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Abstract

In this paper, we present a new statistical approach to the problem of incorporating experimental observations into a mathemat-
ical model described by linear partial differential equations (PDEs) to improve the prediction of the state of a physical system. We
augment the linear PDE with a functional that accounts for the uncertainty in the mathematical model and is modeled as a Gaussian
process. This gives rise to a stochastic PDE which is characterized by the Gaussian functional. We develop a Gaussian functional
regression method to determine the posterior mean and covariance of the Gaussian functional, thereby solving the stochastic PDE
to obtain the posterior distribution for our prediction of the physical state. Our method has the following features which distinguish
itself from other regression methods. First, it incorporates both the mathematical model and the observations into the regression
procedure. Second, it can handle the observations given in the form of linear functionals of the field variable. Third, the method is
non-parametric in the sense that it provides a systematic way to optimally determine the prior covariance operator of the Gaussian
functional based on the observations. Fourth, it provides the posterior distribution quantifying the magnitude of uncertainty in our
prediction of the physical state. We present numerical results to illustrate these features of the method and compare its performance
to that of the standard Gaussian process regression.
© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Partial differential equations (PDEs) are used to mathematically model a wide variety of physical phenomena such
as heat transfer, fluid flows, electromagnetism, and structural deformations. A PDE model of a physical system is
typically described by conservation laws, constitutive laws, material properties, boundary conditions, boundary data,
and geometry. In practical applications, the mathematical model described by the PDEs is only an approximation to
the real physical system due to (i) the deliberate simplification of the mathematical model to keep it tractable (by
ignoring certain physics or certain boundary conditions that pose computational difficulties), and (ii) the uncertainty
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of the available data (by using geometry, material property and boundary data that are not exactly the same as those
of the physical system). We refer to the PDE model (available to us) as the best knowledge PDE model [1] and to its
solution as the best knowledge state. To assess the accuracy of the best knowledge model in predicting the physical
system, the best knowledge state needs to be compared against experimental data, which typically will have some
level of noise.

In cases where the discrepancy between the PDE model and the experimental data is beyond an acceptable level
of accuracy, we need to improve the current PDE model. There are several approaches to defining a new improved
model. Parameter estimation [2,3] involves calibrating some parameters in the model to match the data. An alternative
approach to obtain an improved model is data assimilation [4-8]. Broadly speaking, data assimilation is a numerical
procedure by which we incorporate observations into a mathematical model to reflect the errors inherent in our
mathematical modeling of the physical system. Although data assimilation shares the same objective as parameter
estimation, it differs from the latter in methodology. More specifically, data assimilation does not assume any
parameters to be calibrated; instead, data assimilation defines a new model that matches the observations as well as
possible, while being as close as possible to the best knowledge model. Another approach is data interpolation [9—14]
which involves computing a collection of solutions (snapshots) of a parametrized or time-varying mathematical model
and reconstructing the physical state by fitting the experimental data to the snapshots.

A widely used technique for obtaining an improved model in parameter estimation and data assimilation is least
squares regression [15,5,16]. Least squares is a deterministic regression approach that provides an estimate for the
physical state which is optimal in least squares sense. However, it does not provide a means to quantify the prediction
uncertainty. A recent work [1] poses the least-square regression as a regularized saddle point Galerkin formulation
which admits interpretation from a variational framework and permits its extension to Petrov—Galerkin formulation.
While the Petrov—Galerkin formulation provides more flexibility than the Galerkin formulation, it does not quantify
the uncertainty in the prediction either. A popular statistical approach in parameter estimation and data assimilation is
Bayesian inference [17-20]. In Bayesian inference an estimate of the physical state is described by random variables
and the posterior probability distribution of the estimate is determined by the data according to Bayes’ rule [18,19].
Therefore, Bayesian inference provides a powerful framework to quantify the prediction uncertainties.

In this paper, we introduce a new statistical approach to the problem of incorporating observations into the best
knowledge model to predict the state of a physical system. Our approach has its root in Gaussian process (GP)
regression [21-23]. We augment the linear PDE with a functional that accounts for the uncertainty in the mathematical
model and is modeled as a Gaussian process." This gives rise to a stochastic PDE whose solutions are characterized by
the Gaussian functional. By extending the standard GP regression for functions of vectors to functionals of functions,
we develop a Gaussian functional regression method to determine the posterior distribution of the Gaussian functional,
thereby solving the stochastic PDE for our prediction of the physical state. Our method is devised as follows. We first
derive a functional regression problem by making use of the adjoint states and the observations. We next solve the
functional regression problem by an application of the principle of Gaussian processes to obtain the posterior mean and
covariance of the Gaussian functional. Finally, we compute the posterior distribution for our estimate of the physical
state. A crucial ingredient in our method is the covariance operator representing the prior of the Gaussian functional.
The bilinear covariance operators considered incorporate a number of free parameters (the so-called hyperparameters)
that can be optimally determined from the measured data by maximizing a marginal likelihood.

Our Gaussian functional regression method can be viewed as a generalization of the standard GP regression from
a finite dimensional vector (input) space to an infinite dimensional function (input) space. GP regression is a well-
established technique to construct maps between inputs and outputs based on a set of sample, or training, input and
output pairs, but does not offer a direct method to incorporate prior knowledge, albeit approximate, from an existing
model relating the inputs and outputs. By combining the best knowledge model with the data, our method can greatly
improve the prediction of the physical system.

Furthermore, we introduce a nonparametric Bayesian inference method for linear functional regression with
Gaussian noise. It turns out that nonparametric Bayesian inference and Gaussian functional regression represent two
different views of the same procedure. Specifically, we can think of Gaussian functional regression as defining a

I the cases considered, the physical system is not stochastic but deterministic. The introduction of the Gaussian functional serves to represent
uncertainties in the best knowledge model and in the data, not in the physical system per se.
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distribution over functionals and doing inference in the space of functionals — the functional-space view. We can
think of nonparametric Bayesian inference as defining a distribution over weights and doing inference in the space of
weights — the weight-space view. Theoretically, Gaussian functional regression can be interpreted as an application
of the kernel trick [22] to nonparametric Bayesian inference, thereby avoiding an explicit construction of the feature
map.

