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parametrized by a stochastic input — expressed as a Karhunen-Loéve expansion - in order to compute
outputs that are smooth functionals of the random solution fields. The RB method proposed here for var-
iational problems parametrized by stochastic coefficients bears many similarities to the RB approach
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opment of new a posteriori estimates for “statistical” outputs - such as the first two moments of integrals
of the random solution fields; these error bounds, in turn, permit efficient sampling of the input stochas-
tic parameters and fast reliable computation of the outputs in particular in the many-query context.
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1. Introduction
1.1. Overview

Let U(-,w) be a scalar random field solution to a (presumed
well-posed) Boundary Value Problem (BVP) involving a Stochastic
Partial Differential Equation (SPDE). For instance, if variations in
the probability space (Q, #,P) are denoted by the variable w, we
take U(-, w) as the P-almost sure (a.s.) solution to the Partial Differ-
ential Equation (PDE) in a (smooth) physical domain

~div@x)VU(x,w)) =0, VYxeZ (1)

supplied with a stochastic Robin Boundary Condition (BC) on the
boundary 92 parametrized by a random input field Bi(-, w)

n(x)'a(x)VU(x,») + Bi(x,w) U(x,w) = g(x), Vx € d%. (2)

Here, a takes symmetric positive definite matrix values, the random
field Bi(-, ) (Biot number [22]) is non-zero (non-degenerate posi-

* Corresponding author. Address: CERMICS, Ecole Nationale des Ponts et Chau-
ssées, (ParisTech/Université Paris-Est), 6 and 8 Avenue Blaise Pascal, Cité Descartes,
77455 Marne-la-Vallée, Cedex 2, France. Tel.: +33 1 64 15 35 79; fax: +33 1 64 15 35
86.

E-mail addresses: boyaval@cermics.enpc.fr, sboyaval@mit.edu (S. Boyaval).

0045-7825/$ - see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.cma.2009.05.019

tive) on some subset I'y C 92 (with non-zero measure), n(x) is
the outward unit normal at x € 92 and T denotes the transpose.

We consider the rapid and reliable computation of statistical
outputs associated with U(-,w) such as the expected value Ep(S)
and the variance Varp(S) of a random variable S(w) = &(U(-, w)) gi-
ven by a linear (scalar) functional ¢ of the trace of U(-,w) on
I'r c 02 (where I'x N I'g = ()
sU(,w) = | UG ). 3)
Jry
One possible strategy is to evaluate the statistical outputs as Monte-
Carlo (MC) sums of the random variable S
BulS) = 5357, Vils) = 1 (B - 57 (4)

M ’ M-1 ’
m=1 m=1

using M independent random variables (S™),_,.,, with the same
distribution law as S. But M can be very large, and hence these
MC evaluations can be very demanding (for each m, one must solve
a BVP PDE in 2). Furthermore, in actual practice, and as developed
subsequently in this paper, we are often interested in evaluating our
statistical outputs for different values of deterministic parameters,
say ¢ - which even further increases the computational challenge.
For this reason we develop a Reduced Basis (RB) approach: to
decrease the computational cost of the M realizations of the Finite
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Element (FE) approximations U (-,
Monte-Carlo sums.

Toward this goal, we first rewrite the parametrization of the
BVP using a Karhunen-Loéve (KL) expansion of the random input
field (see Section 2 for details)

w) =~ U(-,w) required in the

Bi(x,w) = Bi(G(X) + Z Dy(x) Yk((l))>7 Vx € 09, (5)
k=1

where %" is the rank (possibly infinite) of the covariance operator

for Bi(-,w) with eigenvectors (@), the positive number

Bi = [, dP(w) [,, Bi(-,w) is an intensity factor and the random vari-

ables (Yi)1<k< are mutually uncorrelated in L3(Q) with zero mean.

Next, we define a function bi(;Bi,y) parametrized by Bi € R., and

the (possibly infinite) sequence y = (y,,¥,,...) € A ¢ R”
bi(x; Bi,y) = §<G(><) +y <1>;<(X)yk) , VX € 09, (6)
k=1

such that for all Bi e R,y and y € A’ the parametrized function
bi(-;Bi,y) is well defined; we also define truncated versions
Y= W1,Y2,--,¥k 0,0,...) € A up to order K < ¢ of the determin-
istic parameter sequence y.

For any positive integer K < #, we then define a solution
Uk (-, w) to the BVP in which the KL expansion of Bi(-, w) in the Ro-

bin BCs is replaced by a truncated version at order K
BiK('7 (U) = bl(7ﬁv y’((w))7

using truncated versions Y* (with K < ") of the (possibly infinite)
sequence Y = (Yy); <, Of random variables. For almost all fixed
x € 7, the random variable Ux(x,-) is clearly &(Y*)-measurable
and, by the Doob-Dynkin lemma [37], we have
Uk (x,m) = ug(x; Y¥(w)) for almost all (x,w)ec 2 xQ, where
uk(-;y%) solves a yX-parametrized BVP PDE problem (y¥ € A”):
—div(a(x)Vug(x;¥%)) =0, Vxez
n(x)"a(x)Vug (x; y%) + bi(x; Bi, y*)ug (x; y¥) = g(x), VX € 9.
(7)
The problem (7) is well-posed under standard hypotheses for all
y€ € A in the range of Y.
The statistical outputs for Sx(w) = &(Uk(,
truncation of the KL expansion

w)) obtained after

M

mSk] = Z

m:

M
Vm(Sk] = 1 > (EmlSk] - S¢)°, 8)

can then be obtained as, respectively, Ey[sk(Y*)] and Vi[sk(Y*)],
using sg(¥¥) = &(uk(;¥%)) and M independent random vectors
(Y§)1<men With the same distribution law as Y¥. Clearly, the error
in these outputs due to truncation of the KL expansion must be as-
sessed; we discuss this issue further below. (We must also ensure
that M is large enough; we address this question in the context of
our numerical results.)

In Section 3, we develop a Reduced Basis (RB) approach
[1,12,34,41] for the parametrized (deterministic) BVP (7) and out-
puts (8) for the case in which the random variables Y,,1 <
k < K(< o), are bounded (uniformly if 2# = +o00) such that the
KL expansion is positive for any truncation order K (and converges
absolutely a.e.in 2 when # = +cc); the latter ensures well-
posedness of the BVPs obtained after truncation at any order
1 < K < . We shall present numerical results for a random input
field Bi(-, w) whose spatial autocovariance function is a Gaussian
kernel such that the KL spectrum decays rapidly.

In particular, we shall show that our RB approach significantly
reduces the computational cost of the MC evaluations with no sen-
sible loss of accuracy compared to a direct Finite Element (FE) ap-

proach. For instance, with truncated KL expansions of order K < 20,
the RB computational time for solutions to (7) is reduced by a fac-
tor of J; relative to direct FE, and the (relative) approximation error
in the expectatlon due to both RB and KL truncation is controlled
and certified to 0.1% (for K = 20). Our RB approach thus also
straightforwardly permits rapid exploration of the dependence of
the outputs Ey[sx(Y*)] and Vy[sc(Y*)] on variations in additional
deterministic parameters ¢ entering the problem. (In the limit of
many evaluations at different g, computational savings relative
to FE can be as much as 0(200)).

1.2. Relation to prior work

The computation of BVPs involving SPDEs has been identified as
a demanding task [3,9,10,29] for several years, whatever the
numerical approach used to discretize the SPDE. For instance,
among those numerous numerical approaches, the popular spectral
(stochastic) Galerkin discretizations [16], based on a (generalized)
Polynomial Chaos (PC) expansion of the solution [55,56], consists
in solving a variational problem in a high-dimensional tensor-prod-
uct functional space on 2 x A¥, which is computationally (very)
expensive. Hence several reduction techniques have been pro-
posed recently for the spectral Galerkin approach, in particular:

e sparse/adaptive methods [13,50],

o efficient iterative algorithms for the fully discretized problems,
using parallel solvers, preconditioners and/or Krylov projections
[40,25], sometimes termed ‘“stochastic RB” Krylov methods
[30,44,49],

e POD approaches for PC discretizations of the functions in the
stochastic variable (combined with a two-scale approach in
the physical space) [11,15],

e POD approaches for PC-FE discretizations of the functions
defined on the whole tensor-product space, termed ‘“general-
ized spectral decomposition” [35,36],

e and stochastic collocation approaches [57,2,33].

These reduction techniques have shown good performance on
test cases. However, the sparse/adaptive methods require substan-
tial implementation efforts, the Krylov methods and the POD ap-
proaches do not yet provide rigorous a posteriori analysis to
control the output approximation error, and the stochastic colloca-
tion method still invokes numerous (expensive) FE solutions - at
each collocation point. The RB method described here - albeit for
a limited class of problems - focuses on simple implementation,
rigorous a posteriori error bounds, and parsimonious appeal to
the FE “truth”.

The formulation of the RB method presented herein can be
straightforwardly applied to discretizations of the SPDE that lead
to the solution of many decoupled variational formulations of the
BVP on 2 for many fixed given values of the random input in A” (like
(7)). In the present work, the RB method is only applied to Monte-
Carlo/Galerkin (in fact, Finite-Element) discretizations of the SPDE,
as described earlier in this introduction. That is, the statistical
outputs like mean and variance of some functional of the random
variable solution to the SPDE are computed through Monte-Carlo
(MC) evaluations of the random variable Sy = sx(Y*), and not
through quadrature or collocation formulse for the (weighted)
integration of the function y* — s (yX) over yX € A”.

However, the RB method could be applied as well to many
numerical approaches where integration in the stochastic space
is discretized by collocation at many points in the range of the ran-
dom input, where at each of these points one has to solve a PDE
parametrized only by the value of the random input at the same
point. In particular, the RB method proposed in this paper can be
viewed as an accelerator of the stochastic collocation approach de-
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scribed in [2], where a basis of orthogonal polynomials in the sto-
chastic variables is substituted for the standard PC basis. As a
matter of fact, the stochastic collocation approach is just a pseudo-
spectral Galerkin discretization: it applies quadrature formulae for

the computation of the outputs Ep (SK(YK)) and Varp (SK(YK)) SO

as to split the variational formulation for uk(:;-) on the high-
dimensional tensor-product space (x,yX) € 2 x A’ into many var-
iational formulations on the lower-dimensional space  parame-
trized by yX € A”. Clearly, we may replace sx by a (certified) RB
approximation to further reduce the computational effort!; equiv-
alently, we may replace the MC sums of our current approach with
the quadrature rules developed in [2,33]. Future work will investi-
gate this promising opportunity.

Compared with numerical approaches developed previously for
SPDEs, the main features of our RB approach are the following:

(a) the solution Uk(-, ) to the original stochastic BVP is mapped
to the distribution of Y,

Uk (%, w) = ug(x; Y¢(w)) for almost every (a.e) xe9
and P -a.e. outcome € Q,

through the solution ug(-;yX) to a deterministic BVP, the vari-
ational formulation of which must have an affine parametri-
zation? (affine in the sense that the weak form can be
expressed as a sum of products of parameter-dependent func-
tions and parameter-independent forms) - as typically pro-
vided by a KL expansion of the random input field which
decouples the dependencies on the probability and physical
spaces;

(b) a large number of variational approximations for the solu-
tions uk(;y*) to the deterministic BVP, defined over the (rel-
atively) low-dimensional physical space 2 and parametrized
by yX, must be computed for each MC evaluation of the sta-
tistical outputs (and for each value of the additional param-
eter ¢) - as opposed to spectral Galerkin variational methods
in which uk(-;-) is discretized on the high-dimensional ten-
sor-product space (x,y*) € 2 x A’ such that only one, very
expensive, solution is required (for each value of the addi-
tional parameter g);

(c) the “deterministic” RB approach [27,42,43] is then applied to
the deterministic BVP to yield - based on a many-query Off-
line-Online computational strategy - greatly reduced com-
putational cost at little loss in accuracy or, thanks to
rigorous a posteriori bounds, certainty.

