivatives, that is,

OF d OF d
| §5ro- o). | Shov- LFEH )

(ii) The Hamiltonian (the total electromagnetic energy):

He(E,H) = %Jﬂ(eE-E+uH-H)—JﬂJX-uH. (3d)

(iv) The coordinate functionals
Fo(@)= | cB 0. Fu()= | pH-w  Viow)en. (30

110 It can be shown that the weak solution of the E-A formulation defines
a Hamiltonian dynamical system for (M, {-, }., How)-

2.8. Electric field and magnetic vector potential formulation.

Since pH =V x A, we consider H as a function of A and define it as the
element of H(curl, Q) such that

LMH-q/):LA-Vx'«pﬁ—LgA-'t/) V1) € H(curl, Q).

The components of the Hamiltonian structure are:

(i) The phase manifold and the space of test functions are

M = L*(Q) x L**"'(Q;ga), (4a)
D = C*(Q) x C*"(Q;0), (4b)
(ii) The Poisson bracket
1 /6G OF OF oG
- (== 22 2= 4
R, Gl L ; (6A SE A 5E) ’ (4c)
where F' = F(E,A) and G = G(E, A) are functionals on M and the
115 operators %, ﬁ are the functional derivatives.



(iii) The Hamiltonian

Ho(B,A) = %L(eE-E+uH-H)—LA-J. (4d)

(iv) The coordinate functionals

Fe(¢) ZJ

E-b. Falp)- | cde (@)D ()
It can be shown that if (M, {:,-}¢, Hs) defines a Hamiltonian dynamical
system, then it yields the weak solution of the E-A formulation .

2.4. Conservation laws

The Hamiltonian systems described earlier satisfy all the conservation laws
displayed in Table For instance, let us prove the conservation of electric
charge, p+V-J = 0, for the wave-like Hamiltonian system (M, T), {-, }w, Huw)-
Taking C := — {, eE - V¢, where ¢ € Ci°(2), we obtain

Lpgb:—LeE-VgZ):O:{C’,Hw}w:LJ-WS:— QV-J¢>,

10 which proves the conservation of the electric charge. The rest of the conservation
laws in Table [2| can be obtained similarly by choosing different functionals C;
see Table

Table 3: Conservation laws and their corresponding functional and Poisson bracket. The test
functions ¢ € C(Q2) and ¢ € CL (4 R3).

conservation laws functional C' Poisson bracket {C, He}e
magnetic charge — S uH -V 0
electric charge —J,€eE- Vo -, V-Jo
energy §o, €0 —§o(V-S+E-J)¢
linear momentum So P - §o(V-o—F+ L(|E|*Ve+ [H|?Vp)) -1
angular momentum So L-¢ §o(V-(xxa)+xx8Sp) -9
for p = 0, J = 0 and homogeneous media
optical chirality §o X0 -, V-Xo
optical chirality flux fo X ¢ —§o(V-X) -9
flux of the 7j-th entry — SQ V- (02(5in
of the §o X0 +S(~E,VH; + H,VE,
optical chirality flux —E;VH; + H¢VEJ-))¢
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3. The finite element methods for space discretization

In this section we present the mixed, DG and HDG methods for the spatial
discretization of the E-H and E-A formulations of Maxwell’s equations.

3.1. Notation

Let T, = {K} be a family of conforming, regular triangulations of . Let hg
be the inner diameter of an element K in 7} and we define by h the maximum
over the elements. We define the following sets:

0Tp: the set of 0K for all elements K of the triangulation Tp,
Fr: the set of all the faces of the triangulation 7y,
F): the set of the interior faces of the triangulation Ty,

]—";f : the set of faces lying on the boundary T,

OK: the set of all the faces of the element K

Similar definitions for the inner products in (d — 1)-dimensional domains
with codimension 1 are considered. For a vector-valued function w, we define
its tangential and normal component, w? and w”, respectively, over F' € Fj,
with normal vector n by

w' = (n x w) x n, w"” =n(n-w).

For D c R? and B < R%"! we denote by (-,-)p and {-,->p the inner products
for w, v as

(w,v)szDw'v, <w,v>D=JDw~v.

Then, we define the inner products over the triangulation 7, and the sets of
boundary and faces of 7Ty,

(va)Th = Z (w7v>K <wav>57’h= Z <wvv>9K’ <w,v>g = Z<w7'u>F’

KeTy, KeThn Feg

where G denotes a collection of faces, for instance G = 0K, Fp,, F} ,.7-",? .

For an interior face F' € F}, we have two elements K~ and KT such that
F = 0K* n 0K, and denoting the trace of a vector valued function w to the
boundary of K* by w*. Then, we define the average and jump on F € F} of
w by

1
{w} = §(w+ +w?), [w]:=n"xw"+n" xw~ for FeF.

We extend the definition of the jumps to F' € F{, by [w] := n x (w — w®?),
where w®*! is the exterior trace.



140

145

The finite dimensional spaces we are going to use are of the form

={veL*Q): v|geV(K) VK eT,},
={we L*Q): v|x e W(K)VK € T},
={ne L*(F,):nlpe M(F) YF € F,}.

As indicated in Section 2.1, we incorporate the boundary condition into the
spaces by setting

Viert(g) == {veV,: nxv™ =gonT},
Weet(g) := {we W), : n x w*" = g on T'},
M (g):={neM;: nxn=gonl}.

These spaces are used to define the DG and HDG methods. To define mixed
methods, we use spaces of the form

Vel = Vi, AH(cur; Q) and - W= W), n H(curl; Q).

The spaces with the superscript “curl” are usually called the spaces of edge
elements, see [48] and [46]. Examples of the local spaces V(K), W(K) and
M (F) can be found in Section see also Table

3.2. The weak formulations

For mixed methods of the E-H formulation, the approximation (E},, H},) is
taken in V;¢*(gg) x W and is required to satisfy the equations
(cEp,v ), — (V x Hp,v)y, = —(J,v)y, YveV,, (ba)

(uHp, 7)1, + (Ep, V x 7)1, + (n x ES rp 0 Vr e Weul,
(5b)

For the DG and HDG methods, we take the approximation (Ej, Hy,) in Vj, x W,
and define them as the solution of

(e Ep,v)7; — (Hp,V x v)7; — {n x Hp,vdoT, —(J,v)7, YveV,, (6a)

(wHy,7)7, + (En,V X 7)7, +<n><Eh,r>;;7—h =0 Vr € Wy,
(6b)

where the tangential components of the numerical traces (Eh, o 1) approximate
the tangential components of (E|z,, H|r,) and ‘must be suitably defined, see
Table Wi l Note that on the boundary of 2, n x Eh = n x E®!. Furthermore,
the numerical trace Eh has to satisfy the addltlonal equation @ to ensure the

single-valuedness of the numerical trace Hy,.

