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We present a model and variance reduction method for the fast and reliable computation 
of statistical outputs of stochastic elliptic partial differential equations. Our method consists 
of three main ingredients: (1) the hybridizable discontinuous Galerkin (HDG) discretization 
of elliptic partial differential equations (PDEs), which allows us to obtain high-order 
accurate solutions of the governing PDE; (2) the reduced basis method for a new HDG 
discretization of the underlying PDE to enable real-time solution of the parameterized PDE 
in the presence of stochastic parameters; and (3) a multilevel variance reduction method 
that exploits the statistical correlation among the different reduced basis approximations 
and the high-fidelity HDG discretization to accelerate the convergence of the Monte Carlo 
simulations. The multilevel variance reduction method provides efficient computation of 
the statistical outputs by shifting most of the computational burden from the high-
fidelity HDG approximation to the reduced basis approximations. Furthermore, we develop 
a posteriori error estimates for our approximations of the statistical outputs. Based on these 
error estimates, we propose an algorithm for optimally choosing both the dimensions of 
the reduced basis approximations and the sizes of Monte Carlo samples to achieve a given 
error tolerance. We provide numerical examples to demonstrate the performance of the 
proposed method.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The analysis of physical systems is often carried out by mathematical modeling and numerical simulation. For a given sys-
tem, the corresponding mathematical model requires certain input data, such as material properties, forcing terms, boundary 
conditions and geometry information. For many problems of interest, input data are not known precisely. In such cases, one 
may need to consider input data as random variables and represent them in probabilistic terms. Mathematical models 
represented by partial differential equations with random input data are known as stochastic partial differential equations 
(SPDEs). Uncertainty in the input data may come from different sources. It can be that the physical system has some in-
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trinsic variability, for example, uncertainty in the gust loads on an aircraft, or wind and seismic loading on civil structures. 
It is also possible that we are unable to effectively characterize the physical system with a mathematical model because, 
for instance, we may have errors in geometry, roughness of surfaces, or multiscale behavior that we are unable to capture. 
Therefore, there is a growing need to represent the uncertainty in the data and effectively propagate it through the mathe-
matical model. The goal of this probabilistic approach resides in computing statistics of some observable outputs (quantities 
of interest), which are usually defined as functionals of the solution of the underlying SPDE.

There exist a number of different approaches to solve SPDEs and retrieve the statistics of the output. The most common 
approach is to use Monte Carlo (MC) methods [20,31]. Monte Carlo methods only need repeated evaluations of the output 
functional of the solution of the SPDEs for different instantiations of the random input. The main advantage of Monte Carlo 
methods is that their convergence rate is independent of the dimension of the stochastic space, namely, the number of 
random variables. The main caveat of these methods is their slow convergence rate, which demands a large amount of 
realizations to achieve accurate results. As a result, a number of techniques such as quasi Monte Carlo methods [8,48], 
Latin Hypercube Sampling [33,57], variance reduction methods [8] and multilevel Monte Carlo [27] have been proposed to 
alleviate the slow convergence rate of the standard Monte Carlo methods.

Another approach is stochastic Galerkin methods, first introduced by Ghanem et al. in [26], that generalize the theory 
of Wiener–Hermite polynomial chaos expansion [63] and combine it with a finite element method to model uncertainty 
in a SPDE. In this approach, the random variables are treated as additional dimensions of the problem and projected onto 
a stochastic space spanned by a set of orthogonal polynomials. The problem is then reduced to a system of deterministic 
equations, which couple the physical and stochastic dimensions. This methodology has proven to be very effective when 
solving SPDEs in a broad range of applications, such as diffusion problems and heat conduction [24,65,67], structural dy-
namics [25], transport in random media [23] and fluid dynamics [10,66]. The advantage of these methods is that they 
converge exponentially fast for a sufficiently regular solution field [2,3,18]. However, their main drawback is that their com-
putational complexity grows combinatorially with the number of random variables and the number of expansion terms. 
As a consequence, they are not effective for solving problems with a large number of random variables.

A more recent approach is stochastic collocation methods (SCM), first introduced in [35] and further developed in [64]. 
The main idea is to compute deterministic solutions of the SPDE for certain instantiations of the random variables and then 
construct an interpolation function to approximate the response over the stochastic space. When the interpolation procedure 
is performed on tensor grids, these methods suffer from the exponential growth with the dimensionality of the stochastic 
space. To economize the interpolation process in large dimensions, sparse grids (Smolyak [56]) were introduced for elliptic 
problems [51,64], parabolic problems [49] and natural convection problems [21]. In [1], sparse grids were shown to achieve 
exponential convergence for problems with smooth solutions. However, like polynomial chaos expansions, sparse grids still 
suffer from the curse of dimensionality in the sense that the number of grid points grows rapidly with the dimension of 
the stochastic space. Recently, anisotropy and adaptivity on sparse grids [22,32] have been used in SCM [21,50] to mitigate 
the elevated cost in high dimensions.

In this paper, we present a model and variance reduction method for the fast and reliable computation of statistical 
outputs of stochastic elliptic partial differential equations. Our method consists of three main ingredients: (1) the hybridiz-
able discontinuous Galerkin (HDG) discretization of elliptic partial differential equations (PDEs), which allows us to obtain 
high-order accurate solutions of the governing PDE; (2) a reduced basis method for the HDG discretization of the underlying 
PDE to enable real-time solution of the parameterized PDE in the presence of stochastic parameters; and (3) a multilevel 
variance reduction method that exploits the statistical correlation among the different reduced basis approximations and the 
high-fidelity HDG discretization to accelerate the convergence rate of the Monte Carlo simulations. The multilevel variance 
reduction method provides efficient computation of the statistical outputs by shifting most of the computational burden 
from the high-fidelity HDG approximation to the reduced basis approximations. Although the three ingredients of our ap-
proach exist in the literature, the main contribution of this paper is to put these methodologies into a unified framework 
that combines all of their strengths to tackle stochastic elliptic PDEs. Another important contribution of the paper is to 
develop a posteriori error bounds for the estimates of the statistical outputs and to introduce an algorithm for optimally 
choosing the dimensions of the reduced basis approximations and the sizes of MC samples to achieve a given error tol-
erance. Last but not least, we present a new HDG formulation that enables the efficient construction of reduced basis 
approximations for the HDG discretization of parameterized PDEs.

The HDG method was first introduced in [14] for elliptic problems, subsequently analyzed in [13,16,17], and later ex-
tended to a wide variety of PDEs [15,38–46,59]. The HDG method is particularly effective for solving elliptic PDEs because 
it possesses several unique features that distinguish it from other DG methods. First, it reduces the number of globally 
coupled unknowns to those required to represent the trace of the approximate solution on the element boundaries, thereby 
resulting in a smaller global system than other DG methods. Second, the method provides optimal convergence rates for 
both the solution and the flux. And third, its flux superconvergence properties can be exploited to devise a local postprocess 
that increases the convergence rate of the approximate solution by one order. These advantages are the main driver for the 
development of the Reduced Basis (RB) method for the HDG discretization of parameterized PDEs. While the RB method is 
well developed for the standard finite element discretization of parameterized PDEs [28,29,34,52,54,60,61], the RB method 
for the HDG approximation of parameterized PDEs has not been considered before. The HDG discretization has multiple field 
variables and various equivalent weak formulations, which make the application of the RB method non-straightforward.
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Recently, the RB method has been applied to standard continuous Galerkin finite element solutions of stochastic elliptic 
PDEs [7,9,30]. In this approach, the stochastic PDE is first reformulated as a parametrized PDE over the coefficients of the 
Karhunen–Loève expansion of the random fields. The reduced basis approximation and associated a posteriori error esti-
mation are then developed for the resulting parametrized PDE. Finally, the output statistics and their error estimates are 
computed with a MC simulation [7,30] or a stochastic collocation approach [9]. These approaches, which involve the RB 
method and its a posteriori error bounds to evaluate the output instead of the original finite element discretization, have 
been shown to outperform both standard MC and stochastic collocation. In this paper, we extend the previous work [7,30]
in several important ways. We will use the HDG method to construct the RB approximation. We will adopt the multilevel 
Monte Carlo strategy [5,12,27,58] and demonstrate a significant computational gain relative to the standard MC approach. 
Moreover, we will provide a posteriori error estimates for our prediction of the statistical outputs without involving a pos-
teriori error bounds for the RB approximation. This feature will broaden the applicability of our approach to a wide variety 
of stochastic PDEs for which a posteriori error bounds for the RB approximation are either not available or too expensive to 
compute.

