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This paper proposes a rapid inverse analysis approach based on the reduced
basis (RB) method and the Levenberg–Marquardt–Fletcher algorithm to identify
the ‘unknown’ material properties: Young’s modulus and stiffness-proportional
Rayleigh damping coefficient of the interfacial tissue between a dental implant
and the surrounding bones. In the forward problem, a finite element approxi-
mation for a three-dimensional dental implant-bone model is first built. A RB
approximation is then established by using a proper orthogonal decomposition
– Greedy algorithm and the Galerkin projection to enable extremely fast and
reliable computation of displacement responses for a range of material properties.
In the inverse analysis, the RB approximation for the dental implant-bone model
are incorporated in the Levenberg–Marquardt–Fletcher algorithm to enable rapid
identification of the unknown material properties. Numerical results are presented
to demonstrate the efficiency and robustness of the proposed method.

Keywords: second-order hyperbolic partial differential equations; reduced basis
method; inverse analysis; Levenberg–Marquardt–Fletcher algorithm; material
characterization; POD–Greedy algorithm

1. Introduction

Osseointegration is a slow process of structural and functional connection between living
bone and dental implant surfaces.[1] In the osseointegration process, the conditions of
implant-bone interfacial tissues are very important as they reflect the bone remodelling
and the stability of dental implant-bone structures. Understanding these conditions allows
clinicians to decide on effective treatments. From a mechanical viewpoint, the material
properties of the interfacial tissues are the most important condition indicator as they
determine the biomechanical behaviour and stability of implant-bone structures.

A number of methods have been proposed to identify the tissue properties of dental
implant-bone structures with in vitro and in vivo studies.[2] Examples are the clinical
percussion testing (impact testing),[3, 4] the radio-graphic observation method and the
resonance frequency analysis (RFA).[5, 6] Among these methods, the RFA is adopted
by most researchers and is extensively used in many dental implant researches to date.
[6–9] In the area of non-destructive evaluation, there are other methods which were shown
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successful with some levels in identifying the tissues properties of dental implant-bone
structures. An example of such methods is the inverse analysis method.[10–12] However,
either the method was based on the finite element method (FEM) (which is time consuming)
[10, 11] or has focused on the frequency-domain (which is not really real-time analysis).[12]
Therefore, they are not convenient for clinicians.

The FEM has been widely employed to solve elasticity equations in dental implant
studies (e.g. [9, 13, 14]). Although the FEM is a very useful and powerful tool in the
inverse analysis context, it can be time consuming because the complexity of implant-bone
structures requires a very large number of elements and because many forward problems
need to be solved. The total CPU time using FEM can be so long that real-time identification
is not possible. A fast forward solver is therefore essential to enable real-time inverse
analysis, thereby providing clinicians with the immediate knowledge of the conditions of
the implant-bone interfacial tissues.

The reduced basis (RB) method is a model order reduction framework for rapid and
reliable evaluation of functional outputs of solutions of parametrized partial differential
equations (PDEs). These PDEs depend on an input parameter vector that includes geometry
parameters and/or material properties. The RB method was developed for elliptic PDEs,[15,
16] parabolic PDEs,[17] hyperbolic PDEs,[18] the viscous Burgers’ equation [19] and the
steady incompressible Navier-Stokes equation.[20] Recently, Liu et al. developed a RB
method for elasticity problems based on a smooth Galerkin projection [21] which can
provide an upper bound to the exact solution, while the original RB method provides a
lower bound to the exact solution. The computational efficiency of the RB method was
demonstrated significantly higher than that of the FEM in the inverse analysis context.[22]

Several methods have been proposed for solving inverse problems in non-destructive
evaluation. They include global search algorithms such as the genetic algorithm, simulated
annealing, neural network and local gradient-based algorithms such as the gradient descent,
Gauss–Newton or Levenberg–Marquardt method. Applications of the neural network for
dental implant inverse problems can be found in [10, 11]. Recently, Zaw et al. [12] de-
veloped a technique to determine non-invasively the material properties of implant-bone
interfacial tissues by using the RB method in combination with the neural network in the
frequency domain. However, time-domain applications have not yet been considered. In
addition, the Levenberg–Marquardt algorithm has not been applied to the dental implant
inverse problems, although this algorithm was widely used to solve other important inverse
problems.[23–26]

In this paper, we introduce an inverse analysis approach for rapid identification of the ma-
terial properties of the interfacial tissues. There are two main components in our approach:
the RB method and the Levenberg–Marquardt–Fletcher algorithm. We first develop a RB
approximation for linear elastodynamics that govern the structural responses of a dental
implant-bone model. This is achieved by using a proper orthogonal decomposition (POD)–
Greedy algorithm, the Galerkin projection and an offline–online computational procedure.
The RB approximation provides extremely fast and reliable calculation of displacement
responses for a range of material properties. We then incorporate the RB approximation
into the Levenberg–Marquardt–Fletcher algorithm to enable rapid identification of the
unknown material properties. Finally, the efficiency and robustness of the proposed method
are demonstrated for a real in vitro model.

The paper is organized as follows. In Section 2, we introduce a real in vitro model and
associated finite element approximations. In Section 3, we develop the RB approximation
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and present some numerical results. In Section 4, we describe the proposed inverse analysis
approach and present numerical results to demonstrate its efficiency and robustness. Finally,
we provide some concluding remarks in Section 5.

