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In this paper, we introduce a Gaussian functional regression (GFR) technique that 
integrates multi-fidelity models with model reduction to efficiently predict the input–
output relationship of a high-fidelity model. The GFR method combines the high-fidelity 
model with a low-fidelity model to provide an estimate of the output of the high-fidelity 
model in the form of a posterior distribution that can characterize uncertainty in the 
prediction. A reduced basis approximation is constructed upon the low-fidelity model and 
incorporated into the GFR method to yield an inexpensive posterior distribution of the 
output estimate. As this posterior distribution depends crucially on a set of training inputs 
at which the high-fidelity models are simulated, we develop a greedy sampling algorithm 
to select the training inputs. Our approach results in an output prediction model that 
inherits the fidelity of the high-fidelity model and has the computational complexity of the 
reduced basis approximation. Numerical results are presented to demonstrate the proposed 
approach.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Engineering analysis and design often require the prediction of outputs (quantities of interest) of a physical system 
for many different inputs. Typical outputs include maximum (or average) energies and forces, critical stresses or strains, 
flowrates or pressure drops, lifts, drags, and various local and global measures of concentration, temperature, and flux. The 
input typically characterizes physical properties and material, geometry, boundary conditions, and force fields or sources. 
The output is a function of the input that serves to identify a particular realization or configuration of the physical system. 
The input–output relationship thus encapsulates the behavior of the physical system relevant to the desired engineering 
context. More often that not, there exist several mathematical models with different fidelity and complexity for predicting 
the input–output relationship of the physical system. Typically, model complexity increases as a function of model fidelity. 
In other words, high-fidelity models are more accurate but more expensive than low-fidelity models. Therefore, it is desired 
in many applications to make use of all the available models for efficient prediction of the input–output relationship.

In this paper, we extend the Gaussian functional regression (GFR) framework first introduced in [14,17] to develop a 
model assimilation technique for parametrized mathematical models. We consider a set of high-fidelity (HF) model, low-
fidelity (LF) model, and reduced order model. All the models we address in this paper are deterministic and steady-state 
partial differential equations. It is assumed that the HF model adequately captures the input–output relationship of the 
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physical system in consideration. However, it can be very expensive to run the HF model many times because of its high 
computational cost. The LF model is obtained through an appropriate simplification of the HF model either by ignoring 
the nonlinear physics in the HF model or by linearizing the HF model around a fixed state. Although the LF model is less 
expensive than the HF model, it contains uncertainty because of the simplification made. In addition, a model reduction 
technique such as the reduced basis method [18,20,25] is employed to construct a reduced basis approximation of the LF 
model. Our goal is to effectively combine all of these models to make an efficient and accurate prediction of the input–
output relationship of the HF model.

The use of multi-fidelity models to make an efficient inference about the input–output relationship of the HF model 
is not a new concept. Kennedy and O’Hagan [11] propose Gaussian process (GP) models to calculate the covariances and 
develop a Bayesian approach to predict the output of an expensive HF simulation code with the assistance of lower-fidelity 
simulation codes. This approach has been further extended by other researchers [7,22,21] and applied to multi-fidelity 
design optimization [4,5,9]. However, because the Bayesian Gaussian process approach treats all multi-fidelity simulation 
codes as computational black box, it is required to estimate the correlation between the HF model and the LF model.

Our approach differs from the Bayesian Gaussian process approach in that it makes full use of the mathematical structure 
of the LF model, while treating the HF model as black box. The LF model often contains useful information about the HF 
model because it captures some of the physics and the conditions of the HF model. As demonstrated in our recent work 
[17], the GFR method can yield much more accurate prediction than the standard Gaussian process regression [19,24,26]
for the same number of observations because it makes use of the mathematical structure of the model. Furthermore, the 
mathematical structure of the LF model will be exploited to construct the reduced basis model for efficient prediction in 
real-time and many-query contexts [25].

In our approach, the role of the HF model is limited to generating numerical observations that are used to improve the 
fidelity of the LF model using the GFR method. Since the HF model is expensive, we would like to keep the number of 
observations as small as possible. The selection of inputs at which to obtain the numerical observations is an experimental 
design problem [26]. As it will become clear later, the uncertainty estimate is given by the posterior distribution. The exper-
imental design problem can be posed as choosing the inputs to minimize the posterior distribution with some appropriate 
design criteria. Common design criteria include A-optimality which minimizes the average of the posterior variance, and 
G-optimality which minimizes the maximum value of the posterior variance. In sequential experimental design, we evaluate 
observations as they are collected and choose the next input in light of the previously selected observations. Herein we 
develop a greedy algorithm to select the training inputs in sequential fashion.

The present work offers several new contributions relative to the previous work [14,17]. This work aims at predicting 
the input–output relationship of parametrized PDE models, whereas the previous work focuses on state prediction for PDE 
models without parameters. This work consider multi-fidelity models including model reduction, while the previous work 
does not. Lastly, this work tackles the experimental design problem in parameter space and develops an algorithm, which 
is entirely different from that developed in [14].

The paper is organized as follows. In section 2, we present a mathematical description of our objectives. In Section 3, we 
introduce the GFR method to fuse the HF model with the LF model. In Section 4, we describe our approach to combining 
the GFR method with the RB method for efficient prediction of the HF output. In Section 5, we present numerical results to 
demonstrate the proposed approach. Finally, in Section 6, we provides some concluding remarks on future research.

2. Objectives

Let V hi be an appropriate Hilbert space defined on a physical domain � ∈ R
D , a spatial point of which is denoted 

by x. The weak formulation of a high-fidelity parametrized PDE model can be stated as follows. For a given input μ ≡
(μ1, . . . , μP ) ∈D ⊂ R

P we seek a solution uhi(μ) ∈ V hi such that

ahi(uhi(μ), v,μ) = bhi(v,μ), ∀ v ∈ V hi. (1)

Here ahi : V hi × V hi ×D →R is a parametrized operator which can be nonlinear with respect to the HF field variable uhi(μ); 
and bhi : V hi ×D → R is a parametrized continuous linear functional. Both ahi and bhi may depend on the parameter input 
μ which resides in the input space D. We are interested in computing an output shi(μ) ∈ R of the HF model (1), which is 
expressed as a linear functional of the state uhi(μ) as

shi(μ) = c(uhi(μ),μ). (2)

Here c : V hi × D → R is a linear functional which may also depend on the input vector μ. Note that we do not need to 
know the mathematical structure of the HF model, namely, ahi and bhi. The HF model can thus be considered as a black 
box.

Let us also assume that we are given the following LF model: For a given input μ ∈ D we seek (ulo(μ), slo(μ)) ∈ V ×R

such that

alo(ulo(μ), v,μ) = blo(v,μ), ∀ v ∈ V , (3a)

slo(μ) = c(ulo(μ),μ). (3b)
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Here the weak formulation (3a) results from an appropriate simplification of the HF model (1) and V is a suitable finite 
element approximation space. More specifically, we assume that alo(·, ·, μ) is a parametrized bilinear form and blo(·, μ) is a 
parametrized continuous linear functional. We shall suppress the superscript of both alo and blo to simplify the notation. In 
general, the output of the LF model slo(μ) may not be a good approximation to the output of the HF model shi(μ) because 
of the model simplification.

