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ACCELERATED RESIDUAL METHODS FOR THE ITERATIVE
SOLUTION OF SYSTEMS OF EQUATIONS\ast 

N. C. NGUYEN\dagger , P. FERNANDEZ\dagger , R. M. FREUND\ddagger , AND J. PERAIRE\dagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . We present accelerated residual methods for the iterative solution of systems of
equations by leveraging recent developments in accelerated gradient methods for convex optimization.
The stability properties of the proposed method are analyzed for linear systems of equations by using
the finite difference equation theory. Next, we introduce a residual descent restarting strategy and
an adaptive computation of the acceleration parameter to enhance the robustness and efficiency of
our method. Furthermore, we incorporate preconditioning techniques into the proposed method to
accelerate its convergence. We demonstrate the performance of our method on systems of equations
resulting from the finite element approximation of linear and nonlinear partial differential equations.
In a variety of test cases, the numerical results show that the proposed method is competitive with
the pseudo--time-marching method, Nesterov's method, and Newton--Krylov methods. Finally, we
discuss some open issues that should be addressed in future research.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . accelerated residual methods, accelerated first-order methods, nonlinear systems,
linear systems, partial differential equations
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1. Introduction. In this paper, we are concerned with the iterative solution of
a general square system of equations of the form

(1) \bfitf (\bfitu \ast ) = 0.

Here \bfitf = (f1(\bfitu ), . . . , fN (\bfitu )) \in \BbbR N is a vector-valued function of the vector \bfitu =
(u1, . . . , uN ) \in \BbbR N , where N denotes the dimension of the system. The system
(1) often arises when numerically solving partial differential equations (PDEs) or
unconstrained optimization problems (by solving \bfitf (\bfitu \ast ) := \nabla c(\bfitu \ast ) = 0 for some
objective function c(\cdot )). The development of iterative methods for solving the system
of equations (1) is a very important part of applied mathematics because it has a
wide range of applications in engineering and science. Numerous methods have been
developed and studied in the literature.

For a linear system of equations, \bfitf (\bfitu ) = \bfitA \bfitu  - \bfitb , where \bfitA \in \BbbR N\times N is a matrix
and \bfitb \in \BbbR N is a vector, classical iterative methods such as Jacobi, Richardson, and
Gauss--Seidel methods have been used with some success. A generalization of the
Gauss--Seidel method led to the successive overrelaxation (SOR) method devised by
Young and Frankel (see [27]). An alternative to classical iterative methods are Krylov
subspace methods. One such scheme is the conjugate gradient (CG) method, devel-
oped by Hestenes and Stiefel [11]. The CG method is particularly suited for linear
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systems whose matrix is symmetric and positive-definite. Other Krylov methods for
linear systems include CGS [23], BiCGSTAB [26], MINRES [20], GMRES [21], and
QMR [8], to name a few.

The most well known method for solving nonlinear systems of equations is New-
ton's method. Newton's method generates a sequence of linear systems, and Krylov
methods are often used to solve them, resulting in the so-called Newton--Krylov meth-
ods. For many problems, computing the exact Jacobian, as required by Newton's
method, can be computationally expensive. Instead of constructing the exact Ja-
cobian matrix at every iteration, quasi-Newton methods such as the BFGS method
[5, 7, 9, 22] approximate it using low-rank updates. A popular alternative approach is
Jacobian-free Newton--Krylov methods [4, 6, 12], in which the matrix-vector products
in the Krylov iteration are computed without explicitly forming the Jacobian ma-
trix, such as via finite difference approximation and residual evaluations. Fixed-point
methods such as the Richardson iteration can also be used to solve nonlinear systems
of equations without having to compute the Jacobian matrix. The Richardson method
is very simple to implement, and the cost of each iteration is very low. However, a
major drawback of the Richardson method is that it may not converge, or if it does,
it may suffer from slow convergence. Multigrid methods [2, 3, 10, 13] have also been
widely used to solve linear and nonlinear systems arising from the discretization of
partial differential equations (PDEs). However, multigrid methods are not always
applicable to general systems of equations arising from other contexts.

In optimization theory, the optimality condition of an unconstrained minimiza-
tion of a differentiable objective function results in the problem (1). Iterative methods
mentioned in the preceding paragraph can be used to solve unconstrained optimization
problems as well. Newton's method and the BFGS method are second-order meth-
ods because they use both the first and second derivatives of the objective function,
whereas gradient descent methods are first-order methods. Second-order methods
converge in many fewer iterations than first-order methods, but the computational
cost per iteration of the former is significantly higher than that of the latter. It is
known that when a gradient descent method is applied to convex optimization prob-
lems, the provable convergence rate of the error in the objective function is O(1/k)
[16], where k is the number of iterations.

In a seminal paper published in 1983 [15], Nesterov proposed an accelerated gra-
dient method that exhibits the worst-case convergence rate of O(1/k2) for minimiz-
ing smooth convex functions. Nesterov's method is an optimal gradient method for
convex optimization problems because no method based solely on first-order informa-
tion can achieve a faster convergence rate than O(1/k2) [14]. Since the introduction
of Nesterov's method, there has been much work on the development of first-order
accelerated methods; see [17, 18, 16] for theoretical developments and [25] for a uni-
fied analysis of these ideas. One drawback of Nesterov's method is that it does not
converge smoothly but exhibits oscillatory behavior that can severely slow its con-
vergence. To remedy this problem, O'Donoghue and Cand\`es [19] propose a simple
restarting technique to improve the convergence rate of Nesterov's method. Recently,
Su, Boyd, and Cand\`es [24] showed that Nesterov's method can be interpreted as a fi-
nite difference approximation of a second-order ordinary differential equation (ODE),
thereby providing a better understanding of Nesterov's method. More recently, At-
touch and Peypouquet [1] extended the ODE theory of the work [24] to show that the
convergence rate of Nesterov's method is actually o(1/k2), rather than O(1/k2).

The main contributions of this paper are as follows. First, we extend the ideas
of accelerated gradient methods for convex optimization to solve linear and nonlinear
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systems of equations. These methods will be referred to as accelerated residual meth-
ods because, in general, the vector \bfitf (\cdot ) is not the gradient but the residual vector.
Second, we present an interpretation of existing accelerated methods as finite dif-
ference approximations (FDAs) to a second-order ODE and provide a linear stability
analysis for various accelerated schemes. Based on the stability analysis, we introduce
a residual descent restarting strategy and an adaptive computation of the accelera-
tion parameter to enhance the robustness and efficiency of our method. Furthermore,
we incorporate preconditioning techniques into the proposed method to improve its
convergence.