2. Problem description and finite element approximation

2.1. Models and approximations

2.1.1. The real in vitro model

We consider a real in vitro model shown in Figure 1(a). The bone is made of the bovine
rib of a mature specimen obtained commercially. The bone is composed of two subparts:
the cortical bone and the cancellous bone. The thickness of the cortical bone is 2 mm. A
cylindrical implant socket whose diameter of 6.5 mm and depth of 15 mm is drilled into
the bone. A cylindrical dental implant whose diameter of 4 mm and length of 12 mm is
inserted into the drilled hole. A layer of 2.5 mm thickness surrounding the dental implant is
the interfacial tissue whose material properties need to be identified in the osseointegration
process. Finally, a stainless steel screw is screwed tightly into the dental implant. The screw
is modelled as a cylinder that has 1.5 mm in diameter and 12.5 mm in length, respectively.

Figure 1. The real in vitro model (a) and the 3d simplified FEM model with sectional view (b).
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Figure 2. Output point, applied load and boundary conditions (a), meshed model in ABAQUS (b)
and time history of load (c).
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Table 1. Material properties of the dental implant-bone structure.

Domain Layers E (Pa) ν ρ(g mm−3) β

�1 Cortical bone 2.3162× 1010 0.371 1.8601× 10−3 3.38× 10−6

�2 Cancellous bone 8.2345× 108 0.3136 7.1195× 10−4 6.76× 10−6

�3 Tissue E 0.3155 1.055× 10−3 β

�4 Titan implant 1.05× 1011 0.32 4.52× 10−3 5.1791× 10−10

�5 Stainless steel screw 1.93× 1011 0.305 8.027× 10−3 2.5685× 10−8

2.1.2. The simplified 3d FEM model

Figure 1(b) presents a simplified 3D dental implant-bone model that simulates the real in
vitro model shown in Figure 1(a). The geometry of the simplified dental implant-bone model
is constructed by using SolidWorks 2005. The physical domain � consists of five regions:
the outermost cortical bone�1, the cancellous bone�2, the interfacial tissue�3, the dental
implant �4 and the stainless steel screw �5. The 3D simplified model is then meshed and
analysed in the software ABAQUS/CAE version 6.9-1. A dynamic force opposite to the
x-direction is then applied to the body of the screw as shown in Figure 2(a). The time
history of the applied load is also presented in Figure 2(c). The output of interest is defined
as the displacement responses of a point on the head of the screw. The Dirichlet boundary
condition (∂�D) is specified in the bottom-half of the simplified model as illustrated in
Figure 2(a). As shown in Figure 2(b) the finite element mesh consists of 9655 nodes and
52585 four-node tetrahedral solid elements. The coinciding nodes of the contact surfaces
between different regions (the regions�1,�2,�3,�4,�5) are assumed to be rigidly fixed,
i.e. the displacements in the x-, y- and z-directions are all set to be the same for the same
coinciding nodes.

We assume that the regions �i , 1 ≤ i ≤ 5, of the simplified model are homogeneous
and isotropic1. The material properties: the Young’s moduli, Poisson’s ratios and densities
of these regions are presented in Table 1 [12, 27]. In order to simulate the damping of
the system, the Rayleigh damping assumption [28] is used in our analysis. Each region
shall have their own pair values of αi – the mass-proportional damping coefficients which
represent the contribution of the mass matrices into the damping matrices of interest and
βi (i = 1, . . . , 5) – the stiffness-proportional damping coefficients which represent the
contribution of the stiffness matrices into the damping matrices, respectively. We conducted
a sensitivity analysis for the values of αi , 1 ≤ i ≤ 5, to the displacement output and found
that they do not affect the displacement output of our problem. This means that our current
problem setting is stiffness dominated and the damping being used here, in essence, is
Kelvin–Voigt damping. Based on this finding, βi , 1 ≤ i ≤ 5, have the values as presented
in the last column of Table 1 such that

Ci = βi Ai , i = 1, . . . , 5,

where Ci and Ai are the FEM damping and stiffness matrices of each region, respectively.
We also note in Table 1 that the Young’s modulus E and the stiffness-proportional Rayleigh
damping coefficient β of the region �3 (E3,β3) are ‘unknown’ material parameters that
need to be identified.
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The 3D simplified dental implant-bone problem is solved by taking two important
considerations. Firstly, the loading applied to the head of the screw is extremely small.
Hence, the deformation of the whole structure is small and shall be governed by linear
elastodynamics.[11–13] Secondly, all layers except the tissue (i.e. the cortical bone, the
cancellous bone, the implant and the screw) are very hard and the tissue is the only soft
layer considered. Therefore, the output displacement responses of the system are mostly
affected by the material properties of the tissue layer only.

Here, we aim to identify the ‘unknown’ material properties of the interfacial tissue,
namely the Young’s modulus E and the stiffness-proportional Rayleigh’s damping coeffi-
cient β, from the displacement responses of the dental-implant bone structure due to the
excitation force. Our analysis procedure consists of two parts: forward analysis and inverse
analysis. In the forward analysis, the output displacement responses are determined for
a range of input system parameters (E, β) for which we need to build a RB model. The
inverse analysis determines (Etrue, βtrue) from a given measurement of output displacement
response of the dental implant structure when it is excited by the applied load.