Of course our approach also bears many similarities to earlier
proposals, most notably reliance on the Kolmogorov strong law
of large numbers (for the MC evaluations to converge), on the KL
expansion of the random input field, and on smoothness with re-
spect to the parameter yX.

Note that the usual RB method can be extended to the SPDE
framework thanks to new error bounds (to take into account the
effect of the truncation of the KL expansion, and to assess the effi-
ciency of the reduction, that is to control the RB error in outputs
that are sums over many parameter realizations). But the idea be-
hind the RB method remains the same as in the usual case of
parametrized (deterministic) PDEs, even though SPDEs typically
result in many (> K) deterministic parameters (yX, o). The rapid

! In[33], it is even shown that one can minimize the number of collocation points,
which correspond to zeros of the family of orthogonal polynomials substituted for the
PC basis, with a view to “optimally” describing the range of the random input.

2 Non-affine (but piecewise smooth) parametrizations can also be treated by the
so-called magic points to “empirically” interpolate the coefficients entering the
variational formulation [4,17].

convergence of the RB method we observe here - that does not
break but at least moderates the curse of dimensionality - relies
heavily not only on the smoothness of ux(-;y%) with respect to
¥X, but also on the limited range of the y, component of y* when
k > 1; the latter, in turn, derives from the (assumed) smoothness
of the autocovariance function (rapid decay of the eigenvalues of
the Hilbert-Schmidt integral operator with the autocovariance
function as kernel). It is imperative to choose K as small as possible.

2. Variational formulation of a boundary value problem with
stochastic parameters

2.1. Stochastic partial differential equations

The modeling of multiscale problems in science and engineer-
ing is often cast into the following framework. At the macroscopic
scale at which important quantities must be computed, a (possibly
multi-dimensional) field variable U(-, ®) is assumed to satisfy a
PDE on a physical domain 2 c R? (d =2,3, or 4 for common
applications)

Al ) U(, o) = f(, 0)

supplied with Boundary Conditions (BC) on the (sufficiently
smooth) boundary 02,

B(,0) U(, ) = g(-, )

in 7, 9

in 07; (10)

here the differential operators A(-, ), B(-, ) and the source terms
f(-,w),8(-, w) are parametrized at each point of the physical domain
by a variable @ describing the state of some generalized local
microstructure. We shall not discuss other possible formulations
for multiscale problems, such as integral equations; furthermore,
the formulation above will be assumed well-posed in the sense of
Hadamard for the case in which A,B,f and g vary with the micro-
structure w (extensions of this work to distributions, that is, gener-
alized functions of w, are not straightforward).

To model the “fluctuations” of the underlying microstructure,
whose impact on the macroscopic quantities of interest is to be
evaluated, we can assume - without invoking detailed information
about the microstructure - that the input is random. To this aim,
one can introduce an abstract probability space to model the fluc-
tuations, the latter being then described through variations within
the set of elementary events w € Q (similar arguments are often
developed to model material properties>, see e.g. [38,58]). The out-
puts of such models are then also random by nature. The Egs. (9) and
(10) are then generally called Stochastic PDEs (SPDEs). SPDEs are
useful when one cannot, or does not want to, describe precisely
the microstructure. Examples include uncertainty quantification for
structures in civil engineering [8,48], for complex flows in fluid
dynamics [28], or for multiphase flows in porous media [14].

2.2. Problem statement: stochastic robin boundary condition

The RB method has been introduced earlier for the many-query
evaluation of outputs for various parametrized variational prob-
lems [27,42,43] in a deterministic framework (deterministic PDE
and BC). In this work, we shall choose only one (simple) example
to illustrate the stochastic case; however, it should be clear that

3 We note that by choosing the microscopic fluctuations as stationary ergodic
random fields, the numerical treatment of averaged outputs for SPDEs also applies to
many situations considered in stochastic homogenization theory [5,23], in which a
powerful and elegant analysis of (weak) convergence allows one to reduce the
modeling of complex multiscale problems to a more tractable set of sub-problems.
Note that the RB approach has been applied to efficient numerical treatment of
multiscale problems with locally periodic fluctuations within the context of
deterministic homogenization theory [6].
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the approach admits a general abstraction applicable to a wide
class of problems.* We now pose our particular problem.

We shall let (2, 7 ,P) be a complete probability space where
is the set of outcomes w, # is the g-algebra of events among all
subsets of Q, and P is a probability measure (notice that this defi-
nition itself is often a practical issue for the modeller). And we shall
let the physical domain 2 be an open, bounded, connected subset
of R? (d = 2) with Lipschitz polyhedral boundary, which we classi-
cally equip with the usual Borel g-algebra and the Lebesgue mea-
sure. We recall that random fields are collections of scalar random
variables that can be mapped to a physical domain; for instance,
functions are defined on 2 and take values in L2(Q) - the space
of square-integrable functions on the probability space (2, 7,P).

Let us introduce some further notations:

[*(2) the Hilbert space of Lebesgue square integrable functions
in 7;

H'(2) the usual Sobolev space (with Hilbert structure) of func-
tions in L?(2) that have gradient in [L?(2)]?, imbued with
the usual Hilbert norm || - ||, ,;

[*(02) the Hilbert space of the Lebesgue square integrable func-
tions in the manifold 02 equipped with its Borel o-alge-
bra, imbued with the Hilbert norm || - |/ 5,3

L*(02) the Banach space of essentially bounded functions on the
manifold 92, imbued with its usual norm || - || _ .-

We also recall that functions v € H'(2) have a trace v € [*(92)
on 02 that satisfies

17005 < V12l 0s (11)

where y = 7(2) is a constant positive real number that depends
only on 2.

In the following, we shall deal with SPDEs in which only the
boundary differential operator B(w) is parametrized by a random
scalar input field, in particular Bi(-,-): 02 x @ — R. We identify in
(9) and (10)

Ax,w) = —=div@x)V-), f(x,w)=0, Vxe 2,
B(X7 (0) = nT(X) a(x) V- +Bi(X7 OJ)~, g(X, (1)) = g(X),

The case in which the other terms also depend on a single scalar
random field Bi(-,w) is a straightforward extension, provided the
problem (9) and (10) remains well-posed in the sense of Hadamard
with respect to the variations w € Q. Note that the divergence div
and gradient V operators imply differentiations with respect to
the physical variable x only, and not with respect to the probability
variable . The scalar random field U(-, w) with x € & is defined as
the P-a.s. solution to the Robin BVP (1) and (2).

The deterministic (strictly positive) diffusion matrix a is as-
sumed isotropic though non-constant for all x €  (the function
K is specified below to get a simple “additional” deterministic
parameter @),

K(x) O
0 K(x)
We shall assume 0 < Kpin < K(X) < Kmax < +oo for well-posedness.

The boundary 02 is divided into three non-overlapping open
subsets

Vx € 09.

a(x) = , Vxe9.

02 c (InUTRUTS).

4 We shall limit attention to those simple SPDEs which are not generalizations of
Stochastic Differential Equations (SDEs) to multi-dimensional derivatives - where
outcomes of the random input are distributions (generalized functions). Such
interesting cases will be the subject of future work.

The boundary (Root) source term g is taken as deterministic (con-
stant), non-zero on I'g only,

gx)=1p, Vxe€07,

while the Biot number Bi is taken as a positive random field, non-
degenerate on I'y only,

Bi(x,w) = Bi(x,w) 1p,, VX € d2.

Note that on I'y, Eq. (2) thus reduces to homogeneous Neumann
conditions.

The physical interpretation is simple: if Ty is the constant tem-
perature of the ambient medium, Ty + U is the steady-state tem-
perature field in a domain ¢ (comprised of an isotropic material
of thermal conductivity k) subject to zero heat flux on boundary
I'y (either by contact with a thermal insulator or for reasons of
symmetry), constant flux at boundary I'y (contact with a heat
source), and a random heat transfer coefficient Bi at boundary I's
(contact with a convective fluid medium). Note that the Biot num-
ber Bi is a fashion for decoupling the solid conduction problem
from the exterior fluid convection problem: it is at best an engi-
neering approximation, and at worst a rough average - often not
reflecting the environmental details; it thus makes sense to model
the unknown Bi variations as a random (but typically rather
smooth) field Bi(-, @) in order to understand the sensitivity of out-
put quantities to heat transfer coefficient uncertainties.

With a view to specify parameters which will then be used in
the numerical application of Section 3, we shall more precisely
consider the steady heat conduction problem (1) and (2) inside
the T-shaped heat sink 2 as shown in Fig. 1. The heat sink com-
prises a 2 x 1 rectangular substrate (spreader) 2, = (-1,1)x
(0,1) on top of which is situated a 0.25 x4 thermal fin
21 = (—0.25,0.25) x (1,5). (In effect, all lengths will be nondimen-
sionalized relative to the side-length of the substrate.) We also
specify the diffusion coefficient, which we shall take as a (normal-
ized) piecewise constant

K(x) =19, +Klg,, Vxe 2,

where 15, is the characteristic function of domain ; (i=1,2). On
I'g, the two sides of the fin, we shall impose a stochastic convec-
tion/Robin BC with a non-zero random Biot number Bi (built as a
random field Bi(-, ) with a priori known mean and autocovariance
function, see Section 2.4.1); on Ik, the root, we impose unit flux
g(x) =1; and on I'y, we impose zero flux.

We recall that the outputs of interest will be the first two mo-
ments of a (scalar) linear functional & of the random solution field
U(-,w) defined in (3) as the (random) integrated trace
S(w) = &(U(-,w)) on the edge I'k of the domain & (corresponding

I's|Dy

I'n Dy

AR RREERRRARS
I'r

Fig. 1. Geometry of the heat sink: a spreader 2, and a fin ;.
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to the location of the heat source - the point at which we wish to
control the temperature):

Ep(S) = L S(w) dP(w), Varp(S) :

_ / S()? dP() — Ep(S)?, (12)
Q

provided the random variable S is sufficiently regular (for instance
in L2(Q)).

Remark 2.1 (Outputs). It is possible to consider other (and multi-
ple) outputs within the RB approach. Essentially these outputs
should be empirical estimations for functionals of U(-, w) that are
continuous with respect to some Lf,(Q,H1 (2)) topology
(1 < p < +o0). Note that interesting cases such as p = +oco above,
and pointwise values of a cumulative distribution function

P{o € Q&(U(- ) < o}

for some finite numbers &, € R, are covered by this first RB ap-
proach. Indeed, assuming smoothness in , one can bin the range
of the random variable &(U(-, ®)), and use a tree algorithm to ac-
count for the variations inside the confidence interval obtained
for each realization S™ (1 < m < M) of S(w) = &(U(-,w)) using the
RB approach. If a confidence interval A? is associated to each real-
ization S™ and overlaps n,,, € N bins, then computing the confidence
interval for the output cumulative distribution function amounts to
a search for the extreme variations in the output among the
(IMY_,n,) leaves of the tree.

In the numerical application of Section 3, the statistical outputs
(12) (expected value and variance of the integrated temperature at
the bottom surface I' of the heat sink) will be explored in a many-
query context (of design optimization for instance) as functions of
the “additional” deterministic parameter ¢ = (x,Bi) in the range
A¢, where

Bi : Ep(Bi).

sl Jry

A detailed stochastic description of the random field Bi(-, w) used
for numerics is given in Section 2.4.