10
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For mixed methods of the E- A formulation, the approximation (Ep, Ay, Hj,)
is taken in Vj, x V¥ (ga) x W and is required to satisfy the equations

(Ah,'u)Th + (Eh, ’U)Th =0 Vv e Vy, (7a)

(eE’h,v)Th — (V X Hh,v)Th = —(J,’U)Th Vv e Vh, (7b)
(uHp,7) 7, — (AR, V x )7, — (n x At #Hp =0 Vr e WU (7c)

For the HDG and DG methods, we take (Ej, Ay, Hp,) in the approximation
spaces Vj, x Vi, x W}, and define it as the solutions of

(Ah,'v)Th + (Ep,v)7, =0 YvoeVy, (8a)
(e Ep,v)7, — (Hu, V x 0)7, —(n x Hy, 01, = —(J,v)7., YveVy, (8b)
(WHp, 7)1, — (A, V x 7)1 —(n x Ay, Ty, =0 Vre Wy, (8¢)

where the tangential components of the numerical traces (Ah, fI\ 1) approximate

the tangential components of (A|z,, H|r,) and must be suitably defined, see

Table 4| [Furthermore, Ay, satisfies an additional equation which is similar to
with A, as the element of M, (ga).](to-be-deleted)

3.8. The numerical traces

The numerical traces for the HDG and DG methods are list in Table @l Note
that they incorporate the boundary conditions and that some of numerical traces
are defined in terms of Pps, the L? projection into [ et [1peax M(F). Note
also that only the tangential component of the numerical traces is seen by the
schemes.

Table 4: Exterior and numerical traces: Mixed (top row), HDG (middle row) and DG (bottom
row) methods.

E-H formulation E- A formulation
on]—';f: anzzt:gE nXAZIt:gA
Eh € M} (gg) is a new unknown: Ah € M (ga) is a new unknown:

Onan: ’I’LX(Hh—Hh)=—T(PMEh—Eh) nX(Hh—Hh)=T(PMAh—AAh)

Hy, = {Hy} + Ci1[Ey] + CLIHL  Hy, = {Hy} — Cuu[A] + ChL[H)]

on FU: Py
h En ={En} + C3[En] —Can [Hr]  An = {An} + C12[An] + C22 [Hi]
on fﬁ; ﬁh:Hh+ Cil nX(Ethh) ﬁh:th C/1\1 nx(Ah—Ah)
n x E, =g nxAn=ga

Finally, as it is typical for the HDG methods, the new unknown can be
obtained either explicitly as a function of (E},, H}) or as the solution of a global
system obtained by imposing the single-valuedness of the tangential component

11
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Figure 1: Solution, traces, and stabilization function around an interior face F' € .7-'2.

of the other numerical trace [I5]. Specifically we define the numerical trace E),
as the element of M}, (gg) for which the tangential component of the numerical
trace Hj, is single-valued, that is,

<’I’L X Hh,’r]>a7-h\1—~ =0 V’I’] e My, (9)

If 7 is a simple multiplication by a constant on each face, the explicit solution
of the above equation can be easily found, see to be the following:

~ Y+(P]V[Eh)+ + Yi(PMEh)f [[Hhﬂ
E, = e TV iy where Y := T,
= ZY"(Hp)" +Z (Hp)~ [Py Ey] 1
Hh: Z++Z* m WhereZ::T .
To enforce the stability of the space-discretization, it is enough to require that
7 be positive. If € and p are piecewise constant, and we set 7 := /¢/u, Z

becomes the impedance, Y the admittance, and the numerical traces Ej and
H, n become (a generalization of the case in which Pps is the identity of) the
well known upwinding numerical traces.

For the classic DG methods, we consider the particular case in which Cy1, Cao
are scalars and C, is a matrix. Stability is achieved when C7; and Cao are
non-negative. There are three popular cases covered by this anzatz. The first
is the upwinding numerical traces, as they are obtained by taking

Cii=1/(Z*+Z7), Coa=1/(YT +Y7),
and defining the matrix C, by C,v = —% XU = +%
note that C,, is skew-symmetric in this case. Another choice is obtained by
setting C1; = Ca2 = 0 and taking the matrix C';, such that, on the interior
faces, we get

Ey = 0(E,)" + (1—0)(E})", Hy,=0(H})™ +(1-0)(H})",

X v;

for some 6 € [0,1] depending on the face. These are the so-called alternating
traces. A third choice is Cj; = Cy = 0 and C;5 = 0 which gives rise to the
so-called centered traces.

12
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8.4. Examples of finite element spaces

Here we discuss some specific choices for the local spaces V(K), W (K), and
M (F), which are then used to construct the global approximation spaces V},
W}, and Mj,. These choices are summarized in Table[5| Therein, Py = P¢(K)
denotes the space of vector-valued functions whose components are polynomials
of degree ¢ on the element K. The space P = P}(F) denotes the space of
vector-valued functions which are tangent to the face F' and whose components
are polynomials of degree £ on the element F. The space Py is the space of
homogeneous polynomials of degree £ on each component. The space Py is the
space of homogeneous polynomials of degree ¢. Finally, the symbol V¢ denotes
the tangential gradient on the face F'.

Table 5: Examples of finite dimensional spaces.

K V(K) W (K) M(F) k global
spaces
mixed methods
[43] tetrahedron P Pr ® (x x 7~J'k) _ >0 Vj x W;L:url
tetrahedron P Pri1 _ >1 Vj, x W}(l:url
HDG methods
[15] polyhedron P P 'Pz N >0 Vi, x Wy,
12 polyhedron  Pyyq P PLOVEPri2 =1 Vi, x W,
23] polyhedron  Ppi1 P 'P’;H_l >0 Vi, x Wy,
DG methods
[30L [I3]  polyhedron Pk P - =0 Vi, x Wy,

For mixed methods, the space of traces M is not needed since H(curl)-
conformity is enforced by the construction of the approximation space W,
Mixed methods are not limited to simplicial meshes since general H(curl)-
conforming elements can be constructed for hexahedra, prisms, and pyramids,
see [16], by using exact sequences.

For HDG methods, relatively fewer references exist for the time-dependent
Maxwell’s equations, compared to the time-harmonic or the static case. For
the time-dependent case, a typical choice is to use Py for all approximations
including the numerical trace; see, for instance, [I5]. For the steady-state case,
various choices of the approximation spaces exist and we refer to [23] for an
introduction where a unified analysis is established to investigate the different
convergence properties of the various choices. For DG methods, the trace space
M becomes unnecessary since no hybrid unknown needs to be introduced. To
the best of our knowledge, all DG methods use the space of polynomials P}, for
both the approximations of E; and Hj},; see, for instance, [30, [13].

3.5. The initial conditions

We describe how to compute the initial conditions from the initial data

13
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Ey, Hy. For the methods associated with the E-H formulation, we can sim-
ply take the initial conditions as the L2-projections of Ey and Hj into the
corresponding spaces.