2.2. Finite element approximation

2.2.1. Formulations and definitions

We consider a spatial domain� ∈ R
3 with a boundary ∂�. We denote the Dirichlet portion

of the boundary by �D
i , 1 ≤ i ≤ 3. We then introduce the Hilbert spaces

Y e = {v ≡ (v1, v2, v3) ∈ (H1(�))3|vi = 0 on �D
i , i = 1, 2, 3}, (1a)

Xe = (L2(�))3. (1b)

Here, H1(�) = {v ∈ L2(�)|∇v ∈ (L2(�))3} where L2(�) is the space of square-
integrable functions over�. We equip our spaces with inner products and associated norms
(·, ·)Y e ((·, ·)Xe ) and ‖ · ‖Y e = √(·, ·)Y e (‖ · ‖Xe = √(·, ·)Xe ), respectively; a typical choice
is

(w, v)Y e =
∫
�

∂wi

∂x j

∂vi

∂x j
+ wivi , (2a)

(w, v)Xe =
∫
�

wivi , (2b)

where the summation over repeated indices is assumed.
We next define our parameter set D ∈ R

P , a typical point in which shall be denoted
μ ≡ (μ1, . . . , μP ). We then define the parametrized bilinear forms a in Y e, a : Y e × Y e ×
D → R; m, c, f, 	 are continuous bilinear and linear forms in Xe, m : Xe × Xe → R,
c : Xe × Xe ×D→ R, f : Xe → R and 	 : Xe → R.

The ‘exact’ linear elasticity problem is stated follows: given a parameter μ ∈ D ⊂ R
P ,

we evaluate the output of interest

se(μ, t) = 	(ue(μ, t)), t ∈ [0, T ], (3)
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where the field variable ue(μ, t) ∈ Y e satisfies the weak form of the μ-parametrized
hyperbolic PDE

m

(
∂2ue(μ, t)

∂t2
, v

)
+ c

(
∂ue(μ, t)

∂t
, v;μ

)
+ a

(
ue(μ, t), v;μ) = g(t) f (v),

∀v ∈ Y e, t ∈ [0, T ], (4)

with initial conditions ue(μ, t0) = 0, ∂ue(μ,t0)
∂t = 0.

We next introduce a reference finite element approximation space Y ⊂ Y e(⊂ Xe) of
dimension N ; we further define X ≡ Xe. Note that Y and X shall inherit the inner product
and norm from Y e and Xe, respectively. Our ‘true’finite element approximation u(μ, t) ∈ Y
to the ‘exact’ problem2 is stated as:

m

(
∂2u(μ, t)

∂t2
, v

)
+ c

(
∂u(μ, t)

∂t
, v;μ

)
+ a (u(μ, t), v;μ) = g(t) f (v),

∀v ∈ Y, t ∈ [0, T ], (5)

with initial conditions u(μ, t0) = 0, ∂u(μ,t0)
∂t = 0; we then evaluate the output of interest

s(μ, t) = 	(u(μ, t)), t ∈ [0, T ]. (6)

The RB approximation shall be built upon our reference finite element approximation,
and the RB error will thus be evaluated with respect to u(μ, t) ∈ Y . Clearly, our methods
must remain computationally efficient and stable as N →∞.

We shall assume that the bilinear forms a(·, ·;μ) and m(·, ·;μ) are continuous,

a(w, v;μ) ≤ γ ‖w‖Y ‖v‖Y ≤ γ0‖w‖Y ‖v‖Y , ∀w, v ∈ Y,∀μ ∈ D, (7a)

m(w, v;μ) ≤ ρ‖w‖X‖v‖X ≤ ρ0‖w‖X‖v‖X , ∀w, v ∈ Y,∀μ ∈ D, (7b)

coercive,

0 ≤ α0 ≤ α(μ) ≡ inf
v∈Y

a(v, v;μ)
‖v‖2Y

, ∀μ ∈ D, (8a)

0 ≤ σ0 ≤ σ(μ) ≡ inf
v∈Y

m(v, v;μ)
‖v‖2X

, ∀μ ∈ D; (8b)

and symmetric a(v,w;μ) = a(w, v;μ),∀w, v ∈ Y,∀μ ∈ D and m(v,w;μ) = m(w, v;μ),
∀w, v ∈ X,∀μ ∈ D. (We (plausibly) suppose that γ0, ρ0, α0 and σ0 may be chosen
independent of N [17]). We also require that the linear forms f (v) : Y → R and
	(v) : Y → R be bounded with respect to ‖ · ‖Y and ‖ · ‖X , respectively.

With respect to our particular dental implant problem described in Section 2.1.2 the
actual integral forms of the linear and bilinear forms are defined as:

m(w, v) =
5∑

r=1

∫
�r

ρrwivi , (9a)

a(w, v;μ) =
5∑

r=1,r 
=3

∫
�r

∂vi

∂x j
Cr

i jkl
∂wk

∂xl
+ μ1

∫
�3

∂vi

∂x j
C3

i jkl
∂wk

∂xl
, (9b)
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c(w, v;μ) =
5∑

r=1,r 
=3

βr

∫
�r

∂vi

∂x j
Cr

i jkl
∂wk

∂xl
+ μ2μ1

∫
�3

∂vi

∂x j
C3

i jkl
∂wk

∂xl
, (9c)

f (v) =
∫
�N

n

v, (9d)

for all w, v ∈ Y , μ ∈ D. Here, the ‘unknown’ parameter μ = (μ1, μ2) ≡ (E, β) belongs
to the region �3. Cr

i jkl is the constitutive elasticity tensor for isotropic materials and it
is expressed in terms of the Young’s modulus E and Poisson’s ratio ν of each region
�r , 1 ≤ r ≤ 5, respectively. �N

n is the point where the load is applied as shown in Figure
2(a). The material properties Er and βr , 1 ≤ r ≤ 5, r 
= 3; νr and ρr , 1 ≤ r ≤ 5 are defined
as in Table 1.