2.3. Different discretization formulations

Much attention has been devoted recently to the development
and the numerical analysis of various numerical approaches for
BVPs involving SPDEs e.g. [2,3,9,13,16,25,29,33,44,51,53,54,56].
Our RB approach specifically aims at reducing the number of com-
putations in many of the previously developed frameworks with-
out any loss in precision by (i) splitting the computations into
Offline and Online steps, and (ii) maintaining accuracy control
through a posteriori error estimation of the outputs. The RB ap-
proach applies to those formulations that are variational with re-
spect to variables in the physical space 2, which we denote %-
weak formulations, and can be combined with different treatments
of the probabilistic dependence. The latter fall into two main cate-
gories: the Q-strong/Z-weak formulations; and the Q-weak/Z-
weak formulations. Although we shall only deal with Q-strong/
2-weak formulations in the rest of this paper, our RB approach ap-
plies equally well to many Q-weak/Z-weak formulations, as al-
ready discussed in the introduction. It is for this reason that we
briefly summarize the principles of each of the different formula-
tions so as to make it clear how our RB approach would adapt to
Q-weak/Z-weak formulations. (Both formulations have been stud-
ied extensively before, though typically by different authors; a few
studies already compare both formulations [29,3], but it may be

interesting to reevaluate such comparisons between formulations
from the viewpoint of our RB approach.)

2.3.1. Strong-weak formulations

If the Biot number Bi(-, w) is a non-degenerate positive random
field on the (non-negligible) subset I'; of 62, that is if there exist
two constants 0 < by, < bmax < 400 such that P-a.s.

B1(7 (,U) S (Bmin; Z7max)
or equivalently Bi(-, w),Bi ' (-, ) € L¥ (Q, Ly (I's)), then, by virtue of
the Lax-Milgram theorem, there exists a unique (weak) solution
U(-,w) € H'(2) to (1) and (2), satisfying (14) P-a.s.:

a.e.in I'g, (13)

v U(-,w).Vu+K/ VUG, ) Vo
7

7

+ [ Bi( o) U(~,w)v:/ v, YoeH (). (14)
I'r

Iy
Furthermore, from (13), we have the stability result:
Gi(2)

u-,o)ll, < ——"te—o,
” ( ) )”1] min {17 Kmimbmin}

(15)
and |U(-, w)]|; , € Ly’ (2) (with C;(2) a constant positive real num-
ber that depends only on 2).

Strong-weak formulations then use the fact that we also have
S e Ly (Q) c L3(Q), where the functional S(w) = &(U(-, )) makes
sense since, using (11) and (15), the trace of U(-, w) on the bound-
ary segment I'y is well-defined. The outputs Ep(S), Varp(S) are thus
approximated as the empirical Monte-Carlo estimations (4) where
{§",m=1,...,M} are M independent copies (with same law) of
the random variable S, and with the following convergence proper-
ties (by virtue of the Strong Law of Large Numbers)

EulS] AE; Ep(S), Vu[S] ;;—»‘i Varp(S). (16)

Hence a major advantage of the Q-strong/Z-weak formulations is to
permit the direct application of classical computational procedures
(in particular, FE) for the numerical approximation of deterministic
BVPs such as (14) in their usual form, without any modification.
Many (many...) computations of such parametrized approximate
solutions can then be combined - according to (the numerical sim-
ulation of) the law of the random field parameter Bi(-, w) - to form
the MC evaluations. Such formulations are thus very simple from
the implementation viewpoint, presuming that we can readily sim-
ulate the law of Bi(x,, w) at those discrete (e.g., quadrature or nodal)
points x, in the physical domain 2 required by the numerical
approximation of (14). Note that the latter point is of course true
for all formulations, but seems less stringent for the Q-strong/Z-
weak formulation (see Section 2.4.1).

However, the convergence (in probability) of SLLN will be slow
- the rate of convergence for Ey|[S] is governed by the ratio of the
variance of S (or its MC counterpart Vy[S]) to M by virtue of the
Central Limit Theorem (CLT). This slow convergence is a strong
limitation in the application of Q-strong/ #-weak formulations.
Variance reduction techniques, such as Quasi-Monte-Carlo (QMC)
methods based on low-discrepancy sequences of random numbers
[51], have been developed to reduce the statistical error of the
empirical estimations (4). And the RB approach itself brings new
possibilities to addressing this slow convergence problem, not by
directly reducing the number of necessary outcomes in the MC
sums, but rather by improving the numerical treatment of many
slow-varying outcomes.

In Section 3, we shall show how to apply our RB approach to the
numerical approximation of Q-strong/ Z-weak formulations by
taking advantage of the parametrized character of the BVP. We first
map outcomes of stochastic coefficients to deterministic values of
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the parameters; we then reduce the computational cost of numer-
ical approximations of the BVP for many values of the parameter
by splitting the computations into Offline-Online steps; finally,
we introduce a posteriori error control on the accuracy of the RB-
KL approximations (relative to very accurate approximations in
high-dimensional discretization-probability space). (We do not
consider here variance reduction strategies.)

2.3.2. Weak-weak formulations

Assuming (13) again for well-posedness, the Q-weak/ Z-weak
formulations discretize a variational formulation of the original
BVP on the full tensor-product space Q x

/dP(w)/ VU(-,w)-Vv(-,w)+K/dP(w) VU(-,w)-Vu(-,m)
Q 2 Q 2
+/dP(w) Bi(-, )U(-, ) (-, )
Q Iy

=/dl’(w)/ o), V(o) (QH (@) (17)
Ja Iy

to compute an approximation of a weak solution
U(,w) € [3(Q,H (2)) satisfying (17), typically through Galerkin
projections over tensor-product approximation subspaces of the
Hilbert space L2(Q,H' (%)) defined over the (high-dimensional) do-
main Q x . The computations of Ep(S) and Varp(S) are then ef-
fected by quadrature (or collocation) formulee in Q x 2 once
discrete approximations for U(-, w) have been computed.

The weak-weak formulations may thus require less regularity
(in fact, this seems very useful for input random fields that do
not fulfill (13) but only a weaker assumption for well-posedness),
although it also seems essential to the Q-weak/ 2-weak formula-
tions that Bi(-, w) be compatible with tensor-product approxima-
tions (see Section 2.4.1: this adds condition on Bi(-,®) in
comparison with the Q-strong/ -weak formulations). The weak-
weak formulations essentially provide greatly improved conver-
gence relative to SLLN (in fact, convergence is often improved only
for small dimensions, where numerical approaches for this formu-
lation are sufficiently simple).

For instance, after substituting in (17) a truncated version (6) of
the KL expansion (5) of Bi(-, w) using K (with 1 < K < ¢") indepen-
dent identically distributed (i.i.d.) random variables in a complete
set {Zy, k € N} of L3(€), the seminal work [16] used so-called spec-
tral (stochastic) Galerkin methods, in which L3(Q, H' (2)) is discret-
ized by tensor products of classical discrete approximations for the
variational formulation of a BVP in H'(2) (such as FE) multiplied
by orthogonal polynomials {H,,n € N} of the random variables
{Zk7 ke N}

Ho, Hi(Zk(w)),
ki >k, >0,....

Hz(Zkl(w),Zkz(w)),.... k,k],kz (S N,

(In the original Polynomial Chaos (PC) expansion of Wiener [55] for
L3(Q), the H, are Hermite polynomials and the variates Z, are
Gaussian; this expansion has then been generalized to other cou-
ples of polynomials and probability distributions [56,47].) The
Galerkin projections in the stochastic variable that truncate the
PC expansions at polynomial order L € N.g (L > K), hence using
D=K+L-1 iid variates Z;(w), then result in a p-dimensional
vector space

Span(Hy(Z,,...,Zi) |0 < IS LK+L—1>k> >k > 1,
{ki,... .k} n{1,... K} #0)

. K L_
with p =1 +Z:L:12L:1<k><l—

formulation (17) is projected onto the (very high) (d + D)-dimen-
sional domain in which (x,Zs,...,Zp) take its values. (Alternatively,
the discretization level in each direction of the tensor-product

]1 ) Equivalently, the variational

Galerkin approximations can be tailored to achieve rapid conver-
gence with respect to the number of degrees of freedom (d.o.f.).
In fact, a posteriori error indicators and reduced spaces - though
quite different from the error bounds and reduced basis spaces pre-
sented in the present paper - can serve to identify efficient trunca-
tions [54].)

A major limitation of such spectral Galerkin methods is the
high-dimensionality of the approximation spaces for (truncated)
PC expansions (p increases rapidly with K and L), which necessi-
tates complicated (though certainly often efficient) numerical
strategies in order to maintain sparsity on the discretization grid
[3,13,29,50,54]. There are many approaches to this curse of dimen-
sionality, most of which have already been mentioned in the intro-
duction. The essential features of our RB approach compared to the
other reduction techniques previously applied to SPDEs have also
been discussed in the introduction. Clearly, the efficiency of the
reduction methods - which are not necessarily incompatible be-
tween one another and may thus be combined in future studies
- only makes sense in a precise context, where it is clear what
has to be reduced, why, and for what purpose.

2.4. Random input field

2.4.1. Karhunen-Loéve expansions of random fields

To develop efficient numerical procedures for SPDEs, it has been
noted in the above Section 2.3 that it was essential to discretize the
(scalar) random input field Bi(-, @) consistently with the discretiza-
tion of the BVP problem (whatever the formulation). Besides, the
(de)coupling of variations of Bi(x,®) on the space variable x € 2
and on the probability variable w € Q is also an important feature
of the variational problems resulting from our numerical approach.
It indeed leads to a parametrized weak form where the parametri-
zation is affine (see Section 1.2 for a definition). We thus do not
only need to assume the non-degeneracy of the random field
Bi(-, w) on I's for well-posedness of the BVP, but also the possibility
to rewrite it in a decoupled manner like in the KL expansion (5).

In the present work, we introduce general random input fields
Bi(x, w) at a continuous level, defined by an infinite collection of
correlated random numbers mapped to an infinite number of
points in the physical domain 2. This is typically a situation where
the fluctuations are modeled following physical assumptions (sta-
tistical mechanics for instance). More precisely, we deal with a ran-
dom process (Bi(x,)),,, where Bi(x;,-) and Bi(x,,-) are not
necessarily decorrelated when x; #x,.

For well-posedness of the BVP, we only consider random input
fields that satisfy (13). Now, such random fields are in
L3(Q,1?(82)). Thus, assuming (13), the random input fields
Bi(-, w) in this work always have a KL expansion and can always
be generated by decoupled variations in x and  (possibly asymp-
totically if 7 is infinite) after the well-known Proposition 1 (re-
called below). Yet, in cases where there is no other motivation
like well-posedness for assuming (13), one should still keep in
mind that specific assumptions may be necessary to fulfill the
requirement of decoupling - by the way, other expansions than
KL might also fulfill that requirement.

Note that in practical engineering situations, Bi(-, @) is often not
given but rather constructed from a few measurements only, after
solving an inverse problem to assimilate (or calibrate) statistical
data (see e.g. [24]). Since the inverse problem is solved at the dis-
crete level®, this yields a finite collection of random numbers
mapped to a finite number of points in the physical domain 2, and
the assumptions may be simplified.