We apply the proposed method as well as other iterative methods to solve systems
of equations resulting from the finite element approximation of linear and nonlinear
PDEs. The following empirical conclusions can be drawn from the results of our
numerical experiments. First, the proposed method converges much faster and thus
requires significantly fewer iterations than Nesterov's method. Second, it is found
out that restarting is key to improving the convergence rate and robustness of any
accelerated methods. For problems in which the systems are nonlinear and nonconvex,
they often do not converge without restarting. Third, our choice of the acceleration
parameter performs better than the standard value proposed by Nesterov since it
reduces the number of iterations required for convergence to the same error tolerance.
And fourth, our method is competitive with Newton--Krylov methods for solving
nonlinear systems, while requiring much less memory storage.

The paper is organized as follows. In section 2, we give an overview of the de-
velopment of accelerated gradient methods. In section 3, we propose an accelerated
residual method for solving systems of equations and generalize it to encompass a fam-
ily of methods. In section 4, we present numerical results to demonstrate the method
on both linear and nonlinear systems resulting from the finite element approximation
of PDEs. Finally, in section 5, we discuss some open issues that should be addressed
in future research.

2. Overview of accelerated gradient methods. To put our contributions
in perspective, we present a brief overview of the past and recent developments of
accelerated gradient methods for convex optimization.

2.1. Nesterov's method. Before discussing Nesterov's method, we consider
the simplest fixed-point iteration for solving the system of equations (1):

(2) \bfitu k+1 = \bfitu k  - \alpha k\bfitf (\bfitu k), k \geq 0,

where \alpha k is a stability parameter. The iteration is stopped if the following criterion
is met:

(3) \| \bfitf (\bfitu k)\| < \epsilon ,

where \epsilon is a given error tolerance. Note that the above fixed-point iteration is nothing
but the forward Euler method applied to the following ODE system:

(4) \.\bfitu + \bfitf (\bfitu ) = 0, \bfitu (t = 0) = \bfitu 0,

in which the time-step size is set to the stability parameter \alpha k. Hence, the fixed-point
iteration (2) will be referred to as the pseudo--time-marching method. Although this
method is very simple and cost-effective, it can suffer from extremely slow convergence
because of the severe restriction on the stability parameter \alpha k.
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In recent years, there has been considerable interest in accelerated first-order
methods driven primarily by their optimal performance for solving convex optimiza-
tion problems. These methods were first developed by Nesterov in the context of
convex optimization and subsequently extended by many other researchers. Nes-
terov's method for solving the system (1) takes the following form: Starting with \bfitu 0

and \bfitu 1 = \bfitu 0  - \alpha 0\bfitf (\bfitu 0), we perform the following iteration:

\bfitv k = \bfitu k + \beta k(\bfitu k  - \bfitu k - 1),(5a)

\bfitu k+1 = \bfitv k  - \alpha k\bfitf (\bfitv k).(5b)

The first step (5a) is an extrapolation step in which \bfitv k is determined from the two
previous iterates \bfitu k - 1 and \bfitu k. The second step (5b) is a solution update in which the
next iterate \bfitu k+1 is computed using \bfitv k instead of \bfitu k. The parameter \alpha k is typically
chosen to be the same as the one in the fixed-point iteration (2).

The acceleration parameter \beta k is crucial because it has a significant impact on
the convergence of Nesterov's method. In the original paper [15], Nesterov suggested
setting \beta k = k/(k + 3). It is recommended to choose \alpha k \leq \alpha \equiv 1/L, where the
Lipschitz constant L of \bfitf (\cdot ) is defined as follows:

(6) \| \bfitf (\bfitx ) - \bfitf (\bfity )\| \leq L\| \bfitx  - \bfity \| \forall \bfitx ,\bfity \in \BbbR N ,

assuming that \bfitf (\cdot ) is Lipschitz continuous.
When being applied to solve a convex optimization problem min\bfitx \in \BbbR N c(\bfitx ) with

smooth objective function c(\cdot ), Nesterov's method exhibits the worst-case convergence
rate [15]:

(7) c(\bfitu k) - c(\bfitu \ast ) \leq 2\| \bfitu 0  - \bfitu \ast \| 2

\alpha (k + 1)
2 .

Here \bfitu \ast is a minimizer of the convex function c(\bfitu ), which is also a solution of the
system (1). It is well known that the convergence rate O(1/k2) is optimal for convex
optimization among all methods using only information about the gradient [15]. This
is in contrast to the fixed-point method (2), which has the same computational cost
per step but can only achieve the worst-case convergence rate of O(1/k).

In a recent paper [24], Su, Boyd, and Cand\`es showed that Nesterov's method can
be viewed as an FDA of the following second-order ODE system in the limit of an
infinitesimal step size:

(8) \"\bfitu +
3

t
\.\bfitu + \bfitf (\bfitu ) = 0,

with the initial conditions

(9) \bfitu (t = 0) = \bfitu 0, \.\bfitu (t = 0) = 0.

Moreover, Su, Boyd, and Cand\`es [24] show that the solution of the ODE system (8)
satisfies

(10) c(\bfitu (t)) - c(\bfitu \ast ) \leq 2\| \bfitu 0  - \bfitu \ast \| 2

t2
.

Note that, since t \approx (k + 1)
\surd 
\alpha k, we recover the convergence rate (7). More recently,

Attouch and Peypouquet [1] proved that if \beta k = k/(k + \gamma ) for \gamma > 3, then the
convergence rate of Nesterov's method is actually o(1/k2), rather than O(1/k2). It
should be noted that the theoretical results discussed in this section are restricted to
convex optimization only.
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2.2. Restarting strategies for Nesterov's method. Even for strongly con-
vex optimization problems, Nesterov's method exhibits periodic oscillatory behavior
that can degrade its convergence rate [19, 24]. This behavior can be explained by
examining the ODE system (8). The second-order time derivative represents acceler-
ation, while the first-order time derivative represents damping. When t is small, the
ODE system is overdamped because the ratio 3/t is large. This results in a smooth
decrease in the objective value. As t increases, the solution of the ODE system be-
comes more oscillatory because the acceleration term dominates the damping term.
This leads to oscillatory convergence in the objective function, as illustrated in Figure
1. To suppress the oscillatory behavior, we can re-solve the ODE system (8) with
a new initial solution \bfitu 0, which is the latest solution before the oscillatory behavior
appears. This amounts to restarting Nesterov's method whenever the convergence
stagnates or gets worse, as illustrated in Figure 2.

Fig. 1. Convergence trajectory of Nesterov's method when minimizing the convex function
c(\bfitu ) = 0.02u2

1 + 0.005u2
2: (left) trajectory of the iterates and (right) convergence of the error in the

objective value. This example is taken from [24].

Fig. 2. Demonstration of the oscillatory convergence behavior of Nesterov's method and the
suppression of this behavior by a restarting technique.
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The restarted version of Nesterov's method for solving the system (1) is presented
in Algorithm 1. The algorithm needs a convergence criterion to stop the iteration as
well as a restarting condition to restart the iteration. One may stop the iteration if
\| \bfitf (\bfitu k)\| \leq \epsilon . However, because this criterion requires an additional evaluation of the
residual vector at every iteration, one may want to use a heuristic criterion instead,
such as \| \bfitf (\bfitv k)\| \leq \epsilon .