Finally, we assume that we are given a reduced basis space V N = span{ζn ∈ V , 1 ≤ n ≤ N} of dimension N . We consider 
the following RB approximation to the LF model (3): Find (ulo

N (μ), slo
N (μ)) ∈ V N ×R such that

a(ulo
N (μ), v,μ) = b(v,μ), ∀ v ∈ V N , (4a)

slo
N (μ) = c(ulo

N (μ),μ). (4b)

Since the RB approximation is constructed upon the LF model (3), the RB output slo
N (μ) may not well approximate the HF 

output shi(μ) because of both the model simplification and the RB approximation error induced by V N ⊂ V .
We suppose that we can run the HF model (1) at μ = μm, m = 1, . . . , M to obtain shi(μ1), . . . , shi(μM), where μm ∈ D, 

m = 1, . . . , M are training inputs. We wish to combine the numerical observations {(μm, shi(μm)), 1 ≤ m ≤ M} with the LF 
model (3) and the RB model (4) to make an efficient inference about the HF output shi(μ) for any input μ ∈D. Our goal is 
twofold. First, we construct a statistical surrogate model that inherits the fidelity of the HF model and has the complexity 
of the RB model. Second, we develop an efficient algorithm for choosing the training inputs so as to reduce the prediction 
uncertainty. Toward our goal, we apply the GFR method described in the next section to build a stochastic model by fusing 
the LF model with the numerical observations from the HF model. We then incorporate the RB approximation described 
in Section 4 into the stochastic model to obtain the desired surrogate model and devise a greedy sampling to select the 
training inputs.

3. Gaussian functional regression

In this section, we introduce the GFR method for output prediction by combining the numerical observations from the 
HF model with the LF model. The main ingredients of the GFR method include (i) a Gaussian functional that is augmented 
with the linear PDE model to represent various sources of uncertainty in the model; (ii) a functional regression procedure 
that yields the posterior distribution of the output estimate in light of the numerical observations; and (iii) a selection of 
an appropriate covariance operator that controls the posterior distribution.

3.1. Stochastic model

Let g : V ×D → R be a parametrized linear functional. We consider the following model: For any input μ ∈ D we find 
(u(μ), s(μ)) ∈ V ×R such that

a(u(μ), v,μ) + g(v,μ) = b(v,μ), ∀v ∈ V , (5a)

s(μ) = c(u(μ),μ). (5b)

In order to quantify uncertainty in the original linear model (3), we characterize g as a Gaussian functional with zero mean 
linear functional and covariance operator k, namely,

g(v,μ) ∼ GF(0,k((v,μ), (v ′,μ′))), ∀(v,μ), (v ′,μ′) ∈ V ×D . (6)

We will require that the covariance operator k : (V ×D) × (V ×D) →R is symmetric positive-definite (SPD), namely,

k((v,μ), (v ′,μ′)) = k((v ′,μ′), (v,μ)), and k((v,μ), (v,μ)) > 0, (7)

for all (v, μ), (v ′, μ′) ∈ V ×D, and k((0, 0), (0, 0)) = 0, and that k is a bilinear form with respect to v and v ′ . In addition, 
we require that k satisfies the following condition

sup
v∈V

k((v,μ), (v ′,μ′))
‖v‖V

< ∞, ∀v, v ′ ∈ V , and ∀μ,μ′ ∈ D, (8)

where ‖ · ‖V denotes an appropriate norm of the function space V . This condition guarantees that g is a bounded linear 
functional. We will discuss the selection of an appropriate covariance operator later.

The Gaussian functional (6) can be viewed as a generalization of Gaussian processes [24]. A Gaussian process is charac-
terized by its mean function and covariance function, whereas a Gaussian functional is characterized by its mean functional 
and covariance operator. The main difference between Gaussian functional and Gaussian process lies in their input spaces. 
More precisely, the input space of the Gaussian process is a finite-dimensional parameter space. In contrast, the input space 
of the Gaussian functional is the tensor product of the function space V and the parameter space D, V ×D, which can be 
infinite-dimensional. This allows the GFR method to work with PDE models.

Under the prior (6), the model (5) becomes a stochastic parametrized model whose state u(x, μ) is a Gaussian process 
with mean function uprior and covariance function U prior:
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u(x,μ) ∼ GP(uprior(x,μ), U prior((x,μ), (x′,μ′))), ∀ (x,μ), (x′,μ′) ∈ � ×D . (9)

The mean function uprior and the covariance function U prior are determined by inserting the prior (6) into the model (5). It 
thus follows that the output s(μ) is a random variable with normal distribution

s(μ) ∼ N (sprior(μ),ϑprior(μ)), ∀ μ ∈ D . (10)

It can be easily shown that the mean output sprior(μ) is equal to slo(μ), where slo(μ) is the output of the deterministic 
LF model (3); and the variance ϑprior(μ) is given by ϑprior(μ) = k((φ(μ), μ), (φ(μ), μ)), where φ(μ) is the solution of the 
adjoint problem (11) associated with the output functional c. It is important to point out that the normal distribution (10)
is the prior. We next determine the posterior distribution of the stochastic output s(μ) using numerical observations from 
the HF model (1).

3.2. Posterior distribution of the output estimate

We begin with introducing the adjoint problem: for any given μ ∈D the adjoint state φ(μ) ∈ V satisfies

a(v, φ(μ),μ) = −c(v,μ), ∀v ∈ V . (11)

It then follows from (5) and (11) that

s(μ) = c(u(μ),μ) = −a(u(μ),φ(μ),μ) = g(φ(μ),μ) − b(φ(μ),μ), (12)

and from (3) and (11) that

b(φ(μ),μ) = a(ulo(μ),φ(μ),μ) = −c(ulo(μ),μ) = −slo(μ). (13)

Combining (12) and (13) we arrive at the following equation

s(μ) = slo(μ) + g(φ(μ),μ), ∀μ ∈ D. (14)

This expression shows that the output s(μ) is a sum of the original output slo(μ) and the functional g of the adjoint state 
φ(μ).

We assume that we are given a set of M training inputs T M = {μm ∈ D, 1 ≤ m ≤ M}. We apply the equation (14) at the 
training inputs to obtain

s(μm) = slo(μm) + g(φ(μm),μm), m = 1, . . . , M, (15)

where φ(μm) is the solution of the adjoint problem (11) at the training input μm . By setting the output s(μm) to match 
the HF output shi(μm), we arrive at

shi(μm) − slo(μm) = g(φ(μm),μm), m = 1, . . . , M. (16)

The computational cost to generate the training data includes M solutions of the HF model (1) for the HF outputs shi(μm), 
M solutions of the LF model (3) for the LF outputs slo(μm), and M adjoint solutions φ(μm). For notational convenience, we 
rewrite (16) as

dhi
M m − dlo

M m = g(ψm,μm), m = 1, . . . , M, (17)

where dhi
M m = shi(μm), dlo

M m = slo(μm), and ψm = φ(μm). Without loss of generality, we assume that the ψm, m = 1, . . . , M , 
are linearly independent. If they are not linearly independent, we remove the linearly dependent functions to obtain a new 
basis set in which all the functions are linearly independent.