5 It is interesting to note that inverse problems are usually solved through
optimization algorithms that define a typical many-query context where a RB
approach for parametrized PDEs is well motivated.
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Proposition 1. Random fields Bi(-, ) € L3(Q,L*(02)) are in one-to-
one correspondence with couples (Ep(Bi),Covp(Bi)) € [?(02)x
12(02 x 02) supplied with a collection of mutually uncorrelated
random variables {Z;(w);1 < k < #'} in L3(Q) with zero mean and
unit variance

Ep(Z) =0 Ep(ZiZy) =opp V1
(with Kronecker notations, hence Varp(Z;) = 1),

<k kK <o

when the kernel Covp(Bi) defines a positive, self-adjoint, trace class lin-
ear operator

Te2(%02),’02)), (THX
:/} Covp(Bi)(x,y) fy)dy, Vf € L*(92) (18)

of (possibly infinite) rank . Furthermore, random fields
Bi(-, w) € L3(Q,1*(02)) have the following Karhunen-Loéve expansion
[26]

+Z\/>qs,( X) Zy(w), X €09, (19)

where {J;1 < k < '} are the positive eigenvalues (in descending or-
der) of the positive, self-adjoint, rrace class operator T associated with
eigenvectors {®y(x) € [*(02);1 <k <} (orthonormal in the
[*(02)-inner-product),

inw= Y ([ a>k<y)f<y>dy)¢k<x>, vf € 2(09),

1<kso

Bi(x, w) = Ep(Bi)(

and the random variables {Z,} are defined by

Zi(w) = o) — Ep(Bi))®,, V1<k< A

1
— Bi
\V4 /lk I9 (

Since L*(92) and L}(€) are Hilbert spaces, the Proposition 1 can
be easily proved using Riesz representation theorem, and the Hil-
bert-Schmidt theorem for bounded (linear) operators of the trace
class (then compact) like T (see e.g. [45]).

In the following, we rewrite the usual representation (19) with
a scaling parameter 7" > 0,

T2 = / Covp(Bi)(x,y) dxdy = / Varp(Bi) =tr(T) = Y /i,
Iy JIg I'g

1<k<or

and then re-scale the collection of positive eigenvalues as

to obtain the following KL expansion from Proposition 1

Bi(x, w) = Ep(Bi)( X € 09.

+TZ\/7¢I< x)Z(w

Lastly, when 7" is infinite or too large, numerical approaches ex-
ploit, instead of the full KL expansion, KL truncations of order K
(K € N,0 < K < ) which we write as

Bix (x, w) = Ep(Bi)(x) + TZ V@) Z (), X €.
The truncation error satisfies
Ep((Bl ) T2 Z @2 (x in L' (92). (20)

k=K+1

2.4.2. Additional assumptions on the random input field

In the numerical applications of the next section, we shall re-
quire (13) for well-posedness of the BVP. This implies
Bi(-,w) € Ly’ (2,L*(I's)), thus Bi(-, w) is fully determined by (Prop-
osition 1)

(i) an expected value function Ep(Bi): x € I's — Ep(Bi)(x) € R in
L*(I's) C [*(T'),

(ii) a covariance function Covp(Bi): (x,y)€ g xIp —
Covp(Bi)(x,y) € Rin L?(I'y x I'g), thus the kernel of a positive
self-adjoint trace class operator of rank »#° with eigenpairs
(T2, D) (e = A > 0,1 < k< o) satisfying S57 4 =1
and

Covp(Bi)(x,y) Bx(y) dy = T2 1 Pi(x),

I'y

vxeTs, (21)

(iii) and mutually uncorrelated random variables {Z; € Ly’(£)
CI3(2);1 <k <} with zero mean and unit variance,
through the Karhunen-Loéve (KL) expansion

Bi(x, w) = Bi <G(x) +T i: \/de)k(x)zk(w)> , (22)
k=1

where G e L*(I'p) is a prescribed (deterministic) positive
function such that Ep(Bi)(-) = Bi G(-), and W Jr, GX)dx =1,
using the scaling parameters Bi:m frB Ep(Bi)(x)dx and
T =7/Bi.

For all nonnegative integer 1 < K < .#, we introduce the trunca-
tion of KL expansion (22)

Bix(x,w) = Bi (G(x) +7 ZK: N cD,((x)Zk(w)) . (23)
k=1

For the sake of consistency of the numerical discretization, we
require

. . Ko
[|Bi(-, @) — Bik(, w)”Lf:(Q,L*(r -0, (24)
which is stronger than (20) and can be achieved for instance by

choosing

(H1) a smooth covariance function Covp(Bi) such that
(H1a)
the eigenvectors are uniformly bounded by some positive
real number ¢ > 0

|Bellery < b 1<k< A, (25)

(H1b)
the eigenvalues decay sufficiently rapidly,

S Vi < o0, (26)
k=1

(H2) uniformly bounded random variables (say) {Z;|Zx(w)| <
Vv3,P—as.}.In the numerical results we shall consider

Gaussian covariances Covp(Bi)(x,y) = (BiT)%e 3 , with § a
positive real constant, which complies with the require-
ments above [13]. The fast decay of the eigenvalues in the
Gaussian case play an important role in the fast convergence
of any numerical discretization based on KL expansions of
the input random field; as we shall see, this is true also for
our RB approach - the eigenvalues determine the ranges of
the parameters, which in turn affect the dimension of the
RB space. Next, we shall also insist upon
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(H3) independent (thus mutually uncorrelated) random variables
(Zu1<k< o,

(H4) Zy,1 < k <K, i.i.d. according to the uniform density with
respect to the Lebesgue measure on R in the range
(—V3,V3),

(H5) T chosen such that

min G(x)

A
To = V3T Y V| Pl gy < % <
k=1

Then, under our assumptions, the truncation error is

bounded above V1 < K < 7"

[IBi(-, @) — Bil(('vw)HLf,‘(Q.L‘“(FB)) < Bi 1,

.,
= V3T > Vol Pl 1y

k=K+1

(28)

and furthermore for 0 < byin < % <m}nG
xel'y

) we have P-a.s.
Bix(-, ) = bmin >0 ae. in2, 1< (29)

Remark 2.2 (Choice of the random variables {Z,}). Note that there
are many other interesting cases where, for a given smooth
covariance function, the random variables {Z,} are not uniformly
distributed. These cases will be considered in future studies as they
necessitate refinements that would complicate this first exposition
of our viewpoint.

3. Reduced basis approach for Monte-Carlo evaluations
3.1. Discretization of a test problem in strong-weak formulation

We now equip the Sobolev space X := H' (%) with the following
inner product for all w, v € X

(W, 0)y = Vw - Vz/+/ Vw-Vov+ (30)

2 'B

and induced norm || 7|y = \/(¥, ). It is a standard result that the
norm | - [|y is equivalent to the usual norm || - |, , defined previously.
We also introduce a finite element (FE) subspace X ;- ¢ X of dimen-
sion ./~ which inherits the inner product and norm of X. For functions
v € X, it is possible to define a trace v € LZ(FB) which satisfies

<Vorllvlx 1)

where the constant y - depends only on & and is bounded above for
all .+ since
v v

Vo =7.4(Z) = sup <y=sup 32)
vexy |2l vex ||olly
(Note 7 of (11) differs from ) of (32) only because of the choice of
norm.)
For a given positive scalar k and a given random input field
Bi(-, m), we define

1llo.ry

(a) the temperature distribution U(-,w) € X in 2,

(b) a FE approximation U , (-, w) € X - to the temperature distri-
bution in 2,
as the respective solutions to the following variational for-
mulations (33),

/VU sz+;</ VU (o) Vo
memwwamv=/’u Yo e X, (33)
Iy I'r

and, when Bi(-, w) is approximated by Bik(-, w),

(c) an approximation Uk(-,w) € X to U(-, w),

(d) and a FE approximation U ;- x(-,w) € X - to U (-, w)
as the respective solutions to the following variational for-
mulations (34)

/ VU(,;")J((',(D) -Vv+ K/ VU(,/(‘)'K(-,(D) Vv
91 Y

BiK(wCO)U(.,V).K(';Q))V :/ v, YveXiu, (34)

I'y I'r

where the same subscripts into brackets () are simultaneously
active or not, which means in (a), (b) that (33) holds for U(-,w)
and X, or U (-, ) and X, respectively, in (c), (d) that (34) holds
for Ug(-,w) and X, or U (-, ) and X -, respectively.

With a similar use of the subscripts in (-), we also define (inter-
mediate) outputs as

Ser (@) = EUprm () = [ U

I'r

k) (5 @). (35)

We are interested in evaluating the expected value and variance of
the integrated temperature S( k) (-, w), which are our (final) statis-
tical outputs:

~ [ sm(@)p(o), (36)

Vare (S.iyk)) = / (Ep (Sciik)) = S (-

Q

®))*dP(w). (37)

Since Bik(-, w) is P-a.s. strictly positive on I's and every 1 < K < &
(by assumption), the variational problems (33) and (34) are well-
posed, and the solutions satisfy the following bound P-a.s.

C,(2)

0. _ Y
I )(K) ( min{LK, bmin}

(38)

o)l <

for some positive constant C(2). In addition, we have

Proposition 2. Under standard regularity hypotheses (as A4 — oo)
on the family of FE spaces X ,-, the FE approximation converges as
N — oo. Furthermore, under the hypotheses of Section 2.4.2, the KL
approximation converges as K — . Finally, the following conver-
gence holds P-a.s.

Sn i (w) N;OO> Sk (w)
KE—K | | K=K (39)
Syw) 2= S(w)

Proof. First, for any fixed 1 < K < .#°, the P-a.s. convergence, as
N =0, of U yx)(-, ) = Ug(-,w) in X as A4 — oo follows under
standard hypotheses on the FE spaces X . Then, by subtracting
the variational formulation (34) for U )k(-,®) from (33) for
U( 1')('7(1)) (ln XU )) with v = U( ")('7(,0) — U(v;).’((y(,U), we get
P-a.ss.

Ui (@) = Upr i (- )l o)

Ca(2, biin)||Bi(-; @) — Bik (-, )|l (ry 1U )k (-5 O)ll 2y (40)
for some positive real number C, (2, Bmm) depending only on 2 and
bmin. By compactness of the trace mapping from H'(2) into L?(8%),
the uniform bound (38) for all K and the continuity (24) of Bi(-, ®)
with respect to the L*(I's) norm, we get the P-a.s. convergence of
Uiy (-, ) = Uk (-, ) in X as K — . So the following diagram
of convergence holds:
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Unilhw) 252 Uk(w)
K—K ! I K — K in L (2, X)
N —oo
U/\/('.,W) - U(vw)

(41)

Finally, because S ;- «)(w) are linear functionals of Uk (-, ) and
by continuity of the trace of U,y (-,w) € H'(2) on I, the dia-
gram of convergences (39) holds. O

Proposition 3. Under the same standard regularity hypotheses (as
N — oo) on the family of FE spaces X ,- as in Proposition 3, the fol-
lowing convergence holds
(Ep (Sx) ., Varp (Sx.x)) = (Ep (S.x) . Varp (Sx))
K—K ! l
(Ep (Sy), Varp (Sy)) =% (Ep (), Varp ()

K—K;

(42)

Proof. Because S k) (®) € Ly (Q) C [2(Q), we simply use the fol-
lowing estimates which hold for any two linear functionals S;, S, of
random fields U, (-, w), U2 (-, w) in Ly’ (2,X) and some positive con-
stant Cop,

Ep(S1) — Ep(S)] < / dP() [ (Ui ) — Us(, )]

I'r
< |R[UL (5 @) = Ua (- 0)llo 00 w05 (43)
|Varp(51) — Val'p(SZ)‘
< Comax [[Ui(, 0)llo ggxallU1 (-, @) = Ua(:, 0)llo 090 (44)

as well as the uniform bound (38) for all Uy« (-,®),1 <K < A,
and the compactness of the trace mapping from H'(2) into
*(62). O

Lastly, for all positive integer M, we define, akin to (4), M i.i.d.
copies (S{"y) k))1<m<m Of Scr)x) and empirical estimators for the ex-
pected values (Ep (5( ﬁ")(.K)) s Varp (5( ;')(7]())) as

1 M
En [S( l')(-,K)] = M ZS,(T,'V)(.KV (45)
m=1
1 &, 2
Vi [Scno] =377 2 (ST10 = Em [Stncao] ) (46)
m=1

The results in (42) for real numbers (Ep (S (x)), Vare(S.ix))) also
clearly hold P-a.s. for the discrete sums (Ey[S.v.x)], Vm[S.iyx)]) for
any M > 0; and by SLLN, it also P-a.s. holds:

(Ew[Scoao ) VulScool) = (Be(Sii), Vare(Sii))-

Now, assume sufficient regularity on the PDE data such that the FE
approximations U (-, w) are P-a.s. sufficiently close to U(-, w) (for
some large ./"), and that furthermore the accuracy required in the
evaluation of the outputs Ep(Sk)),Vare(S)) (respectively
E]\/I[S(J()}, Vu [S(_K)]) is prOVided by Ep(sv;(.(()),val‘p(s 1'(,1()) (respectively
Em[S.i-(x)), Vm[S.r(x)])- Even then, the empirical estimations (45) and
(46) will still typically converge slowly: many evaluations of the FE
approximation are required (M should be large) for the empirical
estimations to be good approximations of the required statistical
outputs.