For the methods associated with the E-A formulation, the initial condition
for the electric field can be taken as the L?-projection of Ey into the correspond-
ing space. In contrast, the definition of the initial condition for the magnetic
potential is more involved since the initial data for A is not given and €A is
divergence-free. We define the initial condition for (H, A) as an approximation
to the solution of the system

uH -V xA=0 in Q, (10a)
VxH+eVp=Vx Hy in(, (10b)
V-eA=0 in Q, (10c)
nxA=ga onT, (10d)

p=0 onT, (10e)

where p is a Lagrange multiplier introduced to enforce the divergence-free condi-
tion on €A explicitly. This auxiliary pressure turns out to be zero since V x H
is divergence-free. R

The approximation (Hp,, Ay, pr, A, Pr) is taken in the space W), x Vj, x
Qn x Mp(ga) x M as the solution of the following system

(WHp, 7)1, — (An, V x 7)1 — (Ap, 7 x ndar, =0 (11a)

(Hp,,V x v)7, +{n x ﬁh,v>57h — (epn, V - 0)7;, + {€Dn,v - N5, (11b)
= (V x Hp,v)T,

—(€An, V)7, + (An - n+ 7(pr — Pr),€@or;, =0 (1lc)

(Ap-n+ 7 (pr — Pr), Norr = 0 (11d)

(n x Hy,mysp,r =0 (11e)

Pn, Mr =0 (11f)

for all (r,v,q,m,\) € W}, X V}, x Qi x M}, x M}', where 7, is a stabilization
parameter and the scalar spaces have the form

Qn:={qe LQ(Q) cqlx € Q(K), VK € Tr},
M :={\e L*(F) : Nlpe M"(F),VF € Fp},

where Q(K) and M"™(F) are local scalar-valued polynomial spaces. The defini-
tion of the initial solution for the mixed and the DG methods is similar.

Remark 3.1. In our numerical experiments, we use the following choices of
the local spaces for the variant k

V(K)x Wy, x M(F) x Q(K) x M"(F) = Py x Pr x P}, x P, x Py

14
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and for the variant 5

V(K) x Wy, x M(F) x Q(K) x M™(F) = P41 x Pi X Phiq1 x Px x Pria

What we call the “variant k” is the standard HDG method with all variables
using piecewise polynomials of degree k, [15]. What we call “Variant B7 is the
HDG method introduced in [23] where the authors study four optimal variants
of the HDG method for the frequency domain Mazwell equations.

4. Hamiltonian structure of the semidiscrete methods

In this section, we prove the Hamiltonian structure of the semidiscrete
schemes based on the E-H and the E-A formulations. From now on, we use
the subscript % on the Poisson brackets to differentiate between the E-H for-
mulation, ¥ = £, and the E-A formulation, ¥ = w. When we simply write %,
it means that both formulations can be used. Similarly, we use the superscript =
to differentiate between the methods. So, for the mixed method, we use * = M,
for the DG method, * = DG, and for the HDG method, * = HDG. When we
simply write *, we refer to any of the above methods.

We claim that the semidiscrete methods presented in Section [3| define a
Hamiltonian dynamical system for which

(i) the discrete phase and test space (Mp,Dy) is an approximation to its
continuous counterpart (M, D),
(ii) the Poisson bracket {-,-}x.5 is a discrete version of {-, -},
(iif) the Hamiltonian H} , is a discrete version of the Hamiltonian Hj.

We divide this section into two parts. In the first part, we investigate the
E-H formulation of the mixed, DG and HDG methods. We shall show that the
mixed methods have a natural Hamiltonian structure and that the DG methods
become Hamiltonian when the coefficients C1; and Csy defining their numerical
traces, see Table[d] are equal to zero. Consequently, the mixed and DG methods
conserve their corresponding discrete energy Hé\{h and HSD’ ,CL*', respectively. As a
consequence, the discrete electric and the magnetic charges are also conserved.
On the other hand, the restriction on the DG methods to be Hamiltonian,
namely, that Cj; = Cay = 0, immediately implies, see that the
HDG methods do not possess a Hamiltonian structure. This is consistent with
the fact that their discrete energy always decreases in time.

In the second part, we consider the E-A formulation of the mixed, DG
and HDG methods. We shall prove that all three methods have a Hamiltonian
structure. Consequently, their discrete Hamiltonian energy ny b 7-[57(,’:, and
Hgﬁ G are conserved in time evolution. In addition, we prove that, as it holds
in the continuous case, the electric and the magnetic charges are also conserved
in the discrete level. This is achieved by exploiting the discrete Hamiltonian
structure of these numerical methods.

15



4.1. The electric and magnetic field formulation

We begin by describing each of the components of the Hamiltonian structure
for the methods defined by using the E-H formulation:

(i) phase and test function spaces

mixed: M hM

= Vit (ge)x W™ and DY = ViERH(0)x WM,
DG: MPY = Vet (gg)xW;,  and DPE = ViRt (0)x W,
HDG: MHAPC .= Verl(gg)xW),  and DHPY .= V& (0)x W,.

(ii) Poisson bracket

1 6F 1 6G 1 4G 1 oF
F = - — — —\ T T »
{F Glen (e 5B, (Mm”n (e 5B, (MHh>>Tn

CASE (LGN 3G (L OF
ok, " \usH, ) TSk, M \usH, )T

where

~ KU’B —CIQ[[U’H Fel f?a
u =
uewt Fe F;?,

(iii) Hamiltonian

Hen =

DO =

((e En, Ey)7, + (nHp, Hy)7,) — (I, ),
(iv) and coordinate functionals

FEh = (EE},,,’U)Th and FH;L = (,LLH},,,’I’)Th N ('v,r) € DZ

We can now state and prove the main result of this subsection.

245

Theorem 4.1 (Hamiltonian structure of the E-H formulation). We have
that

(i) The mized method defines a Hamiltonian dynamical system with

(MY Yens He )

(i) The DG method @, with numerical fluzes defined by Table defines a

Hamiltonian dynamical system with

(MEGv {'a '}g,haHg,h)7
if and only if C11 = Cas = 0.

16



(iii) The HDG method @, with numerical fluxes defined by Table |4}, is such
that
(MhHDG7 {'a '}f,ha HE,h)v

18 never a Hamiltonian dynamical system.

This result is similar to [63] for DG methods. We include the proof in
250 for completeness.

A straightforward corollary of this result are the following conservation laws.

The proof is included in

Corollary 4.1 (discrete conservation). The mized method and the DG
method @ with numerical traces defined by Table |4| satisfy the following con-
servation laws.

(electric charge) (CEh» V)7, =0,
(magnetic charge) (nHy, Vw)7, =0,
(energy) 7'25,h =0,

for all test functions v,w € Hj(Q) satisfying (Vv, Vw) € Df where = = M for
the mized method, and « = DG for the DG method.

s 4.2. The electric and magnetic vector potential formulation

Let us describe now the components of the Hamiltonian structure for the
methods defined by using the E-A formulation. In what follows, the superscript
x stands for M, DG and HDG. We have:

(i) phase and test function spaces:
M=V, x V™ (ga) and  Df :=Vj, x V,£4(0). (12a)

(ii) Poisson bracket

(12b)

(F,Glun — (1 oF G )Th_ (1 0G OF )Th’

c6E, A, cOE, A,
(iii) Hamiltonian

1 —~ ~
wh =3 ((EEhaEh)Th + (uHp, Hy)7, + (0 x (Hjj — Hy), Ap — AZ%’Th)
(12¢)
- (Ah7J)7—h,7

(iv) and coordinate functionals given by

Fg, = (eEp,v)7; and Fa, = (e Ap,v)7, V (v,w) € D}, (12d)

17
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The third term of the Hamiltonian, called the stabilization term, reduces to
different forms for different discretization methods, as we see in the following

result proven in
Proposition 4.1 (The form of the stabilization term). Set
Si(Ap, Hy) = (n x (Hjf — Hy), Ay — A})or,.