According to the prior (6), the relationship (14), and the training data (17), the joint distribution of (dhi
M − dlo

M) and s(μ)

is given by[
dhi

M − dlo
M

s(μ)

]
∼ N

([
0

slo(μ)

]
,

[
K M qM(μ)

qT
M(μ) ϑprior(μ)

])
, (18)

where K M ∈R
M×M , qM(μ) ∈R

M , and ϑprior(μ) ∈R have entries

K M ij = k((ψi,μi), (ψ j,μ j)), i = 1, . . . , M, j = 1, . . . , M,

qM i(μ) = k((ψi,μi), (φ(μ),μ)), i = 1, . . . , M,

ϑprior(μ) = k((φ(μ),μ), (φ(μ),μ)), (19)

respectively. We next apply the conditional distribution formula (see [24]) to the joint distribution (18) to obtain the poste-
rior distribution of s(μ) as
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Offline Phase: Given the training set T M = {μm}M
m=1, do the following steps once

1. Compute the vector dhi
M by solving the HF model at the training set.

2. Compute the vector dlo
M by solving the LF model at the training set.

3. Compute {ψm ≡ φ(μm)}M
m=1 by solving (11) at the training set.

4. Compute θ by maximizing the log marginal likelihood (see Section 3.3).

5. Form KM ij = k((ψi ,μi), (ψ j ,μ j)),1 ≤ i, j ≤ M, and βM = K −1
M (dhi

M − dlo
M ).

Online Phase: Given new input μ ∈ D, do

1. Compute the LF output slo(μ).

2. Compute the adjoint state φ(μ) by solving the adjoint problem (11).

3. Compute the prior variance ϑprior(μ) = k((φ(μ),μ), (φ(μ),μ)).

4. Compute the vector qM m(μ) = k((ψm,μm), (φ(μ),μ)),m = 1, . . . , M.

5. Evaluate spost
M (μ) and ϑ

post
M (μ) according to (21).

Fig. 1. Offline–Online algorithm for computing the posterior distribution of the output estimate.

s(μ) ∼ N (spost
M (μ),ϑ

post
M (μ)), (20)

where the posterior mean and variance are given by

spost
M (μ) = slo(μ) + qT

M(μ)βM ,

ϑ
post
M (μ) = ϑprior(μ) − qT

M(μ)K −1
M qM(μ). (21)

Here the vector βM ∈R
M is given by

βM = K −1
M (dhi

M − dlo
M) . (22)

Note that both the matrix K M and vector βM can be pre-computed and stored as they are independent of the input μ.
The algorithm outlining the steps to compute the posterior distribution of the output estimate is summarized in Fig. 1. 

Here the Offline Phase is performed only once, whereas the Online Phase can be repeated many times. Note that the HF 
model is invoked in the Offline Phase only. The computational cost of the Offline Phase is dominated by the cost of solving 
the HF model (1) at the training inputs. The computational cost of the Online Phase is dominated by the cost of solving the 
LF model (3) and the adjoint problem (11). The posterior mean spost(μ) represents our prediction of the HF output shi(μ), 
while the posterior variance ϑpost(μ) is a probabilistic measure of the prediction error. Note that the posterior distribution 
depends critically on the training set T M and the covariance operator k. The choice of the training set is an experimental 
design problem which will be discussed later in Section 4. We next discuss the choice of the covariance operator.

3.3. Covariance operators

We still need to specify the covariance operator k before computing the posterior distribution of the output estimate. 
The covariance operator k is a crucial ingredient in our approach because the posterior distribution of the output estimate 
strongly depends on k. We propose a class of covariance operators parametrized by a vector θ = (θ1, θ2) of the form:

k((v,μ), (v ′,μ′); θ) = k1(v, v ′; θ1)k2(μ,μ′; θ2). (23)

Here k1(v, v ′; θ1) is a θ1-dependent SPD bilinear operator of the form

k1(v, v ′; θ1) = θ11

∫
�

a1(x)v v ′dx + θ21

∫
�

a2(x)∇v · ∇v ′dx + θ31

∫
∂�

a3(x)v v ′dx, (24)

where the functions, a1(x), a2(x), and a3(x), can be carefully designed to give more weight to some particular area of the 
physical domain, depending on a particular application. Furthermore, the covariance function k2 can be chosen as one of 
the many covariance functions given in [24] (Chapter 4).

To determine the hyperparameter vector θ , we note from (18) that the probability distribution of (dhi
M − dlo

M) conditional 
on the hyperparameter vector θ is Gaussian

(dhi
M − dlo

M)|θ ∼ N (0, K M(θ)), (25)

where the matrix K M(θ) as defined in (19) depends on θ since the covariance operator k is parametrized by θ . It thus 
follows that the log marginal likelihood is given by
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log p((dhi
M − dlo

M)|θ) = −1

2
(dhi

M − dlo
M)T K M(θ)−1(dhi

M − dlo
M) − 1

2
log(det(K M(θ))) − M

2
log(2π). (26)

We follow the marginal likelihood maximization approach widely used in Gaussian processes [24] to determine θ by solving 
the following optimization problem

θ = arg max
θ ′∈RQ

+
log p((dhi

M − dlo
M)|θ ′). (27)

Hence, the hyperparameters θ are chosen as the maximizer of the log marginal likelihood.
Once a covariance operator is selected, we can compute the posterior distribution of the output estimate for any input by 

using the GFR method described earlier. The GFR method has a number of unique features. The method offers a framework 
for fully integrating mathematical models with observations to improve the prediction. The method characterizes model 
uncertainties by using infinite-dimensional functional spaces. In addition to the output estimate, the method can also give 
an estimate of the physical state. Furthermore, the method is nonparametric and nonintrusive, and capable of providing error 
bars for the prediction errors. All of these features distinguish the GFR method from other regression techniques including 
least squares regression [23], ridge regression [8,12,28], support vector machine regression [2,3,27], and Gaussian process 
regression [19,24,26]. These regression techniques do not fully incorporate mathematical models into their prediction models 
since they treat mathematical models as a computational black box. Mathematical models usually contain much richer 
information about the physical system because they capture the laws of physics and the conditions governing the behavior of 
the physical system. By exploiting the model form, the GFR method can provide accurate prediction beyond these regression 
techniques.

4. Model reduction and experimental design

In this section, we employ the reduced basis (RB) method [18,20,25] to reduce the computational cost of the output 
prediction in the real-time context (e.g., parameter-estimation, or control) and the many-query context (e.g., design opti-
mization, or multi-model/scale simulation, experimental design). In these contexts, the number of input–output evaluations 
is often measured in the tens of thousands. As a result, the output estimate (20) may not be well suited for real-time and 
many-query applications because it requires the finite element approximation of the LF model (3), which is computationally 
expensive. It is thus desirable to replace the finite element approximation with the RB approximation when a large number 
of input–output evaluations is demanded. The RB method is particularly relevant for the experimental design problem in 
which numerous evaluations of the LF model and its adjoint are often required to search for good training inputs in the 
parameter space. Indeed, the greedy selection algorithm described in this section takes advantage of the RB method to make 
an efficient search of the parameter space.