According to the central limit theorem [19], the error in a Monte Carlo estimation of the expectation of an output is 
proportional to the square root of the ratio of the variance of the output and the number of samples. Therefore, in order to 
reduce the error one can increase the number of samples and/or decrease the variance of the output. Because increasing the 
number of samples leads to higher computational cost, various techniques such as the control variates method [6,8,31], the 
multilevel Monte Carlo method [5,12,27,58], and the multi-fidelity Monte Carlo method [36] have been proposed to reduce 
the variance of the output. The control variates method reduces the variance of the output by making use of the correlation 
between the output and a surrogate. The multi-fidelity Monte Carlo method makes use of the statistical correlation between 
the low-fidelity (surrogate) and high-fidelity outputs to reduce the number of high-fidelity evaluations needed to achieve 
a given accuracy of interest. The multilevel Monte Carlo method applies the principle of control variates to a sequence of 
lower fidelity outputs (multigrid approximations) to estimate the statistics of the high-fidelity output. Likewise, our method 
applies the principle of control variates to the HDG approximation and a sequence of reduced basis approximations, thereby 
shifting the computational burden from the high-fidelity HDG discretization to the lower fidelity RB approximations.

This article is organized as follows. In Section 2, we introduce a stochastic elliptic boundary value problem and describe 
a new weak HDG formulation particularly suited for the reduced basis method. In Section 3, we describe a reduced basis 
method for the HDG approximation of the stochastic elliptic boundary value problem. In Section 4, we develop a multilevel 
Monte Carlo method that incorporates the HDG approximation and its reduced basis models into a unified framework to 
provide rapid reliable computation of the statistical outputs. In Section 5, we present numerical results to demonstrate the 
performance of the proposed method. Finally, in Section 6, we discuss some directions for future research.

2. The hybridizable discontinuous Galerkin method

2.1. Problem statement

Let D ∈ R
d be a regular domain with Lipschitz boundary ∂D. We consider the following stochastic boundary value 

problem: find a function u such that,

−∇ · (κ∇u) + �u = f , ∀x ∈ D, (1a)

κ∇u · n + νu = g, ∀x ∈ ∂D, (1b)

where f is the source term, κ is the diffusion coefficient, � is the Helmholtz parameter, ν is the Robin coefficient, and 
g is the boundary data. In this problem, one or more than one of the quantities f , κ , �, ν , g are stochastic functions. 
For simplicity of exposition we shall assume that κ is a real stochastic function and that f , �, ν , g are deterministic. The 
generalization to the case where one or more of f , �, ν , g are stochastic is straightforward. Note that since we allow f , �, 
ν , g to be complex-valued functions, the solution u is in general a complex stochastic function.

We next introduce a probability space (�, F , P ), where � is the set of outcomes, F is the σ -algebra of the subsets 
of �, and P is the probability measure. If Z is a real random variable in (�, F , P ) and ω a probability event, we denote 
its expectation by E[Z ] = ∫

�
Z(ω)dP (ω). We will consider random functions v in L2(D × �) equipped with the following 

norm

‖v‖2 = E

⎡⎣∫
D

|v(x, ·)|2dx

⎤⎦=
∫
�

∫
D

|v(x,ω)|2dx dP (ω).

We will assume that κ ∈ L2(D × �) and that κ(x, ω) is bounded and strictly positive, i.e., there exist constants α1 and α2
such that

0 < α1 ≤ κ(x,ω) ≤ α2 < +∞, a.s. in D × �.
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We next assume that the random function κ(x, ω) can be written in the following form

κ(x,ω) = κ(x) +
Q∑

q=1

ψq(x)yq(ω), (x,ω) ∈ D × �,

where κ(x) is the expectation of κ , ψq(x), q = 1, . . . , Q are uniformly bounded real functions, and yq(ω) for q = 1, . . . , Q
are mutually independent random variables with zero mean. In addition, we assume that each of the yq(ω) is bounded in 
the interval �q = [−γq, γq] with a uniformly bounded probability density function ρq : �q → R

+ . It thus follows that, with 
a slight overloading of notation, we can write κ in the form

κ(x, y) = κ(x) +
Q∑

q=1

ψq(x)yq, (x, y) ∈ D × �, (2)

where y = (y1, . . . , y Q ) and � =∏Q
q=1 �q .

Therefore, the solution u of (1) can be written as a function of y ∈ �, namely, u(x, y). Now let � be a bounded linear 
functional. We introduce a random output s defined as

s(y) = �(u(·, y)).

We are interested in evaluating the expectation and variance of s as

E[s] =
∫
�

s(y)ρ(y)d y, V [s] =
∫
�

(E[s] − s(y))2 ρ(y)d y,

where ρ(y) =∏Q
q=1 ρq(yq). Below we describe the hybridizable discontinuous Galerkin method for solving the model prob-

lem (1) and the Monte Carlo simulation for computing estimates of E[s] and V [s].

2.2. HDG discretization

We begin by rewriting the governing equation (1) as a first-order system

q − ∇u = 0, in D, (3a)

−∇ · κq + � u = f , in D, (3b)

κq · n + νu = g on ∂D. (3c)

The physical domain D is triangulated into elements T forming a mesh Th satisfying the standard finite element condi-
tions [11]. Then, letting ∂Th := {∂T : T ∈ Th} and denoting by Fh the set of the faces F of the elements T ∈ Th , we seek a 
vector approximation qh ∈ V p

h to q, a scalar approximation uh ∈ W p
h to u, and a scalar approximation ûh ∈ M p

h to the trace
of u on element boundaries, where

V p
h = {v ∈ L2(D) : v|T ∈ [P p(T )]d ∀T ∈ Th},

W p
h = {w ∈ L2(D) : w|T ∈ P p(T ) ∀T ∈ Th},

M p
h = {μ ∈ L2(Fh) : μ|F ∈ P p(F ) ∀F ∈ Fh},

and P p(D) is a space of complex-valued polynomials of degree at most p on D . Note that ûh are defined only on the faces 
of the elements, hence they are single valued. We introduce the following inner products

(v, w)Th :=
∑

T ∈Th

(v, w)T , 〈v, w〉∂Th :=
∑
T ∈Th

〈v, w〉∂T ,

where (u, v)D := ∫D uv dx whenever D is a domain in Rd , and 〈u, v〉D := ∫D uv dx whenever D is a domain in Rd−1. For 
vector-valued functions v and w , the integrals are similarly defined with the integrand being the dot product v · w . Note 
that w denotes the complex conjugate of w .

The HDG approximations (qh, uh, ̂uh) in V p
h × W p

h × M p
h are determined by requiring that

(qh, r)Th + (uh,∇ · r)Th − 〈̂uh, r · n〉∂Th = 0, (4a)

(κqh,∇w)Th − 〈κ q̂h · n, w〉∂Th + (�uh, w)Th = ( f , w)Th , (4b)

〈κ q̂h · n,μ〉∂Th + 〈νûh,μ〉∂D = 〈g,μ〉∂D, (4c)

hold for all (r, w, μ) in V p
h × W p

h × M p
h , where the numerical flux ̂qh is defined as

q̂h = qh − τ
(
uh − ûh

)
n, on ∂Th. (5)
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Here τ is the so-called stabilization parameter, a global constant with dimensions τ = 1/L where L is the characteristic 
lengthscale. We set τ = 1 since we do not consider multiple physical scales in this work. Further discussions on τ may be 
found in [14,39]. By substituting (5) into (4) we obtain that (qh, uh, ̂uh) ∈ V p

h × W p
h × M p

h satisfies

(qh, r)Th + (uh,∇ · r)Th − 〈̂uh, r · n〉∂Th = 0, (6a)

(κqh,∇w)Th − 〈κqh · n − κτ(uh − ûh), w〉∂Th + (�uh, w)Th = ( f , w)Th , (6b)

〈κqh · n − κτ(uh − ûh),μ〉∂Th + 〈νûh,μ〉∂D = 〈g,μ〉∂D, (6c)

for all (r, w, μ) in V p
h × W p

h × M p
h . This completes the definition of the HDG method.

The above weak formulation of the HDG method involves three field variables, namely, qh , uh , and ̂uh . However, the first 
two equations (6a) and (6b) allow us to write both qh and uh in terms of ûh at the element level due to the fact that our 
approximation spaces are discontinuous. Therefore, we can substitute both qh and uh from the first two equations into the 
last equation (6c) to obtain a weak formulation in terms of ̂uh only: find ̂uh ∈ M p

h such that

âh (̂uh,μ) = b̂h(μ), ∀μ ∈ M p
h . (7)

Here we omit the derivation of the bilinear form ̂ah and the linear functional ̂bh . Instead we refer the reader to [39] for a 
detailed discussion. The reduced weak formulation (7) gives rise to the following linear system

Âû = b̂, (8)

where ̂u is the vector containing the degrees of freedom of ̂uh . Because ̂uh is single valued on the faces of the finite element 
mesh, it has significantly fewer degrees of freedom than uh . As a result, the global matrix system (8) of the HDG method 
can be much smaller than that of other DG methods. This results in significant savings in terms of computational time and 
memory storage.