In addition, even if, for a given (supposedly large) M, empirical
estimations (45) and (46) are assumed both sufficiently close to the
required outputs and accessible to numerical computation for gi-
ven parameters k¥ and Bi(-,w), the evaluation of Ey[S,] and
Vm[S.»] for many values of these parameters in a many-query con-
text is arguably prohibitive for a direct FE method.

In summary, the FE method with large ./ is too expensive to
permit the rapid evaluation of empirical estimations (45) and
(46), first for a given large M, and second for many values of the
(deterministic and stochastic) parameters x and Bi(-,®) in a
many-query context in which M is fixed (presumably large).

Our reduced basis approach aims at reducing the computational
cost of multiple (many) FE computations - without sacrificing cer-
tified accuracy - by exploiting the parametric structure of the
problem through Offline-Online decompositions.

3.2. Reduced-basis approximation

3.2.1. A deterministic parametrized problem

As mentioned in the introduction, we would like to map the
sequence of random variables (Zy), ., in (22) to random solution
fields Uk (-, ®), through the solutions u k) (;y®) of deter-
ministic BVP PDE problems parametrized by deterministic coeffi-
cients y®, invoking the Doob-Dynkin lemma [37].

Moreover, we would like to study variations of the statistical
outputs on an “additional” deterministic parameter g, correspond-
ing to many given values of the (deterministic and stochastic)
parameters x and Bi(-, w); this has also been mentioned previously.
In the following, we take as “additional” deterministic parameter

0 = (i, Bi) € A2

We recall that truncations at order K of Y = (Yy); e, (1 <K < X7)
have been defined in the introduction as

Y¥(w) := (Yi(®), ..., Y(w),0,0,...),
Yi(w) =TV Zi(w), 1<k<K.

We also recall that has been set

where

V=01, ) el c R
such that for all finite positive integer 1 < K < 7,

¥=0,...,¥¢0,0,...) € A/ and the range A’ is the cylinder

A= [V, V3TV | ¢ [VBT V7, 4 VBTV 7] x - C R

It is important to note that when the eigenvalues /, decay rapidly
with k, the extent 2v/37/7; of the intervals [—v31/Z, +V31V7]
will also shrink rapidly. This small range in the y, for larger k is
one of the reasons the RB approximation developed subsequently
will converge quickly.’ A function bi(-;Bi,y) has been defined on
the boundary, parametrized by Bi and by the deterministic parame-

ters y, € [—V37Vi, +V3TVA4] (1 <k <K< o)
A

bi(x; Bi,y) := Bi (G(x) +> y,<d>k(x)) . VX € 09; (47)
k=1

note that the function bi(-; Bi,y) is well defined since, by assump-
tion, the series (47) absolutely converges in L*(I's) for a.e. y € A’
(see Section 2.4.2). Lastly, we denote the full parameter as
1= (1c,Bi,y) € A" with countably (possibly infinite) entries, and
truncated versions with K+ 2 entries (for any finite integer
1<K<x)

Uy = (K, BLYS) € A# = A2 x A

5 Note we can treat with a single RB many different covariance functions of varying
smoothness if we introduce the parameters y, in the interval (say) [-v37,V37]
independent of k such that y = (y;,...,yx) € % = [-V37,v/37]¢ c R¥. However, in
this case the reduced basis approximation will converge much more slowly since the
parameter space . is much larger.
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where A¢ C Rio denotes the range of ¢ = (ic,Bi) (at this point,
there is no a priori assumption on A¢: it is some subset of Rio that
will be made precise later in the numerical part).

Let us now introduce a deterministic BVP PDE problem param-
etrized by the deterministic (full) parameter u € A*. For every
u € A*, with notations obviously in accordance with the previous
Section 3.1, we define u(u), ux (i) € X and u (@), urx(fy) € X4
as solutions to the respective variational formulations

aueyk (B, V3 M) =F(0), Vv € Xy, (48)
where the subscripts (/") and (K) are simultaneoulsy active every-

where or not, and where the functional f(-) and the parametrized
bilinear form a(-,; ) are given by:

f(v):/ v, VYvelkX, (49)
Jry
aw, v; 1) = VW~V11+K/ Vw.- Vv
94 Ty
bi(:;Bi,y)wo, Yw,veX. (50)
JI'g

We may then define our realization output as

Sene (B :f<u<4,1 ’)<.K>(M<K)))~ (51)

Clearly, there exists a sequence .# of random variables in Ly’ (2), with
range A" such that for a.e. @ in Q it holds .#(w) = (x,Bi,Y(w)).
We then define truncations such that P-a.s., V1 < K < %

/Z/K(CU) = (K7E7 YK((U))~

which implies in return, provided U
P-a.s. holds

Ui (A k) (@) =

(-, w) is well defined, that

Uik (@), Senoin (A (@) = Sy (@)-
Moreover, for each M > 0, we define M i.i.d. copies (.#/™),_,..\ of the

random variable .# such that the empirical estimations

Em[s iy (M k)] = M Z K0 ( (52)

=W-1 Z (EM[5< k)]
m=1

coincide P-a.s. with Ey[S.x)] and Viu[S. k)] as statistical approx-
imations of the expected value and variance Ep(S.,yx) and
Varp(S(,‘»)(‘K)), respectively. Note that all the convergence results
established in the previous Section 3.1 for .#",K — oo still hold for
Senoi (M) and a fixed parameter value p.

In the following, we shall develop a Reduced Basis (RB) approx-
imation and associated a posteriori error estimator which will per-
mit rapid and reliable evaluation of the empirical approximations
(52) and (53) for the outputs of interest (the expected value and
variance (Ep(S),Varp(S))). Our RB approximation will be based
upon, and the RB error will be measured relative to, the FE approx-
imation u -« (f4) of (48), for a fixed parameter value u € A*. Note
we assume that ./ is chosen sufficiently large a priori to provide
the desired accuracy relative to the exact solution; we shall thus
concentrate our a posteriori estimation and control on the RB
approximation and on the KL truncation (note it is very simple to
change the order of KL truncation in a strong-weak formulation).
As we shall see, the total RB cost (Offline and Online, see Section
3.4) will actually depend rather weakly on ./", and hence .4~ may
be chosen conservatively.

VmlSeroe) (A k)]

2
= Senu () (53)

3.2.2. RB approximation

Let Nmax \ X-orthonormalized basis functions {, € X -,1 <n <
Nmax(Nmax < ./7) be given, and define the associated hierarchical
Lagrange [41] RB spaces Xy € X.;;, 1 < N < Npax, as

Xy =span {{,,1<n <N}, N=1,... Nnax. (54)

In practice (see Section 3.4), the spaces Xy will be generated by a
Greedy sampling procedure [32,43]; for our present purpose, how-
ever, Xy can in fact represent any sequence of (low-dimensional)
hierarchical approximation spaces. Let the KL expansion of the ran-
dom input field be truncated at some finite order K, the (N, K)-RB
approximation of the problem (48) then reads: Given u € A", we
look for an RB approximation uyk () € Xy such that

ax (unk (M), v5 i) =f(v), Vv € Xy (55)

We then calculate the RB realization output as

S (Hy) = /r Un (M) (56)
JIR

The RB output will be evaluated in the Online stage, by the proce-
dure described in Section 3.4, with a computational cost depending
on N and K but not on .#": hence, for small N and K, the RB approx-
imation can be significantly less expensive than the FE
approximation.

We shall use this RB approximation to approximate the ex-
pected value and variance of the output of interest, for sufficiently
large integer M > 0, through the empirical estimations

Em{sni(Ax)] ZSNK () (57)

M
Vmlswk (M) = ﬁ > Emlsna(A )] — swx (A7), (58)
m=1

In the next section we develop rigorous a posteriori bounds for these
quantities relative to Em[S.i) ) (# k)] and V(S .o (4 )]s
respectively.

3.3. A posteriori error estimation

3.3.1. Error bounds for the RB output
We note from (55) that, for any u € A*, the residual r(v; 1)
associated with uy k(1) reads

r(v; W) = f(v) — alunx (M), V5 L),

the dual norm of the residual (defined over the FE “truth” space) is
given by

YoeX, (59)

r(v; )

7 )y, = sup S HE), (60)
vex,  17lx

We next introduce a bilinear form parametrized by the determinis-

tic parameter ¢ = (k, Bi) but independent of the parameter y,

ac(w,v;(k,Bi)) = [ Vw-Vv+x [ Vw. Vv+ 2 G(x)wv
2 Iy

Yw, v € X, (61)

such that, since Big(x,y¥) > BiG(x)/2,Vx € I's, by (27) (assumption

H5)

ac(v, v; (K,Bi)) < a(v, v; 1), Yue A", YveX,, V1 <K< A
Denoting o(u,) the coercivity constant associated with a(-, -; i), it
follows

(7/7 Z); (Kvﬁ)) (1(1}7 7/; :uI()
ac(r,Bi) = inf —— 7 o) = inf ———2K 0 Ve AR
e |l NS ST
(62)

It should be noted that oc (1, Bi) depends only on the deterministic
parameters k and Bi, not on the (ultimately mapped to a random)
parameter y¥! The following result is standard [6,32,43].
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Proposition 4. Given a computable lower bound ayg for oc (i, Bi),
thus also for o),V € A*, the following a posteriori estimates hold
for all positive integers N, /", K

I 0l

Itk = () e < An(pt) = = 5 (63)
: Ir(: 1Ol

1.k (M) = Snk ()| < Ay (M) = #~ (64)

3.3.2. Error bounds for the KL truncation effect

We now bound the error |s (&) — S.i-x(1)| due to the trunca-
tion of the KL expansion for any u € A*, where (i is the truncated
version that retains the K + 2 first entries of p.

Proposition 5. With the same lower bound oyg as in Proposition 4,
Yu € A*, holds for all positive integer N, /", K
Bit
Bt == e, (et + A (B).
(65)
) for

unk ()l and Ty is the bound introduced in (28).

I5.0-(1) =S i ()| <

where Anx(w) is the error bound defined above in (63
(ke () —

Proof. First note that

1.0 (10) = sk ()| = U (W (1) = Uy i ()|
< Wl M () = s ()l (66)

Then, to get (65), we now show that the last term is bounded by

E TkY 4

% (lunk () llx + Ank (1)) (67)
LB

() — war i (o) llx <

where Bi 7 is the error bound for ||bi(:;Bi,y) — bi(-;BL,y*)||~
introduced in (28) and 7y ,. is the continuity constant for the trace
application X ,- — I'p already defined in (31).