Algorithm 1 Nesterov's method with restarting.

0. Start with \{ \alpha k, \beta k\} , \bfitu 0, and k = 0

1. Repeat

2. \bfitv k =

\biggl\{ 
\bfitu k, k = 0
\bfitu k + \beta k(\bfitu k  - \bfitu k - 1), k > 0

3. \bfitu k+1 = \bfitv k  - \alpha k\bfitf (\bfitv k)

4. k = k + 1

5. If a convergence criterion is met then exit loop

6. If a restarting condition is met then reset \bfitu 0 = \bfitu k and k = 0

7. End Repeat

Several restarting strategies were proposed in the literature. In a recent paper
[19], O'Donoghue and Cand\`es proposed two restarting strategies to improve the con-
vergence rate of Nesterov's method: (1) the function restarting restarts whenever
c(\bfitu k+1) > c(\bfitu k), and (2) the gradient restarting restarts whenever \bfitf (\bfitv k)

T (\bfitu k+1  - 
\bfitu k) > 0. Recently, Su, Boyd, and Cand\`es [24] proposed the so-called speed restarting
that restarts whenever \| \bfitu k+1  - \bfitu k\| > \| \bfitu k  - \bfitu k - 1\| . It is shown in [24] that speed
restarting can ensure linear convergence of the resulting scheme when minimizing
strongly convex functions, albeit at a rate that is usually associated with nonaccel-
erated methods. Figure 3 shows the results obtained by using speed restarting and
gradient restarting. We see that both restarting techniques are effective at suppressing
the oscillatory convergence of Nesterov's method.

Fig. 3. Convergence trajectory of Nesterov's method and the restarted Nesterov's method when
minimizing the convex function c(\bfitu ) = 0.02u2

1 + 0.005u2
2: Trajectory of the iterates on the left and

convergence of the error in the objective value on the right.
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3. Accelerated residual methods.

3.1. The basic accelerated residual method. We introduce the following
method for iteratively solving the system (1):

\bfitv k = \bfitu k + \beta k(\bfitu k  - \bfitu k - 1) - \alpha k(1 + \beta k)\bfitf (\bfitu k),(11a)

\bfitu k+1 = \bfitv k  - \alpha k\bfitf (\bfitv k).(11b)

Compared to Nesterov's method (5), our method has an additional term  - \alpha k(1 +
\beta k)\bfitf (\bfitu k) in the extrapolation step and thus requires one additional evaluation of the
residual vector \bfitf (\bfitu k) at every iteration. Nevertheless, as discussed later, our method
has some important advantages over Nesterov's method owing to the additional resid-
ual evaluation. First, the effective time-step size of our scheme is larger than that of
Nesterov's method. Second, we exploit the availability of \bfitf (\bfitu k) to define a rigorous
convergence criterion and a new restarting strategy. And third, the additional resid-
ual evaluation allows for an adaptive selection of the acceleration parameter \beta k that
can improve the convergence rate of our method. Furthermore, the method can be
generalized to a richer family of accelerated residual methods.

3.2. Finite difference approximation. In this section, we show that the pro-
posed method (11) can be seen as an FDA of a second-order ODE system. To this
end, we substitute (11a) into (11b) to arrive at the following equation:

\bfitu k+1 = (\bfitu k + \beta k(\bfitu k  - \bfitu k - 1)) - \alpha k(1 + \beta k)\bfitf (\bfitu k) - \alpha k\bfitf (\bfitv k) .

Dividing both sides by \alpha k(2 + \beta k) and rearranging the terms, we obtain

\bfitu k+1  - 2\bfitu k + \bfitu k - 1

\alpha k(2 + \beta k)
+

1 - \beta k\sqrt{} 
\alpha k(2 + \beta k)

(\bfitu k  - \bfitu k - 1)\sqrt{} 
\alpha k(2 + \beta k)

+

\biggl( 
1 + \beta k

2 + \beta k
\bfitf (\bfitu k) +

1

2 + \beta k
\bfitf (\bfitv k)

\biggr) 
= 0.

Now suppose that we choose \beta k by the following equation:

(12) \beta k = 1 - \gamma 

k + 3

for some \gamma \geq 0. Letting \Delta tk =
\sqrt{} 
\alpha k(2 + \beta k), we get

(13)
\bfitu k+1  - 2\bfitu k + \bfitu k - 1

\Delta t2k
+

\gamma 

(k + 3)\Delta tk

(\bfitu k  - \bfitu k - 1)

\Delta tk
+

\biggl( 
1 + \beta k

2 + \beta k
\bfitf (\bfitu k) +

1

2 + \beta k
\bfitf (\bfitv k)

\biggr) 
= 0.

In the limit \Delta tk \rightarrow 0, the above equation is nothing but an FDA of the following
second-order ODE system:

(14) \"\bfitu +
\gamma 

t
\.\bfitu + \bfitf (\bfitu ) = 0.

We see that this \gamma -parametrized ODE system is exactly the same as the ODE system
(8) with \gamma = 3. In the particular case \gamma = 3, we have from (12) that \beta k = k/(k + 3),
which is exactly the same value proposed by Nesterov [15]. Choosing a different value
for \gamma results in a different value for \beta k at each iteration.

We observe that the effective time-step size of the proposed method is \Delta tk =\sqrt{} 
\alpha k(2 + \beta k). In [24], it is shown that Nesterov's method (5) can also be interpreted

as an FDA of the ODE system (8) with the effective time-step size being equal to\surd 
\alpha k. Therefore, the effective time-step size of our method is

\surd 
2 + \beta k larger than
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the effective time-step size
\surd 
\alpha k of Nesterov's method when the same value of \alpha k

is used for both methods. We thus expect that our scheme converges faster than
Nesterov's method in terms of the number of iterations. Since our method requires
twice as many residual evaluations per iteration as Nesterov's method, the worst-
case convergence rate of our method is slower than that of Nesterov's method by a
factor of 2/

\surd 
2 + \beta k when measuring in terms of the number of residual evaluations.

However, we observe through the numerical experiments presented in section 4 that
our method converges significantly faster than Nesterov's method in terms of the
number of residual evaluations.

In practice, the stability parameter \alpha k can be chosen differently for all methods
based on their stability property for a particular problem at hand. For the pseudo--
time-marching method and Nesterov's method, it should be chosen such that \alpha k \leq 
1/L, where L is the Lipschitz continuity constant in (6). As we shall see in the
numerical experiments presented in section 4, the maximum stability-preserving value
of \alpha k for our method can be chosen larger than that for Nesterov's method because
our method has a larger stability region than that of Nesterov's method, as discussed
next.