Then
Sy (A, Hy) =0
SR (An, Hy) = (Cu1 [An], [AR]) 5, + (Coz [Hy], [H]) 7,
SHDCG(Ay,, Hy) = (1(PapAn — Ap) x n, (PrrAp — Ap) x n)or,

We are ready to state and prove our main result.

Theorem 4.2 (Hamiltonian structure of the E-A formulation). We have
that

(i) The mized method defines a Hamiltonian dynamical system with
(M;LVI7 {'? '}w,ha ,Hi;\/{h)

(i) The DG method , with numerical fluzes defined by Table defines a

Hamiltonian dynamical system with
(MhDG7 {', '}w,h7 Hu[:),G)'

(iii) The HDG method , with numerical fluxes defined by Table defines a
Hamiltonian dynamical system with

(MhHng {'v '}W,hv HE,EG)

,To prove this result, we use the following auxiliary result proven in the
[El

Lemma 4.1. We have
(n x (6H} — 6Hy), Ay — A¥or = (n x (H} — Hy,),6A), — 6A5or. .

PRrOOF (PROOF OF THEOREM [4.2)). By definition of the coordinate function-
als Fg, and Fj,, we have that

¢ 6B, ' A, 0B, = oA,
and we get, by definition of the Poisson bracket, that

o I L
(;Eh 71])771 an { Ep > w,h}UJ;h _( 5Ah 7U)Th'

{Fa,, Hoptwn=—(

18
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So, to show that

. o B " B
h - ) w,hfw,h — T ) 9

(eAh,v)T FAh {FAh H h} h (EEh ’U)Th

(EEh,’U)Th = FEh = {FEh7 H:;ﬁ}u),h = (Hh,v X ’U)Th + <n X H;f,’v>(37—h — (’I),J)Th,

we must show that the expressions

IHE
@Ah ::( 5E}; ’v)Th - (eEhvv)Tm
OHE —~
Op, = — ( 5A}; 7”)777, + (Hhvv X U)Th + <’I’L x H}Tﬂv>57—h - (Uv‘])ﬁ,’
are both equal to zero.
Now, since 6?}_}%% = € Ej,, we immediately get that © 4, = 0. The proof that

DG
w,h

Op, = 0 is more difficult because obtaining —=* is more involved. We do this

next. the definition o e Hamiltonian , 1ts variation with respect to

t. By the definition of the Hamiltonian HLF, i iation with

Ah is

((m{ﬁﬁ
6 A

1 — ~
:8A3) 7, =(1SHn, Hp)7,, + 50(n (Hy — Hy), An — Aot — (6An, J) 7,
=(uwSHy, Hy)7,, +{n x (Hjf — Hy),6A, — A o7, — (6An, J)T;,,

by Lemma[4.1] Taking the variation on the third equation defining the method,
and then setting r := H},, we obtain

(6AR, Y x Hy)7, +{n x §A%, Hy ot

(Hp,V x 6A3) 7, + (6A;, — 6A%E, n x Hpor,
(Hp,V x §AL) T, +(n x H¥ 5Aper,

+{5A, — A n x Hyor, —(n x HE §A et
=(Hp,V x 6A,)7, +{n x HF 64,07,

+(5An — 6A}, n x (Hy — Hf))or,,

(:u OH}, Hh)Th

because
<5ﬁ;‘:,n X ﬁ,’f)an = <§ﬁz,n X ﬁ;f>p = (6Ppr(ga x m),n x I/LI\;’;>F =0.
This implies that

oH*:
( w,h
0A}

8AL) T, = (Hp, V x 0A) T, +(n x HE 5Ap o7, — (64, J)7., (13)

and so, for any test function v for the magnetic potentials, we can set A, := v
and get that O, = 0, as desired. This completes the proof.

A straightforward corollary of this result are the following conservation laws.
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Corollary 4.2 (discrete conservation). The mized method and the DG
and HDG method with numerical traces define by Table satisfy the follow-
ing conservation laws:

(electric charge) (eEp, Vo), = (V- J, )7, (14a)
(magnetic charge) (uHy,, Vw) T, =0, (14b)
(energy) Hupn = 0, (14c)

for any test functions v,w € H(Q) satisfying (Vv, Vw) € Df.

PrROOF. We will only present the proof for DG method since the proofs for
mixed and HDG methods are similar. To obtain the conservation of the electric
charge, we define F,. = (eEp, Vv)7, and obtain that

SHDS
5A,
= (Hp,V x V)7, +{(n x Hy, Vodor, — (J, V)7,

Fec = {FecaHgg}w,h = (

’VU)Th

by equation (13). By the single-valuedness of (Vv)" (again by [49, Lemma 3])
on F}, and since v = 0 on I', we obtain

Foo=(V-J,0)7,.

The conservation of the magnetic charge can be obtained directly from the
equation giving Hj, in terms of Ay, (8¢). Indeed, taking r := Vw, we get

(,LLHh,V’w)Th = <n X AAZ,Vw>aTh + (Ah,V X Vw)Th =0

by single-valuedness of (Vw)! and Az, and since and w = 0 on I'. Clearly,

property (14b)) follows naturally.
Finally, the energy conservation is obtained immediately by the antisymme-

try property of the Poisson bracket {-,-},, n. This completes the proof.

5. Fully discrete HDG schemes

In this section, we present the time-marching Runge-Kutta, symplectic in-
tegrators with which we complete the definition of the fully discrete schemes.

5.1. Symplectic diagonally implicit Runge-Kutta methods

We discretize in time the HDG scheme using symplectic diagonally implicit
Runge-Kutta (DIRK) methods. To introduce the DIRK scheme we consider
the ODE g(t) = f(t,y(t)). A DIRK scheme computes the approximate solution
y(+1) = g(¢"*+1) assuming that 3™ is known by

y"“ = y" + At Z blkz,

i=1
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where k; = f(t"™, y™?), t™ = " 4+ ¢;At, and y™¢ = y" + Atz;':1 a;jk;. The
Runge-Kutta coefficient matrix a;; and the coefficient vectors b; and c;, for
i,j = 2,..,n, are usually summarized in a Butcher tableau. For DIRK schemes
we note that a;; = 0, for j > i. Furthermore, these schemes have the symplectic
property under the following condition on the coefficients (see [58]):

biaij + bjaj; —bibj =0, 1<4,j <s.