4.1. Reduced basis method

We begin by assuming that we are given a set of N parameter points T N = {μ̄n, 1 ≤ n ≤ N}. We then introduce a primal 
RB space V N = span{ζm ≡ ulo(μ̄n), 1 ≤ n ≤ N} and an adjoint RB space W N = span{ξn ≡ φ(μ̄n), 1 ≤ n ≤ N}, where ulo(μ̄n)

and φ(μ̄n) are the solution of the parametrized primal problem (3) and adjoint problem (11) at μ = μ̄n , respectively. 
(In practice, we orthogonalize the basis functions of the two RB spaces by using the Gram–Schmidt procedure to obtain 
orthogonal basis functions [13].)

Next, for any μ ∈D, we find the RB primal state ulo
N (μ) ∈ V N such that

a(ulo
N (μ), v,μ) = b(v,μ), ∀v ∈ V N . (28)

The RB primal system (28) is nothing but the Galerkin projection of the primal formation (3) onto the RB primal space V N . 
Similarly, we find the RB adjoint state φN (μ) ∈ W N from

a(v, φN(μ),μ) = −c(v,μ), ∀v ∈ W N . (29)

This RB system is the Galerkin projection of the adjoint formation (11) onto the RB adjoint space W N . The RB output can 
then be evaluated as

slo
N (μ) = c(ulo

N (μ),μ) − rpr(φN(μ),μ), (30)

where rpr is the RB primal residual

rpr(v,μ) = b(v,μ) − a(ulo
N (μ), v,μ), ∀v ∈ V . (31)

Note that the RB output (30) is enhanced with the primal residual at the RB adjoint state to ensure its rapid convergence 
to the finite element output slo(μ) [25].

In order to develop an efficient Offline–Online computational procedure, the RB method requires that the bilinear form 
a and linear functionals b, c can be expressed as the following affine decompositions
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a(w, v,μ) =
Q a∑

q=1

�
q
a(μ)aq(w, v), b(v,μ) =

Q b∑
q=1

�
q
b(μ)bq(v), c(v,μ) =

Q c∑
q=1

�
q
c (μ)cq(v) (32)

where the bilinear forms aq , linear functions bq and cq are independent of μ, while �q
a , �q

b and �q
c are dependent on μ. 

If a, b, c do not admit the affine decompositions (32), we use the empirical interpolation method [1,6] or the “best points” 
interpolation method [15,16] to construct such affine decompositions.

We now express the RB approximations ulo
N (μ) ∈ V N and φN (μ) ∈ W N as

ulo
N (μ) =

N∑
n=1

uN n(μ)ζn, φN(μ) =
N∑

n=1

φN n(μ)ξn. (33)

Inserting these expressions into (28) and (29) we arrive at the following RB systems

Apr
N (μ)uN(μ) = bpr

N (μ), Adu
N (μ)φN(μ) = −cdu

N (μ), (34)

where Apr
N (μ) ∈R

N×N , bpr
N (μ) ∈R

N , Adu
N (μ) ∈ R

N×N , cdu
N (μ) ∈R

N have entries

Apr
N ij(μ) = a(ζ j, ζi,μ), bpr

N i(μ) = b(ζi,μ), i, j = 1, . . . , N,

Adu
N ij(μ) = a(ξi, ξ j,μ), cdu

N i(μ) = c(ξi,μ), i, j = 1, . . . , N.
(35)

Using the affine decompositions (32), we can express these matrices and vectors as

Apr
N (μ) =

Q a∑
q=1

�
q
a(μ)Apr,q

N , bpr
N (μ) =

Q b∑
q=1

�
q
b(μ)bpr,q

N ,

Adu
N (μ) =

Q a∑
q=1

�
q
a(μ)Apr,q

N , cdu
N (μ) =

Q c∑
q=1

�
q
c (μ)cdu,q

N ,

(36)

where Apr,q
N ∈R

N×N , bpr,q
N ∈R

N , Adu,q
N ∈R

N×N , cdu,q
N ∈ R

N have entries

Apr,q
N i j = aq(ζ j, ζi), q = 1, . . . , Q a, bpr,q

N i = bq(ζi), q = 1, . . . , Q b,

Adu,q
N i j = aq(ξi, ξ j), q = 1, . . . , Q a, cdu,q

N i = cq(ξi), q = 1, . . . , Q c,
(37)

for i, j = 1, . . . , N . Note that the matrices and vectors in (37) are independent of μ. Furthermore, we evaluate the RB output 
slo

N (μ) in (28b) as

slo
N (μ) = uT

N(μ)cpr
N (μ) − φT

N(μ)bdu
N (μ) + φT

N(μ)Apr,du
N (μ)uN(μ), (38)

where cpr
N (μ), bdu

N (μ), and Apr,du
N (μ) are calculated as

cpr
N (μ) =

Q c∑
q=1

�
q
c (μ)cpr,q

N , bdu
N (μ) =

Q b∑
q=1

�
q
b(μ)bdu,q

N , Apr,du
N (μ) =

Q a∑
q=1

�
q
a(μ)Apr,du,q

N . (39)

Here the vectors cpr,q
N ∈ R

N , bdu,q
N ∈ R

N , Apr,dy,q
N ∈ R

N×N have entries cpr,q
N i = cq(ζi), bdu,q

N i = bq(ξi), Apr,du,q
N i j = aq(ζ j, ξi) for 

1 ≤ i, j ≤ N , which are independent of μ.
The Offline–Online computational procedure can now be described as follows. In the Offline stage, we first get the 

primal and adjoint basis sets, {ζn}N
n=1 and {ξn}N

n=1, by solving the primal and adjoint problems at the parameter inputs 
{μ̄n, 1 ≤ n ≤ N}, respectively; we then compute and store all the μ-independent matrices and vectors Apr,q

N , Adu,q
N , Apr,du,q

N , 
bpr,q

N , bdu,q
N , cdu,q

N , cpr,q
N . The Offline stage is expensive and performed only once. The computational expense of the Offline 

stage is mainly due to the cost of getting the basis sets. In the Online stage, we first assemble the μ-dependent matrices 
and vectors in (36); we then solve the RB systems (34) for uN (μ) and φN (μ); and we finally evaluate (38) and (39) to 
obtain the RB output slo

N (μ). The Online stage can be repeated for many different values of μ. The operation count of the 
Online stage for a given input μ is O (2N3 + 3Q a N2).

Finally, we briefly discuss a posteriori error estimation in the RB method and refer to the paper [25] for details. The errors 
in the energy norm can be bounded by

‖ulo(μ) − ulo(μ)‖V ≤ �
pr

(μ), ‖φ(μ) − φN(μ)‖V ≤ �du(μ), ∀μ ∈ D, (40)
N N N
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where the error bounds are defined by

�
pr
N (μ) ≡ 1√

αLB(μ)
sup
v∈V

rpr(v,μ)

‖v‖V
, �du

N (μ) ≡ 1√
αLB(μ)

sup
v∈V

rdu(v,μ)

‖v‖V
. (41)

Here rdu(v, μ) = −c(v, μ) − a(v, φN (μ)μ), ∀v ∈ V , is the RB dual residual and αLB(μ) is the lower bound of the stability 
constant α(μ) of the bilinear form a. Typically, the lower bound αLB(μ) is computed using the successive constraint method 
[10]. The output error bound takes the form

|slo(μ) − slo
N (μ)| ≤ �s

N(μ) ≡ �
pr
N (μ)�du

N (μ), ∀μ ∈ D. (42)

The error bounds are computed using an Offline–Online procedure which is quite similar to that for the RB output. The 
Offline stage is expensive and done once; but the Online computational cost for computing these error bounds is O (2Q 2

a N2). 
The error bounds play an important role in ensuring efficiency and reliability of the RB method. Furthermore, these error 
bounds are used in the greedy sampling algorithm to obtain the parameter set T N = {μ̄n, 1 ≤ n ≤ N}.