From (9b) and (9c), we find that a and c depend affinely on the parameter μ and that
they can be expressed as:

a(w, v;μ) =
Qa∑

q=1

�
q
a(μ)a

q(w, v), ∀w, v ∈ Y, μ ∈ D, (10a)

c(w, v;μ) =
Qc∑

q=1

�
q
c (μ)c

q(w, v), ∀w, v ∈ Y, μ ∈ D. (10b)

Here, the smooth functions �1
a(μ) = 1, �2

a(μ) = μ1; �1
c(μ) = 1, �2

c(μ) = μ1μ2

depend on μ. But the bilinear forms a1(w, v) = ∑5
r=1,r 
=3

∫
�r

∂vi
∂x j

Cr
i jkl

∂wk
∂xl

, a2(w, v) =∫
�3

∂vi
∂x j

C3
i jkl

∂wk
∂xl

; c1(w, v) = ∑5
r=1,r 
=3 βr

∫
�r

∂vi
∂x j

Cr
i jkl

∂wk
∂xl

and c2(w, v) = ∫
�3

∂vi
∂x j

C3
i jkl

∂wk
∂xl

do not depend on μ. Finally, we also require that all linear and bilinear forms be
independent of time – the system is thus linear time-invariant.[17]

2.2.2. Time discretization

We shall use the Newmark’s scheme with coefficients
(
ϕ = 1

2 , ψ = 1
4

)
[29] to approximate

the time derivative terms of the ‘true’ statement (5). For time integration: we divide [0, T ]
into K subintervals of equal lengths �t = T

K , and define tk = k�t, 0 ≤ k ≤ K . Our finite
element approximation is then given by:

m(u(μ, tk+1), v)+ 1

2
�tc(u(μ, tk+1), v;μ)+ 1

4
�t2a(u(μ, tk+1), v;μ)

= −m(u(μ, tk−1), v)+ 1

2
�tc(u(μ, tk−1), v;μ)− 1

4
�t2a(u(μ, tk−1), v;μ)

+ 2m(u(μ, tk), v)− 1

2
�t2a(u(μ, tk), v;μ)

+�t2geq(tk) f (v),

∀v ∈ Y, 1 ≤ k ≤ K − 1, (11)

with

geq(tk) = 1

4
g(tk−1)+ 1

2
g(tk)+ 1

4
g(tk+1), 1 ≤ k ≤ K − 1. (12)
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In order to start the procedure (11), u(μ, t1) is computed as on page 491 of [28]. With the
assumptions of u(μ, t0) = 0, u̇(μ, t0) = 0 and g(t0) = 0; then u(μ, t1) is computed from:
u(μ, t1) = 1

4�t2ü(μ, t1), where the acceleration ü(μ, t1) is found from:

m(ü(μ, t1), v)+ 1

2
�tc(ü(μ, t1), v;μ)+ 1

4
�t2a(ü(μ, t1), v;μ) = g(t1) f (v), ∀v ∈ Y.

(13)
We then evaluate the output from:

s(μ, tk) = 	(u(μ, tk)), 1 ≤ k ≤ K . (14)

3. RB approximation

The RB method is a cooperative method that is constructed from the FEM. The idea of the
RB method is that instead of solving a very time-consuming and expensive FEM system
for each input parameter, we would rather proceed with two stages: an offline stage and
an online stage. In the offline stage – performed only once, we pre-compute several FEM
solutions corresponding to several sets of input parameters (the S∗ set in the following
sections) and use these FEM solutions as basis vectors of the RB spaces (the YN space
in the following sections). Then, in the online stage – performed numerous times, we can
compute very rapidly and accurately the solution/ouput of the RB system for a required
input parameter by taking a proper linear combination (Galerkin projection) of the RB basis
vectors. The computational time and computational cost of the online stage are very cheap
because necessary operation counts depend only on the dimension N of the RB spaces
rather than the dimension N of the FEM space and N � N . Obviously, we will evaluate
the error between the RB solution and the FEM solution as well as the error between the
RB output and the FEM output to assess the quality of the RB solution/output with respect
to the FEM ones. This kind of error, which is called the ‘RB error’ because it is the error
induced by the RB approximation, will be discussed in more detail in Section 3.3. One can
refer to [30] for more information regarding the RB method and all related aspects.

3.1. RB method

We introduce the nested samples S∗ = {μ1 ∈ D, μ2 ∈ D, . . . , μN ∈ D}, 1 ≤ N ≤ Nmax,
and associated nested Lagrangian RB spaces YN = span{ζn, 1 ≤ n ≤ N }, 1 ≤ N ≤ Nmax,
where ζn ∈ YN , 1 ≤ n ≤ Nmax are mutually (·, ·)Y – orthonormal RB basis functions. The
sets S∗ and YN shall be constructed appropriately by the POD–Greedy algorithm described
in Section 3.2.2 afterward. Our RB approximation uN (μ, t) to u(μ, t) is then obtained by
a standard Galerkin projection: given μ ∈ D, we now look for uN (μ, t) ∈ YN satisfies

m

(
∂2uN (μ, t)

∂t2
, v

)
+ c

(
∂uN (μ, t)

∂t
, v;μ

)
+ a (uN (μ, t), v;μ) = g(t) f (v),

∀v ∈ YN , t ∈ [0, T ]. (15)