Note that we can reduce the semidiscrete HDG scheme of the E-H formulation
to the following ODE system

My + Ty = F(¢), (15)

where y contains the degrees of freedom of (Ej, H h,Eh). Then, to solve the
system we apply an s-stages DIRK scheme. The method is shown in Algorithm
It is possible to perform static condensation to locally eliminate the degrees
of freedom of (E}, H},) to obtain a smaller linear system in terms of the degrees
of freedom of Eh.
Algorithm 1: DIRK-HDG
Data: y”

Result: y
for i — 1 to s do

n+1

i—1 n.i

y" aij (Y™
T = +y -7 );
¢ aiiAt J; (0777 a“-At 7]

Solve for y™:  Ty™" = Mr; + F(t" + ¢;At);

; -1
Y-y O
k;, = — —k;
! aiiAt j; (0777 »
end
S
Yt =yt ALY biks;

i=1

5.2. Symplectic explicit partitioned Runge-Kutta methods

In this section we discretize in time the HDG scheme using explicit par-
titioned Runge-Kutta (EPRK) methods. To introduce the EPRK scheme we
consider the Hamiltonian system

. oH . O0H
p= fa(pyqﬂf), q= aT)(IMJ)-

An EPRK scheme computes the approximate solution
(p(n+1)7q(n+1)) = (p(thrl)’q(tnle)’

assuming that (p(t"),q(t") is known, by using an s-stage DIRK scheme with
coefficients (a;;, b;, ¢;) for the first ODE and explicit RK scheme with coefficients
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(dij,l;i,éi), for i,5 = 1,...,s for the second equations. The global scheme
is explicit if the Hamiltonian function is separable. Moreover, the scheme is
symplectic if the coefficients satisfy (see [58])

bidi; + bjaj; —bibj =0, 1<i,j<s.

In our case we reduce the HDG semidiscrete scheme to the following structure:

Mip = —Tiq, Maq = Top + F(t) (16)
These equation will be solved using Algorithm 2]
Algorithm 2: EPRK-HDG

Data: (p™,q(™)
Result: (p("t1), g(n+1)
(Po: qo) < (P'™,q™);
for i — 1 to s do

Solve for p;:  Mip; = Mypi—1 — Atb; T1q;—1;

Solve for g;:  Maq; = Mag;—1 — Ath; (Tap; + F(t + &));
end
(p(n-kl)7 q(n+1)) — (Ps, QS);

5.8. Fully discrete HDG schemes for the electric and magnetic vector potential
formulation.

We rewrite the HDG scheme —@ as: Find (Ap, En, Hy, AZ) € Vi, x Vj x
Wh X M}tl

(cAp, vn)T,, +(€E, vp)7, =0

(e B, vp) 7, —(V x Hyy,vp) 7, — {14 (PpAp — ﬁh) X n, vy X nyor, = (J,vn)T
(uHp, wp) 7, — (N x fi}l,wh%n —(Ap, V xwp)7, =0
(n x (H}, + 7Py(An — An)),mnor, =0
(n x jﬁﬂh&r ={ga,mr

for all (vh,fvh,wh,nh) € Vh X Vh X Wh X Mﬁ
To obtain the fully discrete implicit scheme using symplectic DIRK methods,
we note that the HDG scheme has the structure with y being the degrees

~

of freedom of (Ay, Ey, Hj, Al). Furthermore, the matrix M is block diagonal,
and since there is no time derivative for Hj, and fiz then the corresponding
blocks to these unknowns are zero.

To obtain the fully discrete explicit scheme using symplectic EPRK time
integrators, we write the HDG scheme in the form . The variables p and q
correspond to the coeflicients of the approximations of A; and Ej;,. We observe
that in the second equation of the HDG scheme we need to write the variables
Hj, and A! in terms of the variable Aj. For this purpose we use the third and
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fourth equations and obtain the system for a given Ay, find (Hy, Al) € Wy, x M},
such that

—(14h7 V x rh)Th

CH, = 1Ay x mmy x mor, = (TPaAp x momp x myer,

(uHp,r1) 7, — (n x A} om0,

(nx AL, mpyr = (ga,mm)r

for all (wp,mp) € Wy, x M}.

6. Numerical experiments

In this section, we test the properties of our numerical schemes, specifically
the EPRK(k + 2)-HDG(8) (variant B, third HDG method in Table [5| see
also Remark and DIRK(k + 1)-HDGy, (variant k, first HDG method in
Table |5} see also Remark numerical schemes. We use an EPRK method of
order (k + 2) when we use the HDG method with variant 9B, i.e. matching the
expected rate of convergence of the error of the electric field and the magnetic
vector potential. We use a DIRK method of order (k+ 1) when we use the HDG
method with variant k& with polynomial order k, again matching the expected
rate of convergence of the error of the variables. For all numerical experiments
we use the open source finite element library NETGEN [59] and NGSolve [60].

In Section [6.1} we provide numerical evidence of the approximation proper-
ties of the EPRK(k + 2)-HDGy(8) method obtaining the optimal convergence
of order k + 2 for the L2-errors of the electric field and the magnetic vector
potential variables and of order k + 1 for the L2-errors of the magnetic field. In
Section [6.2] we present a numerical example illustrating the energy-conserving
property of our methods, in particular we use DIRK(k + 1)-HDGy, (variant k),
with £ = 1. Note that the symplectic Runge-Kutta schemes integrates exactly
quadratic forms. This is observed in our experiment.

6.1. Convergence tests

In the following numerical experiment, we provide evidence of the optimal
approximation properties of the numerical scheme EPRK(k +2)-HDGy, (variant
B). See for the EPRK schemes used in our computations. For
each of the approximations Ej,, Ay, and H},, we compute the maximum over the
time steps t” of the L2-errors of the corresponding error, and then estimate their
orders of convergence (e.o.c.). For instance, for the electric field approximation
we compute

1 ’
error(h) = max |E(t") — Ey| 1203, e.o.c(h) = og(elrsgzzﬁfiorh ),

where h’ correspond to the previous mesh size parameter used in the compu-
tations. The experiment is carried on the unit cubic domain Q = (0,1)3 using
uniform triangulations with mesh-size parameter h = 27!. As exact solution of
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the initial, boundary-value problem , consider the example from [I5] given
by

— cos(mx) sin(my) sin(mwz) cos(wt)
E(z,y,2z) = 0 )
sin(ma) sin(7y) cos(rz) cos(wt)
— I sin(mx) cos(my) cos(mz) sin(wt)
H(z,y,2) = | 2Zcos(mz)sin(my) cos(mz) sin(wt)
—ZI cos(mr) cos(my) sin(7z) sin(wt)

with angular frequency w = /37 and with permittivity and permeability ¢ = 1
and p = 1.

We show in Table[6] the errors and orders of convergence for the EPRK (k+2)-
HDG(8) method. We observe the optimal convergence in L? norm of order
k + 2 for the L2 errors-of for the electric field and the magnetic vector potential
variables, and of order k + 1 for the magnetic field.

Table 6: History of convergence of the numerical approximations of Maxwell’s equations
by semidiscrete HDG scheme variant B with ESPRK(k + 2).