4.2. Gaussian functional regression using the RB method

We now incorporate the RB approximation into the Gaussian functional regression described in Section 3 to provide effi-
cient prediction of the HF output. Instead of the posterior distribution (20) we compute the following posterior distribution

sN(μ) ∼ N (spost
M,N (μ),ϑ

post
M,N (μ)), (43)

where the posterior mean output and variance are given by

spost
M,N (μ) = slo

N (μ) + qT
M,N(μ)βM ,

ϑ
post
M,N (μ) = ϑ

prior
N (μ) − qT

M,N(μ)K −1
M qM,N(μ). (44)

Here the scalar ϑprior
N (μ) and the vector qM,N (μ) ∈ R

M are as follows

ϑ
prior
N (μ) = k((φN(μ),μ), (φN(μ),μ)),

qM,N m(μ) = k((φ(μm),μm), (φN (μ),μ)), m = 1, . . . , M. (45)

We note from (23) and (33) that

ϑ
prior
N (μ) = k1(φN(μ),φN(μ))k2(μ,μ)

=
N∑

n=1

N∑
m=1

φN n(μ)k1(ξm, ξn)φN m(μ)k2(μ,μ)

=
(
φT

N(μ)H NφN(μ)
)

k2(μ,μ), (46)

and

qM,N m(μ) = k1(φ(μm),φN (μ))k2(μm,μ)

=
N∑

n=1

φN n(μ)k1(φ(μm), ξn)k2(μm,μ)

=
(

N∑
n=1

φN n(μ)R M,N mn

)
k2(μm,μ), m = 1, . . . , M, (47)

where H N ∈R
N×N and R M,N ∈R

M×N have entries

H N ij = k1(ξi, ξ j), 1 ≤ i, j ≤ N,

R M,N mn = k1(φ(μm), ξn), 1 ≤ m ≤ M,1 ≤ n ≤ N. (48)

Note that since H N and R M,N are independent of μ, they can be pre-computed and stored.
We develop an Offline–Online algorithm listed in Fig. 2 to efficiently compute the posterior distribution (43) for any 

input μ ∈ D. The (Online) computational cost of evaluating this posterior distribution for any input μ ∈ D is O (2N3 +
3Q a N2 + M2). The main advantage of using the RB method is that we only solve the RB systems (34) to obtain the posterior 
distribution (44) for any new input μ, whereas without using the RB method we have to solve the linear parametrized PDE 
and its adjoint. This could lead to a substantial saving in the computational time for real-time and many-query applications.
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Offline Phase: Given {μm}M
m=1 and {μ̄n}N

n=1 do the following steps once

1. Compute the vector dhi
M by solving the HF model (1) for μ = μm,1 ≤ m ≤ M.

2. Compute the vector dlo
M by solving the LF model (3) for μ = μm,1 ≤ m ≤ M.

3. Compute {ψm ≡ φ(μm)}M
m=1 by solving (11) for μ = μm,1 ≤ m ≤ M.

4. Compute θ by maximizing the log marginal likelihood (see Section 3.3).

5. Form KM ij = k((ψi ,μi), (ψ j ,μ j)), 1 ≤ i, j ≤ M, and βM = K −1
M (dhi

M − dlo
M ).

6. Perform the Offline Stage of the RB method and form H N and R M,N by (48).

Online Phase: Given new input μ ∈ D, do

1. Solve the RB systems (34) for uN (μ) and φN (μ).

2. Compute the RB output slo
N (μ) by (38).

3. Compute ϑ
prior
N (μ) by (46) and qM,N (μ) by (47).

4. Evaluate spost
M,N (μ) and ϑ

post
M,N (μ) according to (44).

Fig. 2. Offline–Online algorithm for computing the posterior distribution of the output estimate using the RB method.

4.3. Experimental design

Since numerical observations are computationally expensive as they require us to simulate the HF model, it is desired 
to use as few observations as possible. A principled way of reducing the number of observations is experimental design
[26]. The notion of optimality in experimental design depends on a statistical model and an appropriate statistical criterion. 
Common criteria include A-optimal design which chooses the training inputs to minimize the average of the posterior 
variance or G-optimal design which chooses the training inputs to minimize the maximum value of the posterior variance. 
If the number of observations can be fixed in advance, we can simultaneously optimize the training inputs using one of 
these design criteria. The resulting strategy is called optimal experimental design. If the number of observations cannot be 
fixed in advance, we can evaluate observations as they are collected and optimize the next training input based on the 
previously selected observations. This strategy is called sequential experimental design.

In the present work, sequential experimental design is preferred for two main reasons. The first reason is that it is 
difficult to find a global optimum of the optimal experimental design problem because the optimization problem is typically 
nonlinear and nonconvex with numerous local optima. If the global optimum cannot be found and verified then it is not 
clear optimal experimental design will perform better than sequential experimental design. The second reason has to do 
with practical applications that do not favor using a fixed number of observations because it cannot be determined in 
advance. Specifically, using too few observations may risk inaccurate prediction, whereas using too many observations leads 
to high computational cost. In these applications, the judicious choice of a sequential design can bring about a considerable 
reduction in the observations necessary to reduce the uncertainty to a desired low level.

In our setting, the sequential design problem can be described as follows. We assume that we are given a large set of 
potential inputs �greedy = {ηl ∈ D, 1 ≤ l ≤ L} with L � M , each of which corresponds to a potential numerical observation 
to be computed. Before actually performing any of these computations, we face the following decision questions. Which 
input among the L potential inputs should be selected first? Given the results of any previously selected inputs, which input 
should be chosen next? How many inputs are enough to provide accurate enough prediction? These decision questions can 
be summed up as follows: how do we choose a sequence of the training inputs {μm}M

m=1 among the potential observation 
inputs {ηl}L

l=1?
We now describe our sequential experimental design strategy. We initialize the training set T M = {μ1} with only M = 1

training input, where the first training input μ1 is found in the greedy set �greedy such that

μ1 = arg max
μ∈�greedy

ϑ
prior
N (μ). (49)

We next pursue the Offline Phase of the algorithm listed in Fig. 2 with the initial training set T M . Then, for M = 2, . . . , Mmax, 
we find the next training input μM as

μM = arg max
μ∈�greedy

ϑ
post
M−1,N(μ), (50)

set T M = T M ∪ {μM}, and perform the Offline Phase. Note that the greedy selection (50) can be viewed as a heuristic (more 
precisely, sub-optimal) solution to the optimization problem maxμ∈D ϑ

post
M−1,N (μ). If the size of the greedy set �greedy is 

large enough, then our greedy selection can be as good as the optimal solution of the optimization problem.
This greedy selection algorithm is similar to the greedy sampling of the reduced basis method [25]. Roughly speaking, 

at iteration M , the greedy algorithm appends to the previously selected training inputs a new training input μM that yields 
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the maximum variance over all the candidates in the greedy set �greedy. By choosing one particular input, we make the 
prediction exact at this input and reduce uncertainty in the region around it. Therefore, it makes sense to choose the point 
with the largest variance so as to minimize the uncertainty. The RB method plays an important role in our greedy selection 
algorithm. Without the RB method, we must evaluate the posterior variance ϑpost

M (μ) defined in (21) for all μ ∈ �greedy, 
which in turns requires the adjoint states φ(μ), μ ∈ �greedy. The use of the RB method permits the size of the greedy set 
�greedy to be very large since ϑpost

M,N (μ) is much faster to compute than ϑpost
M (μ).