To prove (67), we substract the truncated and full problems (48)

after FE discretization, and choose v=e , g (1) =t (1) — Uk (Hg)
as test function. We obtain
aleyx(),e.rx(p); )
= [ (b BL.y) ~ bie(<BTY)) woelpn) el (68)
I'y

Furthermore, the left-hand side (LHS) of (68) is bounded below by
LHS > ac(e.v k(ft), e x(W); (e, BD)) = auslle. x(i)lx, (69)
and the right-hand side (RHS) of (68
|[RHS|

) is bounded above by

< Bitg|lu, K2 gy llev k2 ry)

< Bi Tyl s () lxlles i (1)1

< Bitey,- (llunc ()l + Ank(fh) e ae (1) - (70)
The desired result (67) follows directly from (68)-(70). O

3.3.3. Error bounds for the expected value and variance

Using the notations introduced in (64) and (65) we have, from
the triangle inequality,
Is.(p) — A?V,K(:“K) + AltV,K(:uK)' (71)

snic ()| < AR (M) =

Thus we obtain the error bound for the error in the expected value
P-as. as

|E1\/1[S 1(////)] — EM[SN,K(//ZK)H
AF[Snk (Mx)] = AglSni (M) + AglSnk (Ak)], (72)

using M i.i.d. (truncated) copies (.#™), <y Of .#, and the following
random variables:

1 M
Allsn ()] = Vi SN AR,
m=1
A;:-[SN‘K(:/WK E M ZA;\IK /{K) (73)

The error bound (72) consists of the RB estimate (64) and the KL
truncation estimate (65). The two estimates depend on both N
and K but in different ways: the former will decrease rapidly with
increasing N and typically increase with increasing K, while the lat-
ter will decrease rapidly with increasing K.

For the error bound in the variance, we introduce a function of
ne A* (recall (71))

Snic (M) = Sni () + ANK(:UK) (74)
a random variable that is a sum of MC estimators:
El\i/, [SN,K (/{K)} = EM [SN‘I((&///ZK)} + AZ[SN‘K(E///ZK)L (75)

and random variables parametrized by u, € A"

Ank (M ) = Eysnic ()] — sy (M)

B (A x; 1) == Eng[Sn (A x0)] — Sy e (M)

0 if [sy e (ttic)s S (o))

N [Enlsnx (A1),

E,T/,[SN,K(H%K)]] #0

min{|Ay k(A x; W), |Bnk(Ak; 1)} otherwise
D (M k5 M) »= max{|Anx (A4 k; )], By (A s )|}

Cni( My ) ==

(76)

We thus have P-a.s.
CIZ\J_K(/%K?/JK) < (Em[sa (k)] = S.u (.ul()) NK(/%KHLLK) (77)
and hence after summation, also P-a.s.
ViBlsni ()] < Vs o (i) < ViRlsni (M), (78)
where we have used the MC estimators

LB 1 i 2 m
Vi IS ()] = M-1 Z Chuu Ay M),

M
Vir [swa] = Z i (A ks M) (79)

with the same collection {.#}} as in the MC estimators (76).
Thus we obtain P-a.s. a bound for the error in the variance as

[Vmls.i-(Ax)] — VmlSng] (k)| < AYSnk (k)] (80)

with

A? [SNK(J/[’()] =max {|VM [SNK(//K)] — VM [SNK(J/K)”, ‘VM [SN.K(JZ{I()]
~Vidlswx(40)] - (81)

This variance error bound also includes both an RB contribution and
a KL truncation contribution.

Finally, although it is not our main goal, we point out that with-
out consideration of the KL truncation effect we may also obtain
the error bounds (at fixed K)

‘EM[S. (M) — EM[SN,K(///K)H ApISnx (k)]
‘VM [S VK (///K)] — VM[SN,K(*////K)] | A;[SN.K(V%K)}.

Here Ap[snk(-#)] is given by (73), and A}, [snx (.#x)] is defined in the
same way as A} [syx(-#k)] but replacing A (tt) with A} (1) in

< 82
< (82)



3198 S. Boyaval et al./Comput. Methods Appl. Mech. Engrg. 198 (2009) 3187-3206

(74) and AZ[sn ] with Ag[snk] in (75). We introduce the contribution
due to the KL truncation to the variance error bound (80) as

AyIsn (k)] = Ay [snk (Mk)] — Ay [Swk (Ax)]. (83)

3.4. Offline-Online computational approach

3.4.1. Construction-Evaluation decomposition

The system (55) comprises N linear algebraic equations in N un-
knowns. However, its formation involves entities (,,1 <n <N,
associated with the ./’-dimensional FE approximation space. If
we must invoke FE fields in order to form the system for each
new value of u, the marginal cost per input-output evaluation
1 — snk(ly) will remain unacceptably large. Fortunately, we can
compute this output very efficiently by constructing Offline-On-
line procedures [32,42,43], as we now discuss.

First, we note that the bilinear form ay as introduced in (50) can
be expressed as the following “affine” decomposition

K+3

aw, v; fie) = > Owfi)ar(w, v), Yw,veX. (84)
=1

Here ©:(k) =1,02(1) = K, Os(tt) = Bi, and @3.4(k) = Bi y,

1 <k<K, are parameter-dependent functions, and

a1(w,1/):f91 Vw-Vuo,a;(w,v) f Vw-Vuo,as(w,v) fF
and as . (w,v) :frs D (ywo, 1 <k < K, are parameter—mdependent
bilinear forms. Note the crucial role of the “separable” (in « and
x) form of the KL expansion is ensuring an affine representation;
the affine representation is, in turn, crucial to the Offline-Online
strategy.

We next express Uyk () = Son_1Cnim(Uy)im» Choose v =,
1 <n <N, and invoke the affine representation (84) to write the
system (55) as

N /K43
Z <Z O () ar (L

and subsequently evaluate our RB output as

))CNKm(luK) fG), 1<n<N, (85)

ZCNKH ,UK (). (86)

SNK ,UK

We observe that the quantities ax({,,¢,) and f(,) are independent
of u and thus can be pre-computed in a Construction-Evaluation
decomposition.

In the Construction phase, we form and store the f({,) and
A (Cmy Gn)y 1 <nym < Npax, 1 <k <K+ 3. In the Evaluation phase,
we first perform the sum ZK” Ok () (Em, Cn), We next solve the
resulting N x N system (85) to obtain the cnkn(ity),1 <n <N,
and finally we evaluate the output (86). The operation count for
the Evaluation phase is O((K + 3)N?) to perform the sum, O(N®)
to invert (85), and finally O(N) to effect the inner product (86);
the storage for the Evaluation phase (the data archived in the Con-
struction phase) is only O(Nmax + (K + 3)N?,,,). The Evaluation cost
(operation cost and storage) - and hence marginal cost and also
asymptotic average cost — to evaluate p — syx () is thus inde-
pendent of .4#". The implications are twofold: first, if N and K are in-
deed small, we shall achieve very fast response in many-query
contexts (in which the initial Offline investment is eventually
“forgotten”); second, we may choose ./" very conservatively - to
effectively eliminate the error between the exact and FE predic-
tions - without adversely affecting the Evaluation (marginal) cost.

The Construction-Evaluation for the error bounds is a bit more
involved. To begin, we note from standard duality arguments
that [Ir(s se)llx, = 1 2nk(i)llx:  here  Zwk(pty) € X satisfies
(Anic(Hy), V) =T(V: ) Vv €X o, Where r(v; 1) =f(2) —a(un(p),
v; ), Yve X, is the residual introduced earlier. We can thus ex-
press (63) and (64) as

9 9 2
H}Nl;(.uk)ux and Af\u((:“l() :”ZNI;M (87)
LB LB

vk (M) =

There are two components to the error bounds: the dual norm of
the residual, ||%nx(L)llx, and our lower bound for the coercivity
constant, oqg. The Construction-Evaluation decomposition for the
coercivity constant lower bound is based on the Successive Con-
straint Method (SCM) described in detail in [7,21,43]. We focus here
on the Construction-Evaluation decomposition for the dual norm of
the residual and express our residual r(; i) in terms of (84)

K+

w

N
Z@k Jenk n(ak(Cn, v), Vv eX,

1 n=1

(Anx (W), V) =

=
[

and hence obtain by linear superposition

K+3 N

Ank (M) = 2o + Z Z O )enkn ()2

k=1 n=1

where (2o, v), = f(v), and (z¥,
1 <k <K+ 3, thus

V)y = = ((n, v), Vv € X, 1 <N N,

K+3N
_ 2
H%N,KHX = (ZO-,ZO)X +2 Z @k(ﬂK)CN,K H(MK)(ZI:HZO)X
kn=1
K+3K+3.NN

+ Y Okl onkalti) O (i) Cnse (1) (28, 2 ).

kK nn=1

Since the (-,-)y inner products are independent of u, we can pre-
compute these quantities in the Construction-Evaluation
decomposition.

In the Construction phase - parameter independent, and per-
formed only once - we find zp,28,1 <k<K+3,1<n<N, and
then form and store the inner products (zo,20)y, (2%, 20)x,
1<k<K+3,1<n<N, and (Z,2),, 1<kkK <K+3,1<n,
n’ < N. Then, in the Evaluation phase - given any desired value
of u, - we simply evaluate (87) from the summation (88) and
the SCM evaluation for oy at cost O((K + 3)*N?). The crucial point,
again, is that the cost and storage in the Evaluation phase - the
marginal cost for each new value of i - is independent of .4": thus
we cannot only evaluate our output prediction but also our rigor-
ous output error bound very rapidly in the many-query (or real-
time) context.

Finally, the error bound Aj (1) of (65) requires additional
quantities: T, -, [[fllx, , and |[unx (t) |- Note the first three quan-
tities are independent of u: tx can be pre-computed for any
1 < K < o from the expansion (28); 7 ,- can be pre-computed from
the eigenvalue problem (32); and finally |Lf\|xf‘ can be pre-com-
puted (by duality) as a standard FE Poisson problem. We note fur-
ther that

NN
et (i) 1% =Y naean ()i () (Gns ) (89)

nn'=1

which readily admits a Construction-Evaluation decomposition;
clearly, the Evaluation-phase summation (89) requires only O(N?)
operations. In summary, in the Evaluation phase, we can evaluate
Sk (i) Anic (i) A (f), and - AR (k) at total cost O(N°+
(K + 3)2N*) operations.

3.4.2. Greedy sampling

Finally, we turn to the construction of our reduced basis
{n, 1 < n < Npax: We pursue a very simple but also very effective
Greedy procedure [43]. To initiate the Greedy procedure we specify
a very large (exhaustive) “train” sample of 1., points in A", Zain,
a maximum RB dimension Np,,, and an initial (say, random) sam-
ple S; = {u'} and associated RB space X;. (In actual practice, we
typically specify an error tolerance-cum-stopping criterion which
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then implicitly determines Np.x.) We specify K = 2 (in practice, fi-
nite) for the Greedy algorithm described below.

Then, for N=1,...,Nna: Step (1) find pN*! = argmaxyez,,,,
Anx(); Step (2) update Sy =SyupM! and Xy, =Xy+
span{u ;- (uN*1)}. The heuristic is simple: we append to our sam-
ple the point uN+! which is least well represented by the space Xy
(as predicted by the error bound associated with our RB Galerkin
approximation). In practice, the basis must be orthogonalized with
respect to the (-, -), inner product; the algebraic system then inher-
its the conditioning properties of the underlying partial differential
equation. Note that the Greedy automatically generates hierarchi-
cal spaces Xy,1 <N < Npax, Which is computationally very
advantageous.