3.3. Linear stability analysis. Both Nesterov's method and the accelerated
residual method can be interpreted as different FDAs of the same ODE. In this section,
we perform a linear stability analysis to determine the stability limit of both schemes
in the case of a linear system \bfitf (\bfitu ) = \bfitA \bfitu  - \bfitb = 0.

First, we analyze the stability of our method for nonsingular matrix \bfitA . Upon
diagonalization of \bfitA , the difference equation associated with the accelerated residual
method (11) is given by

ui,k+1 - 
\biggl( 
(1+\beta k) - 2

1 + \beta k

2 + \beta k
\Delta t2\lambda i+

1 + \beta k

(2 + \beta k)2
\Delta t4\lambda 2

i

\biggr) 
ui,k+\beta k

\biggl( 
1 - 1

2 + \beta k
\Delta t2\lambda i

\biggr) 
ui,k - 1 = 0.

Here \lambda i > 0, i = 1, . . . , N , denote the eigenvalues of \bfitA and ui,k is the ith component
of \bfitu k in the basis of eigenvectors. To simplify the notation, we drop the subscript i
and introduce \eta := \Delta t2\lambda and obtain

(15) uk+1  - b(\eta , \beta k)uk + c(\eta , \beta k)uk - 1 = 0,

where

(16) b(\eta , \beta k) = (1 + \beta k) - 2
1 + \beta k

2 + \beta k
\eta +

1 + \beta k

(2 + \beta k)2
\eta 2, c(\eta , \beta k) = 1 - 1

2 + \beta k
\eta .

The characteristic polynomial of this difference equation is then given by

(17) \scrP ARM(\xi ) = \xi 2  - b(\eta , \beta k)\xi + c(\eta , \beta k).

The accelerated residual method is stable if the two roots of the characteristic equation
\scrP ARM(\xi \ast ) = 0 lie within the unit circle of the complex plane. Hence, we obtain the
stability region of our method as follows:

(18) SARM(\beta k) =
\Bigl\{ 
\eta :

\bigm| \bigm| \bigm| b(\eta , \beta k)\pm 
\sqrt{} 
b2(\eta , \beta k) - 4c(\eta , \beta k)

\bigm| \bigm| \bigm| \leq 2
\Bigr\} 
.

Obviously, the stability region depends on \beta k.The stability region of Nesterov's method
can be derived in the same way.

Figure 4 show the stability region of both the accelerated residual method and
Nesterov's method for various values of \beta k. It is interesting to note that the stability
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ACCELERATED RESIDUAL METHODS A3165

Fig. 4. Stability regions of Nesterov's method (left) and the accelerated residual method (right)
for various values of \beta k.

region of our method expands on the real axis as \beta k increases, whereas the stability
region of Nesterov's method shrinks as \beta k increases. Specifically, for \beta k = 1, the
maximum absolute value of \eta for which our method remains stable is \eta ARM

max,real = 9/2,

while that of Nesterov's method is \eta NM
max,real = 4/3. It implies that for symmet-

ric positive-definite systems (i.e., the eigenvalues of \bfitA are all real and positive) our
method converges faster than Nesterov's method as \beta k increases. It also implies that
our method is more robust than Nesterov's method in the sense that our method
becomes more stable as \beta k increases, whereas Nesterov's method becomes less stable.
When the eigenvalues of \bfitA are complex, the same conclusion can also be made if
the real parts dominate the imaginary parts. However, if the imaginary parts domi-
nate the real part, both methods become less stable as \beta k increases. Note that both
methods are not stable when the eigenvalues are purely imaginary.

It should be pointed out that the stability comparison between Nesterov's method
and our method is carried out for the same time step \Delta t. It means that \alpha k = \Delta t2

for Nesterov's method and \alpha k = \Delta t2

2+\beta k
for our method. This provides insights on how

fast both schemes would converge if, given \beta k, the maximum step size for stability
was known a priori and therefore taken. Because our method has a larger stability
region than Nesterov's method, and also larger \Delta t for given \alpha k and \beta k, it is more
appropriate to compare the performance of the two methods for the same value of
\alpha k instead of the same value of \Delta t. This will be the tactic used in the numerical
examples in section 4.

3.4. Residual descent restarting. Here we introduce a restarting strategy
and a stopping criterion for our method. The goal is to ensure that the magnitude
of the residual is reduced in every iteration and that if it is smaller than a specified
tolerance, then the iteration stops. By making use of the already-computed residual
vector \bfitf (\bfitu k), we can achieve this goal without additional computations. In particular,
the iteration stops successfully if \| \bfitf (\bfitu k)\| < \epsilon and restarts if

(19) \| \bfitf (\bfitu k)\| > \| \bfitf (\bfitu k - 1)\| .

The stopping criterion and restarting strategy do not require extra computation since
all the quantities involved are already calculated in our scheme. The resulting iteration
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is summarized in Algorithm 2. We note that our restarting strategy (19) ensures that
the residual norm decreases monotonically throughout the iteration. For this reason,
we will refer to it as the accelerated residual descent method (ARDM).

Algorithm 2 Accelerated residual descent method.

0. Start with \{ \alpha k, \beta k\} , \bfitu 0, \epsilon , and k = 0

1. Repeat

2. \~\bfitu k = \bfitu k  - \alpha k\bfitf (\bfitu k)

3. \bfitv k =

\biggl\{ 
\~\bfitu k, k = 0
\~\bfitu k  - \beta k(\~\bfitu k  - \bfitu k - 1), k > 0

4. \bfitu k+1 = \bfitv k  - \alpha k\bfitf (\bfitv k)

5. k = k + 1

6. If \| \bfitf (\bfitu k)\| < \epsilon then exit loop

7. If \| \bfitf (\bfitu k)\| > \| \bfitf (\bfitu k - 1)\| then reset \bfitu 0 = \bfitu k - 1 and k = 0

8. End Repeat

According to the stability analysis presented earlier, the stability region varies
with the acceleration parameter \beta k and the time-step size increases with \beta k. In
particular, the latter effect dominates the former and stability is thus improved by
reducing \beta k. An increase in the magnitude of the residual from one iteration to the
next iteration can be an indication that the time-step size is outside the stability
region for the current value of \beta k. By restarting the method, we reset the value of \beta k

to zero and thus increase stability.
It remains to choose \alpha k and \beta k in Algorithm 2. These parameters are crucial to

the convergence rate of the method and should be related to mathematical properties
of the vector-valued function \bfitf (\bfitu ). On the one hand, \alpha k must be chosen to satisfy
the stability condition of the forward Euler method when numerically solving PDEs.
As such, \alpha k depends on both the underlying PDE and the particular numerical dis-
cretization. On the other hand, when solving convex optimization problems, \alpha k must
be chosen such that \alpha k \leq \alpha \equiv 1/L, where the Lipschitz continuity constant L is
defined in (6). The Lipschitz constant L can be estimated by using backtracking line
search. Typically, \alpha k is set to 1/L. The computation of \beta k will be discussed next.