The paper is organized as follows. In Section 2, we present a description of the problem considered. In Section 3,
we give an overview of Gaussian processes for regression problems. In Section 4, we introduce Gaussian functional
regression for state estimation problems via linear PDE models. In Sections 5 and 6, we present numerical results to
demonstrate our method and compare its performance to that of function Gaussian process regression. In Section 7,
we provide some concluding remarks on future research. Finally, in the Appendix, we describe our nonparametric
Bayesian inference method.

2. Motivation and problem statement

Let 2'™¢ ¢ R” denote a bounded open domain with Lipschitz boundary. Let V'™¢("¢) be an appropriate real-
valued function space in which the true state #'™° resides. A weak formulation of the true PDE model can be stated
as: Find u"™¢ € V'™ and s'™¢ ¢ RM such that

atrue(utrue’ U) — gtrue(v)’ Yov e Vlrue’ (13)

slgrue — Clt_rue(utrue)’ i=1,...,M, (]b)

where "™ : V¢ x V"™ — R is a bilinear form, £"™¢ : V'™ — R is a linear functional, and ¢ : V'™ — R, i =
1, ..., M are observation functionals. We assume that the true PDE model (1) is well defined and accurately describes
the physical system of interest.

In actual practice, we do not have access to a © and V(") Hence, we cannot compute u
and s"™°. However, we assume that we have access to the “best knowledge” of a'™¢, £, i i = 1,..., M, and
ytue(tue) which shall be denoted by ab, vk, c?k, i=1,...,M,and VPk(0Qb), respectively. We then define the
best knowledge PDE model: Find u®* € V% and s®* € RM such that

true , Etrue , C}ru true

a®™® @, v) = %), Vove vk, (2a)

sbk:c?k(ubk), i=1,...,M. (2b)

1

In the remainder of this paper, we shall drop the superscript “bk” for the quantities associated with the best
knowledge model to simplify the notation. (In practice, we replace the continuous function space V ({2) with a finite
approximation space, which is assumed to be large enough that the numerical solution is indistinguishable from the
continuous one.)

We now assume that we are given the observed datad € R™, which are the M measurements of the true output

vector s"U®, We further assume that the measurements differ from the true outputs s'™ by additive Gaussian noise &,
namely,

d=s"°+¢, 3)
where ¢;,i = 1, ..., M are independent, identically distributed Gaussian distributions with zero mean and variance

o2 If o is sufficiently small within the acceptable accuracy then we can use the observed data d to validate the best
knowledge model (2). If the best knowledge outputs s are close enough to d within the noise level then we may trust
the best knowledge model to predict the behavior of the true model. In many cases, the best knowledge outputs do not
match the observed data due to various sources of uncertainty from physical modeling, constitutive laws, boundary
conditions, boundary data, material properties, and geometry.

We are interested in improving the best knowledge model when it does not produce a good estimate of the true state.
In particular, we propose a method to compute a better estimate for the true state by combining the best knowledge
model with the observed data. Our method has its root in Gaussian process regression. Before proceeding to describe
the proposed method we review the ideas behind Gaussian processes.
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3. Gaussian process regression

We begin by assuming that we are given a training set of M observations
S={(xi,y),i=1,..., M}, “4)

where x; € R" denotes an input vector of dimension N and y; € R denotes a scalar real-valued output. The training
input vectors x;,i = 1, ..., M are aggregated in the N x M real-valued matrix X, and the outputs are collected in the
real-valued vector y, so we can write S = (X, y). We assume that

yi = h(x;) + N (0, 0?), (5)

where h(x) is the true but unknown function which we want to infer. The unknown function %z (x) is modeled as a
Gaussian process” with zero mean,’ for simplicity, and covariance function « (x, x’), namely,

h(x) ~ GP(0, k(x,x)). (6)

From a Bayesian perspective, we encode our belief that instances of /(x) are drawn from a Gaussian process with zero
mean and covariance function « (x, x') prior to taking into account observations.* Mathematically speaking, 4 (x) is
assumed to reside in a reproducing kernel Hilbert space [24] spanned by the eigenfunctions of the covariance function
K(x,x').

Let X* be the N x M™ matrix that contains M™* test input vectors xj., j=1,..., M* as its columns. Since A (x) ~
GP(0, k(x,x)), the joint distribution of the observed outputs and the function values at the test input vectors is
Y] o (o [CX.X) + ol KX, X" 7
h* ’ KX*, X) KX, X5/’

where h* € RM  IK(X,X) € RMM 1C(X, X*) € RM*M* 1C(X*, X) € RM>M and IC(X*, X*) € RM™M” have
entries
Rf=h(x), i=1,..., M*
KiiX,X) =@, x;), i=1,....,M,j=1,...,M,
KijX, X*) = k@i, x%), i=1,....M j=1,.. M (8)
KijX*X) =k, xp), i=1,....,M* j=1,....,M,
KijX* X*) = w@xf,x), i=1...,Mj=1,., M"

respectively. We next apply the conditional distribution formula (see [22]) to the joint distribution (7) to obtain the
predictive distribution for h* as

h*ly, X, X* ~ N(h*, cov(h*)), 9
where
=KX X)a,
(10)

cov(h®) = IC(X*, X*) — IK(X*, X)C'IC(X, X*),
and @ € RM and C € RY*M are given by

Co =y, C=KX,X) +0l (11)

2 A Gaussian process is a generalization of the Gaussian probability distribution. A Gaussian process governs the properties of Gaussian random
functions, whereas a Gaussian probability distribution describes the properties of Gaussian random variables (scalars or vectors).

3 The Gaussian process is assumed to have zero mean because we can always subtract the original outputs y from its average y = ﬁ Z,Ai 1 Vi
to obtain new outputs with zero average. We then work with the new outputs and add the average y to our Gaussian process estimator.

4 At this point, one may ask what if our belief is wrong, that is, what if the covariance function « is not correctly chosen. Of course, choosing a
wrong covariance function will result in very poor prediction. Hence, the covariance function should not be chosen arbitrarily. As discussed later,
Gaussian processes provide a framework for optimal selection of a covariance function based on the observed data.
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Note that the predictive mean k* is a linear combination of M kernel functions, each one centered on a training input
vector. Note also that the predictive covariance cov(h™) does not explicitly depend on the observed data y, but only on
the training input vectors X and the covariance function «. This is a property of the Gaussian distribution. However, as
discussed below, the covariance function « can be determined by using the observed data. As a result, the predictive
covariance implicitly depends on the observed data.