The important point to note from the computational perspec-
tive is that the operation count for a few Np.x < 4% steps of the
Greedy algorithm (using truncations at order K = " < 4%) is
O(AN™* 4 Nyain) and not O(AN*nyain) (where O(A7%) is the complexity
for numerically solving one system of size .#" x .#") - and hence
much less expensive than classical approaches such as the KL (here
Proper Orthogonal Decomposition, or POD) expansion for the sam-
ple (U k(M) ez, - The reason is simple: in Step (1), to calculate
Anx (W) over Ei.in, we invoke the Construction-Evaluation decom-
position to obtain (per Greedy cycle) an operation count of
O(NKAN*) + Nyain O(K*N?). (Of course, much of the computational
economies are due not to the Greedy itself, but rather to the
accommodation within the Greedy of the inexpensive error
bounds.) As a result, we can take ny.;, very large - often 10* or lar-
ger - particularly important for the high - K + P, - dimensional
parameter domains encountered in the SPDE context (here P, is
dimension of the deterministic parameter g). Furthermore, exten-
sive numerical results for a wide variety of problems indicate that
the Greedy RB space Xy is typically as good as more global (and
provably optimal) approaches such as the POD [43]. (Of course,
the latter result is norm dependent: the Greedy prefers L™ (Zain),
whereas the POD expansion is optimal in L?(Zyain).)

3.4.3. Offline-Online stages

Finally, we delineate Offline and Online stages. The Offline stage
comprises the Greedy sampling strategy, and thus appeals to both
the Construction and Evaluation phases. The Online stage includes
all subsequent evaluations of the RB output and output error
bound for many-query computations: it involves only the Evalua-
tion phase, and hence will be extremely rapid.

We now discuss the implications for the MC sums required for
the evaluation of our statistical outputs - the focus of the current
paper. In particular, it is clear the total operation count — Offline
and Online - to evaluate Ey[Snk(-#k)], Vm[Snk(#k)], Ap[Snx (k)]
and A} [snx (%)) for J different values of ¢ = (k, Bi) scales as
Wosttine (Nmax: #*, ) + Woniine(J, M, N, K) where

Wortine(N, K, 47) = ONKA™*) + NirainO(K*N?)  and
Woniine(J, M,N,K) = JM x O(N° + K*N?).

Thus as either M — co or ] — oo and in particular as M — oo —
many evaluations of our statistical output — Wognine < Wonline. We
further note that if N,K <« 4 then Wopine < Wee = JM(O(A)),
where Wy is the operation count for standard FE evaluation of
the MC sums. Hence the interest in the RB approach. In addition,
here are two final observations. First, a “con”: as we consider less
smooth covariance functions with less rapidly decaying spectra
not only - for a fixed desired accuracy - will K increase, but also
N will increase (due to the more extended domain A%). Clearly for
sufficiently non-smooth covariances the RB approach will no longer
be competitive. Second, a “pro”: the a posteriori error bounds will
permit us to choose N and K minimally - for minimum computa-
tional effort — without sacrificing accuracy and certainty.

3.5. Numerical results

In this section, we present numerical results for the model
problem described in Section 3.1. We consider a homogeneous ran-
dom input field with:

e a uniform mean, thus G(x) =1,
e and a finite-rank covariance kernel Covp(Bi)(x,y) that coincides

ey?

with the first terms in the KL expansion of (BiY)%e™ = .

The “additional” deterministic parameter ¢ = (i, Bi) shall take
value in the range A?=[0.1,10] x [0.1,1]. For the “truth” FE
approximation, we use a regular mesh with quadratic elements
and ./~ = 6882 degrees of freedom.

First, we choose (recall that the length of I' is 4, and
hence ¢ is reasonably “small”) - we shall subsequently consider
even smaller 4.

We calculate the eigenvalues and eigenvectors of Covp(Bi)(x,y)
using the standard (Matlab®) Arpack routines. We present in Fig. 2
the eigenvalues /, as a function of k; we observe that the eigen-
values decay exponentially with respect to k?, which is in good
agreement with theoretical bounds [45]. Then, to satisfy our
assumption (27), we set which yields the requirement
7 < Tmax = 0.058. In the following numerical example, we choose
7 = Trnax = 0.058}

We first report results for the case [k = 2.0] and |Bi = 0.5 We
show in Fig. 3 four realizations (bi(x;ﬁyf))lg<4 of the Biot num-
ber, and in Fig. 4 the corresponding temperature fields u k()
(where K = ).

5 10 15 20 25 30
k

Fig. 2. Eigenvalues J, as functions of k.
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0.65

0.6
. 0.55 1
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0.5

045 fs 7

0.4

0.35

Fig. 3. Four realizations of the Biot number x — bi(x; Bi = 05,y -1<i<4.



3200

Fig. 4. The temperature field u k(g for four different realizations p; = (k;,Bi = 0.5,y;) — 1 < i < 4 - when K = ., corresponding to the four realizations of bi(-; Bi = 0.5,yX)

in Fig. 3.

RB approximation: we present in Fig. 5 the five leading basis

procedure over a training set Zi., Of Ny.n = 10,000 parameter
points randomly selected with uniform law in the parameter space
A", Note ny.in = 10,000 is arguably adequate given the rapid decay
of the eigenvalues. In any event, our a posteriori error bounds will
certify (in the Online stage) the accuracy of our RB predictions. The
Greedy procedure terminates when a maximum number of basis
functions Np.x = 18 is reached, while the maximum error bound
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(a) (b)

(c) (d)

Ankmax = MaXyes, . Avk(t) is less than 5 x 107°.

Fig. 5. The five leading RB basis functions ({,),_,, s, ordered from left to right as successively chosen (and orthonormalized) by the Greedy sampling procedure.
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Statistical outputs: we present in Fig. 6 the expected value and
variance as a function of M, obtained for N = 10 and K = 20 (note
that we do not need to repeat the Offline stage for different M.) We
next choose M = 10,000 for our Monte-Carlo sums. We show in
Table 1 the expected value and associated error bound for the inte-
grated temperature at the bottom surface of the fin as a function of
N(< Nmax) and K(< ). Table 2 displays the corresponding vari-
ance and associated error bound. Fig. 7a and b show the error
bounds for the expected value and variance, respectively.

0

2000 4000 6000 8000 10000
M
(b) Variance

Fig. 6. Outputs Ey|[snk(-#k)], Vm[snk(-#)] as functions of M, with ¢ = (2.0,0.5).
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Table 1 -
Expected value Ey([syx(.#x)] and error bound AZ[sy(.#x)] for different values of the RB dimension N and of the KL truncation order K with ¢ = (k = 2.0,Bi = 0.5).
N K=5 K=10 K=15 K=20
Em[snk] AZ[snk] Enm(snk] AR[snk] Em[snk] AZ[snk] Em[snk] Ag[snk]
2 3.2602 4.74 x 10° 3.2599 2.23 x 10° 3.2600 1.59 x 10° 3.2600 1.51 x 10°
4 3.6920 220 x 10° 3.6947 5.08 x 107! 3.6941 7.18 x 1072 3.6942 1.60 x 1072
6 3.6972 2.09 x 10° 3.6974 476 x 107! 3.6979 5.80 x 1072 3.6966 454 x107°
8 3.6981 2.09 x 10° 3.6975 474 x 107! 3.6969 5.77 x 1072 3.6986 433 x10°°
10 3.6974 2.08 x 10° 3.6977 471 x 107! 3.6976 5.69 x 102 3.6978 3.94 x 1072
12 3.6973 2.07 x 10° 3.6976 470 x 107! 3.6981 5.68 x 1072 3.6976 3.90 x 1072
14 3.6975 2.07 x 10° 3.6974 470 x 107" 3.6977 5.68 x 102 3.6978 3.89 x 10>
Table 2 -
Variance Vy[syx(-#k)] and error bound A} [syk(.#)] for different values of the RB dimension N and of the KL truncation order K with ¢ = (x = 2.0,Bi = 0.5).
N K=5 K=10 K=15 K=20
Vmsnk] Aﬂ [snk] Vmlsnk] A@ [sni] Um[snk] Aﬂ [snk] Vm[snk] Aﬂ [snk]
2 0.0039 9.38 x 107! 0.0041 438 x 107! 0.0041 323 x107" 0.0041 3.00 x 107"
4 0.0039 454x107! 0.0045 111 x 107! 0.0045 1.56 x 1072 0.0045 352x10°°
6 0.0037 4.05x 107! 0.0043 1.02 x 107! 0.0043 123 x 1072 0.0043 9.89x10°*
8 0.0037 4,05 x 107" 0.0043 1.08 x 107! 0.0043 1.26 x 1072 0.0043 9.09 x 1074
10 0.0038 416 x 107! 0.0043 9.72 x 1072 0.0043 1.24 x 1072 0.0043 832 x 1074
12 0.0038 416 x 107! 0.0043 9.72 x 1072 0.0043 1.24 x 1072 0.0043 836 x 1074
14 0.0038 412 x 107" 0.0043 9.72 x 1072 0.0043 1.23 x 1072 0.0043 8.46 x 1074
a 1o . . . . .
0
[e=]
o
? 4
Z
&
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Fig. 7. (a) Af[snk(-#k)] and (b) A} [syx(.#k)] as functions of N and K; ¢ = (2.0,0.5).

(N,K)-variations: we observe that the error bounds
Ablsnx(#x)) and Ay [syx(-#x)] depend on N and K in a strongly cou-
pled manner: for a fixed value of K the error bounds initially de-
crease with increasing N and then level off for N large; when the
error bounds no longer improve with increasing N, increasing K
further reduces the error. This behavior of the error bounds is ex-
pected since the accuracy of our predictions is limited by both
the RB error bound A} ,(¢) and the KL truncation error bound
A;:,K(.U)i the former decreases rapidly with increasing N only while
the latter decreases rapidly with increasing K only. We note that
the KL truncation error bounds, ALfsyx(.#x)] and Aj[syx(#x)],
dominate the RB error bounds Aj[syx(.#x)] and A} [syx(#x)],
respectively, as shown in Figs. 8 and 9.

Reduction efficiency: the expectation and variance error
bounds (and the actual errors) decrease very rapidly as both N
and K increase (such a rapid convergence is expected because the
solution is very smooth with respect to the Biot number Bi and also
because the eigenvalues decay rapidly). For N = 10 and K = 20 the

error bounds for the expected value and variance are 3.94 x 107>
(corresponding to a relative error of 0.1%) and 8.32 x 10~* (corre-
sponding to a relative error of 20%), respectively, while the RB
computational savings (including both Offline and Online effort)
relative to the FE method is more than a factor of J. In the limit
J — oo of many (x,Bi)-queries, or M — oo for better accuracy in
the MC evaluations, the RB savings will approach 515 — which re-
flects just the Online effort. The (N = 10, K = 20)-statistical results
can be obtained Online in only 70 s (for a given (i, Bi)) on a Pen-
tium IV 1.73 GHz; it would take roughly 4 h for the FE method to
perform the same calculation.

We see that for k = 2.0 and Bi = 0.5, the standard deviation of
the integrated temperature is less than 2% of the expected inte-
grated temperature; we can conclude that, for this value of k and
Bi, uncertainties in Bi are not too important to “device perfor-
mance”. However, for larger x and small Bi we expect more sensi-
tivity: we find that for x = 10 and Bi = 0.1 the standard deviation
of the integrated temperature is now 6% of the expected integrated
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Fig. 8. (a) Ai[snx(-#x)] and (b) Ai[snx(-#x)] as functions of N and K; ¢ = (2.0,0.5)
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Fig. 9. (a) A} [snx(-#x)] and (b) A} [swk(-#)] as functions of N and K; ¢ = (2.0,0.5).
temperature — and hence of engineering relevance. It is also possi- function of k and Bi. The statistical outputs, which are obtained for
ble to calculate the empirical cumulative distribution function to N =10,K =20and J = 15 x 15 = 225 grid points in the parameter
both assess the range and likelihood of “tails”. space, are plotted in Fig. 10a for M = 5000 and in Fig. 10b for

(k, Bi)-variations: we show in Fig. 10 the expected value of the M = 10,000. The maximum relative error in the expectation over
integrated temperature at the bottom surface of the heat sink as a the 225 parameter grid points is 9.4 x 10~*. (The results in

(a) M = 5,000 (b) M = 10,000

Fig. 10. Expected value of the integrated temperature at the bottom surface of the fin as a function of x and Bi over 4¢ = [0.1,10] x [0.1,1].
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Fig. 11. Eigenvalues / as functions of k for the correlation length 6 = 0.2.
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Fig. 10a and b each require J = 225 evaluations of the empirical
estimations for the expectation and the variance.)