3.5. Adaptive computation of the acceleration parameter. Instead of us-
ing Nesterov's formula \beta k = k

k+3 , we propose computing \beta k as follows:

(20) \beta k =
\| \bfitf (\bfitu k)\| 

\| \bfitf (\bfitu k - 1)\| 
.

Note that this formula together with our restarting strategy (19) ensures \beta k \leq 1.
The formula for the acceleration parameter by (20) is motivated by the following
observation. When the convergence is relatively slow (i.e., \| \bfitf (\bfitu k - 1)\| \approx \| \bfitf (\bfitu k)\| ),
\beta k is close to 1 to make the convergence faster since the acceleration effect dominates
the damping effect. On the other hand, when the convergence is relatively fast, \beta k

is quite smaller than 1 to make the convergence smooth since adding acceleration
promotes the oscillatory convergence in this case. In contrast, Nesterov's formula,
\beta k = k

k+3 , is an increasing function of k. Hence, as k increases, the acceleration
effect becomes more dominant and the stability region of Nesterov's method gets
smaller, thereby making the convergence oscillatory. If the formula (20) were used in
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Nesterov's method, it would require an additional residual evaluation per iteration,
whereas it does not require extra computation for our method since the residual norms
are already calculated.

The results shown in Figure 5 illustrate how the proposed formula (20) speeds
up the convergence of our method. We see that our method converges faster than
both Nesterov's method and its restarted variant. The convergence rate is further
improved when switching from \beta k = k/(k+3) to \beta k = \| \bfitf (\bfitu k)\| /\| \bfitf (\bfitu k - 1)\| . It is also
interesting to point out that using \beta k = \| \bfitf (\bfitu k)\| /\| \bfitf (\bfitu k - 1)\| incurs no restarting,
whereas using \beta k = k/(k + 3) incurs one restarting. This agrees well with our above
analysis.

Fig. 5. Convergence of the error in the objective value c(\bfitu ) = 0.02u2
1 + 0.005u2

2 for Nesterov's
method, the gradient restarting Nesterov method (GRNM), and the ARDM with \beta = k/(k + 3) and
\beta k = \| \bfitf (\bfitu k)\| /\| \bfitf (\bfitu k - 1)\| .

3.6. Preconditioning the accelerated residual method. We have devised
the residual descent restarting and adaptive computation of the acceleration param-
eter to improve the convergence rate of our method. In this section, we consider how
to further improve the convergence rate through preconditioning techniques. Precon-
ditioning techniques are not widely used in accelerated gradient methods for convex
optimization problems because of the prohibitive computational cost in constructing
effective preconditioners. However, in the context of the numerical solution of PDEs,
preconditioning techniques, such as Jacobi or incomplete LU (ILU), are effective and
usually affordable.

We assume that we are given invertible matrices \bfitM k for k \geq 0 and that the
matrix-vector product of the inverse, \bfitM  - 1

k \bfitv , is inexpensive to compute. The accel-
erated residual method with preconditioning is devised as follows:

\bfitv k = \bfitu k + \beta k(\bfitu k  - \bfitu k - 1) - \alpha k(1 + \beta k)\bfitM 
 - 1
k \bfitf (\bfitu k),(21a)

\bfitu k+1 = \bfitv k  - \alpha k\bfitM 
 - 1
k \bfitf (\bfitv k).(21b)

The preconditioning accelerated residual method is presented in Algorithm 3.
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Algorithm 3 ARDM with preconditioning.

0. Start with \{ \alpha k, \beta k, \bfitM k\} , \bfitu 0, \epsilon , and k = 0

1. Repeat

2. \~\bfitu k = \bfitu k  - \alpha k\bfitM 
 - 1
k \bfitf (\bfitu k)

3. \bfitv k =

\biggl\{ 
\~\bfitu k, k = 0
\~\bfitu k  - \beta k(\~\bfitu k  - \bfitu k - 1), k > 0

4. \bfitu k+1 = \bfitv k  - \alpha k\bfitM 
 - 1
k \bfitf (\bfitv k)

5. k = k + 1

6. If \| \bfitf (\bfitu k)\| < \epsilon then exit loop

7. If \| \bfitf (\bfitu k)\| > \| \bfitf (\bfitu k - 1)\| then reset \bfitu 0 = \bfitu k - 1 and k = 0

8. End Repeat

It is easy to show that the resulting method (21) is an FDA of the following
second-order PDE:

(22) \bfitM (t)\"\bfitu +
\gamma 

t
\bfitM (t) \.\bfitu + \bfitf (\bfitu ) = 0.

For the linear case \bfitf (\bfitu ) = \bfitA \bfitu  - \bfitb , the matrix \bfitM should be independent of t. In
this case, the role of the preconditioning matrix \bfitM is to improve the spectra of the
matrix \bfitM  - 1\bfitA , thereby allowing us to take a much larger time-step size according
to the linear stability analysis. For the nonlinear case, instead of updating the pre-
conditioning matrix at every iteration, we update it only when the restarting occurs.
Furthermore, the preconditioning matrix can be computed as the block Jacobi or ILU
of the Jacobian matrix evaluated for the solution at the restarting.

4. Numerical experiments. In this section, we demonstrate and compare
the performance of various iterative methods on a wide variety of problems arising
from the continuous Galerkin finite element approximation of the Poisson equation,
a linear convection-diffusion equation, a nonlinear elliptic equation, and a nonlin-
ear convection-diffusion equation. For simplicity of exposition, we will take \bfitM to
be an identity matrix in sections 4.1, 4.2, 4.3, and 4.4. The performance of the
preconditioned version of these methods is investigated in section 4.5. We will set
\beta k = k/(k + 3) for Nesterov's method and its gradient restarting variant, as well as
\beta k = \| \bfitf (\bfitu k)\| /\| \bfitf (\bfitu k - 1)\| for the ARDM. We will also set \alpha k to a fixed value \alpha .

We will evaluate the performance of all methods based on the norm of the residual
vector as a function of the number of residual evaluations. We will set the error
tolerance as \epsilon = 10 - 8. A method is said to perform better than the other in a
particular example if the former requires a smaller number of residual evaluations
than the latter to converge to the prescribed tolerance.