Ey Ap Hy,

k h error e.o.c. error e.o.c. error e.o.c.
7.9370e-01 2.9675e-01 — 6.8615e-02 — 4.1701e-01 —
3.9685e-01 1.1164e-01 1.41 2.1249e-02 1.69 2.5653e-01 0.70

0 1.9843e-01 2.6226e-02 2.08 5.1184e-03 2.05 1.2883e-01 0.99
9.9213e-02 7.4169e-03 1.82 1.3227e-03 1.95 6.4956e-02 0.98
4.9606e-02 1.9690e-03 1.91 3.3288e-04 1.99 3.2532e-02 0.99
7.9370e-01 6.4480e-02 — 9.7970e-03 — 1.4015e-01 —

1 3.9685e-01 1.6202e-02 1.99 2.7083e-03 1.85 5.8194e-02 1.26
1.9843e-01 2.5722e-03 2.65 3.4638e-04 2.96 1.7300e-02 1.75
9.9213e-02 3.4336e-04 2.90 4.4523e-05 2.95 4.4140e-03 1.97
7.9370e-01 3.5762e-02 — 6.5098e-03 — 4.0838e-02 —

9 3.9685e-01 3.2224e-03 3.47 5.7848e-04 3.49 7.9169e-03 2.36
1.9843e-01 2.1460e-04 3.90 3.4372e-05 4.07 9.2374e-04 3.09
9.9213e-02 1.4210e-05 3.91 2.1960e-06 3.96 1.1636e-04 2.98
7.9370e-01 3.0788e-03 — 5.4199e-04 — 1.2561e-02 —

3 3.9685e-01 3.8432e-04 3.00 6.6832e-05 3.01 1.8175e-03 2.78
1.9843e-01 1.9462e-05 4.30 2.9721e-06 4.49 1.5816e-04 3.52
9.9213e-02 6.4882e-07 4.90 9.5185e-08 4.96 1.0231e-05 3.95

6.2. Conservation properties

To test the conservation properties of our schemes under consideration, we
consider a monochromatic (single frequency) plane wave traveling in the vac-
uum, in which case J = 0, p = 0, and the electric and magnetic permeability
are constant. The plane wave solution has the following general form:

E = Eoei(k'w7Wt), H = Hoei(k'w7Wt),

where Ey and Hy are constant amplitudes which can take complex values, and

2
the angular frequency w and the wavenumber k satisfy egpug = “:—L The plane
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330

335

340

345

350

wave is a solution of the Maxwell’s equations if and only if
7W€0E0=kXH0, CLJILL()H():’CXE(), k'HOZO, k'EOZO.

For k = (x,0,0), Hy = (0,H(,0) and « := (z,y,2), we have a plane wave
solution traveling along the z-axis:

—kH,

k= (k0,0)", E=(0,0, T sin(kz — wt), H = (0, Hyp,0)" sin(kz — wt).

weQ

In our computations, we consider a cubic domain (0,2) x (0,1) x (0,1) with
periodic boundary conditions, and x = w = 2. We compute using the scheme
HDG;y, i.e., polynomial spaces of degree k = 1 for all the variables, and as a
symplectic numerical integrator we use the implicit-midpoint or DIRK(2).

In Fig. 2] we plot the approximate energy, optical chirality, the first compo-
nent of the linear momentum, the second component of the angular momentum,
the electric charge and the magnetic charge, for a sequence of three triangula-
tions with mesh-size parameters given by h, h/2, h/4, starting with h = 0.25. We
observe the exact conservation of the energy for the three meshes and the fast
convergence to the exact energy. We also observe that the electric and magnetic
charges oscillate around zero and that the oscillations are extremely small and
less than 10713,

As for the quadratic functionals of optical chirality, linear and angular elec-
tromagnetic momenta, we see that they remain remarkably no-drifting and with
oscillations which decrease in amplitude as the mesh is refined. Theoretical com-
putations for the total electromagnetic linear momentum, not reported here,
show that, when the continuous version is supposed to remain constant, its dis-
crete version varies in time as a quadratic function of the jumps of the approx-
imate solution. This might explain that its order of convergence is at least 2k.
We expect a similar behavior for the remaining quadratic functionals on Table
[2] but more work needs to be done to understand their convergence properties.

7. Extensions

In this Section, we describe the modifications that have to be made when
working with other boundary conditions, and with other weak formulations of
the Maxwell’s equations.

7.1. Other boundary conditions

Here, we sketch how to extend our results when the boundary condition is
nx H=gyg onl.

We consider the case of the E-A formulation, as it is particularly simple and
illustrative.
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Figure 2: Electromagnetic energy (top, left), optical chirality (top, right), first component of
the electromagnetic linear momentum (middle, left), second component of the electromagnetic
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First, as it is standard for the mixed method, we incorporate the boundary
condition for H into the corresponding space. So, we take H as the element of
H(curl, Q; gg) such that

qu-l/J:fA-dez ¥ 4 € H(curl, ©;0).
Q Q

Since there are no boundary conditions on A, the smooth manifold M and test
functions space T are now

M = L*(Q) x L*(Q)
D =C*(Q) x C*(Q).

Finally, a term capturing the new boundary conditions needs to be added to
the Hamiltonian. In this case, the Hamiltonian is

H,(E,A) = %L(EE-E+MH-H)—JQA.J—LA-gH.

The Poisson bracket and the coordinate functionals remain unchanged. With
these modifications, it can be easily shown that (M, {-, -}.,, H4 ) is a Hamiltonian
dynamical system defined by the E-A formulation.

Now, let us describe the changes we need to make to the numerical schemes.
First, we describe the changes to be made to the definition of the schemes. For
the mixed method, we take (Ej, Ap, Hy) in the space Vi, x Vi, x W (ggy)
and take the corresponding test functions in Vj, x V3, x W¢u(0). In particular,
note that the equation defining Hj, in terms of Aj; now reads:

(WHp, 7)1 + (An, V x )7, + (n x Ap, e, =0 Vre W (0).  (17)

For the HDG and DG methods, there are no changes to their weak formula-
tions. Only their numerical traces have to change to capture the new boundary
conditions, see Table [7]

Table 7: Numerical traces.
method E-A formulation

on ]—"f: : n x ﬁh =g
A; € M, is a new unknown:
on (972 nX(thHh):T(PMAh*Ah)

HDG

on 7O - Hy, = {H:} - CulAi] + CL[Hi]
" Ap = {An} + C1,[An] + Ca2 [Hi]
DG

nxf{\h:gH

on FY : ~ —~
" A = Ap+ Cog ’I'LX(Hh—Hh)
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Next, we consider the changes to be made to the components of the Hamilto-
nian structure. Again, since there are no boundary conditions on A, the smooth
manifold M and test functions space T are

M=Vh><Vh,
D=V, xV,.

As in the continuous case, a term capturing the new boundary conditions needs
to be added to the Hamiltonian which becomes

1 e ~
h =3 <(€Ehth)Th + (uHpy, Hy) 7, +{n x (Hy — Hy), Ay — Az>9771)

- (Ah7 J)Th - <AA;]7<,39H>F’

where the numerical trace fi,"; needs to be defined on I' for the mixed method.
We take it as the element of

{n x wlr: we W'}
which solves
<AAhMan X ’I">a7’h = —(MHh,’l”')Th + (Ah’v X 7-)77l Vr e Wﬁurl.