It turns out that although the formulation (7) results in the smallest possible system, it is not ideal to use it as the 
starting point for our reduced basis method. Substituting the first two equations (6a) and (6b) into the last equation (6c)
results in the inverse of the material coefficients κ and �, which renders the bilinear form âh nonaffine in the material 
coefficients. Although nonaffine parameter dependence can be treated by using the empirical interpolation method [4] or 
the best points interpolation method [37], such treatment incurs additional cost and is unnecessary. We are going to derive 
a new weak formulation of the HDG method, which is suited for the reduced basis method.

2.3. A new weak formulation of the HDG method

We begin by deriving a weak formulation of the HDG method upon which our reduced basis method is constructed. 
To this end, we introduce two lifting operators l : W p

h → V p
h and m : M p

h → V p
h defined as

(l(w), r)Th = −(w,∇ · r)Th , ∀ r ∈ V p
h , (9a)

(m(μ), r)Th = 〈μ, r · n〉∂Th , ∀ r ∈ V p
h . (9b)

It thus follows from (6a) and (9) that we can express qh as a function of uh and ̂uh as

qh = l(uh) + m( ûh). (10)

By substituting (10) into (6b) and (6c) we arrive at the following weak formulation: find (uh, ̂uh) ∈ W p
h × M p

h such that(
κ(l(uh) + m( ûh)),∇w

)
Th

− 〈κ(l(uh) + m( ûh)) · n − κτ(uh − ûh), w
〉
∂Th

+ (�uh, w)Th = ( f , w)Th ,〈
κ(l(uh) + m( ûh)) · n − κτ(uh − ûh),μ

〉
∂Th

+ 〈νûh,μ〉∂D = 〈g,μ〉∂D,

for all (w, μ) in W p
h × M p

h . By setting the N -dimensional approximation space to be W p
h := W p

h × M p
h , uh := (uh, ̂uh), and 

w := (w, μ) we obtain that uh ∈ W p
h , satisfies

ah(uh, w; (κ,�,ν)) = bh(w), ∀ w ∈ W p
h , (11)

where the bilinear form ah and the linear functional bh are given by

ah(v, w; (κ,�,ν)) = (κ (l(v) + m(η)) ,∇w
)
Th

− 〈κ(l(v) + m(η)) · n − κτ(v − η), w
〉
∂Th

+ (�v, w)Th + 〈
κ(l(v) + m(η)) · n − κτ(v − η),μ

〉
∂Th

+ 〈νη,μ〉∂D, (12a)

bh(w) = ( f , w)Th + 〈g,μ〉∂D, (12b)

for all v := (v, η) ∈ W p
h and w := (w, μ) ∈ W p

h . We note that the bilinear form (12a) is affine in y = (κ, �, ν). Furthermore, 
if we select r = κ (l(v) + m(η)) in (9) and substitute into (12a), we recover a symmetric form, which is also coercive 
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provided κ, �, ν > 0. Henceforth, the choice (κ, �, ν) = (1, 1, 1) allows us to equip the approximation space W p
h with the 

inner product (v, w)W := ah(v, w; (κ, �, ν) = (1, 1, 1)) and the induced norm ‖w‖W = √
(w, w)W .

We now substitute the expression of κ from (2) into (12) to express ah as

ah
(

v, w; (κ,�,ν)
)= ah(v, w; y) = a0

h(v, w) +
Q∑

q=1

yqaq
h(v, w), (13)

where the bilinear forms are given by aq
h(v, w) := ah

(
v, w; (ψq,0,0)

)
for 1 ≤ q ≤ Q and a0

h(v, w) := ah
(

v, w; (κ,�,ν)
)
. 

Therefore, we can write the weak formulation (11) as follows: for any y ∈ �, uh(y) ∈ W p
h satisfies

ah(uh, w; y) = bh(w), ∀ w ∈ W p
h . (14)

Finally, we evaluate our realization output as

sh(y) = �h(uh(y)),

where the linear functional �h is obtained from the HDG discretization of �. The key point of the new HDG formulation (14)
for an efficient performance of the reduced basis method is the affine representation (13). This aspect is of crucial im-
portance, and the main reason we prefer (14) to the reduced weak formulation (7) for constructing the reduced basis 
approximation. Furthermore, the new formulation is optimal in terms of degrees of freedom, since we no longer account 
for the gradient qh . Finally, even though the parameter independent matrices arising from (13) are used for the reduced 
basis approximation, the solution uh is never computed as the solution of the full system (14). Instead, we can invoke again 
discontinuity of the approximation spaces to write uh in terms of ̂uh . This common strategy in HDG methods enables us to 
solve for the global degrees of freedom of ̂uh only and then recover uh efficiently.

2.4. Monte Carlo sampling with the HDG method

We are interested in evaluating statistics of the output sh(y) such as its expectation and variance. Let Y M = {ym ∈ �,

1 ≤ m ≤ M} be a set of random samples drawn in the parameter space � with the probability density function ρ(y). 
We evaluate the following outputs

sh(ym) = �h(uh(ym)), m = 1, . . . , M. (15)

The Monte Carlo-HDG (MC-HDG) estimates of the expectation E[s] and variance V [s] can be computed, respectively, as

E M [sh] = 1

M

M∑
m=1

sh(ym), V M [sh] = 1

M − 1

M∑
m=1

(
E M [sh] − sh(ym)

)2
. (16)

We shall assume that sh(y) is indistinguishable from s(y) for any y ∈ �. Moreover, it is a known result that the estimators 
in (16) are unbiased and converge in distribution to

E[sh] − E M [sh] d−→ N

(
0 ; V [sh]

M

)
, V [sh] − V M [sh] d−→ N

(
0 ; V [(sh − E[sh])2]

M

)
.

Confidence intervals can be constructed employing the central limit theorem (CLT), that is for all a > 0 we have

lim
M→∞ Pr

(∣∣E[sh] − E M [sh]
∣∣≤ �E

h,M

)
= erf

(
a√
2

)
, (17a)

lim
M→∞ Pr

(∣∣V [sh] − V M [sh]
∣∣≤ �V

h,M

)
= erf

(
a√
2

)
, (17b)

where

�E
h,M = a

√
V M [sh]

M
, �V

h,M = a

√
V M [(sh − E M [sh])2]

M
. (18)

Therefore, in order to guarantee that 
∣∣E[sh] − E M [sh]

∣∣ is bounded by a specified error tolerance εtol with a high probability 
(say, greater than 0.95), we need to take a ≥ 1.96 and M ≥ a2 V M [sh]/ε2

tol. As a result, M can be very large for a small error 
tolerance. Hence, the evaluations (15)–(16) can be very demanding.

The remaining goals of this paper are as follows. On one hand, we develop a reduced basis (RB) method for rapid reliable 
approximation of the stochastic HDG output sh(y) for any given parameter vector y in �. On the other hand, we develop 
a multilevel variance reduction method to accelerate the convergence of the Monte Carlo simulation by exploiting the 
exponentially fast convergence of the RB output to the high-fidelity HDG output as a function of the RB dimension. These 
two ingredients enable very fast reliable computation of the statistical outputs at a computational cost which is several 
orders of magnitude less expensive than that of the MC-HDG approach. We describe the reduced basis approach in Section 3
and the multilevel variance reduction method in Section 4.
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3. Reduced basis method

We consider a “primal–dual” formulation [47,53] particularly well-suited to good approximation and error characteriza-
tion of the output. To this end, we introduce the dual problem of (14): given y ∈ �, the dual solution φh(y) ∈ W p

h satisfies

ah(v,φh; y) = −�h(v), ∀ v ∈ W p
h .

The dual problem plays an important role in improving the convergence rate of both the RB output and associated error 
bound.

We next assume that we are given orthonormalized basis functions ζ pr
n , ζ du

n ∈ W p
h , 1 ≤ n ≤ Nmax, such that (ζ pr

m , ζ pr
n )W =

(ζ du
m , ζ du

n )W = δmn, 1 ≤ m, n ≤ Nmax. We define the associated hierarchical RB spaces as

W pr
N = span{ζ pr

n ,1 ≤ n ≤ N}, W du
N = span{ζ du

n ,1 ≤ n ≤ N}, N = 1, . . . , Nmax.

In practice, the spaces W pr
N and W du

N consist of orthonormalized primal and dual solutions ζ pr
n , ζ du

n at selected parameter 
values generated by a Greedy sampling procedure [28,55,61]. For our present purpose, however, W pr

N and W du
N can in fact 

represent any sequence of (low-dimensional) hierarchical approximation spaces. We then apply the Galerkin projection for 
both the primal and dual problems: Given y ∈ �, we find a primal RB approximation uN(y) ∈ W pr

N satisfying

ah(uN(y), w; y) = bh(w), ∀ w ∈ W pr
N , (19)

and a dual RB approximation φN(y) ∈ W du
N satisfying

ah(w,φN(y); y) = −�h(w), ∀ w ∈ W du
N .