Typically, the covariance function « has some free parameters § = (61, ..., 6¢), so that the matrix C depends on
0. These free parameters are called hyperparameters. The hyperparameters have a significant impact on the predictive
mean and covariance. They are determined by maximizing the log marginal likelihood (see [22]):

1 1 M
log p(y|X. 0) = —zyTC(a)*ly — 5 log(det(C(#))) — —- log(2m). 12)

Once we choose a specific form for x and determine its hyperparameters, we can compute h* and cov(h*) for
any given X*. Gaussian processes also provide us a mean to choose an appropriate family among many possible
families of covariance functions. Choosing a covariance function for a particular application involves both determining
hyperparameters within a family and comparing across different families. This step is termed as model selection [22].

We see that the standard GP regression provides us not only a posterior mean, but also a posterior covariance
which characterizes uncertainty in our prediction of the true function. Moreover, it allows us to determine the optimal
covariance function and thus the optimal reproducing Kernel Hilbert space in which the true function is believed to
reside. These features differentiate GP regression from parametric regression methods such as least-squares regression,
which typically provides the maximum likelihood estimate only. However, GP regression tends to require larger
sample sizes than parametric regression methods because the data must supply enough information to yield a good
covariance function by using model selection.

There are a number of obstacles that prevent us from applying the standard GP regression to our problem of interest
described in the previous section. First, our outputs are in general not the evaluations of the state at spatial coordinates.
Instead, they are linear functionals of the state. Second, the standard GP regression described here does not allow us to
make use of the best knowledge model. The best knowledge model plays an important role because it carries crucial
prior information about the true model. By taking advantage of the best knowledge model, we may be able to use far
less observations to obtain a good prediction and thus address the main disadvantage of the standard GP regression.
We propose a new approach to overcome these obstacles.

4. Gaussian functional regression
4.1. A stochastic PDE model

Let g : V — R be a linear functional. We introduce a new mathematical model: Find u* € V and s* € RM such
that

aw*,v) +gv) =L), YveV, (13a)
s?:ci(u*), i=1,..., M. (13b)

Notice that the new model (13) differs from the best knowledge model (2) by the functional g. We can determine u*
and s* only if g is known. The functional g thus characterizes the solution u* and the output vector s* of the model
(13). We note that if g(v) = £(v) — a(u'"™¢, v) then u* = u'""®. Unfortunately, this particular choice of g requires the
true state #'™® which we do not know and thus want to infer.

In order to capture various sources of uncertainty in the best knowledge model, we represent g as a Gaussian
functiona15 with zero mean and covariance operator k, namely,

gw) ~GFO,k(v,v)), Vv, v eV. (14)

5 A Gaussian functional can be thought of as a generalization of the Gaussian process from a finite dimensional vector space to an infinite
dimensional function space.
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Notice that there are three main differences between the Gaussian functional (14) and the Gaussian process (6). First, g
is a functional, whereas & is a function. Second, v is a function, whereas x is a vector. And third, k(v, v’) is generally
a differential and integral operator of v and v’, whereas « (x, x) is a function of x and x’. We will require that the
covariance operator k : V x V — R is symmetric positive-definite. That is,

k(v,v) =k®@,v), and k(v,v)>0, Vv, v eV. (15)

As the covariance operator k characterizes the space of all possible functionals prior to taking into account the
observations, it plays an important role in our method. The selection of a covariance operator will be discussed later.

Since g is a Gaussian functional the model (13) becomes a stochastic PDE. In order to solve the stochastic PDE
(13), we need to compute the posterior mean and posterior covariance of g after accounting for the observed data d.
To this end, we formulate a functional regression problem and describe a procedure for solving it as follows.

4.2. Functional regression problem

We first introduce the adjoint problems: fori =1, ..., M we find ¢; € V such that
a(v, ¢;) = —c;i(v), VYvelV. (16)

We note that the adjoint states ¢; depend only on the output functionals ¢; and the bilinear form a. It follows from (2),
(13) and (16) that

g(di) = L) —aw™, ¢i) = a(u, ¢;i) + ci(u*) = ¢;(u*) —c;(u) = s7 — si, (17)

fori =1,..., M. Moreover, we would like our stochastic PDE to produce the outputs s* that are consistent with the
observed data d in such a way that

di=sf+N@©,0%, i=1,..., M. (18)
This equation is analogous to (3) which relates the observed data d to the true outputs s"™¢. We substitute s* =
d; — N(0, 62) into (17) to obtain

di —si = g(@) + N0, 0%, i=1.. M (19)

Notice that this expression characterizes the relationship between g(¢;) and d; — s; in the same way (5) characterizes
the relationship between A (x;) and y;.
We now introduce a training set of M observations

T ={(¢i,di —si), i=1,..., M}, (20)

and use this training set to learn about g. More specifically, we wish to determine g(¢*) for any given ¢* € V based on
the training set 7. This problem is similar to the regression problem described in the previous section and is named the
functional regression problem to emphasize that the object of interest g is a functional. We next describe the solution
of the functional regression problem.

4.3. Regression procedure

Let & = [¢1, ..., ¢p]be acollection of M adjoint states as determined by (16). Let &* = [qb;" evV,..., ¢I,1 e V]
be a collection of M* test functions. The joint distribution of the observed outputs and the functional values for the
test functions according to the prior (14) is given by

d—s| K(®, &) +0 K(®, %)
[8*} N(O’[ K(2*, @) K(qﬁ*,qﬁ*)D’ @1

where g* € RM" K(&, &) € RMM K (P, ¢*) € RM*M* K(p* ) € RM™*M and K(P*, ¢*) € RM"*M" have
entries
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Table 1
Comparison between Gaussian process regression and Gaussian functional regression. Note that the best knowledge model enters in the Gaussian
functional regression through the adjoint states @ and the best knowledge outputs s.