5. Numerical results

In this section, we present numerical examples to demonstrate our approach. In each example, the HF model is a 
parametrized nonlinear partial differential equation and the LF model is obtained through a linearization of the HF model 
around a particular (fixed) state. Therefore, the LF model may not predict well the input–output relationship of the HF 
model. We will illustrate how our approach can help improve the prediction. We will also compare the greedy selection to 
other choices of the training set.

5.1. Convection–diffusion models

In order to demonstrate the present method we consider that the HF state uhi(x, μ) satisfies the following parametrized 
Burgers equation:

−μ
∂2uhi

∂x2
+ uhi ∂uhi

∂x
= f (x), in � ≡ (0,1), (51)

with Dirichlet boundary conditions uhi(0) = uhi(1) = 0 and the source term f (x) = x2(16 sin(πx) + 64 sin(4πx)). Here we 
assume that the thermal coefficient (a single parameter input) μ resides in the parameter space D ≡ [μmin, μmax], where 
μmin = 0.1 and μmax = 1. The HF output shi(μ) is the average of the solution on the physical domain, namely,

shi(μ) = c(uhi(μ)) ≡
∫
�

uhi(μ)dx. (52)

Evaluating the HF output requires the solution of the nonlinear model (51).
For the LF model we consider the following linear convection–diffusion equation:

−μ
∂2ulo

∂x2
+ w(x)

∂ulo

∂x
= f (x), in � ≡ (0,1), (53)

with Dirichlet boundary conditions ulo(0) = ulo(1) = 0. Here the convective velocity w(x) is specified as

w(x) = uhi(x,μmax). (54)

The weak formulation is to find ulo(μ) ∈ V (�) such that

a(ulo(μ), v,μ) = b(v), ∀v ∈ V (�), (55)

where

a(w, v,μ) =
∫
�

(
μ

∂ w

∂x

∂v

∂x
+ ϑ(x)

∂ w

∂x
v

)
dx, b(v) =

∫
�

f vdx, ∀w, v ∈ V (�). (56)

Here the function space V (�) is then given by

V (�) =
⎧⎨
⎩v :

∫
�

(
v2 + ∂v

∂x

∂v

∂x

)
dx < ∞ and v(−1) = v(1) = 0

⎫⎬
⎭ . (57)

In practice, we replace the continuous space V (�) with a 100-element finite element space of local polynomials of degree 
p = 3. The LF output is calculated as slo(μ) = c(ulo(μ)). We note that the linear model (53) is a linearization of the nonlinear 
model (51) at a fixed state uhi(x, μmax), which is numerically computed using the same finite element space. Fig. 3 shows 
the HF output shi(μ) and the LF output slo(μ) as a function of the input μ. We see that the LF output is considerably 
different from the HF output.

We can now apply the RB method described in Section 4 to the linear model (55) and its adjoint. We show in Table 1
the selected parameter μ̄N and the error measure εN for different values of N . Here the error measure is defined as



62 N.C. Nguyen, J. Peraire / Journal of Computational Physics 309 (2016) 52–68
Fig. 3. The HF output shi(μ) and the LF output slo(μ) as a function of the input μ.

Table 1
The selected parameter μ̄N and the error measure εmax

N
for different values of N .

N μ̄N εN

1 0.1000 4.94e−1
2 1.0000 9.98e−4
3 0.1506 1.13e−8
4 0.1128 2.75e−10
5 0.3498 4.46e−12

Table 2
The hyperparameters θ = (θ1, θ2, θ3) as a function of M for different training sets.

M Greedy selection Equal-spaced nodes Chebyshev nodes Gauss–Labotto nodes

1 (0.155,0.103,1.990) (0.155,0.103,1.990) (0.155,0.103,1.990) (0.155,0.103,1.990)

2 (0.001,0.058,1.990) (0.001,0.056,0.149) (0.001,0.056,0.149) (0.001,0.056,0.149)

3 (0.001,0.041,0.660) (0.001,0.099,1.990) (0.001,0.099,1.990) (0.001,0.099,1.990)

4 (0.001,0.031,0.282) (0.001,0.094,1.990) (0.001,0.086,1.550) (0.001,0.090,1.705)

5 (0.001,0.029,0.285) (0.001,0.057,0.658) (0.001,0.042,0.522) (0.001,0.046,0.558)

6 (0.001,0.022,0.169) (0.001,0.037,0.405) (0.001,0.028,0.323) (0.001,0.030,0.343)

7 (0.001,0.021,0.180) (0.001,0.028,0.303) (0.001,0.024,0.242) (0.001,0.024,0.255)

8 (0.030,0.020,0.185) (0.004,0.024,0.251) (0.001,0.021,0.197) (0.006,0.022,0.209)

9 (0.200,1.267,0.391) (0.001,0.022,0.217) (0.001,0.021,0.173) (0.040,0.019,0.185)

εN = max
μ∈�test

|slo(μ) − slo
N (μ)|

|slo(μ)| , (58)

where �test is a set of ntest = 300 parameters which are randomly chosen in the parameter space D. As expected, most of 
the RB sample points are close to μmin. We observe that the RB approximation converges very rapidly since the accuracy 
of 1.13 × 10−8 in the relative error is achieved with N = 3 only. Note that the (online) RB model with N = 3 is more than 
1280 times faster to solve than the LF model. This translates to a significant saving in the computational time of the greedy 
selection algorithm that requires a large number of output evaluations over the greedy set �greedy of 1000 parameter points.

We will compare the performance of the greedy selection relative to other choices of the training set. To this end, we 
consider three other training sets. The first set T ES

M = {μES
m }M

m=1 is equally spaced in the parameter space; the second set 
T EC

M = {μEC
m }M

m=1 consists of the Chebyshev nodes; and the third training set, T GL
M = {μGL

m }M
m=1 consists of the Gauss–Labotto 

nodes. Furthermore, we take the covariance operator of the form

k((v,μ), (v ′,μ′); θ) =
⎛
⎝θ1

∫
�

v v ′dx + θ2

∫
�

∂v

∂x

∂v ′

∂x
dx

⎞
⎠exp

(
−0.5(μ − μ′)2

θ2
3

)
, (59)

where the hyperparameters θ = (θ1, θ2, θ3) are determined by maximizing the log marginal likelihood (26). We present in 
Table 2 the hyperparameter values as a function of M .