We can now evaluate the RB realization output as

sN(y) = �h(uN(y)) + ah(uN(y),φN(y); y) − bh(φN(y)).

As discussed below, the online computational cost of evaluating the RB output depends only on N and Q . Hence, for small 
N and Q , the RB approximation can be significantly less expensive than the HDG approximation.

The RB output is then used as an approximation to the HDG output in the Monte Carlo simulation. The Monte Carlo-
Reduced Basis (MC-RB) estimates of the expectation and variance of the output of interest are given by

E M [sN ] = 1

M

M∑
m=1

sN(ym), V M [sN ] = 1

M − 1

M∑
m=1

(
E M [sN ] − sN(ym)

)2
for the same set of samples Y M = {ym ∈ �, 1 ≤ m ≤ M}. Since the RB approximation is constructed upon the HDG approx-
imation these quantities actually approximate the MC-HDG estimates. We next develop a posteriori error bounds for our 
MC-RB estimates relative to the MC-HDG estimates.

3.1. A posteriori error estimation

We note from (19) that the residuals rpr
h (w; y) and rdu

h (w; y) associated with uN(y) and φN(y), respectively, are given 
by

rpr
h (w; y) = bh(w) − ah(uN(y), w; y), rdu

h (w; y) = −�h(w) − ah(w,φN(y); y),

for all w ∈ W p
h . The dual norm of the primal residual and the dual norm of the dual residual are given by

‖rpr
h (·; y)‖W ′ = sup

w∈W p
h

rpr
h (w; y)

‖w‖W
, ‖rdu

h (·; y)‖W ′ = sup
w∈W p

h

rdu
h (w; y)

‖w‖W
.

It is a standard result [47,55] that

‖uh(y) − uN(y)‖W ≤ �
pr
N (y) ≡ ‖rpr

h ( · ; y)‖W ′

β̃(y)
,

‖φh(y) − φN(y)‖W ≤ �du
N (y) ≡ ‖rdu

h ( · ; y)‖W ′

β̃(y)
,

|sh(y) − sN(y)| ≤ �s
N(y) ≡ β̃(y)�

pr
N (y)�du

N (y),

where β̃(y) is a positive lower bound for the Babuška “inf–sup” stability constant βh(y) defined as

0 < βh(y) ≡ inf
w∈W p

h

sup
v∈W p

ah(w, v; y)

‖w‖W ‖v‖W
,

h
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that is, the minimum (generalized) singular value associated with the differential operator. It is critical to note that the 
output error (and output error bound) vanishes as the product of the primal and dual error (bounds), and hence much more 
rapidly than either the primal or dual error.

It thus follows that we can bound the errors in the MC-RB estimates relative to the MC-HDG estimates as

|E M [sh] − E M [sN ]| ≤ 1

M

M∑
m=1

|sh(ym) − sN(ym)| ≤ 1

M

M∑
m=1

�s
N(ym) ≡ �E

N,M , (20)

and

∣∣V M [sh] − V M [sN ]∣∣= 1

M − 1

∣∣∣∣∣
M∑

m=1

(
E M [sh] − sh(ym)

)2 −
(

E M [sN ] − sN(ym)
)2
∣∣∣∣∣

= 1

M − 1

∣∣∣∣∣
M∑

m=1

(
sh(ym) − sN(ym) − E M [sh] + E M [sN ]

)(
sh(ym) + sN(ym)

)∣∣∣∣∣
≤ 1

M − 1

M∑
m=1

(∣∣sh(ym) − sN(ym)
∣∣+ ∣∣E M [sh] − E M [sN ]∣∣)∣∣sh(ym) + sN(ym)

∣∣
≤ 1

M − 1

M∑
m=1

(
�s

N(ym) + �E
N,M

)(
�s

N(ym) + 2
∣∣sN(ym)

∣∣)≡ �V
N,M . (21)

It should be stated that this error bound is rather pessimistic, and that a more precise bound can be obtained by 
introducing suitable dual problems to recover a quadratically convergent bound for the variance, as reported in [30]. We can 
also bound the difference between the RB expected value and the true value. To this end, we note from the triangle 
inequality that∣∣E[sh] − E M [sN ]∣∣≤ ∣∣E[sh] − E M [sh]∣∣+ ∣∣E M [sh] − E M [sN ]∣∣. (22)

Following from (17a), (18), (20), (21), and (22) we define the error bound

�̃E
N,M = a

√
(V M [sN ] + �V

N,M)

M
+ �E

N,M (23)

such that

lim
M→∞ Pr

(∣∣E[sh] − E M [sN ]∣∣≤ �̃E
N,M

)
≥ erf

(
a√
2

)
.

Clearly, the error bound (23) comprises two terms: the first term is due to the MC sampling, while the second term is due 
to the RB approximation.

3.2. Computational strategy

The linearity and parametric affinity of the problem allow for an efficient Offline–Online decomposition strategy. The 
Offline stage — parameter independent, computationally intensive but performed only once — comprises the greedy search 
for the selection of parameter values, the computation of snapshots ζ pr

n , ζ du
n , 1 ≤ n ≤ Nmax associated with the HDG ap-

proximation space at the selected parameter values and the formation and storage of several parameter-independent small 
matrices and vectors. The Online stage — parameter dependent, performed multiple times — evaluates sN (y), �s

N (y) for 
any new y with complexity O

(
2N3 + 2(Q + 1)2N2

)
independent of the dimension N of the HDG approximation space. 

The implications are twofold: first, if N and Q are indeed small, we shall achieve very fast output evaluation, usually sev-
eral orders of magnitude faster than the HDG output; second, we may choose the HDG approximation very conservatively 
— to effectively eliminate the error between the exact output and HDG output — without adversely affecting the Online 
(marginal) cost. We refer the reader to [47,54] for a more thorough description of the Offline–Online procedure.

It is clear that the error in the RB expected value and its error bound depend on N and Q as well as on M . Typically, 
both the error and its error bound decrease very rapidly as a function of N , but very slowly as a function of the number of 
samples M . Hence, M should be chosen very large, while N can be chosen to be much smaller. Indeed, the (Online) com-
putational cost to evaluate the RB expected value E M [sN ] and its error bound �̃E

N,M scales as O
(
2M(N3 + 2(Q + 1)2N2)

)
. 

Since both Q and N are typically very small, the RB method can effect significant savings relative to the HDG method. 
Nevertheless, its performance can be affected by the accuracy of the RB outputs and the sharpness of the RB error bounds.
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4. Model and variance reduction method

4.1. Control variates principle

We first review the essential idea of control variates, which will serve as a building block for our method. Let X be a 
random variable. We would like to estimate the expected value of X . Suppose that we have another random variable Y and 
that its expected value E[Y ] is either known or inexpensive to compute. We then introduce a new random variable

X∗ = X + γ (E[Y ] − Y ),

where γ is a deterministic coefficient. It is obvious that E[X∗] = E[X] for any choice of γ . However, the variance of X∗ is 
different from that of X . Specifically, we have

V [X∗] = V [X] + γ 2 V [Y ] − 2γ Cov(X, Y ),

where Cov(X, Y ) = E[XY ] − E[X]E[Y ] is the covariance of X and Y . It can be easily shown that the following choice

γ = Cov(X, Y )

V [Y ]
is optimal in the sense that it minimizes the variance of X∗ . With this choice, we have

V [X∗] = V [X](1 − ρ2(X, Y )),

where ρ(X, Y ) = Cov(X, Y )/
√

V [X]V [Y ] is the correlation coefficient of X and Y . It is clear that if X and Y are highly 
correlated (i.e., ρ(X, Y ) is close to ±1) then V [X∗] is much smaller than V [X]. In that case, the MC simulation of E[X∗]
converges significantly faster than that of E[X] according to the CLT.

In summary, control variate methods try to estimate E[X] by using the “surrogate” expected value E[Y ] and sampling 
the reduced variance variable X∗ . When the same principle is applied recursively to estimate E[Y ], the resulting method is 
called multilevel control variates.

4.2. Two-level Monte Carlo sampling

We now apply the above idea to compute an estimate of E[sh], where sh(y) is the stochastic output obtained by using 
the HDG method to solve the underlying stochastic PDE as described in Section 2. To achieve this goal, we introduce

s∗
h(y) = sh(y) + γ (E[sN1 ] − sN1(y)),

where sN1(y) is the RB output developed in Section 3 for some N1 ∈ [1, Nmax]. Because sN1(y) generally approximates sh(y)

very well, the two outputs are highly correlated. Therefore, we choose γ = 1 as we expect that the optimal value of γ is 
close to 1. With this choice, we obtain

E[sh] = E[s∗
h] = E[sh − sN1 ] + E[sN1 ]. (24)

The underlying premise here is that the two expectation terms on the right hand side can be computed efficiently by MC 
simulations owing to variance reduction and model reduction: the first term requires a small number of samples because 
its variance is generally very small, while the second term is less expensive to evaluate because it involves the RB output.