Quantities Gaussian process regression Gaussian functional regression
Input vector x € RV functionv € V

Output function A (x) functional g(v)

Prior h~NQ©,«(,-) g~ N, k()

Kernel function k : RY x RN - R operatork : V x V. — R

Training inputs X e RNxM & € VM adjoint states
Observations y=hX)+N(©,0) d—s=g(®)+N(O,o0)
Coefficients Ca=y,C= [IC(X, X) + 021] DB=d—s,D= [K(qs, ®) + 021]
Test inputs X* ¢ RVxM* P+ e YM*

Mean KX*, X)a K(d*, &)B

Covariance KX X*) — IKX*, X)C™ X, X*) K($*, &%) — K(9*, )D™'K(P, %)

gi =g}, i=1,...,M",

Kij(®, D) =k(¢i,¢j), i=1,....M,j=1,..., M,

Kij(9, %) =k(¢i, ¢7), i=1,....M,j=1,...,M", (22)
Kij(9*, &) =k(¢],¢j), i=1,....M*, j=1,...,M,

Kij (9%, @*):k(q);“,d);), i=1,....M* j=1,...,M*,

respectively. It thus follows that the predictive distribution for g* is

g5|d —s), D, * ~ N(g*, cov(g)), (23)
where
g" = K(9*, D)B, cov(g") = K(9*, 9*) — K(9*, D)D" 'K(D, 9%, (24)

and B € RY and D € RM*M are given by
DB=d-s, D=K®, &)+l (25)

Notice that we have correspondence with function Gaussian process regression described in the previous section,
when identifying (@, d — s) with (X, y), (9%, g*) with (X*, h*), and k(-, -) with « (-, -).

While our approach share similarities with Gaussian process regression, it differs from the latter in many important
ways. We summarize in Table 1| the differences between Gaussian process regression and Gaussian functional
regression.

In the Appendix, we introduce a nonparametric Bayesian framework for linear functional regression with Gaussian
noise. It turns out that this nonparametric Bayesian framework is equivalent to the Gaussian functional regression
described here. In fact, Gaussian functional regression can be viewed as an application of the kernel trick to nonpara-
metric Bayesian inference for linear functional regression, thereby avoiding the computation of the eigenfunctions of
the covariance operator k. We next introduce a family of bilinear covariance operators and then describe a method for
determining the hyperparameters.

4.4. Covariance operators

The covariance operator k is a crucial ingredient in our approach. Here, we consider a class of bilinear covariance
operators parametrized by 8 = (61, 6;) of the form:

k(v,v';0) =6 /Q v'dx + 6, /;2 Vv - Vv'dx. (26)

More general forms of the covariance operator are possible provided that they are symmetric and positive definite.
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In order for a covariance operator to be used in our method, we need to specify its hyperparameters . Fortunately,
Gaussian processes allow us to determine the hyperparameters by using the observed data. In order to do this, we first
calculate the probability of the observed data given the hyperparameters, or marginal likelihood and choose 6 so that
this likelihood is maximized. We note from (21) that

pd—s|P,0) =N(0,D@®)), 27)

where the matrix D(@) as defined in (25) depends on k(-, -; @) and thus on @ as well. Rather than maximizing (27), it
is more convenient to maximize the log marginal likelihood which is given by,

1 1 M
log p(d —s|2,0) = _E(d —)'DO) '(d—s) — > log(det(D(8))) — > log(2m). (28)
Thus, we find 6 by solving the maximization problem

6 = arg max log p(d — 5|9, 0). (29)
6'cR?

Hence, the hyperparameters @ are chosen as the maximizer of the log marginal likelihood.

Once we determine the covariance operator, we can compute (g*, cov(g*)) for any given set * of test functions
as described in Section 4.3. Therefore, Gaussian functional regression is non-parametric in the sense that the
hyperparameters are chosen in light of the observed data. In order words, the data are used to define both the prior
covariance and the posterior covariance. In contrast, parametric regression methods use a number of parameters to
define the prior and combine this prior with the data to determine the posterior prediction. It remains to describe how
to compute the posterior mean and covariance of the solution u* of the stochastic PDE.

4.5. Computation of the mean state and covariance
We recall that our stochastic PDE model consists of finding u* € V such that
a(u*,v) =L(v) —g), VYvelV. (30)

Let {v; (x)}JJ.: | be a “suitable” basis set of the function space V ({2), where J is the dimension of V (§2). Since the
functional g is Gaussian and the best knowledge model is linear, we can express the solution of the stochastic PDE
(30) as

J
W) =Y yivj@, ¥~ NG* covy). (31)
j=1
In order to determine y* and cov(y*), we choose v = v;,i = 1, ..., J in (30) to arrive at the stochastic linear system:
Ay* =1—g*, (32)

where A;j = a(vi, vj),l; = £(v;) fori, j =1,...,J,and g* ~ N(g*, cov(g*)) with

g = K(9*, §)B, cov(gh) = K(9*, &%) — K(P*, )D'K(P, &%), (33)
for ®* = [vy, vy, ..., vy]. It thus follows from (32) that

pr=A"11-g", cov(y*) =A cov(gA™T, (34)
as g* is Gaussian and A is invertible.

Now letx; € §2,i = 1,..., N be spatial points at which we would like to evaluate the predictive mean and
covariance of u*. Let V € R¥*/ be a matrix with entries Vij=vj(x;),i=1,...,N,j=1,..., J. It then follows
from (31) that

ut =Vy*, (35)

where u? = u*(x;),i =1,..., N. It follows from (34) and (35) that

u* ~ N@*, cov(u™)), (36)
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Input: a, ¢, {¢;}}, (best knowledge), {v;}7_, (basis functions), d (observed data),
o (noise level), k (covariance operator), {z; € Q}¥, (spatial coordinates)

1. Compute s by solving the best knowledge model (2)

2. Compute the adjoint states {¢;}*, by solving (16)

3. Compute (g*, cov(g*)) in (33) by using Gaussian functional regression

4. Form A,l,V and solve ATUT = V7T to obtain U

5. Compute @* = U(l — g*), cov(u*) = Ucov(g*)UT

Return: @* (posterior mean), cov(u*) (posterior covariance)

Fig. 1. Main algorithm for computing the posterior distribution of u*.

where
wr=Ul-g", cov(u*) = Ucov(g*)UT, (37)

with U = VA~!. We examine the posterior distribution as given by (37). Note first that the posterior mean #* is the
difference between two terms: the first term u = Ul is simply the best knowledge state u evaluated atx;, i = 1,..., N;
the second term Ug™ is a correction term to the best knowledge state and is obtained by using our Gaussian functional
regression. Note also that the posterior covariance is a quadratic form of U with the posterior covariance matrix
cov(g*), showing that the predictive uncertainty grows with the magnitude of U. Hence, the predictive uncertainty
depends on the inverse matrix A~!. The implementation of our method for computing the posterior distribution (37)
is shown in Fig. 1.