We next present in Table 3 the average prediction error δ̄post
M,N and the average standard deviation ϑ̄post

M,N for different 
values of M with N = 5, where
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Table 3
The average prediction error and the average standard deviation as a function of M for different training sets. The training set of the greedy selection is 
listed as well.

# Greedy selection Equal-spaced Chebyshev Gauss–Labotto

M μM δ̄
post
M,N ϑ̄

post
M,N δ̄

post
M,N ϑ̄

post
M,N δ̄

post
M,N ϑ̄

post
M,N δ̄

post
M,N ϑ̄

post
M,N

1 0.1000 1.28e−1 1.64e−1 1.28e−1 1.64e−1 1.28e−1 1.64e−1 1.28e−1 1.64e−1
2 0.1455 1.03e−1 1.52e−2 1.60e−2 1.88e−1 1.60e−2 1.88e−1 1.62e−2 1.88e−1
3 1.0000 7.41e−2 1.70e−2 8.29e−2 8.47e−3 8.29e−2 8.47e−3 8.29e−2 8.47e−3
4 0.4331 3.53e−2 1.81e−2 7.27e−2 2.04e−3 6.33e−2 1.96e−3 6.68e−2 1.97e−3
5 0.6591 2.74e−2 7.55e−3 5.21e−2 2.70e−3 3.57e−2 3.01e−3 4.00e−2 2.87e−3
6 0.2524 1.16e−2 9.67e−3 3.57e−2 3.14e−3 2.11e−2 3.18e−3 2.33e−2 2.98e−3
7 0.8402 1.05e−2 4.99e−3 2.45e−2 2.93e−3 1.35e−2 2.94e−3 1.42e−2 2.57e−3
8 0.5537 6.90e−3 2.10e−3 1.69e−2 2.42e−3 9.08e−3 2.59e−3 9.01e−3 2.10e−3
9 0.1117 1.95e−4 8.65e−5 1.19e−2 1.94e−3 6.12e−3 2.07e−3 5.63e−3 1.54e−3

δ̄
post
M,N = 1

ntest

∑
μ∈�test

(
shi(μ) − spost

M,N(μ)
)

, ϑ̄
post
M,N = 1

ntest

∑
μ∈�test

√
ϑ

post
M,N (μ) (60)

We see from Table 3 that the greedy selection outperforms the other choices of the training set since it provides faster 
convergence for the output prediction. Furthermore, the greedy selection yields more better error estimators than the other 
training sets. The results demonstrate the importance of the training inputs to the outcome of our method. It is clear from 
Fig. 3 that the training inputs should be distributed closely to the left boundary of the parameter domain since the LF model 
deviates significantly from the HF model when μ is small. As listed in Table 3, the training set of the greedy selection has 
such property.

Finally, we show in Fig. 4 the HF output shi(μ), the mean prediction spost
N,M(μ), and the 95% confidence region (shaded 

area) as a function of μ for the greedy selection and the Gauss–Labotto nodes. Here the 95% confidence region is an area 
bounded by the mean prediction plus and minus two times the standard deviation function. Note that both the prediction 
error and the standard deviation function are zero at the training points. We see that the prediction is more accurate when 
μ is close to μmax and becomes less accurate when μ is close to μmin. Furthermore, the greedy selection outperforms 
the Gauss–Labotto nodes since it provides more accurate predictions for the same value of M . Note that the results of the 
Chebyshev nodes are similar to those of the Gauss–Labotto nodes, while the results of the equal-spaced nodes are even 
worse.

5.2. Diffusion–reaction models

We consider the following parametrized nonlinear diffusion–reaction equation:

−μ1∇ ·
((

1 + sin(2πxμ2) sin(2π yμ2) + (uhi)2
)

∇uhi
)

+ uhi = f , in � ≡ (0,1) × (0,1), (61)

with Dirichlet boundary conditions uhi = 0 on the physical domain boundary and the source term f (x, y) = 4π2 sin(1.5πx)×
sin(1.5π y). Here we assume that the input μ ≡ (μ1, μ2) resides in the parameter space D ≡ [μmin, μmax] × [μmin, μmax], 
where μmin = 0.1 and μmax = 1. The HF output shi(μ) is the average of the solution on the physical domain, namely,

shi(μ) = c(uhi(μ)) ≡
∫
�

uhi(μ)dxdy. (62)

Evaluating the HF output requires the solution of the nonlinear model (61).
As an approximation to the nonlinear model (61) we consider the following linear diffusion–reaction equation:

−μ1∇ ·
((

1 + sin(2πxμ2) sin(2π yμ2) + ũ2
)

∇uhi
)

+ uhi = f , in �, (63)

with Dirichlet boundary conditions ulo = 0 on the entire boundary and ũ being specified as

ũ = uhi(μ̃), (64)

for μ̃ = (0.5, 0.5). The weak formulation is to find ulo(μ) ∈ V (�) such that

a(ulo(μ), v,μ) = b(v), ∀v ∈ V (�), (65)

where
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Fig. 4. Panels show the HF output and the RB mean prediction for the greedy selection (left) and the Gauss–Labotto nodes (right). In these plots the shaded 
area represents the mean prediction plus and minus two times the standard deviation function (corresponding to the 95% confidence region).

a(w, v,μ) = μ1

∫
�

(
1 + sin(2πxμ2) sin(2π yμ2) + ũ2

)
∇w · ∇vdxdy +

∫
�

w vdxdy,

b(v) =
∫
�

f vdxdy,

(66)

for all w, v ∈ V (�). Here the function space V (�) is then given by
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Fig. 5. Plots of the HF output shi(μ) (left), the LF output slo(μ) (center), and the difference between the HF output and the LF output (right). (For 
interpretation of the colors in this figure, the reader is referred to the web version of this article.)

Fig. 6. Plots of the RB sample {μ̄n}N
n=1 (left) and the error measure εN (right) as a function of N . The numbers in the left figure indicates the order of the 

RB sample.

V (�) =
⎧⎨
⎩v :

∫
�

(
v2 + ∂v

∂x

∂v

∂x

)
dx < ∞ and v = 0 on ∂�

⎫⎬
⎭ . (67)

In practice, we replace the continuous space V (�) with a 800-element finite element space of local polynomials of degree 
p = 3. We note that the linear model (65) is a fixed-point linearization of the nonlinear model (61) at the state uhi(μ̃), 
which is numerically computed using the same finite element space. The LF output is calculated as slo(μ) = c(ulo(μ)). Fig. 5
shows the HF output shi(μ) and the LF output slo(μ) as a function of the input μ. We see that the LF output is considerably 
different from the HF output especially when μ1 is small and μ2 is large.

We note that the bilinear form a of the linear model (65) does not admit the affine decomposition (32) due to the non-
affine function h(x, y, μ2) = sin(2πxμ2) sin(2π yμ2). We use the empirical interpolation method (EIM) [1,6] to construct an 
affine approximation h J (x, y, μ2) = ∑ J

j=1 γ j(μ2)w j(x, y), where the coefficients γ j , 1 ≤ j ≤ J , are determined by requiring 
that h J (x, y, μ2) is equal to h(x, y, μ2) at J interpolation points. The basis functions and the interpolation points are com-
puted using the EIM procedure. We can now apply the RB method described in Section 4 to the linear model (65) in which 
the nonaffine function h(x, y, μ2) is replaced with its affine approximation h J (x, y, μ2) for J = 10.