The auxiliary numerical trace Afy is well defined thanks to the weak formulation
defining H}j, as a function of Ay,.

Finally, the Poisson bracket and the coordinate functionals remain unchanged.
With these modifications, it can be easily shown that Theorem[£.2]and Corollary
[£.2] do hold.

7.2. Other weak formulations

Since the roles of the electric and the magnetic field in the Maxwell’s equa-
tions can be considered to be fairly symmetric, one could easily argue that it is
natural to switch them. Here, we show how to do that for the E-H formulation.
We are going to switch the spaces, but are going to keep the boundary condition
unchanged.

So, in this case, the phase manifold and the space of test functions are

M = H(curl, Q; gg) x L*(Q),
D =C*(2;0) x C*(Q),
and the Poisson bracket is
10F 140G 16G 10F
F = -—— =) - -—— =]
ot = [ (v (555) Gam) - (58) - (im)
The Hamiltonian and coordinate functionals remain unchanged. A simple com-

putation shows that (M, {, -}, Hq ) is @ Hamiltonian dynamical system defined
by the E-H formulation.
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Indeed, if we take the following coordinate functionals

Fo(@)= [ B9 Fut) - [ pH-w,

we have that

léFE_ léFE_ léFH_ 1§FH_¢
edE 77 puéH 7 € SE 7 pudéH 7
and since L 5% | SH
£ £
-———=FE, ——=H-J
€ OF " uéH o
we get

J€E-¢:FE:{FE,H5}52 vqu-(H—JX):J(VxH—J)-qs,
Q Q Q
quw:FH:{FH,Hg}g = —JVwah

Q Q

for all (¢, ) test functions in D. Thus, we get a weak formulation of the first
two and the fifth of equations . This proves our claim. Note that the weak
formulation we get is different from the one obtained originally.

Let us now describe how to modify the numerical schemes. For the mixed
method, there are a few changes. First, we have to use the real trace instead
of the exterior trace. Then, we have to take the approximation (Ej, Hy) in
V}f“rl (ge) x W}, and is required to satisfy the equations

(€Ey,v)7, — (Hp,V xv)7, = —(J, v)7, Vo € Vi (0),
(uHyp,7)7, + (V x Ep,7)7;, = 0 Vr € Wi,
In Table |8] we show two examples of mixed methods of the type just described.
The superscript “div” indicates that the space is a subspace of H (div, (). This
is not necessary, as the weak formulation only requires W}, to be a subspace of

L?(Q).
For the DG and HDG methods, no changes need to be carried out. To end,

Table 8: Examples finite dimensional spaces for mixed methods.

global

K V(K) W (K) aces

[40, 48] tetrahedron P @ (xx Pr) Pr®xP, >0 vewl x Wwiiv
[49] tetrahedron Pri1 P >1 Vel x willv

let us describe the changes to the components of the Hamiltonian structure
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of the numerical methods. In fact, the only thing that changes are the space
associate with the mixed methods. They are

MM = veurl(gn) x W, and DM .= veul(0) x W,

It is not difficult to verify that Theorem [£.I]and Corollary do hold

for these new methods.

We end by noting that the introduction of SH finite element methods for
nonlinear Hamiltonian systems modeling physical phenomena of practical inter-
est constitutes the subject of ongoing work.

Appendix A. Numerical traces of HDG methods

Here we show how to write the numerical traces of HDG methods in a
classic DG format. Consider the case that Ej, is the hybrid unknown. Then
nx Hy:=n x Hy, — 7Py (E;, — Ep). If welet F € 52 be an interior face and
denote the restriction from the two sides of this face by the superscripts +/—,
see Fig. [1l then, on the face F, we can write that

nt x H, =n" x H} —tH(PyE} — E),
n x ﬁh =n X Hh_ —Ti(PME; - Eh)
Adding these equations, we obtain

~ Tt T 1
E, = —PyEf + ———PyE;, — ———[H,}],
P T MER T T MR T +T—[[ ]

and inserting this expression into any of the the above expressions for H, h, We
get

1 1
H, = (H")' + 4 (H;)! + ——[PuE]
G+ T EAD N T E D)
T (H) - (H) [Py
4R Tt + 717 Tt 47— MZh-

Appendix B. Proof of Theorem

To prove this theorem, we are going to use the following auxiliary result. Its

proof can be found in

Lemma Appendix B.1. For any vector-valued functions a and b in L*(0T,),
we have

(nx a,bjer, = (lal {7y — fak. sy + (% a,byr.

We are now ready to prove Theorem
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PROOF. We prove the result for the DG method. The proof for the mixed and
HDG methods is similar. By definition of the coordinate functionals Fg, and
Fpp,,, we have that

10Fg, _  10Fm, _ 16Fm, 16Fm,
€6Eh_’ /L(SHh_7 E(SEh_’ /L(;Hh

and, by definition of the Hamiltonian #¢ j, we have that

10He 16He
SR g, SRS gL g
¢ O0E), M SH, h = Jx
Therefore,
(e B, v)7, = Fr, = {Fg,,Henlen = Om,,
(wHy,,7)7, = Fr, = {Fa,,, He nben = Om, s
where
Op, == (v,V x (H, = J\))7;, + (n x 0, Hy, — J)or;, s
Omn, = — (En,V x 7). —{(n x Ep,mor. .
So, since

Og, = (Hp, V xv)7, +{n x Hp,v)or, — (J, v)7, + {n x 0, H, — Jy o,
= (Hi.V x v)7, + (n x HP w)or, — (1, )1,
+{n x (Hy, — HPY), vYor, + (n x ¥, Hy, — J o,
= (Hy, V x v}y, + (nx HYY vyor, — (1, 0)7; + 05, + 0,

Om, = — (Bn,V x )7, — (n x EPC ryor, +0m,,
where
O, = {(nx (H,—H%),v— %),
92E;L = <TL X EaﬁhDG - J><>(3Thv
Orr, = — (n x (B, — EPC), 77,

s0 if these quantities are equal to zero, then the DG method is a Hamiltonian
dynamical system.

But, by Lemma |Appendix B.1|with a := H} — ﬁ,?G and b := v — v, we

get that
Ok, =([H]. {v} — 950 — ({HL} — HPC [w]) 50 + (n x (Hy — HPY), 0 — )r
=([Hy], —C1,[v]) 70 — (~C11[En] — CHLIHG], [0]) 50

+{n x (=Cyyn x (B, — E*)),v — v“"")p,
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by the definition of the numerical traces v, H D & and E,? & . Using the definition
of [], we finally get that

0r, =(Cu1 [En], [v])F,.

So, H}Eh = 0 when C1; = 0. If we now apply Lemma [Appendix B.l|with a := ©

and b := f-I\h — J«, we get that
92Eh :<n X Ib/v-/H-\h_JX>F = Oa

since, by definition of ¥, n ><v1v; =7n X v°®t = 0 on I'. Finally, applying Lemma
Appendix B.1l{with a := —Ej, + Ej and b := r, we get that
Om, = —(~En + Ep, [r]) 5o + (n x (B + Ey),r)r = (Coz [Hy], [r]) 50,

by definition of Eh and Eh. So, g, is equal to zero when Cse = 0. This
completes the proof.