4.6. Relationship with least-squares regression

Here, we show an alternative approach to computing the posterior mean in (37) by solving a deterministic least-
squares problem. We note that the posterior mean u* € V satisfies
a@*,v) =L) —g*(), YveV. (38)

Here, for any v € V, g*(v) is the posterior mean of g(v) and given by

M
W) =Y Bik¢j,v), YveV, (39)
j=1
where the adjoint states ¢;, j = 1,..., M satisfy (16) and the coefficient vector B is the solution of (25). It thus
follows that the mean state u™* € V satisfies
a@*,v) = L) —k(G*,v), YveV, (40)

where ¢* = Zf‘il Bid; is the weighted sum of the adjoint states. We then evaluate the mean outputs of the stochastic
PDE model as

Sf=cq@®), i=1,...,M. 41
The following lemma sheds light on the relationship between the mean outputs and the observed data.
Lemma 1. Assume that the covariance operator k(-, -) is a bilinear form. We have thats* = d — o B.
Proof. We first note from the adjoint equation (16) and (40) that

M
5 =ci(@") = —a*, ¢;) = Zk(fbj, d)B; — (i), i=1,...,M. (42)

=1
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‘We next recall that B satisfies

M
Z(k(¢j,¢i)+05ij),3j=di—Si, i=1,...,M, (43)
=1

where §;; is the Kronecker delta. Moreover, we obtain from the best knowledge model (2) and the adjoint equation
(16) that

Up) =au, ) = —ci(u) =—s;, i=1..., M. (44)
The desired result immediately follows from the above three equations. This completes the proof. [

This lemma shows that the mean outputs differ from the observed data by the product of the noise level o and the
coefficient vector 8. When the observed data is noise-free (namely, ¢ = 0) we have that the mean output vector is
exactly equal to the observed data. Henceforth, whenever M is sufficiently large and o is relatively small, we expect
that our method will yield a much better estimate of the true state than the best knowledge model. The following
theorem shows the optimality of the mean state.

Theorem 2. Assume that the covariance operator k(-, -) is a bilinear form. Then we have (u*, g*, B) = °, ¢°, y°),
where

. 1 1
@®, q°, y°) = arg min Mik(q’Q)+5027T7

zeV,qeV,yeR
45
s.t. a(z,v) +k(g,v) =£L(v), VYveV,
C,'(Z)-i-dz)/,':d,', i=1,..., M.
Proof. We introduce the Lagrangian
1 1 M
L(g.2,7. p.@) = kg, @) + 507y y —a@, p) — k(g p) + £(p) = Y 0i(ci() +0?yi — db), (46)

i=1

where p € V and o € RY are the Lagrange multipliers of the constraints. The optimal solution (¢°, u°, y°, p°, 0°)
satisfies

0L 9L AL AL AL

9 0z oy op g O “n
which yields

k(g°, v) —k(p®,v) =0, VYveV, (48a)
M

a(.p°) + Y ofci(v) =0, VYveV, (48b)
i=1

v —o0) =0, i=1,...,M, (48¢c)

a(u®,v) +k(g° v)—£L(v) =0, YveV, (48d)

W)+ o’y =di, i=1,...,M. (48¢)

Note that when taking the partial derivatives we have used the assumption that k is bilinear. The first two equations
(48a) and (48b) yield that

M
q°=p°=Y ol (49)
i=1

where ¢;,i = 1, ..., M are the adjoint states. Therefore, if we can show that ¢° = B then (48c), (48d) and (49) imply
that (u*, g*, B) = (u°, ¢°, y°). To this end, we note from (48d) and the adjoint equation (16) that

¢iW®) = —a@®, i) =k(@° ¢i) — (), i=1...,M. (50)
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Moreover, we obtain from the best knowledge model (2) and the adjoint equation (16) that
i) =a(u, ;) = —ci(u) =—s;, i=1,....M. (51)
Finally, it follows from (48c¢), (48e), (49), (50), and (51) that

m
> (k@i g +0%8) ) =di—si. i=1,....M, (52)
j=1

which implies that ¢° = B. This completes the proof. [

This theorem establishes a connection between Gaussian functional regression and traditional least-squares regres-
sion when the covariance operator is bilinear. In particular, the posterior mean state i* is the optimal solution of a
least-squares minimization. This is hardly a surprise as the posterior mean state is also the maximum a posteriori
(MAP) estimate of linear functional regression model in the Bayesian framework discussed in the Appendix. It is well
known that the MAP estimate coincides with the least-squares solution. The main advantage of our approach over
least-squares regression is that we can compute not only the posterior mean state but also the posterior covariance.
Another advantage of our approach is that it allows us to choose a covariance operator based on the observed data
by exploiting the marginal likelihood function, whereas least-squares regression does not provide a mechanism to
optimally set the prior covariance operator.

5. A simple heat conduction example
5.1. Problem description

For the true PDE model we consider a one-dimensional heat equation:
82 ytrue
9x2

with Dirichlet boundary conditions #"(—1) = u"™¢(1) = 0. The function space V¢ (£2'""®) is then given by

= ftl'lle, in QU‘UC = (_]7 1)9 (53)

dv 0
e puuey — 1, / 2+ 2% 4k < coand v(=1) = v(1) =0} . (54)
(true dx 0x

The true state u™¢ e V(1) satisfies

atrue(utrue’ v) — etrue(v), Yu € Vtrue(Qtrue)’ (55)
where

Jw 9
a™e (w, v) = / Wy, ey = gy, VY, v e ViIue(Qtuey (56)
true 0x Ox true

We prescribe a synthetic source term as "¢ = sin(wx) + 4 sin(47x). It is easy to see that

sin(7r x) n sin(4m x)
2 4r2
The true state is not known to us and will serve to assess the performance of our method.