We evaluate the associated RB output, sN (μ, t), from

sN (μ, t) = 	(uN (μ, t)), t ∈ [0, T ]. (16)
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The discrete RB approximation equation of (15) is then given by:

m(uN (μ, tk+1), v)+ 1

2
�tc(uN (μ, tk+1), v;μ)+ 1

4
�t2a(uN (μ, tk+1), v;μ)

= −m(uN (μ, tk−1), v)+ 1

2
�tc(uN (μ, tk−1), v;μ)− 1

4
�t2a(uN (μ, tk−1), v;μ)

+ 2m(uN (μ, tk), v)− 1

2
�t2a(uN (μ, tk), v;μ)+�t2geq(tk) f (v),

∀v ∈ YN , 1 ≤ k ≤ K − 1. (17)

Similar to (13), with zero initial conditions: uN (μ, t0) = 0, u̇N (μ, t0) = 0, g(t0)

= 0; uN (μ, t1) is calculated from: uN (μ, t1) = 1
4�t2üN (μ, t1), and the RB acceleration

üN (μ, t1) is found from:

m(üN (μ, t1), v)+1

2
�tc(üN (μ, t1), v;μ)+ 1

4
�t2a(üN (μ, t1), v;μ) = g(t1) f (v),

∀v ∈ YN . (18)

Finally, the RB output is evaluated from:

sN (μ, tk) = 	(uN (μ, tk)), 1 ≤ k ≤ K . (19)

3.2. POD–Greedy sampling procedure

In this section, we present briefly the POD method and then introduce our POD–Greedy
sampling algorithm used in this work.

3.2.1. The proper orthogonal decomposition

We aim to generate an optimal (in the mean square error sense) basis set {ζm}Mm=1 from any
given set of Mmax(≥ M) snapshots {ξk}Mmax

k=1 . To do this, let VM = span{v1, . . . , vM } ⊂
span{ξ1, . . . , ξMmax} be an ‘arbitrary’ space of dimension M . We assume that the space VM

is orthonormal such that (vn, vm) = δnm, 1 ≤ n,m ≤ M ((·, ·) denotes an appropriate inner
product and δnm is the Kronecker delta symbol). The POD space, WM = span{ζ1, . . . , ζM }
is defined as:

WM = arg min
VM⊂span{ξ1,...,ξMmax }

(
1

Mmax

Mmax∑
k=1

inf
αk∈RM

∥∥∥∥ξk −
M∑

m=1

αk
mvm

∥∥∥∥
2
)
. (20)

The POD space WM which is extracted from the given set of snapshots {ξk}Mmax
k=1 is

the space that best approximate this given set of snapshots and can be written as WM =
POD

({ξ1, . . . , ξMmax},M
)
. We can construct this POD space by using the method of

snapshots which is presented concisely in the Appendix of [31].

3.2.2. POD–Greedy algorithm

We now discuss our POD–Greedy algorithm [32] to construct the nested sets S∗ and YN of
interest. Let S∗ denote the set of greedily selected parameters in D. Initialize S∗ = {μ∗0},



Inverse Problems in Science and Engineering 1319

where μ∗0 is an arbitrarily chosen parameter. Let eproj(μ, tk) = u(μ, tk)− projYN
u(μ, tk),

where projYN
u(μ, tk) is the YN−orthogonal projection of u(μ, tk) into the YN space.

The algorithm is then defined as follows:

(21a) Set YN = 0.

(21b) Set μ∗ = μ∗0.
(21c) While N ≤ Nmax

(21d) W =
{

eproj (μ
∗, tk), 0 ≤ k ≤ K

}
;

(21e) YN+M ← YN

⊕
POD(W,M);

(21f ) N ← N + M;

(21g) μ∗ = arg max
μ∈�train

⎧⎨
⎩
√∑K

k=1 ‖R(v;μ, tk)‖2
Y ′

‖uN (μ, t K )‖Y

⎫⎬
⎭ ;

(21h) S∗ ← S∗
⋃
{μ∗};

(21i) end.

(21)

Here, M is the number of RB basis functions that are constructed from the set of
snapshots W at each POD–Greedy iteration, and �train is the training parameter set where
�train ∈ D. The term ‖R(v;μ, tk)‖Y ′ ,∀v ∈ Y, 1 ≤ k ≤ K − 1 is the dual norm of the
residual, where the residual is defined from (17) as:

R(v;μ, tk) = geq(tk) f (v)− 1

�t2

(
m(uN (μ, tk+1), v)− 2m(uN (μ, tk), v)

+ m(uN (μ, tk−1), v)
)

− 1

�t

(
1

2
c(uN (μ, tk+1), v;μ)− 1

2
c(uN (μ, tk−1), v;μ)

)

−
(

1

4
a(uN (μ, tk+1), v;μ)+ 1

2
a(uN (μ, tk), v;μ)

+1

4
a(uN (μ, tk−1), v;μ)

)
.

(22)

In addition, the dual norm of the residual is defined theoretically as:

‖R(v;μ, tk)‖Y ′ ≡ sup
v∈Y

R(v;μ, tk)

‖v‖Y , ∀v ∈ Y, 1 ≤ k ≤ K − 1. (23)

At the step (21g) of the algorithm (21), note that we use the dual norm of the residual as a
surrogate for the RB error (define in the next section).
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3.3. Errors

3.3.1. RB error

In order to evaluate the efficiency of the RB model relative to the FEM model, RB errors
are used in this work. The RB error for the solution uN (μ, tk) is defined as:

e(μ, tk) = u(μ, tk)− uN (μ, tk), 1 ≤ k ≤ K , (24)

where u(μ, tk), uN (μ, tk), 1 ≤ k ≤ K are the FEM and RB solutions, respectively. The
relative RB error of solution and relative RB error of output are defined as:

εu(μ, tk) = ‖e(μ, tk)‖Y
‖uN (μ, tk)‖Y ; εs(μ, tk) =

∣∣∣∣ s(μ, tk)− sN (μ, tk)

sN (μ, tk)

∣∣∣∣ , 1 ≤ k ≤ K , (25)

respectively. We note in (25) that the final time step tK is usually preferred since the errors
will grow up as time progresses.