We show in Fig. 6 the RB sample {μ̄n}N
n=1 and the error measure εN for different values of N . Here the RB sample is 

chosen from the greedy set �greedy of 101 × 101 parameter points and the error measure εN is similarly defined as in 
(58), where the test set �test is a uniform grid of 61 × 61 parameter points in the parameter space D. We see that many 
parameter points are located near the top right conner of the parameter domain. This can be attributed to the fact that the 
solution u(μ) changes more rapidly as a function μ when μ1 is small and μ2 is large. The RB approximation converges 
very rapidly as the maximum relative output error is less than 10−6 for N = 32. Note that the RB model with N = 32 is 
about 750 times faster than the LF model.

Next, we present in Fig. 7 the training set {μm}M
m=1 as well as the average prediction error δ̄post

M,N and the average standard 
deviation ϑ̄post

M,N for different values of M with N = 32, where δ̄post
M,N and ϑ̄post

M,N are similarly defined as in (60) for the test 
set �test of size 61 × 61. We see that many training inputs are located near the upper left conner of the parameter domain. 
Indeed, the distribution of the training inputs is quite similar to that of the RB parameter points. However, there are more 
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Fig. 7. Plots of the training set {μm}M
m=1 (left), and the average prediction error δ̄post

M,N and the average standard deviation ϑ̄post
M,N as a function of M for 

N = 32. The numbers in the left figure indicates the order of the training set.

Fig. 8. Plots of the mean prediction (a), the associated error (b), and the 95% confidence (c) for M = 30 and N = 32. (For interpretation of the colors in this 
figure, the reader is referred to the web version of this article.)

Table 4
The average prediction error and the average standard deviation as a function of M for the equal-spaced training set, the Chebyshev 
training set, and the Gauss–Labotto training set.

# Equal-spaced Chebyshev Gauss–Labotto

M δ̄
post
M,N ϑ̄

post
M,N δ̄

post
M,N ϑ̄

post
M,N δ̄

post
M,N ϑ̄

post
M,N

4 0.0794 0.0233 0.0794 0.0233 0.0794 0.0233
9 0.0420 0.0121 0.0420 0.0121 0.0420 0.0121

16 0.0150 0.0244 0.0141 0.0230 0.0170 0.0231
25 0.0104 0.0159 0.0080 0.0203 0.0046 0.0194
36 59.772 0.0032 38.615 0.0032 31.243 0.0033
49 11.194 0.1651 21.192 0.1226 14.815 0.1009

training inputs on the right boundary than RB parameter points. As expected, both the average error and the standard 
deviation tend to decrease as M increases. In particular, the convergence of the mean prediction spost

M,N (μ) to the HF output 
shi(μ) is quite fast as M increases. When M is large enough, the average standard deviation is very close to the average 
error. Hence, increasing the number of measurements reduces the uncertainty in our prediction of the HF output. We also 
display in Fig. 8 the mean prediction, the associated error, and the 95% confidence for M = 30 and N = 32. We see that 
the mean prediction for M = 30 resembles the HF output. Furthermore, the 95% confidence bounds the error quite well, 
implying that the HF output is likely to lie in the 95% confidence region.

Finally, we present in Table 4 the average prediction error δ̄post
M,N and the average standard deviation ϑ̄post

M,N for the other 
choices of the training set. It is interesting to note that these training sets yield the prediction error which initially decreases 
for M < 36 and grows rapidly for M ≥ 36. The reason is that when M is large these training sets consist of many parameter 
points in the bottom right of the parameter domain, where the adjoint state φ(μ) does not vary much. Consequently, the 
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resulting adjoint states {φ(μm)}M
m=1 are almost linearly dependent, which in turn makes the matrix K M ill-conditioned. Our 

greedy selection algorithm is able to avoid this issue because it chooses the training inputs well.

6. Conclusions

In this paper, we have presented a new model assimilation approach that combines multi-fidelity models to make an 
efficient inference about the output of the high fidelity model. Our approach takes advantage of the mathematical structure 
of the LF model in two ways. We augment the LF model with a Gaussian functional and determine the posterior distribu-
tion of the Gaussian functional and the output estimate by utilizing the numerical observations from the HF model and the 
adjoint states from the LF model. We use the mathematical structure of the LF model to construct its RB approximation 
which is then incorporated into the GFR framework to enable fast prediction and experimental design. We demonstrate 
our approach on two numerical examples to highlight its features. Numerical results show that we can estimate the input–
output relationship of the HF model quite well with a small number of HF runs even when the LF model is considerably 
different from the HF model. The results also show that the greedy selection outperforms both the Chebyshev nodes and 
the Gauss–Labotto nodes since it yields more accurate and reliable prediction.

We end the paper with a short discussion of several possible extensions and directions for further research. While we 
make full use of the LF model, we do not make the same use of the HF model. Indeed, the only information from the HF 
model being made used in our approach are the values of the output at the training inputs {shi(μm)}M

m=1. Can we make 
use of the HF states at the training inputs {uhi(μm)}M

m=1? Of course, the state contains a lot more information than the 
output. Making use of the state may provide us valuable sources of information to improve the approach significantly. While 
we concentrate on single output prediction in this paper, we would like to develop an efficient procedure for estimating 
multiple outputs as well as the state of the HF model.

Herein we develop a greedy selection algorithm for choosing the training inputs in sequential fashion. The greedy method 
may not be very effective if the input is of high dimension because the size of the greedy sample will grow rapidly with 
the dimension of the parameter space and the RB method requires more basis functions to yield good approximation in 
high-dimensional input spaces. Future work should explore alternative sequential methods that are more effective than 
the proposed greedy method for high-dimensional input spaces. Moreover, we would like to develop efficient and robust 
algorithms for optimal experimental design. Both optimal and sequential experimental design can play a collaborative role 
in our approach: optimal design is carried out only once in the Offline Phase to provide the optimal training set, while 
sequential design may be performed several times in the Online Phase to choose the next training input when our prediction 
is not accurate enough.

Another important question we would like to tackle is that can we do better than the likelihood maximization algorithm 
in selecting an appropriate covariance operator? It is clear from the numerical results that the error estimates are sometimes 
not rigorous because the hyperparameters are not good. A better selection approach that makes full use of the model may 
produce a better covariance operator. Furthermore, we would like to explore other families of the covariance operators 
besides the family k((v, μ), (v, μ)) = k1(v, v ′)k2(μ, μ).

Herein we consider only a single LF model and a single HF model. Extension of our approach to allowing for integration 
of several models with physical observations will be an interesting research. More significantly, we will need to address 
nonlinear LF models so as to broaden the application domain of our method to more complex mathematical models. Non-
linear LF models represent some significant challenges not only because the adjoint problems will depend on the state 
which we do not know, but also because the Gaussian property of the stochastic model is no longer preserved due to 
nonlinearity. Finally, we would like to apply our approach to important applications including multi-fidelity optimization, 
inverse problems, and optimal control.
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