We next assume that we know almost everything about the true model except for the source term f™¢ and the
boundary data. We introduce a function space V (£2) with 2 = (—1, 1) as

t
urue

(57)

V() = {v : / <v2 + 81}8_1)) dx < ooand v(—1) = by, v(l) = bz}, (58)
2

dx dx

where the boundary data b; and b, will be determined from the observed data. We then define our best knowledge
model: find u € V({2) such that

a(u,v) =Lw), VYveV({?), (59)
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where

dx 0x

In practice, we replace the continuous space V ({2) with a discrete counterpart, for this problem, a 2000-element linear
finite element space.

a(w,v) = / 8—wa—vd)c, £(v) :/ fvdx, Yw,veV({2). (60)
0 0

5.2. Model specifications

We now specify the observation functionals ¢; (v) = fQ S(xj)vdx = v(x;),i = 1,..., M, where §(x) is the Dirac
delta function and the x; are the extended Chebyshev nodes [25] in the interval [—1, 1]:

cos((2i — Hm/(2M))
B cos(m/(2M))

These functionals correspond to pointwise observations taken at the points x;. Note that the set of measurement points
{xi}f‘i | varies with M. Note also that the finite element mesh is designed to include {x; }f‘i | in its grid points.

We shall assume that the observations are noise-free, that is we have 0 = 0 and d; = u"™(x;),i = 1,..., M.
Since the observations at x; and x,; are used to define the function space V ({2) in (58) (that is we set by = d; = 0
and b, = dyy = 0), we can only use the remaining (M — 2) observations to construct the training set as

T ={(¢i,di —si), i=2,...,M — 1}, (62)

. i=1,..., M. 61)

Xi =

where ¢; € V(§2),i =2, ..., M — 1 satisfies
a(v, ¢;) = —c;i(v), YveV({), (63)

and 5; = u(x;),i = 2,..., M — 1 are the outputs of the best knowledge model. Hence, the training set has only
(M — 2) samples. Furthermore, we use a bilinear covariance operator of the form

ow 9
k(w, v; 0) =f 01wv + 6, 228 i (64)
0 dx dx
The parameters @ = (61, 6,) are determined by maximizing the log marginal likelihood (28).
We will compare our method to the standard Gaussian process regression described in Section 3 which ignores the
best knowledge model and utilizes only the data. To this end, we employ a squared-exponential covariance function
of the form

1 2 1 "2
k(210 = lexp [ ——5 (x —x)?), (65)
285
where ¢ represents the signal variance, while ¢, represents the length scale. These parameters are set by maximizing
the log marginal likelihood (12).

5.3. Results and discussions

We consider f = 4sin(4mwx) for the best knowledge model (59)—(60). This yields the best knowledge state
u = sin(4mx)/(4m?). Fig. 2 shows the true state 1™ and the best knowledge state u. We observe that u is considerably
different from u""®. Therefore, the best knowledge model does not produce a good prediction of the heat equation
(53). We now apply Gaussian functional regression to this example and present numerical results to demonstrate the
performance of our method relative to the standard GP regression.

We present in Table 2 the optimal hyperparameters, the L?(£2) norm of the prediction error, and the L({2) norm
of the posterior standard deviation (the square root of the posterior variance) for our method and the standard GP
regression. Here the L?(£2) norm of a function v is defined as ||v| o = (fQ v2dx)1/2. We observe that while 6,
is always zero, 0 decreases as M increases, indicating that the prediction uncertainty is reduced as the number
of observations increases. We also note that the length scale ¢, of the squared-exponential covariance function is
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Fig. 2. Plots of the true state and the best knowledge state.

Table 2

The optimal hyperparameters, the LZ(£2) norm of the prediction error (u™€(x) — #*(x) in our method and u'™€(x) — i*(x) in the standard GP
regression), and the L2(£2) norm of the standard deviation function (v/var(u* (x)) in our method and /var(A*(x)) in the standard GP regression)
as a function of M for both Gaussian functional regression and standard GP regression. Here /1* (x) and var(h* (x)) are the mean prediction and the
posterior variance of u'™®(x) for the standard GP regression.

M Gaussian functional regression Standard GP regression
(61,62) '™ — a*|| o lvvar(@*) | o (1, 62) ll'™e — 2*|| lvvar(h*) |l
4 (0.485,0) 443E-3 4.64E—2 (0.053, 0.064) 9.14E—-2 6.84E—2
5 (0.319,0) 6.02E—3 247E-2 (0.076, 0.005) 8.12E—2 9.73E—-2
6 (0.247, 0) 1.41E-3 1.60E—2 (0.062, 0.046) 8.68E—2 7.84E—2
7 (0.199, 0) 9.06E—4 1.12E-2 (0.086, 0.621) 3.13E-2 4.40E—4
8 (0.167, 0) 4.16E—4 8.31E-3 (0.074, 0.306) 3.64E-2 8.36E—3
9 (0.143,0) 2.38E—4 6.42E—3 (0.067, 0.203) 3.25E-2 2.05E—-2
10 (0.125,0) 1.42E—4 5.12E-3 (0.064, 0.186) 9.39E—3 1.85E—2
11 (0.111, 0) 9.10E—5 4.18E—3 (0.062, 0.223) 1.90E—2 7.00E-3
12 (0.100, 0) 6.10E—5 348E-3 (0.065, 0.193) 9.24E—4 943E-3
13 (0.091, 0) 4.25E—5 2.94E-3 (0.061, 0.196) 4.57E-3 5.96E—3
14 (0.084, 0) 3.06E—5 2.52E-3 (0.064, 0.200) 4.24E—4 3.87E-3
15 (0.077, 0) 2.26E—5 2.18E-3 (0.065, 0.205) 1.58E—3 2.22E-3

relatively small for M < 6, indicating that the training set may be inadequate for the standard GP regression to
produce a good prediction.

We see from Table 2 that the prediction error in our method converges significantly faster than that in the standard
GP regression as M increases. Therefore, our method requires fewer observations to achieve the same accuracy.
In particular, our method with 4 observations has slightly smaller error than the standard GP regression with 13
observations. This is made possible because our method uses both the best knowledge model and the observations
to do regression on the space of functionals, whereas the standard GP progression uses the observations only to do
regression on the space of functions. We also observe that the posterior standard deviation (measured in LZ(Q) norm)
shrinks with increasing M albeit at a slower rate than the prediction error, indicating that our posterior variance of the
prediction error is rigorous. In contrast, the standard GP regression has the posterior standard deviation even smaller
than the prediction error for small values of M, indicating that the posterior variance of the standard GP regression
may not be rigorous when the training set is inadequate. This can be attributed to the fact the standard GP regression
requires a large enough set of observations to provide accurate prediction and rigorous error estimation.