In particular, let Y 0
M0

= {y0
m ∈ �, 1 ≤ m ≤ M0} and Y 1

M1
= {y1

m ∈ �, 1 ≤ m ≤ M1} be two independent sets of random 
samples drawn in � with the probability density function ρ(y). We calculate our Model and Variance Reduction (MVR) 
unbiased estimate of E[sh] as

E M0,M1 [sh] = E M0 [sh − sN1 ] + E M1 [sN1 ], (25)

where

E M0 [sh − sN1 ] = 1

M0

M0∑
m=1

(
sh(y0

m) − sN1(y0
m)
)

, E M1 [sN1 ] = 1

M1

M1∑
m=1

sN1(y1
m) (26)

We note that our approach computes an estimate of E[sh], while the MC-RB approach described in the previous section 
computes an estimate of E[sN ].

Similarly, we exploit the control variates idea to compute an estimate of the true variance V [sh] given by

V M0,M1 [sh] = E M0 [ζh − ζN1 ] + E M1 [ζN1 ], (27)

where ζh := (sh − E M0,M1 [sh])2 and ζN1 := (sN1 − E M0,M1 [sh])2 and the expectations in (27) are analogous to the expecta-
tions in (26). The variance estimate is negatively biased

E
[
V M0,M1 [sh] − V [sh]

]= − V [sh − sN1 ]
M0

− V [sN1 ]
M1

,

as shown in Appendix A.



F. Vidal-Codina et al. / Journal of Computational Physics 297 (2015) 700–720 709
It remains to provide a posteriori estimates for the errors in the expectation and variance. Subtracting (25) from (24) we 
identify new random variables Z0, Z1 whose limiting distributions are normal, and since they are independent their sum is 
also normally distributed,

Z0 = E[sh − sN1 ] − E M0 [sh − sN1 ] ∼ N

(
0 ; V [sh − sN1 ]

M0

)
, (28a)

Z1 = E[sN1 ] − E M1 [sN1 ] ∼ N

(
0 ; V [sN1 ]

M1

)
, (28b)

Z0 + Z1 = E[sh] − E M0,M1 [sh] ∼ N

(
0 ; V [sh − sN1 ]

M0
+ V [sN1 ]

M1

)
. (28c)

We invoke now the CLT to obtain an error estimate for the expectation error as

lim
M0→∞ lim

M1→∞ Pr
(∣∣E[sh] − E M0,M1 [sh]∣∣≤ �E

M0,M1

)
= erf

(
a√
2

)
, (29)

where

�E
M0,M1

= a

√
V M0 [sh − sN1 ]

M0
+ V M1 [sN1 ]

M1
, (30a)

V M0 [sh − sN1 ] = 1

M0 − 1

M0∑
m=1

(
E M0 [sh − sN1 ] − sh(y0

m) + sN1(y0
m)
)2

, (30b)

V M1 [sN1 ] = 1

M1 − 1

M1∑
m=1

(
E M1 [sN1 ] − sN1(y1

m)
)2

, (30c)

and the variances in (28c) are estimated with their MC counterparts (30b)–(30c).
For the variance, we first define auxiliary variables ̂ζh := (sh − E[sh])2 and ̂ζN1 := (sN1 − E[sh]

)2
and the auxiliary variance

V̂ M0,M1 [sh] = E M0 [̂ζh − ζ̂N1 ] + E M1 [̂ζN1 ].
The MVR variance estimate in (27) can be rewritten as (see Appendix A)

V M0,M1 [sh] = V̂ M0,M1 [sh] − (E[sh] − E M0,M1 [sh])2,
which implies

V M0,M1 [sh] − V [sh] = (V̂ M0,M1 [sh] − V [sh])− (E[sh] − E M0,M1 [sh])2. (31)

Let us consider the two terms in the RHS in reverse order. Convergence in probability for the second term is guaranteed 
by (29), that is E M0,M1 [sh] − E[sh] P−→ 0. Furthermore, repeating the analysis in (28) for the first term leads to

V̂ M0,M1 [sh] − V [sh] ∼ N

(
0 ; V [̂ζh − ζ̂N1 ]

M0
+ V [̂ζN1 ]

M1

)
. (32)

Therefore the limiting distribution of V M0,M1 [sh] − V [sh] is the same as the limiting distribution of V̂ M0,M1 [sh] − V [sh]
(Slutzky’s theorem), and the straightforward application of the CLT recovers

lim
M0→∞ lim

M1→∞ Pr
(∣∣V [sh] − V M0,M1 [sh]∣∣≤ �V

M0,M1

)
= erf

(
a√
2

)
,

where

�V
M0,M1

= a

√
V M0 [ζh − ζN1 ]

M0
+ V M1 [ζN1 ]

M1
, (33a)

V M0 [ζh − ζN1 ] = 1

M0 − 1

M0∑
m=1

(
E M0 [ζh − ζN1 ] − ζh(y0

m) + ζN1(y0
m)
)2

, (33b)

V M1 [ζN1 ] = 1

M1 − 1

M1∑(
E M1 [ζN1 ] − ζN1(y1

m)
)2

. (33c)

m=1
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The variances in (32) are again estimated with their MC simulations (33a), and ζ̂h , ζ̂N1 are approximated with ζh and ζN1

by replacing E[sh] for its MVR estimate E M0,M1 [sh].
We would like to make two observations. First, the model and variance reduction approach described here requires M0

realizations of the high-fidelity HDG output and M1 realizations of the RB output, while the MC-RB approach described in 
the previous section requires M realizations of the RB output and its error bound. If we take N1 = N then it is reasonable 
to consider M1 ≈ M . Furthermore, we take M0 such that the computational cost of M0 realizations of the HDG output is 
commensurate with that of M realizations of the RB output bound. In this scenario, the two approaches have the same 
computational complexity. The advantage of the present approach is that it provides more accurate estimates than the 
MC-RB approach owing to the variance reduction. Second, unlike the MC-RB approach, the present approach does not 
require a posteriori error bounds for the RB output to obtain the error bounds for our estimates of the statistical outputs. 
As a result, our approach can be applied to problems for which a posteriori output bounds are either computationally 
expensive or theoretically difficult.

4.3. Multilevel Monte Carlo sampling

The method can be further generalized and improved by pursuing a multilevel control variate strategy. Given L different 
RB output models sN�

(y), 1 ≤ � ≤ L, with N1 > N2 > . . . > NL ,3 we first express the expected value as

E[sh] = E[sh − sN1 ] +
L−1∑
�=1

E[sN�
− sN�+1 ] + E[sNL ].

We next introduce L + 1 independent sample sets Y �
M�

= {y�
m ∈ �, 1 ≤ m ≤ M�}, 0 ≤ � ≤ L, which are drawn in � with 

probability density function ρ(y). We then define our estimate of E[sh] as

E M0,...,ML [sh] = E M0 [sh − sN1 ] +
L−1∑
�=1

E M�
[sN�

− sN�+1 ] + E ML [sNL ].

Extending the analysis in (28) we apply the CLT to the multilevel case to obtain

lim
M0→∞ . . . lim

ML→∞ Pr
(∣∣E[sh] − E M0,...,ML [sh]∣∣≤ �E

M0,...,ML

)
= erf

(
a√
2

)
,

�E
M0,...,ML

= a

√√√√ V M0 [sh − sN1 ]
M0

+
L−1∑
�=1

V M�
[sN�

− sN�+1 ]
M�

+ V ML [sNL ]
ML

.

Similarly, the estimate of the variance is defined as

V M0,...,ML [sh] = E M0 [ζh − ζN1 ] +
L−1∑
�=1

E M�
[ζN�

− ζN�+1 ] + E ML [ζNL ],

where the auxiliary variables are ζh := (sh − E M0,...,ML [sh])2 and ζN�
:= (sN�

− E M0,...,ML [sh])2 for � = 1, . . . , L. Combining 
the results in (31)–(32) with the CLT leads to the following error bound for the variance estimate

lim
M0→∞ . . . lim

ML→∞ Pr
(∣∣V [sh] − V M0,...,ML [sh]∣∣≤ �V

M0,...,ML

)
= erf

(
a√
2

)
,

�V
M0,...,ML

= a

√√√√ V M0 [ζh − ζN1 ]
M0

+
L−1∑
�=1

V M�
[ζN�

− ζN�+1 ]
M�

+ V ML [ζNL ]
ML

.