While we will focus on systems of equations arising from the numerical discretiza-
tion of PDEs, the proposed method can be used to solve systems of equations in other
contexts. For instance, like Nesterov's method, the proposed method can be used to
solve systems of equations arising from the optimality condition of unconstrained opti-
mization problems. Similarly, Jacobi and ILU preconditioners will be used as a means
of demonstrating how preconditioning works with the proposed method in comparison
with the performance of preconditioned Newton--Krylov methods.
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4.1. Poisson equation. In the first example, we consider the following Poisson
problem:

(23)  - \Delta u = 2\pi 2 sin(\pi x) sin(\pi y) in \Omega = (0, 1)\times (0, 1)

with a Dirichlet boundary condition u = 0 on \partial \Omega . The finite element discretization
leads us to solving the following linear system:

(24) \bfitA \bfitu \ast = \bfitb ,

where the stiffness matrix \bfitA \in \BbbR N\times N is a symmetric positive-definite (SPD) matrix.
The solution of this linear system is the minimizer of the following convex minimiza-
tion problem:

(25) min
\bfitv \in \BbbR N

1

2
\bfitv T\bfitA \bfitv  - \bfitv T \bfitb .

The gradient vector of the objective function is thus the same as the residual vector
\bfitf (\bfitv ) = \bfitA \bfitv  - \bfitb . The finite element approximation employs nelem uniform triangular
elements of the polynomial degree p. Hence, the problem size N depends on the
polynomial degree p and the number of elements nelem.

Let us now assess the methods described herein for the solution of this problem
and compare their performance with that of the CG method. Figure 6 shows the
performance of all the methods for different values of (p, nelem, \alpha ). There are a number
of interesting observations. We see that the number of residual evaluations required for
convergence to a given tolerance increases with the polynomial degree and the number
of elements due to the increase in the condition number L/\mu = \lambda max/\lambda min. Although
Nesterov's method exhibits the periodic behavior discussed earlier, it converges much
faster than the forward Euler method. The gradient restarting Nesterov method
yields a significant improvement in the convergence rate. Our method converges
much faster than Nesterov's method and its gradient restarting variant in all cases.
Nesterov's method and its gradient restarting variant diverge when p = 3 and \alpha = 0.1,
whereas our method converges in those cases. This is consistent with the improved
stability of our scheme, as shown in section 3.3. Finally, the CG method has the best
performance for this particular problem, where the Jacobian matrix is SPD. However,
the CG method does not converge for the next problem, where the Jacobian matrix
is not SPD.

4.2. Linear convection-diffusion problem. In the second example, we con-
sider a linear convection-diffusion problem of the form

(26)  - \Delta u+ cx
\partial u

\partial x
+ cy

\partial u

\partial y
= 10 in \Omega = (0, 1)\times (0, 1)

with a Dirichlet boundary condition u = 0 on \partial \Omega , where (cx, cy) is the convective
velocity field. We use the continuous Galerkin finite element method to discretize the
above equation on a uniform mesh of nelem = 800 triangular elements and polynomial
degree p = 3. This spatial discretization results in the following linear system:

(27) \bfitA \bfitu \ast = \bfitb ,

where \bfitA \in \BbbR N\times N is a nonsymmetric matrix whenever the convective velocity is
nonzero. Figure 7 depicts the numerical solution for (cx, cy) = (1, 1) and (cx, cy) =
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Fig. 6. Comparison among the iterative methods for solving the Poisson problem.

(50, 50), which correspond to a diffusion-dominated case and a convection-dominated
case, respectively.

The solution of the above linear system satisfies the following minimization prob-
lem:

(28) min
\bfitv \in \BbbR N

1

2
(\bfitA \bfitv  - \bfitb )T (\bfitA \bfitv  - \bfitb ).

The gradient vector of the objective function is given by

(29) \bfitg (\bfitv ) = \bfitA T\bfitA \bfitv  - \bfitA T \bfitb ,

which differs from the residual vector \bfitf (\bfitu ) = \bfitA \bfitu  - \bfitb . Note that Nesterov's method
is intended to solve the normal equation \bfitg (\bfitu \ast ) = 0 instead of the residual equation
\bfitf (\bfitu \ast ) = 0. When applied to the normal equation \bfitg (\bfitu \ast ) = 0, the maximum step
size for stability reduces dramatically due to the squaring of the Lipschitz constant
and Nesterov's method becomes impractical. Furthermore, since the matrix \bfitA is not
SPD, the CG method is not suited to solve this problem. The CG method on the
normal equations (CGN) and the generalized minimum residual (GMRES) method
are used instead.

Figures 8 and 9 show the performance of all the methods for the diffusion-
dominated case cx = cy = 1 and the convection-dominated case cx = cy = 50,
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Fig. 7. Numerical solution of the linear convection-diffusion problem for (cx, cy) = (1, 1) (left)
and (cx, cy) = (50, 50) (right).

Fig. 8. Comparison among the iterative methods for solving for the convection-diffusion equa-
tion with cx = cy = 1.

Fig. 9. Comparison among the iterative methods for solving for the convection-diffusion equa-
tion with cx = cy = 50.
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respectively. In these figures, Nesterov's method is applied to the residual equation.
(When applied to the normal equation, Nesterov's method rapidly diverges for all the
values of \alpha considered.) We see that our method converges, while Nesterov's method
and its gradient restarting variant diverge when \alpha is set to 0.1. When \alpha is reduced
to 0.05, Nesterov's method and its gradient restarting variant are able to converge in
the diffusion-dominated case. In this case, the gradient restarting Nesterov method
converges a little faster than our method. Our method is less sensitive to the variation
of the stability parameter \alpha and more robust than Nesterov's method.

Furthermore, it is interesting to note that the performance of our method is better
in the convection-dominated case than in the diffusion-dominated case. In particular,
our method requires roughly 400 residual evaluations to converge to the error tolerance
10 - 8 in the convection-dominated case, whereas it requires more than 800 residual
evaluations in the diffusion-dominated case. This is attributed to the scheme being
stable for both regimes and the underlying ODE converging faster to the solution in
the convection-dominated case, as illustrated by the forward Euler method. This is in
contrast to Nesterov's method, which is stable in the diffusion-dominated regime and
unstable in the convection-dominated case. It is consistent with the stability region
plotted in Figure 4.

GMRES has the best performance among all the methods. We emphasize that
our method is capable of solving both linear and nonlinear systems, whereas GMRES
is designed to solve linear systems. In order to solve nonlinear systems, GMRES is
coupled with Newton's method, giving rise to the so-called Newton-GMRES method.
In the next two examples, we will compare our method against the Newton-GMRES
and Newton-CGN methods for solving nonlinear PDEs.