Finally, we show in Fig. 3 the true state, the mean prediction, and the 95% confidence region (shaded area) for our
method (left panels) and the standard GP regression (right panels). Here the 95% confidence region is an area bounded
by the mean prediction plus and minus two times the standard deviation function. Note that the prediction error is zero
at the measurement points, which is consistent with the theoretical result stated in Lemma 1. Moreover, the standard
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Fig. 3. Panels show the true state and the mean prediction obtained using M = 4, 8, 12 observations for both Gaussian functional regression
(left) and the standard GP regression (right). In these plots the shaded area represents the mean prediction plus and minus two times the standard
deviation function (corresponding to the 95% confidence region).

deviation function is also zero at the measurement points — a consequence of the fact that the prediction error is zero
at those points. We see that our method does remarkably well even with just 4 observations when it is compared to the
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Fig. 4. Potential flow around a circular cylinder: (a) Geometry and boundary conditions and (b) FE mesh and measurement points.

standard GP regression. For our method the true state #'™® resides in the 95% confidence region which shrinks rapidly

as M increases, whereas for the standard GP regression u""® does not always reside in the 95% confidence region.
Indeed, as seen in Fig. 3(d), the standard GP regression gives poor prediction and erroneous 95% confidence region
for M = 8. Although the standard GP regression provides more accurate prediction and rigorous 95% confidence
region for M = 12, it is still not as good as our method. In summary, the numerical results obtained for this simple
example show that our method outperforms the standard GP regression.

6. Potential flow around a circular cylinder
6.1. Problem description

We consider a potential flow around a circular cylinder of radius a = 1 in an infinite domain. The stream function
for this flow is given by

1
true __

This solution is shown in Fig. 5(a). Note that only the upper left quadrant of the domain is considered because of the
symmetry.

Since the circular cylinder is a simple geometry the stream function of the potential flow is known analytically. For
more complicated geometries, however, the problem is usually solved by using a numerical method. In the case of a
finite element method, the infinite domain needs to be truncated to a finite domain. This gives rise to the following
PDE model

Au=0, in{2, 67)
where the truncated domain {2 and the boundary conditions are shown in Fig. 4(a). The weak formulation is given by
a(u,v) =£Lw), YvelV, (68)

where, forall w,v e V,

a(w,v) = / Vw - Vudxdy, L(v) = / vdxdy, (69)
n Iy
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Fig. 5. Plot of the true state u'™"¢, the best knowledge state u, and their difference 1™ — u.

25 C

L+

and V = {ve H' () : v=0o0n Ig U Ic}. (In practice, we replace V with a FE approximation space of piecewise
polynomials of degree p = 3 defined on a mesh of 690 elements. This FE discretization is fine enough such that the
numerical error is insignificant.)

This example serves to demonstrate our approach when the uncertainty source comes from the domain truncation
and the boundary condition. Due to this uncertainty, the best knowledge state u is significantly different from the
true state u'™® as shown in Fig. 5(c). We aim to improve the prediction of the true state #""® by combining the best
knowledge model with observations of the true state. The observation functionals are specified as

(x—xi)2+(y—yi)2> .

ci(v) =/ ex (— vdxdy, i=1,...,M, (70)
’ P 0.252 Y

where (x;, y;),i = 1,..., M are selected by using the empirical interpolation method [9,11] and are shown in
Fig. 4(b). We shall assume that the observations are noise-free, so that d; = ¢; @"™°),i =1, ..., M.

6.2. Results and discussions

We consider a bilinear covariance operator of the form
k(w,v; 0) = / Orwv + 6,Vw - Vo) dxdy. (71)
0

The parameters § = (61, 6») are determined by maximizing the log marginal likelihood (28). Fig. 6(a) shows the
hyperparameter 6; as a function of the number of measurements. It is interesting to see that our hyperparameter
selection method yields 8, = 0 for any M. Note further that 6; tends to decrease as M increases.

We next show in Fig. 6(b) the norm of the standard deviation function ||/var(u*)|| , and the error norm ||u'™ —i|| ;
as a function of the number of measurements. As expected, both the error norm and the standard deviation norm
decrease as M increases. Hence, increasing the number of measurements reduces the uncertainty in our prediction
of the true state. This can be seen more clearly in Fig. 7 which shows the error function and the standard deviation
function for three different values of M = 5, 10, and 15. Moreover, we observe that both the error function and the
standard deviation function near the top boundary 't and the left boundary /7, of the domain are larger than those in
the other region of the domain. This can be attributed to the fact that the uncertainty source comes from the domain
truncation and the boundary condition on It and I7..

7. Conclusions

In this paper, we have presented a new statistical approach to the problem of combining the observed data with a
mathematical model to improve our prediction of a physical system. A new Gaussian functional regression method is
presented, which has its root in Gaussian processes for functions. Our approach has the following unique properties.
First, it allows for the incorporation of the best knowledge model into the regression procedure. Second, it can handle
observations given in the form of linear functionals of the field variable. Third, the method is non-parametric in the
sense that it provides a systematic way to optimally determine the prior covariance based on the data. Fourth, our
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Fig. 6. (a) The hyperparameter 6] and (b) the error norm and the standard deviation norm as a function of M. Note that 6 = 0 for any M.

method can compute not only the mean prediction but also the posterior covariance, characterizing the uncertainty in
our prediction of the physical state. These features distinguish our method from other regression methods. Numerical
results were presented to highlight these features and demonstrate the superior performance of the proposed method
relative to the standard GP regression.

We conclude the paper by pointing out several possible extensions and directions for further research. We would
like to extend the proposed approach to nonlinear PDE models, which will broaden the application domain of our
method. Nonlinear PDEs represent some significant challenges because the adjoint problems will depend on the true
state which we do not know and because our stochastic PDE does not preserve the Gaussian property of the functional
g due to nonlinearity. We would also like to extend the method to goal-oriented statistical estimation in which we
would like to infer new outputs rather the state of the physical system.
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Appendix. Bayesian linear functional regression

In this section, we develop a nonparametric Bayesian framework for linear functional regression with Gaussian
noise. We then show that this framework is equivalent to our Gaussian functional regression method described in
Section 3.