Note that all expectations and variances are MC estimates through the sample sets Y �
M�

for 0 ≤ � ≤ L.
We will refer to the general model and variance reduction method with a sequence of L reduced basis models as the 

L-MVR method. For clarity of notation, we shall identify sh − sN1 as level 0, and the subsequent sN�
− sN�+1 as level �. The 

method allows us to transfer the computational burden from the higher-fidelity (expensive) outputs to the lower-fidelity 
(inexpensive) outputs. In particular, we can choose N1, N2, . . . , NL so as to have M0 � M1 � . . . � ML . Hence, the number 
of evaluations of the higher-fidelity outputs are significantly smaller than those of the lower-fidelity outputs, thereby result-
ing in a significant reduction in the overall computational cost. Finally, we address the issue of how to determine the RB 
dimensions N1, N2, . . . , NL and the number of samples M0, M1, . . . , ML to achieve a specified error tolerance and minimize 
the computational cost.

3 In our context, it is natural to number the levels from the finest RB approximation to the coarsest RB approximation because the finest RB level is 
closest to the HDG approximation.
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4.4. Selection method

Let tN�
denote the (Online) wall time to compute the RB output sN�

(y) for � ≥ 1, and th denote the wall time to 
compute the HDG output sh(y) for any given y ∈ �. Note that tN�

depends on N� , while th depends on the finite element 
approximation spaces. The total (Online) wall time T L of the L-MVR and the (Online) speedup πL with respect to the 
MC-HDG method are given by

T L = (th + tN1

)
M0 +

L−1∑
�=1

M�

(
tN�

+ tN�+1

)+ tNL ML, πL = th M

T L
. (34)

We wish to find (N1, N2, . . . , NL) and (M0, M1, . . . , ML) so as to minimize T L , while ensuring that �E
M0,...,ML

is equal to a 
specified error tolerance εtol. This error condition is satisfied if we take

a2 V ML [sNL ]
ML

= w Lε
2
tol, a2 V M0 [sh − sN1 ]

M0
= w0ε

2
tol, a2 V M�

[sN�
− sN�+1 ]

M�

= w�ε
2
tol, � ≥ 1, (35)

for any given positive w� ∈ (0, 1), � = 0, . . . , L such that w0 + w1 + . . .+ w L = 1. The choice of the weights depends on how 
we would like to distribute the error among the levels. We combine expressions (34)–(35) to define the cost function

CL = T Lε
2
tol

a2
= V M0 [sh − sN1 ]

w0

(
th + tN1

)+ L−1∑
�=1

V M�
[sN�

− sN�+1 ]
w�

(
tN�

+ tN�+1

)+ tNL

V ML [sNL ]
w L

. (36)

We need to determine (M0, M1, . . . , ML) and (N1, N2, . . . , NL) that minimize CL . Unfortunately, this is a nonlinear integer 
optimization problem which is difficult to solve exactly. We thus solve an approximate problem as follows.

We first introduce a test sample set Y M̂ = { ŷm ∈ �, 1 ≤ m ≤ M̂}. We then precompute and store the HDG outputs sh( ŷm)

for m = 1, . . . , ̂M and the RB outputs sN ( ŷm) for m = 1, . . . , ̂M and N = 1, . . . , Nmax. In addition, we also precompute and 
store th and tN for N = 1, . . . , Nmax. For any given strictly decreasing L-tuple I = (I1, I2, . . . , I L) ∈ [1, Nmax]L and valid 
weights w = (w0, . . . , w L), we can evaluate the equivalent cost function

Ĉ L(I , w) =
L∑

�=0

Ĉ�
L(I)

w�

= V M̂ [sh − sI1 ]
w0

(
th + tI1

)+ L−1∑
�=1

V M̂ [sI� − sI�+1 ]
w�

(
tI� + tI�+1

)+ tIL

V M̂ [sIL ]
w L

, (37)

with O
(
(L + 1)M̂

)
operations count, where all the variances are computed using the test sample set Y M̂ . We now set

N ≡ (N1, N2, . . . , NL) = arg min
I

Ĉ L(I , w I ),

s.t. Nmax ≥ I1 > I2 > . . . > I L ≥ 1 (38)

where the weights w I are the minimizers of the equivalent cost for any L-tuple I , that is

w I ≡ (w I
0, w I

1, . . . , w I
L) = arg min

w
Ĉ L(I , w),

s.t.
L∑

�=0

w� = 1, w� > 0. (39)

The KKT conditions for (39) render the optimal weights for any L-tuple I as

w I
� =

√
Ĉ�

L(I)/Ĉ0
L (I)

L∑
�′=0

√
Ĉ�′

L (I)/Ĉ0
L (I)

, � = 0, . . . , L. (40)

The minimization problem (38) can be approximately solved, for the weights defined in (40), by simply evaluating the cost 
function Ĉ L(I , w I ) for all feasible L-tuples I in O((L + 1)M̂(N − L) × . . . × (N − 1)/L!) operations count. Even though we 
present here an optimal choice of the weights, any valid distribution can be employed.

Having determined the RB dimensions N and the weights w N , we can now proceed with the MC simulations for all 
levels. We initially set Y 0

M0
= Y M̂ , and thus reuse sh( ŷm), m = 1, . . . , ̂M . We then execute the MC processes for all the levels 

and enforce the error constraint �E
M0,...,ML

= εtol by adding new random parameters to the sample sets until the following 
inequalities

ML ≥ a2 V ML [sNL ]
w Nε2

, M0 ≥ a2 V M0 [sh − sN1 ]
w Nε

, M� ≥ a2 V M�
[sN�

− sN�+1 ]
w Nε

, � = 1, . . . , L − 1,
L tol 0 tol � tol
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Fig. 1. Representative solutions and the RB convergence of the heat diffusion example.

are satisfied and the MC processes are terminated upon satisfaction of these conditions. Therefore, the sample sets Y �
M�

, 
� = 0, . . . , L are continuously updated during the MC runs. Finally, to provide confidence in the application of the CLT we 
also need to enforce that M� are greater than a certain threshold, say 30.

Although we have assumed that the number of levels L is fixed, our approach also allows us to compare the compu-
tational costs for several values of L. Hence, we can determine not only the RB dimensions and the weights, but also the 
optimal number of levels, and it can be done efficiently evaluating expressions (37)–(39). This analysis provides inexpensive 
means to determine the optimal multilevel structure.

5. Numerical results

5.1. A coercive example: heat diffusion

In the first example, we consider the one dimensional steady-state heat equation in D = (0, 1):

− (κux)x = f (x), ∀x ∈ D, (41a)

κux = 0, on x = 1, (41b)

u = 0, on x = 0, (41c)

where κ(x, ω) is a piecewise constant function on a series of disjoint subdomains Dq = ((q − 1)/Q , q/Q ), q = 1, . . . , Q , 
that is, κ(x, ω) =∑Q

q=1 κq(ω)1Dq , with κq(ω) ∈ [γ −
q , γ +

q ] for all q. For this problem, we treat κq(ω) as i.i.d. uniform random 
variables; hence, we can write κ(x, ω) = κ(x, y) =∑Q

q=1 yq1Dq , where yq , q = 1, . . . , Q are i.i.d. random variables with 
uniform continuous distributions in the interval [0.1, 1]. The problem (40) has an analytic solution given by

u(x, y) =
x∫

0

⎛⎝ 1

κ(z, y)

1∫
z

f (ξ)dξ

⎞⎠dz. (42)

The observable quantity is the average temperature on the domain, namely, s(y) = ∫ 1
0 u(x, y). The output s, its expectation 

E[s] and variance V [s] have closed analytic forms, thereby s will be here used instead of the HDG output sh . Numerical 
results for a constant source term f (x) = 1 and Q = 10 are presented below.

We show in Fig. 1(a) different realizations of the exact solution in (42). Since the output is compliant, the dual problem 
coincides with the primal problem. We thus need to construct the reduced basis approximation for the primal problem 
only. Furthermore, since the bilinear form is coercive and the parameters are positive, we compute the stability constant 
βh(y) using a bound conditioner technique [62], which greatly simplifies the process. Our reduced basis is constructed with 
Nmax = 10. We show in Fig. 1(b) the average output error εN,avg and the average output error bound �s

N,avg as a function 
of N , where εN,avg =∑y∈Y M̂

∣∣s(y) − sN (y)
∣∣/M̂ and �s

N,avg =∑y∈Y M̂
�s

N (y)/M̂ , being Y M̂ a test set of M̂ = 1000 samples. 
We observe that the average output error and the average output error bound converge slowly up to N = 9 and drop rapidly 
at N = 10. This is because of the nature of the particular problem which requires N = Q basis functions to capture all the 
possible solutions. When we use N < Q , we do not have enough basis functions to represent all the possible solutions, 
which in turn causes a slow convergence of the reduced basis approximation.

We now compare the performance of the MC-HDG method with a uniform mesh of h = 1/10, the MC-RB with N = 9, and 
the L-MVR with L = 1, N1 = 5, M1 = M and M0 = M/10 in estimating E[s] and V [s] as a function of M . For each M value 
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Table 1
The expectation error and its error bound for different values of M for the MC-HDG method, the MC-RB method and the 1-MVR method.