3.3.2. Error indicator

Consider the POD–Greedy algorithm (21), we can use the RB error (24) as the error indicator
in the step (21g). In that situation the computational time, computational effort and required
storage will be huge because we need to solve and store all the FEM solutions of all
μ ∈ �train; hence the use of RB error is not feasible. Another choice for the error indicator
(and also for the error evaluation) is the rigorous a posteriori error bound [15, 17]. Tan
derived the a posteriori error bound for linear hyperbolic PDEs [18]; however, this bound
is for the Newmark’s scheme3

(
ϕ = 1

2 , ψ = 1
2

)
and is thus not applicable for our work.

Recently, Huynh et al. [33] used the Laplace transform technique to derive a new a posteriori
error bound for linear hyperbolic PDEs. The technique improves the situation but also
introduces much additional complication.

As analyzed above, we need to have another error indicator since both the error bound and
RB error are not available for our particular problem. Therefore, in order to implement the
POD–Greedy strategy we use the dual norm of the residual ‖R(v;μ, tk)‖Y ′ as a surrogate.
The dual norm of the residual is actually not rigorous because it does not include stability
information, i.e. some temporal terms as present in the full error bound of [18]. However,
there are three advantages in using the dual norm of the residual. Firstly, it is nearly the
only remaining choice; secondly, it can evaluate relatively the accuracy of the RB solutions
for various choices of μ; and thirdly – most important, its calculation is very convenient:
fast and efficient offline–online decomposition for many μ computations as required in the
Greedy strategy. Furthermore, in the next section we will show that the operation counts
to find the dual norm of the residual (22) for one particular μ is very cheap – roughly
O(K N 2 Q2 + K N 2 Q + K N Q), where Q = Qa + Qc.

3.4. Offline–online computational procedure

In this section, we develop an offline–online computational procedure in order to fully
exploit the dimension reduction of the problem. We first express uN (μ, tk) as:

uN (μ, tk) =
N∑

n=1

uN n(μ, tk)ζn, ∀ζn ∈ YN . (26)
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We then choose a test functions v = ζn, 1 ≤ n ≤ N for the discrete RB equation (17).
It then follows from (17) that uN (μ, tk) = [uN 1(μ, tk) uN 2(μ, tk) . . . uN N (μ, tk)]T ∈
R

N satisfies (
MN + 1

2
�tCN (μ)+ 1

4
�t2AN (μ)

)
uN (μ, tk+1)

=
(
−MN + 1

2
�tCN (μ)− 1

4
�t2AN (μ)

)
uN (μ, tk−1)

+
(

2MN − 1

2
�t2AN (μ)

)
uN (μ, tk)

+�t2geq(tk)FN , (27)

1 ≤ k ≤ K − 1.

The initial condition is treated similar to the treatment in (13) and (18). Here, CN (μ),
AN (μ), MN ∈ R

N×N are symmetric positive definite matrices with entries CN i, j (μ) =
c(ζi , ζ j ;μ), AN i, j (μ) = a(ζi , ζ j ;μ), MN i, j = m(ζi , ζ j ), 1 ≤ i, j ≤ N and FN ∈ R

N is
the RB load vector with entries FN i = f (ζi ), 1 ≤ i ≤ N .

The RB output is then computed from:

sN (μ, tk) = LT
N uN (μ, tk), 1 ≤ k ≤ K . (28)

Invoking the affine parameter dependence (10), we obtain

AN i, j (μ) = a(ζi , ζ j ;μ) =
Qa∑

q=1

�
q
a(μ)a

q(ζi , ζ j ), (29a)

CN i, j (μ) = c(ζi , ζ j ;μ) =
Qc∑

q=1

�
q
c (μ)c

q(ζi , ζ j ), (29b)

which can be written as:

AN i, j (μ) =
Qa∑

q=1

�
q
a(μ)A

q
N i, j , CN i, j (μ) =

Qc∑
q=1

�
q
c (μ)C

q
N i, j , (30)

where the parameter independent quantities Aq
N ∈ R

N×N and Cq
N ∈ R

N×N are given by:

Aq
N i, j = aq(ζi , ζ j ), 1 ≤ i, j ≤ Nmax, 1 ≤ q ≤ Qa, (31a)

Cq
N i, j = cq(ζi , ζ j ), 1 ≤ i, j ≤ Nmax, 1 ≤ q ≤ Qc, (31b)

respectively.
The computational procedure is now clear with two stages: an offline stage and an

online stage. In the offline stage – performed only once, we solve for the ζn, 1 ≤ n ≤ Nmax;
we then compute and store the μ-independent quantities in (31), (A6) and (A8) for the
estimation of the output and the dual norm of the residual. We consider each POD–Greedy
iteration (21) in more details. We first need to solve (11) for the ‘true’ FE solutions; then
do the error projection in step (21d) and solve the POD/eigenvalue problem in step (21e).
In addition, we have to compute O(N 2 Q) N -inner products (·, ·)Y in (31); O(N Q + N )
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pseudo N -solutions in (A6) and roughly O(N 2 Q2+N 2 Q+N Q)N -inner products (·, ·)Y
in (A8) for the dual norm estimations. Since there are totally Nmax

M POD–Greedy iterations,
the above calculations are thus multiplied by Nmax

M times. In summary, for the offline stage,
the operation counts depend on N and hence, its computational cost is very expensive.