4.3. Nonlinear elliptic problem. In the third example, we consider a nonlin-
ear elliptic problem of the form

(30)  - \nabla \cdot 
\bigl( 
(1 + u2)\nabla u

\bigr) 
+ u = 4\pi 2 in \Omega = (0, 1)\times (0, 1)

with a Dirichlet boundary condition u = 0 on \partial \Omega . The weak formulation of the finite
element method is to find uh \in Vh such that

(31)

\int 
\Omega 

\bigl( 
(1 + u2

h)\nabla uh \cdot \nabla v + uhv
\bigr) 
dxdy  - 4\pi 2

\int 
\Omega 

vdxdy = 0 \forall v \in Vh,

where Vh = \{ v \in C0(\Omega ) : v| K \in \scrP 3(K) \forall K \in \scrT h, and v = 0 on \partial \Omega \} . Here \scrT h is a
finite element mesh of 200 triangular elements and \scrP 3(K) is the space of polynomials
of degree at most 3 on K. The weak formulation (31) is equivalent to the following
nonlinear system:

(32) \bfitf (\bfitu \ast ) = 0,

where \bfitu \ast \in \BbbR N is the vector of degrees of freedom of uh, and \bfitf \in \BbbR N is the residual
vector whose entries are obtained by setting v in the weak formulation (31) to the
basis functions of the space Vh. The initial vector \bfitu 0 is set to the numerical solution
of a linear elliptic problem in which the nonlinear term u2 is removed from (30).

Figure 10 shows the convergence of various schemes for \alpha = 0.015. We ob-
serve that the ARDM converges slightly better than the gradient restarting Nes-
terov method and that the two methods perform much better than the forward Euler
method and Nesterov's method. They take more than 600 residual evaluations to
converge to a tolerance of \epsilon = 10 - 8, while the forward Euler method and Nesterov's
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Fig. 10. Performance of the four different schemes for the nonlinear elliptic problem.

Table 1
Convergence of Newton-CGN and Newton-GMRES for nonlinear elliptic problem.

Newton iteration Residual norm \# CGN iterations \# GMRES iterations

1 3.9017 \times 100 841 130

2 9.7774 \times 10 - 1 841 113

3 1.3988 \times 10 - 1 712 107

4 4.1785 \times 10 - 3 676 107

5 3.6006 \times 10 - 6 457 106

6 2.1354 \times 10 - 12 no convergence 129

Total  - 692

method take many thousands of residual evaluations. Table 1 shows the convergence
of the Newton-CGN and Newton-GMRES methods. In each Newton iteration, CGN
and GMRES are used to solve a linear system resulting from the linearization of
the weak formulation (30). The number of CGN and GMRES iterations required
for the prescribed tolerance of 10 - 8 is tabulated in Table 1. Newton-CGN fails to
converge at the sixth Newton iteration because the condition number of the normal
equation becomes too large. Newton-GMRES, however, converges to a residual norm
of 2.1354 \times 10 - 12 after six Newton iterations with 692 GMRES iterations/matrix-
vector products. The Newton-CGN and Newton-GMRES methods commonly require
computing and storing the Jacobian matrix, which adds a significant overhead to
the computational cost and memory requirements. Furthermore, even with the use
of Jacobian-free methods to avoid the construction of the Jacobian matrix and cal-
culation of matrix-vector products, GMRES still requires the orthogonalization and
storage of the Krylov vectors. Our method is thus more efficient than the Newton-
CGN and Newton-GMRES methods in this particular example.
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4.4. Nonlinear convection-diffusion problem. In the last example, we con-
sider solving a Burgers problem

(33)  - \nabla \cdot (\kappa \nabla u) + u
\partial u

\partial x
+ v

\partial u

\partial y
= s in \Omega = (0, 1)\times (0, 1)

with u = 0 on \partial \Omega and \kappa = 0.02. The source term s is specified such that the problem
has the following exact solution:

(34) u = xy tanh

\biggl( 
1 - x

\kappa 

\biggr) 
tanh

\biggl( 
1 - y

\kappa 

\biggr) 
.

The weak formulation of the finite element method is to find uh \in Vh such that

(35)

\int 
\Omega 

\biggl( 
\kappa \nabla uh \cdot \nabla v + uh

\partial uh

\partial x
v + uh

\partial uh

\partial y
v

\biggr) 
dxdy  - 

\int 
\Omega 

svdxdy = 0 \forall v \in Vh,

where Vh = \{ v \in C0(\Omega ) : v| K \in \scrP 3(K) \forall K \in \scrT h, and v = 0 on \partial \Omega \} and \scrT h is
the finite element mesh of 1800 triangular elements. The initial solution \bfitu 0 is set to
the solution of a linear elliptic problem in which the nonlinear convective terms are
removed from (33).

Fig. 11. Performance of the four different schemes for the Burgers problem.

Figure 11 shows the convergence of the four different schemes for two different
values of the stability parameter \alpha . We observe that the ARDM needs 700 residual
evaluations to converge to a tolerance of \epsilon = 10 - 8 for \alpha = 5, while both Nesterov's
method and its gradient restarting variant do not converge. When \alpha is reduced from
5 to 2.5, the gradient restarting Nesterov method converges to the said tolerance
with more than 1000 residual evaluations, while Nesterov's method still does not
converge. Table 2 shows the convergence of the Newton-CGN and Newton-GMRES
methods, together with the number of CGN and GMRES iterations required for solv-
ing the linear system with a prescribed tolerance of 10 - 8. Again, Newton-CGN fails
to converge at the fifth Newton iteration. The Newton-GMRES method, however,
converges to a residual norm of 4.0558\times 10 - 10 after six Newton iterations, requiring
a total of 1461 matrix-vector products. This is roughly two times more than the
number of residual evaluations of the ARDM. In this example, our method outper-
forms the gradient restarting Nesterov method, the Newton-CGN method, and the
Newton-GMRES method.
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Table 2
Convergence of Newton-CGN and Newton-GMRES for the Burgers problem.

Newton iteration Residual norm \# CGN iterations \# GMRES iterations

1 3.8045 \times 10 - 2 3135 229

2 8.8212 \times 10 - 3 3862 233

3 1.5580 \times 10 - 3 3529 234

4 1.2478 \times 10 - 4 3278 249

5 1.6119 \times 10 - 6 no convergence 253

6 4.0558 \times 10 - 10 263

Total  - 1461
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Fig. 12. Performance of the four residual schemes for the nonlinear elliptic problem with Jacobi
(left) and ILU(0) (right) preconditioners.
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Fig. 13. Performance of the four residual schemes for the Burgers problem with the Jacobi
conditioner (left) and the ILU(0) preconditioner (right).

4.5. Effect of preconditioning. In this section, we investigate the effect of
preconditioning on the ARDM and other methods. Jacobi and incomplete LU fac-
torization with zero fill-in, ILU(0), preconditioners are considered. More specifically,
for all methods, we take \bfitM k to be the diagonal (for the Jacobi preconditioner) or the
ILU(0) factorization (for the ILU preconditioner) of the Jacobian matrix evaluated at
the initial solution \bfitu 0. Thus, the preconditioning matrix \bfitM k remains the same for
all iterations k. We emphasize that other preconditioners, such as Gauss--Seidel and
multigrid, can be similarly applied to the ARDM.

Figures 12 and 13 show the convergence for the nonlinear elliptic problem in
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Table 3
Convergence of the Newton-GMRES method for the nonlinear elliptic problem with the Jacobi

and ILU(0) preconditioners.