M MC-HDG MC-RB (N = 9) 1-MVR (N1 = 5)∣∣E[s] − EM [s]∣∣ �E
h,M

∣∣E[s] − EM [sN ]∣∣ �̃E
N,M

∣∣E[s] − EM0,M1 [s]∣∣ �E
M0,M1

102 2.10e−2 2.6e−2 a 2.19e−2 1.1e−1 + 7.0e−2 a 2.30e−2 2.9e−2 a
103 6.59e−2 8.3e−3 a 7.06e−3 1.1e−1 + 2.2e−2 a 7.30e−3 9.2e−3 a
104 2.08e−3 2.6e−3 a 3.21e−3 1.1e−1 + 7.0e−3 a 2.32e−3 2.9e−3 a
105 6.57e−4 8.3e−4 a 2.88e−3 1.1e−1 + 2.2e−3 a 7.29e−4 9.2e−4 a
106 2.11e−4 2.6e−4 a 2.90e−3 1.1e−1 + 7.0e−4 a 2.32e−4 2.9e−4 a

Table 2
The variance error and its error bound for different values of M for the MC-HDG method and the 1-MVR method.

M MC-HDG 1-MVR (N1 = 5)∣∣V [s] − V M [s]∣∣ �V
h,M

∣∣V [s] − V M0,M1 [s]∣∣ �V
M0,M1

102 9.21e−3 1.1e−2 a 1.24e−2 1.5e−2 a
103 2.91e−3 3.6e−3 a 4.06e−3 5.0e−3 a
104 9.20e−4 1.2e−3 a 1.29e−3 1.6e−3 a
105 2.91e−4 3.6e−4 a 4.07e−4 5.1e−4 a
106 9.29e−5 1.1e−4 a 1.27e−4 1.6e−4 a

we repeat the simulations H = 1000 times, and present in Tables 1 and 2 the average values of the absolute errors and error 
bounds for the expectation and the variance respectively. We observe that the 1-MVR method significantly outperforms the 
MC-RB method. The improvement is noticeable when we increase M , since the MC-RB method stagnates around 2.9 × 10−3

whereas 1-MVR keeps reducing the error as the square root of the number of samples. The stagnation is caused by the 
inherent bias arising from the reduced basis method with N = 9, which provides outputs with a level of error of 3 × 10−3, 
as seen in Fig. 1(b). With the MC-RB method we are unable to achieve more accurate estimators than the precision of 
the reduced basis output. Furthermore, the error bound of the MC-RB method, �̃E

N,M as defined in (23), is the sum of two 

terms: the first term �E
N,M does not depend on the confidence level, whereas the second term a

√
(V M [sN ] + �V

N,M)/M does. 
We observe from Table 1 that increasing M does not improve the error bound of the MC-RB method since it is dominated 
by �E

N,M , which in many cases can be overly pessimistic. Variance estimations for the MC-RB are not included in Table 2, 
as they can only be worse than the expectation results.

The 1-MVR method does not suffer from this stagnation owing to the fact that it directly approximates E[s] instead 
of E[sN ]. As a result, the expectation and variance error of the 1-MVR method can be made arbitrarily small. The same 
behavior is observed in the error bounds �E

M0,M1
and �V

M0,M1
defined in (30a) and (33a), which agree with the Monte Carlo 

dependence on the square root of the sample size. Even though the accuracy of the estimators and the sharpness of the 
bounds for 1-MVR is slightly worse than that of MC-HDG, the former performs ten times less full model evaluations than 
the latter. These numerical results show a considerable gain for model and variance reduction.

5.2. A noncoercive example: acoustic wave propagation

We consider a wave propagation problem as depicted in Fig. 2(a). A wave is excited by a Gaussian source term f centered 
at xs and propagates through a heterogeneous medium κ(x, y). The governing equation for this model problem is given by

−∇ · (κ∇u) − k2u = f , ∀x ∈ D,

κ∇u · n − iku = 0, ∀x ∈ ∂DR ,

κ∇u · n = 0, ∀x ∈ ∂DN ,

where f = 10√
2πσs

exp

(
− (x1 − xs1)

2 + (x2 − xs2)
2

2σ 2
s

)
for xs = (−3, −16) and σs = 0.25 is the source term and k = √

2 is 

the wavenumber. Here the physical domain is D = [−15, 15] × [−20, 0]. To describe the κ(x, y) field we use the example 
described in [9], namely

κ(x, y) = κ + σ y1

√
λ0

2
+ σ

8∑
n=1

√
λn

(
sin

(
nπ

x1 + �/2

�

)
y2n + cos

(
nπ

x1 + �/2

�

)
y2n+1

)
,

where√
λn = (√π Lc

)1/2
exp

(
− (nπ Lc)

2)
, n = 0, . . . ,8,
8
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Fig. 2. Problem specification, representative solution, and RB convergence of the wave propagation example.

for κ = 1, σ = 1/10, and Lc = 1/12. Here the random variables yn for n = 1, . . . , Q = 17 are uncorrelated and uniformly 
distributed with zero mean and unit variance. Hence, we can write κ(x, y) in the form of the affine expansion (2) with 
� = [−√

3, 
√

3]Q . We consider the following output

s(y) = 1√
2πσO

∫
D

�(u(y))exp

(
− (x1 − xO 1)

2 + (x2 − xO 2)
2

2σ 2
O

)
dx,

for xO = (5, −7) and σO = 0.25, which corresponds to the real part of the amplitude at xO regularized by a Gaussian field. 
The physical domain is discretized into a triangular mesh of 1420 elements as shown in Fig. 2(b) and polynomials of degree 
p = 4 are used to represent the numerical solution uh(y). Fig. 2(c) depicts a realization of the numerical solution obtained 
using the HDG method.

Since the exact values of E[sh] and V [sh] are not known, we approximate them using the MC-HDG method with a 
random sample set Y M∗ of M∗ = 6.5 × 107 and obtain E M∗ [sh] = 0.2576 and V M∗ [sh] = 0.0596 for a statistical error of 10−4

and 3.1 × 10−5 respectively, corresponding to 0.999 confidence level (a = 3.3). We are going to use E[sh] = E M∗ [sh] and 
V [sh] = V M∗ [sh] as the reference values to evaluate the performance of our method. We consider an error tolerance of 10−3

and a confidence level 0.95 for our estimators. To achieve this level of accuracy, the MC-HDG method requires a random 
sample set Y M of size M = 238 447 to compute the MC-HDG estimators E M [sh], V M [sh].

We next pursue the RB method and show in Fig. 2(d) the average output error εN,avg and its error bound �s
N,avg as a 

function of N . Here εN,avg =∑y∈Y M̂

∣∣s(y) − sN (y)
∣∣/M̂ and �s

N,avg =∑y∈Y M̂
�s

N (y)/M̂ , where Y M̂ is a test set of M̂ = 100
samples. We observe that the RB error bound is about two orders of magnitude larger than the output error. The slow 
convergence rate of the RB error bound is expected because the problem is noncoercive and has (many) Q = 17 parameters. 
Since the RB error bounds are quite pessimistic, we will not consider the MC-RB method to compute the statistical outputs 
and their error bounds.

We now turn to the 1-MVR and enforce the tolerance �E
M0,M1

= εtol = 10−3 and the confidence level of 0.95. We depict 
in Fig. 3(a) the computational speedup π1 relative to the MC-HDG method, the original cost function C1, and the equivalent 
cost function Ĉ1 as a function of the RB dimension I1 — results for each level size are averaged 8 times. The equivalent cost 
function Ĉ1 approximates the original cost function C1 reasonably well, despite being drastically less expensive to evaluate 
than the true cost function (and available a priori). The equivalent cost is minimized at N1 = 72, requiring (M0, M1) =
(96, 278 684) for a speedup π1 = 585, whereas the true cost yields an optimal RB dimension N1 = 66 and sample sizes 



F. Vidal-Codina et al. / Journal of Computational Physics 297 (2015) 700–720 715
Fig. 3. Result for the 1-MVR method vs RB size I1.

(M0, M1) = (106, 308 836) that achieve a speedup π1 = 599. The model and variance reduction strategy is represented in 
Figs. 3(b)–3(c). For small reduced basis size more accuracy is demanded for level 1, that is w1 < w0, since the RB model is 
very inexpensive to evaluate and the variance of sh − sI1 is large. Conversely, for increasing I1 the RB model becomes more 
costly to compute, whereas the variance of sh − sI1 rapidly decreases — therefore requiring very few full model evaluations. 
This change of behavior is detected by the level selection method by setting w0 < w1, that is requiring higher accuracy 
for level 0. The model and variance reduction method therefore seeks a balance between these two phenomena to achieve 
optimal efficiency. We next show in Fig. 3(d) the MC-HDG and 1-MVR expectation and variance as well as their error bars 
as a function of I1. The expectation error bound is equal to the prescribed tolerance εtol = 10−3, while the error bound for 
the variance �V

M0,M1
decreases from about 4.5 × 10−4 for small I1 to about 3.2 × 10−4 for larger reduced basis size.