Next, we consider another finite-rank covariance kernel
Covp(Bi)(x,y) that coincides with the first terms in the
KL expansion of (ﬁT)ze’X;—? for a smaller correlation length
[0 =0.2]. We present in Fig. 11 the eigenvalues 2 as a function of
k. We see that the eigenvalues decay at a slower rate than the pre-
vious case (shown in Fig. 2). We then obtain from (27) the require-
ment Tmi = 0.074; in our numerical examples we choose
[Y = Tmax = 0.074]. Fig. 12a shows four random realizations of the
Biot number Bi(x,y) (these four random realizations vary more
rapidly in space than the earlier instances of Fig. 3). We then pur-
sue the greedy sampling procedure which yields Ny.x = 32 for the
same accuracy of 5 x 1072 in the maximal error bound as in the
case ¢ = 0.5. It is not surprising from the Figs. 11 and 12a that
the RB method needs larger Nn,x as the correlation length &
decreases.

Fig. 12. Four realizations of the Biot number x — bi(x:ﬁ,yf() -1<ig<4-for6=0.2.

Table 3
Expected value Ey[syx(.#k)] and error bound Ag[syk(.#)] for different values of N and K with 6 = 0.2,7 = 0.074 and ¢ = (2.0,0.5).
N K=15 K=30 K=45 K=60

Em[sn k] Ag[snk] Em(snx] AZ[snk] Em(snk] AZ[snk] Emsnk] AZ[snk]
5 3.6975 4.09 x 10° 3.6970 480 x 107" 3.6960 1.55 x 1072 3.6960 2.68x10°°
10 3.6975 4.03 x 10° 3.6973 471 x 107! 3.6979 134 x 1072 3.6963 762 x 1074
15 3.6973 4.02 x 10° 3.6978 470 x 107" 3.6970 132 x 1072 3.6977 6.05x 1074
20 3.6980 4.00 x 10° 3.6980 4.67 x 107! 3.6973 1.29 x 1072 3.6980 3.65x 1074
25 3.6969 3.99 x 10° 3.6977 4.66 x 107! 3.6972 128 x 1072 3.6981 3.36x 107"
30 3.6968 3.99 x 10° 3.6975 4.66 x 107! 3.6972 1.28 x 1072 3.6975 3.30x 1074
Table 4
Variance Vy [sy(-#k)] and error bound A} [syk(.#)] for different values of N and K with § =0.2,7 = 0.074 and ¢ = (2.0,0.5).
N K=15 K=30 K=45 K =60

Vmlsnk] A [snk] Vmlsnk] A [snk] Um[Snk] Ay [snk] Vumlsnk] A [snk]
5 0.0038 8.09 x 10" 0.0039 9.64 x 1072 0.0039 3.15x 10> 0.0038 5.41 x 1074
10 0.0039 8.04x 107! 0.0039 9.36 x 102 0.0039 2,68 x 10> 0.0039 153 %1074
15 0.0040 8.07 x 107! 0.0039 9.50 x 1072 0.0040 267 x107° 0.0039 121 x 1074
20 0.0039 7.99 x 107" 0.0039 9.39 x 1072 0.0040 257 x 1072 0.0039 728 x107°
25 0.0039 8.02x 107" 0.0039 9.28 x 1072 0.0040 2.62x10° 0.0040 6.76 x 10>
30 0.0039 7.84 x 107" 0.0040 9.39 x 1072 0.0040 258 x 1072 0.0040 6.71 x 107°
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Table 5
Expected value Ey|[sy(.#x)] and error bound AZ[sy(.#x)] for different values of N and K with 6 =0.2,7 = 0.3 and ¢ = (2.0,0.5).
N K=15 K=30 K=45 K =60
Em[sn k] Ag[snk] Em[snk] AZ[snk] Em[snk] Alsnk] Em[snk] Az[snk]
5 3.7230 1.82 x 10! 3.7229 2.17 x 10° 3.7215 1.02 x 107! 3.7239 425x 1072
10 3.7312 1.70 x 10} 3.7389 2.00 x 10° 3.7273 6.00 x 1072 3.7299 5.65 x 107>
15 3.7341 1.67 x 10! 3.7345 1.97 x 10° 3.7287 5.59 x 1072 3.7311 253 %1073
20 3.7327 1.66 x 10! 3.7338 1.94 x 10° 3.7328 5.40 x 1072 3.7351 1.08 x 1073
25 3.7323 1.65 x 10! 3.7342 1.93 x 10° 3.7350 5.33 x 1072 3.7364 6.73 x 1074
30 3.7322 1.64 x 10! 3.7399 1.93 x 10° 3.7385 5.30 x 1072 3.7370 520x 1074
Table 6
Variance Vy[syx(-#x)] and error bound A} [syk(.#)] for different values of N and K with 6 =0.2,7 = 0.3 and ¢ = (2.0,0.5).
N K=15 K=30 K=45 K =60
Vmlsnk] Ay [Snk] Vmlsnk] Ay [sn] Um(Snk] Ay [snk] Vmlsnk] AY[sn]
5 0.0721 1.54 x 10! 0.0716 1.85 x 10° 0.0744 8.90 x 102 0.0718 3.72 x 1072
10 0.0738 1.46 x 10! 0.0764 1.78 x 10° 0.0743 5.25 x 1072 0.0738 503 x 1073
15 0.0717 1.43 x 10! 0.0734 1.68 x 10° 0.0735 481 %102 0.0744 225x1073
20 0.0705 1.41 x 10! 0.0737 1.69 x 10° 0.0725 461 %1072 0.0728 9.48 x 1074
25 0.0699 1.38 x 10! 0.0699 1.62 x 10° 0.0723 456 x 1072 0.0732 5.83 x 1074
30 0.0755 1.44 x 10! 0.0757 1.68 x 10° 0.0722 464 x 1072 0.0723 443 x10°*

For x = 2.0 and Bi = 0.5 again, we show in Table 3 the expected
value and associated error bound for the integrated temperature at
the bottom surface of the heat sink as a function of N and K.” Table
4 displays the corresponding variance and associated error bound.
Fig. 13 shows the error bounds for the expected value and variance.
We see that while the convergence pattern is similar to that of the
previous case (6 = 0.5), we need to use larger N and K to obtain
the same accuracy for 6 = 0.2.

Nevertheless, the reduction in computational time is still quite
significant: for N=10 and K =45 (for which the ratio
AgSnx (A k)] /EmiSnk (k)] is P-a.s. less than 0.01 at ¢ = (2.0,0.5))
the Online RB evaluation is still more than 50 times faster than
the FE evaluation. Obviously, when the correlation length de-
creases further and further, the RB approach will no longer offer
significant economies or may even become more expensive than
the FE method; note however that, in three spatial dimensions,
the RB method can “afford” a smaller correlation length since the
FE truth will be considerably more expensive.

7 The values for 6 = 0.2 are very similar to the values for § = 0.5 for the same
reason that the variance is in general small: the output is relatively insensitive to Bi
fluctuations.

Finally, in the latter case of a correlation length 6 = 0.2, we also
consider which yields a much larger domain A” for
the random parameter yX. We note however that 7 = 0.3 does not
satisfy the well-posedness requirement (27). As a result, bi(-; Bi, y¥)
might be negative over the physical boundary x € [1, 5] for some yX.
In such case, we simply ignore all possible values of y¥ at which
minxg[l_s]bi(x;ﬁy") < 0, in the Offline stage as well as Online com-
putation. (This should not introduce a significant bias in the SLLN
limit providing only very few realizations are rejected, which is in-
deed the case here with a rejection rate of approximately 1/100).
We show in Fig. 12b four random realizations of the Biot number
Bi(x,Y); these four random realizations have much larger ampli-
tudes than the instances of Fig. 12a. We then pursue the greedy
sampling procedure for K = 60 (a priori determined) to construct
the nested basis sets Xy,1 < N < Npax; we obtain Ny =45 - it
is not surprising from Fig. 12b that the RB method needs larger
Nmax as 7 increases.

For i = 2.0 and Bi = 0.5 again, we further present in Table 5 the
expected value and associated error bound for the integrated tem-
perature at the bottom surface of the heat sink as a function of N
and K. The expected values are now slightly larger than those
shown in Table 3. Table 6 displays the corresponding variance
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and associated error bound. As expected, the variances are much
larger than those shown in Table 4. More specifically, the standard
deviation of the integrated temperature is approximately 7.2% of
the expected integrated temperature, while the standard deviation
of the integrated temperature is only 1.7% of the expected inte-
grated temperature in the earlier results (see Tables 3 and 4).

For [ = 10] and [Bi = 0.1, we find that the standard deviation of
the integrated temperature is 14.6% of the expected integrated
temperature, which consequently defines much more stringent
conditions. The reduction in computational time is still significant:
for N=10 and K =45 (for  which  the ratio
Ap[Snx (A k)] /Em[Snk (k)] is P-a.s. less than 0.02 at ¢ = (2.0,0.5)
and thus slightly larger than that of the previous case) the Online
RB evaluation is more than 50 times faster than the FE evaluation.
These results demonstrate that the RB error bound is inexpensive
and accurate even for a significant variation in the random vari-
ables yX.

4. Conclusions

In this article we have developed the theoretical framework (er-
ror bounds) for, and numerically demonstrated the attractiveness
of, an RB approach for the rapid and reliable computation of expec-
tations of linear functionals of variational solutions to a BVP with
w-x “separable” random parameter fields. The a posteriori error
bounds certify the quality of the approximation and quantify the
effects of both the FE — RB reduction for the BVP and the KL trun-
cation in the random field expansion. The method also permits the
study of the parametric dependence of the outputs with respect to
other (deterministic) parameters entering the problem.

Future developments may include:

(a) test problems in which the random input field multiplies the
solution field not only on the boundary but also over the
entire domain (e.g. random diffusivity coefficient x),

(b) more general variates (and sampling procedures) in the KL
expansion of the input field,

(c) inputs developed with expansions other than KL (not neces-
sarily decoupling 2 and Q, and thus requiring empirical
interpolation [4,17]),

(d) more general statistical outputs (that remain sufficiently
smooth functionals of the random solution field - continu-
ous in I3(Q,H'(2))), and

(e) application of the RB approach to Q-weak/Z-weak colloca-
tion formulations [2,33].

But from our first results, it is arguably already interesting to
apply an RB approach within many of the Q-strong/2-weak formu-
lations in view of the simplicity of the implementation, the consid-
erable reduction in computational time, and the availability of
rigorous error bounds (suitably generalized, in particular as re-
gards the contribution of the KL truncation and associated continu-
ity constants).

We end this paper by pointing out that the RB methods and
associated a posteriori error estimation have been developed for
several classes of parametrized PDEs including linear coercive/non-
coercive elliptic problems [4,7,21,42,43,46], linear elasticity [20],
eigenvalue problems [27], linear parabolic problems [18,19], Boltz-
mann equations [39], nonlinear elliptic and parabolic problems
[17], and incompressible Navier-Stokes equations [31,32,52]. It ap-
pears that the extension to other classes of SPDEs beyond the par-
ticular linear elliptic SPDE discussed in this paper can be achieved
by combining the current RB approach with those of the previous
work. We consider to pursue this line of development in future
work.
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