Newton iteration Residual norm Jacobi ILU(0)
1 3.90\times 100 138 40
2 9.78\times 10 - 1 119 33
3 1.40\times 10 - 1 111 30
4 4.18\times 10 - 3 109 29
5 3.60\times 10 - 6 110 29
6 2.13\times 10 - 12 139 28

Total GMRES iterations 726 189

Table 4
Convergence of the Newton-GMRES method for the Burgers problem with the Jacobi and ILU(0)

preconditioners.

Newton iteration Residual norm Jacobi ILU(0)

1 3.80\times 10 - 2 232 57

2 8.82\times 10 - 3 240 47

3 1.56\times 10 - 3 242 47

4 1.25\times 10 - 4 256 51

5 1.61\times 10 - 6 261 53

6 4.06\times 10 - 10 272 55

Total GMRES iterations 1503 310

section 4.3 and the Burgers problem in section 4.4, respectively. Tables 3 and 4 show
the convergence of the preconditioned Newton-GMRES method for the nonlinear
elliptic and Burgers problems, respectively. The stability parameter \alpha is modified to
account for the preconditioning effect.

Several remarks follow from these results. First, the use of the ILU(0) precondi-
tioner reduces the number of residual evaluations due to the improved spectra of the
resulting system, as discussed in section 3.3. Second, the Jacobi preconditioner is not
effective since it has very little impact on the performance of the various methods.
This makes sense because taking the diagonal of the initial Jacobian matrix has very
little influence on the spectra of the underlying system during the iteration. Third,
our method converges faster than Nesterov's method and its gradient restarting ver-
sion for the Burgers problem when the ILU(0) preconditioner is used. For the other
three cases, our method and gradient restarting Nesterov method behave similarly.
Fourth, our method outperforms the Newton-GMRES method since the latter incurs
more residual evaluations and extra computational cost due to the orthogonalization
of the Krylov vectors. Finally, we emphasize that computing, storing, and factor-
ing the Jacobian matrix in Newton-Krylov methods demand high computational cost
and memory requirements. Therefore, our method can be more scalable and efficient
than the Newton-GMRES method for solving very large scale systems on parallel
computers.

5. Conclusions and open research areas. We have presented accelerated
residual methods for the iterative solution of systems of equations. The methods
have a number of attractive computational and theoretical features. They are more
stable, robust, and faster than Nesterov's method since their stability region is larger
than that of Nesterov's method. They are computationally competitive with Newton--
Krylov methods for solving nonlinear systems since they do not require the construc-
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tion and storage of the Krylov vectors. Owing to low memory storage and computa-
tional cost per iteration, they are highly scalable and efficient for solving very large
systems on parallel computers. We end the paper by discussing open research areas.

5.1. Generalized accelerated residual methods. First, we note that the
schemes discussed in this paper belong to the following family of methods:

\bfitv k =

n\sum 
i=1

(aik\bfitu k+1 - i + bik\bfitf (\bfitu k+1 - i)) ,(36a)

\bfitu k+1 = \bfitv k  - \alpha k\bfitf (\bfitv k).(36b)

In particular, we have n = 1, a1k = 1, and b1k = 0 for the forward Euler method. We
also have n = 2, a1k = (1+\beta k), a2k =  - \beta k, and b1k = b2k = 0 for Nesterov's method.
And we have n = 2, a1k = (1 + \beta k), a2k =  - \beta k, b1k = \alpha k(1 + \beta k), and b2k = 0 for
the accelerated residual method. The extrapolation step (36a) can be interpreted as
an attempt to accelerate the iterative process using the two subspaces \{ \bfitu k+1 - i\} ni=1

and \{ \bfitf (\bfitu k+1 - i)\} ni=1. The n-step extrapolation---as a generalization of the two-step
extrapolation in the case of Nesterov's method and the accelerated residual method---
may accelerate the convergence even further.

Obviously, the parameters aik and bik play a crucial role in the convergence and
stability of the resulting method. As discussed in section 3.3, the stability region of
the resulting scheme depends on these parameters. It allows us to find an optimal set
of parameters for a particular problem at hand. For instance, for SPD systems, we
should find these parameters to maximize the stability region on the real axis. On
the other hand, for convection-dominated systems, we should find the parameters to
maximize the stability region on the imaginary axis. For nonlinear systems in which
their spectral properties may change from one iteration to the next, the optimal
parameters also vary from one iteration to the next. Therefore, it makes sense to
adapt these parameters to the spectral properties.

5.2. Preconditioned accelerated residual methods. Let us consider the
following first-order ODE system:

(37) \bfitM (t) \.\bfitu + \bfitf (\bfitu ) = 0,

where \bfitM (t) is the preconditioning matrix. The forward Euler method for the above
ODE system reads as

(38) \bfitu k+1 = \bfitu k  - \alpha k\bfitM 
 - 1
k \bfitf (\bfitu k).

Note that if we choose \bfitM  - 1
k = \partial \bfitf 

\partial \bfitu (\bfitu k), then the above iteration is nothing but the
damped Newton method for solving the system (1). Next, we recall from section 3.6
that the preconditioned accelerated residual method

\bfitv k = \bfitu k + \beta k(\bfitu k  - \bfitu k - 1) - \alpha k(1 + \beta k)\bfitM 
 - 1
k \bfitf (\bfitu k),(39a)

\bfitu k+1 = \bfitv k  - \alpha k\bfitM 
 - 1
k \bfitf (\bfitv k)(39b)

is derived as an FDA of the second-order ODE system

(40) \bfitM (t)\"\bfitu +
\gamma 

t
\bfitM (t) \.\bfitu + \bfitf (\bfitu ) = 0.
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Through both the theoretical analysis and the numerical experiments presented in
this paper, we see that the accelerated residual method converges significantly faster
than the forward Euler method. Therefore, the preconditioned accelerated residual
method can be combined with a Krylov method such as CG or GMRES to solve
\bfitM  - 1

k \bfitf (\bfitu k) in (39a) and \bfitM  - 1
k \bfitf (\bfitv k) in (39b). The resulting method can converge

much faster than the Newton--Krylov method.
We can also extend the above ideas by devising accelerated residual methods as

FDAs of the following ODE system:

(41) \bfitM (t)\"\bfitu +
\gamma 

t
\bfitC (t) \.\bfitu + \bfitf (\bfitu ) = 0,

where \bfitM (t) is the preconditioning matrix for the acceleration effect and \bfitC (t) is
the preconditioning matrix for the damping effect. When being applied to linear
systems of equations, the resulting method would generate iterates outside the Krylov
subspace, thereby bringing an opportunity to go beyond Krylov methods such as
CG and GMRES. When being applied to nonlinear systems, the resulting method
would be very interesting to analyze and determine effective preconditioners, thereby
allowing us to move beyond traditional preconditioned Newton--Krylov methods.
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