We proceed analogously for the 2-MVR method computing the speedup with respect to the MC-HDG method for several 
values of level sizes I1 and I2. The computational gain is presented in Fig. 4(a), and the optimum speedup π2 = 1800 is 
reached for (N1, N2) = (122, 36), which needs (M0, M1, M2) = (30, 4102, 286 152). The true cost and the equivalent cost 
present a very similar behavior, compare Figs. 4(b)–4(c), and the level selection method recovers as low fidelity models the 
bases (N1, N2) = (139, 36), for sample sizes (M0, M1, M2) = (30, 3483, 281 824) and a speedup π2 = 1778. The accuracy of 
the estimators is shown in Fig. 4(d), and we observe that the true moments lie in all cases inside the confidence intervals 
(displayed as a surface) computed by the model and variance reduction method. We now analyze the performance of the 
L-MVR when an arbitrary number of levels are considered. The goal is to use the information on the test set to select not 
only the level sizes, but also the optimal multilevel model. For simplicity, we consider the same test set with M̂ = 100
used for the previous cases, and obtain for each number of levels the optimal level sizes N = (N1, . . . , NL), weights w N =(

w N
0 , . . . , w N

L

)
and the equivalent cost Ĉ L in (37). We then perform the L-MVR that provides the actual computational cost 

CL in (36). Results corresponding to L = 1, 2, 3, 4, 5 are presented in Table 3, for a confidence level of 0.95 and averaged 
8 times. The costs are normalized with respect to the minimum costs, attained with L = 4 for this problem. The actual 
speedup πL in (34) with respect to MC-HDG is also shown.

The proposed selection method effectively predicts the a priori performance for each model, since Ĉ L/Ĉ4 replicates the 
behavior of CL/C4 quite well. The consideration of an arbitrary number of levels recovers even greater speedups, and the 
inexpensive a priori analysis enables the detection of the optimal model. Furthermore, the weights for each model are 
shown in Fig. 5(a), exhibiting a nonlinear behavior that truly motivates its selection in an optimal automated manner. The 
distribution of the weights enforces a larger error on the coarser levels, and requires a smaller error on the finer levels 
relying on the reduction of variance. The estimators for each number of levels also satisfy the required accuracy, as seen in 
Figs. 5(b)–5(c).
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Fig. 4. Results for the 2-MVR method vs RB sizes I2 and I1.

Table 3
Predicted optimal level sizes, speedup πL with respect to MC-HDG cost and relative real and equivalent multilevel cost.

L = 1 L = 2 L = 3 L = 4 L = 5

(N1, . . . , NL) 72 (139,36) (150,52,16) (150,84,47,16) (150,118,84,47,16)

πL 585 1778 2277 2363 2354
CL/C4 4.03 1.33 1.04 1 1.00
Ĉ L/Ĉ4 4.37 1.38 1.08 1 1.00

Fig. 5. Results for the L-MVR for arbitrary number of levels.

6. Conclusions

We have presented a model and variance reduction method for computing statistical outputs of stochastic elliptic PDEs. 
We first combined the reduced basis method with the hybridizable discontinuous Galerkin method by introducing a new 
HDG weak formulation that retains affine parametric dependence, hence providing rapid and accurate evaluation of the 
functional output of parametrized PDEs. We next incorporated them into the multilevel control variate framework to exploit 
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the statistical correlation between the RB approximation and the high-fidelity HDG discretization to accelerate the conver-
gence rate of the Monte Carlo simulations by several orders of magnitude. We then introduced a posteriori error bounds 
for the estimates of the statistical outputs. Finally, we devised an algorithm to optimally select the RB dimensions and the 
number of levels L. We presented numerical results for both coercive and noncoercive elliptic problems. The results showed 
that the present method provides a significant speedup compared to both the MC-HDG method and the MC-RB method.

We conclude the paper by pointing out several possible extensions and directions for further research. Firstly, it would 
be interesting to address the computation of higher order moments, with the additional difficulties of determining the bias 
and the limiting distributions. Secondly, we would like to extend the proposed approach to nonlinear stochastic problems, 
which will broaden the application domain of our method. In this aspect, the main challenge remains the development 
of the RB method for the HDG discretization of nonlinear parametrized PDEs. We would also like to tackle stochastic 
optimization problems with stochastic PDE constraints, for which the rapid and reliable evaluation of statistical outputs and 
their derivatives are crucial to finding an optimal solution of any stochastic optimization problem. We would like to develop 
new methods that allow us to compute not only the statistical outputs but also their derivatives with respect to the decision 
variables.
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Appendix A. Bias of estimators

To simplify the notation, we will use the following auxiliary variables

ζh := (sh − E M0,...,ML [sh])2 , ζN�
:= (sN�

− E M0,...,ML [sh])2 , � = 1, . . . , L,

ζ̂h := (sh − E[sh])2 , ζ̂N�
:= (sN�

− E[sh])2 , � = 1, . . . , L,

sh = E M0,...,ML [sh],
and the auxiliary (unbiased) variance

V̂ M0,...,ML [sh] = E M0 [̂ζh − ζ̂N1 ] +
L−1∑
�=1

E M�
[̂ζN�

− ζ̂N�+1 ] + E ML [̂ζNL ]

which allows us to express the L-MVR variance estimate as

V M0,...,ML [sh] = V̂ M0,...,ML [sh] − (E[sh] − E M0,...,ML [sh])2 (A.1)

We first show the latter expression. We add and subtract E[sh] from every term within the expectations

V M0,...,ML [sh] = E M0

[(
sh − E[sh] − sh + E[sh])2 − (sN1 − E[sh] − sh + E[sh])2]

+
L−1∑
�=1

E M�

[(
sN�

− E[sh] − sh + E[sh])2 − (sN�+1 − E[sh] − sh + E[sh])2]
+ E ML

[(
sNL − E[sh] − sh + E[sh]

)2]
,

and now expanding the squares we arrive at

V M0,...,ML [sh] = E M0

[̂
ζh − ζ̂N1 − 2

(
sh − E[sh]

) (
sh − sN1

)]
+

L−1∑
�=1

E M�

[̂
ζN�

− ζ̂N�+1 − 2
(
sh − E[sh]) (sN�

− sN�+1

)]
+ E ML

[̂
ζNL − 2

(
sh − E[sh]

) (
sNL − E[sh]

)+ (sh − E[sh])2] .
Applying linearity of the MC expectation operator and grouping terms we arrive at (A.1). The bias of the L-MVR variance 
estimate is defined as

E
[
V M0,...,ML [sh] − V [sh]

]= E
[
V̂ M0,...,ML [sh] − V [sh]]− E

[(
E[sh] − E M0,...,ML [sh]

)2]
= E[sh]2 − E

[
E2

M ,...,M [sh]
]
, (A.2)
0 L
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since E M0,...,ML [sh] and V̂ M0,...,ML [sh] are unbiased. If we rename the RB output differences as

z0 := sh − sN1 , zL := sNL , z� := sN�
− sN�+1 , � = 1, . . . , L − 1

the expression for expectation of the square of the L-MVR expectation estimate reads

E
[

E2
M0,...,ML

[sh]
]

=
L∑

�=0

1

M2
�

E

⎡⎢⎣
⎛⎝ M�∑

m=1

z�(ym)

⎞⎠2
⎤⎥⎦+ 2

L∑
�<�′
�=0

E

⎡⎣ M�∑
m=1

z�(ym)

M�′∑
m′=1

z�′(ym′)

⎤⎦
thanks to the linearity of the expectation operator. The latter expression can be further reduced with

E

⎡⎢⎣
⎛⎝ M�∑

m=1

z�(ym)

⎞⎠2
⎤⎥⎦= M�E[z2

�] + (M2
� − M�)E[z�]2,

E

⎡⎣ M�∑
m=1

z�(ym)

M�′∑
m′=1

z�′(ym′)

⎤⎦= E[z�]E[z�′ ],

that hold because we consider independent samples within each level and independent samples among levels. We then 
have

E
[

E2
M0,...,ML

[sh]
]

=
L∑

�=0

(
E[z2

�] − E[z�]2

M�

+ E[z�]2

)
+ 2

L∑
�<�′
�=0

E[z�]E[z�′ ],

and by induction on the number of levels, the cross-products can be reduced to

E
[

E2
M0,...,ML

[sh]
]

= E[sh]2 +
L∑

�=0

E[z2
�] − E[z�]2

M�

= E[sh]2 +
L∑

�=0

V [z�]
M�

. (A.3)

Hence, if we combine equations (A.2)–(A.3) we obtain the bias of the L-MVR variance estimate

E
[
V M0,...,ML [sh] − V [sh]

]= −
L∑

�=0

V [z�]
M�

.
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