We begin by introducing an orthonormal basis set {{; € V}[.J:1 such that f o Vivjdx = &, where §;; is the
Kronecker delta. We define associated linear functionals ¢; : V — R as

Z,-(v):f vivdx=mW;,v), i=1,...,J. (72)
0
The linear functional regression model is defined by
J
gw) =Y wili(v), y=gQ)+e, (73)
i=1
where v € V is the input function, w = [wy, ..., w J]T is a vector of weights (parameters) of the linear model, g is

the functional and y € R is the observed target value. We assume that the observed value y differs from the functional
value g(v) by additive noise

e ~N(0,0?). (74)



86 N.C. Nguyen, J. Peraire / Comput. Methods Appl. Mech. Engrg. 287 (2015) 69-89

0o - 0.03
0.025
0.02 0.025
0.015 02
{0.01 .
- 0.005 0.015
0
0.01
-0.005

-0.01 0.005
-0.015
0
(a) u™e — g* for M = 5. (b) /var(u¥®) for M = 5.
T —
W .
12
0.01
10
- 0.005 .
8
|0
6
-0.005
4
-0.01 2
-0.015 0
(c) u'™e — g* for M = 10. (d) +/var(u*) for M = 10.
%1073 x10° 10
v T, W
12 g
| o ’ » ;
s B ol
. - . B
' !
“ . I’
2
A
0
» 2
; .
2
-4
.B 1
o]
(e) u'™e — ji* for M = 15. (f) /var(u*) for M = 15.

Fig. 7. Panels show the error function (left) and the standard deviation function (right) obtained using M = 5, 10, 15 observations.
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This noise assumption together with the model directly gives rise to the following likelihood

oo —(y; — 8(@))*
p(y|¢,w>—]1j[lmaexp( 53

where L has entries L;; = £;(¢p;),i =1,...,J,j =1,..., M. Recall that ¢;,i = 1, ..., M are the adjoint states
andthaty; =d; —s;,i =1, ..., M are the observed outputs which are the differences between the observed data and
the best knowledge outputs.

In the Bayesian formalism we need to specify a prior distribution for w, which encodes our belief about the weights
prior to taking into account the observations. We consider a zero-mean Gaussian prior distribution with covariance
matrix A for the weights

pw) =N, A). (76)

) =NL™w, o?), (75)

Without loss of generality we assume that A is a diagonal matrix, that is, A;; = 0if i # j. If A is not a diagonal
matrix then we can always introduce a new weight vector w' = A~!/?w, so that the covariance of w’ is a diagonal
matrix. Then we choose to work with w’ instead of w. The posterior distribution over the weights is then obtained by
using Bayes’ rule as

PP, w)p(w)
pwly, ) = —————, 77
P9

where the normalizing constant is given by

po19) = [ pO12w)powIdw. (78)
Substituting (75) and (76) into (77) and working through some algebraic manipulations, we obtain

1
pwly, &) ~ N <pB]Ly,B]) ; (79)

where B = 0 2LLT + A~!. The posterior distribution (79) combines the likelihood and the prior distribution, and
captures all information about the weights.

To make predictions for a test function ¢* € V we average the linear functional regression model (73) over all
possible values of the weights under their posterior distribution (79). Hence, the predictive distribution for g* = g(¢*)
at ¢* is given by

1
g*lo*, by ~ N (;l«p*)TB—lLy, l<¢*>TB—ll(¢*)> : (80)

where I(¢*) has entries [;(¢*) = £;(¢*),i = 1,...,J. The predictive distribution is a Gaussian distribution as

expected. However, the predictive distribution (80) requires the matrix inversion B~! which may be expensive.

Fortunately, we can derive an equivalent distribution which is more efficient to compute than the original one (80).
We recall the Woodbury, Sherman and Morrison (WSM) formula for the matrix inversion

Z+uowvhHy- ' =z ' —z7lvew ' +viz-'lvy-'viz-1. (81)
Using the WSM formula withZ = A, W = o721, U = V = L we obtain

B '=@02LLT + A"H) ' = A — AL I+ LTAL)"'LTA. (82)
It thus follows that

B 'L = AL — AL(0*I+LTAL)"'LTAL
= AL’ T + LT ALY " ((6*I + LT AL) — LT AL)
= 6?AL(* I + LT AL)™". (83)
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Inserting (82) and (83) into (80) we get

g¥le*, &,y ~ N(g*, var(g"), (84)
where

g =1 TAL(c*I + LT AL) 'y,

var(g*) = 1(¢")T Al(¢*) — I(¢*)T AL(c’I + LT AL)"'LT Al(¢"). (85)
In the predictive distribution (84), we need to invert the matrix (02l + LT AL) of size M x M. Hence, it is more
attractive than the original distribution (80).

Thus far, we have not mentioned how we construct the basis functions {; }ile and the covariance matrix A. We
observe that in the predictive distribution (84) we need to compute LY AL, I(¢*)T AL, I(¢*)T Al(¢*), where both L
and I(¢*) depend on the basis set {1#,-}{:1 through the definition of the linear functionals ¢;(-),i = 1,..., J. The
entries of these quantities have the form I(v)” Al(v') for v, v’ € V. We can thus define

k(v',v) =1 Al(v), forallv,v € V. (86)
It follows that

J J J

k' 0) =YY L)AL ) =Y m@ i ) Aim (i, v), Vo v eV, (87)

i=1 j=1 i=1

since £; (v) = m(y;, v) and A is a diagonal matrix. We next choose v’ = v,, and invoke m (v;, ¥,,) = 8;,, to arrive at
the following eigenvalue problem:

k(Yn, v) = Apum Yy, v), Yv e V. (88)

This equation shows that {1//,,},{:1 and {/l,m},{:1 are the eigenfunctions and eigenvalues of the covariance operator
k(-, -). Once the covariance operator k(-, -) is specified, we can construct the basis set Wn},{=1 and the covariance
matrix A by solving the eigenvalue problem (88).° We can then make predictions using Eqs. (84) and (85). The
predictive distribution (84) is nothing but the same as that of Gaussian functional regression described in Section 3.
However, unlike nonparametric Bayesian inference, Gaussian functional regression does not require the computation
of eigenfunctions and eigenvalues. This is because Gaussian functional regression needs only to compute the inner
products k(v, v") for some pairs v, v’ € V, which is known as the kernel trick [22].
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