In the online stage – performed many times, for each new parameterμ– we first assemble
the RB matrices in (29), this requires O(N 2 Q) operations. We then solve the RB governing
equation (27), the operation counts are O(N 3+K N 2) as the RB matrices are generally full.
Finally, we evaluate the displacement output sN (μ, tk) from (28) at the cost of O(K N ). For
the dual norm of the residual, the operation counts to gather all offline terms and calculate
the norm as in (A7) are roughly O(K N 2 Q2 + K N 2 Q + K N Q). Therefore, as required
in real-time context, the online complexity is independent of N , and since N � N we
can expect significant computational saving in the online stage relative to the classical FE
approach.

3.5. Numerical results

We now turn to the 3D simplified FEM dental implant-bone model created in Section
2.1.2. The ‘true’ finite element approximation space is of dimension N = 26802. For time
integration, T = 1 × 10−3s, �t = 2 × 10−6s, K = T

�t = 500. The input parameter μ is
defined by E and β: μ ≡ (E, β) ∈ D, where D = [1.0× 106, 15× 106]Pa × [5× 10−6,

5 × 10−5] ⊂ R
P=2. The ‖ · ‖Y used in this work is defined as ‖w‖2Y = a(w,w; μ̄) +

m(w,w; μ̄), where μ̄ = (8 × 106Pa, 2.75 × 10−5) is the arithmetic average of μ in D;
Qa = 2, Qc = 2. To verify our computational code (performed in Matlab R2007a), we first
compare the FEM outputs computed by ABAQUS and by our code with the test parameter
μtest = (10×106Pa, 1×10−5). Figure 3 shows the output displacement responses in the x-,
y- and z-directions vs. time atμtest viaABAQUS and our code, respectively. Figure 3(a) and
(c) demonstrate that the FEM results by our code match very well with the results computed
by ABAQUS. However, due to machine errors, there are some small differences between
the ABAQUS results and ours as shown in Figure 3(b). In our dental implant problem, since
the applied load is opposite to the x-direction, the x-component of the output displacement
response is the most important among the three components (i.e. x-, y- and z-components).
Hence, for the remaining discussion the ‘output displacement response’ refers only to the
x-component of the output displacement.

The POD–Greedy algorithm is then implemented to create the RB spaces YN = {ζn, 1 ≤
n ≤ N }, 1 ≤ N ≤ Nmax. The algorithm is actually the POD in the time space and Greedy
in the parameter space. We choose M = 5 (in step (21e)) for each Greedy iteration and
Nmax = 60 to terminate the iteration procedure4. A sample set�train is created randomly by
a uniform distribution over D with ntrain = 1000 samples. The distribution of the sample set
S∗ is illustrated in Figure 4(a). We show, as a function of N : εmax,rel

u is the maximum over
�train of εu(μ, t K ) and εmax,rel

s is the maximum over�train of εs(μ, t K ) in Figure 4(b). The
comparison of s(μtest, t) vs. sN (μtest, t) for various choices of N are presented in Figure
5, respectively. The numerical results demonstrate that our RB errors are acceptably small,
and that the convergence rate is fast for a N � N .

All computations were performed on a desktop with processor Intel(R) Core(TM)2
Duo CPU E8200 @2.66GHz 2.66GHz, RAM 3.25GB, 32-bit Operating System. The com-
putation time for the RB forward solver (tRB(online)), the CPU-time for the FEM forward
solver by our code (tFEM) and by ABAQUS (tABAQUS), and the CPU-time saving factor
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Figure 3. Comparison of the FEM output displacement responses computed by our code vs. by
ABAQUS software with respect time in the x- (a), y- (b), and z-direction (c) with μtest = (10 ×
106Pa, 1× 10−5).

κ = tFEM/tRB(online) are listed on Table 2, respectively. We observe that while the FEM
forward solvers (i.e. our code and ABAQUS) take a thousand of seconds to compute the
output displacement responses, the RB solver (with various choices of N ) takes less than
1 second to find the approximation displacement response with known accuracy. Thus,
it is clear that the RB is very efficient and reliable for solving forward problems. Next,

Table 2. Comparison of the CPU-time for a FEM, RB and ABAQUS forward analysis.

N tRB(online) (s) tFEM (s) tABAQUS (s) κ = tFEM/tRB(online)

10 0.1947 3750 2010 1.9260× 104

20 0.2312 3750 2010 1.6220× 104

30 0.2969 3750 2010 1.2631× 104

40 0.3405 3750 2010 1.1013× 104
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Figure 5. Comparison of output displacement responses by FEM and RB with μtest = (10 ×
106Pa, 1× 10−5) with N = 2 (a) and N = 10 (b) basis functions.

our RB model is now ready to be utilized as an efficient forward solver in the inverse
analysis.