Appendix C. Proof of Corollary

PROOF. Here we only consider the proof for DG method since the proof for the
mixed method is similar and simpler.

To prove the conservation of the electric charge, we define the functional
F,. := (eEp, Vv)7, and proceed as follows. We have that

Fee = {Fee, Henben =(Vo,V x (Hy — J)) 7, + (Hy, — Jx,n x Vodor,
=(Vu,V x (Hp — Jx))7, + {Hp — I, x VU)ot ,
since Vv = Vv because Vo lies in H(curl, ), see [49, Lemma 3]). Integrating
by parts, we get
Foe =(V x Vo, Hy, — Jy)7,, = 0,
which is what we wanted to prove.

Similarly, for prove the conservation of the magnetic charge, we define F,,,. :=
(uHp, Vw)T,, and get that

ch = {chaHf,h}f,h = _(Ehav X (vw))Th - <vw7n X Eh>é’Th'

The first term is obviously zero. To deal with the second term, we apply Lemma
Appendix B.ljwith a := Ej, and b := Vw to get that

ch = - <TL X Ehﬂ VUJ>0Th
= — (B AVwb 7 + AER}, [Vul)ry — (n x By, Vw)r.,

The first term vanishes by the single-valuedness of Ej on F, 0. The second
term vanishes by the single-valuedness of (Vw)® on ]—'}?, which holds since Vw €
H(curl; Q) and Vw is a piecewise smooth field (again by [49, Lemma 3]). Finally,
since w = 0 on I', we have n x Vw = 0 on I'. So the third term vanishes as well.

Finally, the energy conservation is a natural consequence of the anti-symmetry
of the Poisson bracket. This completes the proof.
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Appendix D. Proof of Lemma [Appendix B.1|

Let the face F' € F} be the intersection of K™ and K, and denote by f+

and f~ as the restriction of f on F from K and K, respectively. Then
(n xa,byor\r =1,n" xa*-b"

={[al, {b})7y — <[b]. {a})xp

+n” xa b )

Indeed,
ntxat-b"+n" xa” -b”
L bt-b\ b — bt
=nt xat- {{b}}—kT +n” xa - {{b}}+T
bt — b~ b——bt
:[[aﬂ-{{b}}+n+><a+-T+n_><a_-T

+ —

~lal (o) + 7 xn v xn) (G4 %) < Lol 0} - [8]- fal.

a5 This completes the proof.

Appendix E. Proof of Proposition [4.1

Let us prove Proposition For the mixed method, we can take H n = Hjp
since Hj, € H(curl, Q). As a consequence, St (A, Hy,) = 0.
For the HDG method, we obtain the result by simply using the expression of
a0 the numerical trace H}, in Table |4 and then recalling that Py is the L?(0Ty,)-
projection into Mj,.

For the DG method, we proceed as follows. By Lemma with
a:=H, — H, and b:= A, — A, we have that

SPC(An, Hy) = — ([HW], {An} — An)rp—(H)y — {H}, [A]) 5o
+{n x (Hy — Hy), Ay — Ap)r
=+ ([Hn], C1o[An] + Coo[Hi]) 7y
+HC1[An] — ClL[H], [AD 7y
+ <n X (7011 n x (Ah — AAh), Ah — A\h>p
= (Cu1 [An], [An]) 7, + (Co2 [Hil, [Hu]) 79,

by definition of the numerical trace H,,, the definition of [-], and that of the
exterior trace of Ap. This completes the proof of Proposition

Appendix F. Proof of Lemma |4.1
We want to prove that
(n x (SH}; — 0Hy), Ay — Af)or, = (n x (Hf — Hy),6A), — §A})or,.
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a15 For the mixed method, we simply take H), := H), (since H}, € H(curl, 2))
to see that the above equality is trivially satisfied. R
For the HDG method, a glance to the definition of the numerical traces Aj
and Hj, on Table , is enough to convince us that the identity is true for this
method.

For the DG method, we proceed as follows. By Lemma with
a:=0H, — 6H), and b := A, — Aj,, we have that

&), = (n x (§H} — 6H),), A, — ADor
= — ([6H,], {An} — Apor, — OH — {6H,Y, [An])or,
+{n x (6HF — §H),), Aj — A¥Hp
= ([0H4], C15[An] + Coo[Hil) 7y + (Cu1[6A4] — CLISHA], [An]) 7o
+{nx (—Ci1n x (6A, — §A¥) Ay — A¥)p
= (C11 [0A4L], [Ar]DF, + (Coz [6HR], [H1]) 7o,

20 by definition of the numerical traces Aj, and H,,, the definition of [-], and that
of the exterior trace of §Ay,.

On the other hand, By Lemma |Appendix B.1] with a := f-I\h — Hj, and

b:=0A, — 5A,, we have that
Uy, o= (n x (Hf — Hy),6A), — 6AS o7

= — ([Hul {5 AL} — 0 A3 )or, — CH}t — {HLY, [8An])or,
+(n x (H} — Hy),6A), — §A)r

= ([H1], C15[0A4] + Co2[§Hy]) 7o + (Cu1[An] — Clo[Hil, [SAR] 7o
+{n x (—=Ciin x (A, — A¥),5A, — §AHr

= (C11[Ar], [0AL]) 7, + (C22 [Hi], [6Hu]) 5o,

by definition of the numerical trace Ah and H n, the definition of [-], and that
of the exterior trace of Ay,.
This implies that ®;, = ¥, and completes the proof of Lemma

o5 Appendix G. Symplectic integrators

Appendiz G.1. Explicit Partitioned Runge-Kutta methods

In Table we display the coefficients of the Explicit Symplectic Parti-
tioned Runge-Kutta schemes, of s-stages and p-order, ESPRK(s, p), used in our

computations. In the section of numerical experiments, we refer to them simply
430 by ESPRK(p)
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o o0 ... 0 0
b 0o ... 0 b - . . -
! . ' by 0 . : by
by by . i | bi+b - . - .
.1 .2 ' . ’ b1 bo b1 + bo
0 : .
s : : . 0 0 :
by by ... by b; - - - s—1
;1 by by ... b 0| YD
by by ... bg i=1
b1 by ... bs_1 b

i b; b; i | b b;

1 7/24 2/3 1 7/48 1/3

2| 3/4 -2/3 2| 358 -1/3

3| —1/24 1 3| —1/48 1
4| —-1/48 -1/3
5| 3/8 1/3
6 | 7/48 0

| b; b;

0.1193900292875672758 0.339839625839110000

0.6989273703824752308 -0.088601336903027329
-0.1713123582716007754 0.5858564768259621188
0.4012695022513534480 -0.6030393565364911888
0.0107050818482359840 0.3235807965546976394
-0.0589796254980311632 0.4423637942197494587

O U R W N S

Table G.10: Coefficients of the schemes ESPRK(q, p) schemes. From left to right: ESPRK(3,3)
[55], ESPRK(6,4) |28], and ESPRK(6,5) [42].
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