4. Inverse procedure

Here, we establish an inverse procedure using our RB model in combination with the
Levenberg–Marquardt–Fletcher algorithm to identify rapidly the elastic modulus E and the
stiffness Rayleigh damping coefficient β of the interfacial tissue in our dental implant-bone
structure.
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4.1. The Levenberg–Marquardt–Fletcher (LMF) algorithm

The considered inverse problem is concerned with the simultaneous estimation of two pa-
rameter components: the Young’s modulus E and the stiffness Rayleigh damping coefficient
β of the interfacial tissue from the ‘measured’ displacement response at the output point
(Figure 2(a)). This inverse problem can be regarded as an optimization problem which aims
at finding the unknown parameter5 μ∗ = (E∗, β∗) that minimizes the following objective
function or cost function

S(μ) =
K∑

i=1

[sN ,i (μ)− smeasure
i ]2 = r T r, (32)

where
ri (μ) = sN ,i (μ)− smeasure

i . (33)

Here, K is the total number of discrete time steps; sN ,i (μ) is the ‘computed’ RB
displacement response defined in (16) at the time ti with the parameter μ; smeasure

i is the
simulated ‘measured’ displacement response at the time ti and μ = (E, β) is the input
material property parameter.

The parameter μ∗ which minimizes the objective function S must satisfy the following
set of non-linear algebraic equations:

K∑
i=1

2
∂sN ,i

∂μ j
(sN ,i − smeasure

i ) = 2
∂ rT

∂μ j
r = 2JT r = 0, j = 1, 2. (34)

The set of equations (34) is obtained by differentiating (32) with respect to each
component of the parameterμ and then setting those derivatives equal to zero. The matrix J
is called the Jacobian matrix whose entries are defined as: Ji j = ∂ri

∂μ j
, 1 ≤ i ≤ K , j = 1, 2.

In order to solve the system (34), the Levenberg–Marquardt–Fletcher iterative method [34,
35] is used. The update equation of the parameter μ at (l + 1)th iteration has the form:

μ(l+1) = μ(l) +�μ(l), (35a)

�μ(l) = −(J(l)T J(l) + λ(l)D)−1J(l)
T

r(l). (35b)

The solution of the inverse problem starts with a suitable guess μ(0), and the iteration
procedure is continued until

|μ(l+1)
j − μ(l)j | < ε, j = 1, 2, (36)

where ε is a prescribed tolerance. The entries of the Jacobian matrix J can be calculated
from the following finite difference formula

∂ri (μ)

∂μ j
≈ ri (μ+ εU j )− ri (μ)

ε
, (37)

where U j = [δ1 j , δ2 j ]T , δ denotes the Kronecker delta symbol and ε is a small number.
In order to check the uniqueness of solutions of the posed inverse problem, a study on

local minima is carried out by plotting the function S(μ) vs. a wide range of both parameter
components. Note that we use N = 40 basis functions in all computations related to our RB
model in the inverse analysis (i.e. computations of sN (μ) in (32)). We present on Figure 6
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the plot of the logarithm of the function S(μ) vs. both parameter components E and β in
the parameter domain D. In these plots, we choose μmeasure ≡ (8× 106Pa, 8× 10−6) for
S(μ) as defined in (32). The parameterμ is taken in the parameter domain D, whereby D is
discretized uniformly into a rectangular grid of (100× 100) points. The plots confirm that
with a particular μmeasure ≡ (8× 106Pa, 8× 10−6) the function S(μ) has a unique global
minimum point which is exactly the μmeasure itself. This also confirms the absence of other
local minima (if any) of the function S(μ), and hence ensuring the uniqueness of solutions
of our inverse problem.

In the remaining sections, the open-source code [35] with appropriate modifications is
used to implement our RB–LMF algorithm.

4.2. Numerical results

4.2.1. Effects of E and β to output displacement sN

We use N = 40 basis functions in all computations related to our RB model in this inverse
analysis. The effects of both the Young’s modulus E and the stiffness Rayleigh damping
coefficient β to the displacement response sN are plotted in Figure 7(a) and (b), respectively.
As observed, the Young’s modulus E dominates the width between two consecutive peaks
of the displacement response curves (Figure 7(a)), while the coefficient β controls the height
of these peaks (Figure 7(b)). It is shown that the output displacement responses are very
sensitive to these two parameter components.

4.2.2. Synthetic data

To verify our RB–LMF procedure, the simulated ‘measured’ displacement responses are
used as the input information. A simulated measured displacement response smeasure is
generated by adding a Gaussian noise term to the displacement response sN (μ

measure) as

smeasure = sN (μ
measure)+ ωσ, (38)
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and β with (a) an overall 3D view and (b) a xy-view.
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Figure 7. Effects of the Young’s modulus E (with β = 1 × 10−5) (a) and effects of the stiffness
Rayleigh damping coefficient β (with E = 10× 106Pa) (b) on displacement responses.

where ω is a vector which contains random variables with zero mean and unit variance
normal [24]; the standard deviation σ computed as in [36]

σ = pe

(
1

K − 1

K∑
k=1

(sN (μ
measure, tk))2

)1/2

. (39)

Here, pe is the noise level (for example, pe = 0.05 means a 5% noise level), K is the
total number of time steps and sN is the usual RB displacement response, respectively.

4.2.3. Parameter estimation

As an estimation example, we chooseμmeasure = (8×106Pa, 8×10−6) to test our RB–LMF
procedure. The lowest value of μ ∈ D: μ(0) = (1× 106Pa, 5× 10−6) is chosen to be the
initial guess – which is also independent of μmeasure. We first create a number of noisy (or
contaminated) outputs {smeasure} as defined in (38), then we use the LMF algorithm to find
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Figure 11. 95% confidence ellipses of the sample set Strue with pe = 5% (a) and pe = 10% (b)
noise added.
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Table 3. Total number of forward analyses required in the RB–LMF inverse analysis (for one
particular μmeasure).

Average number of iterations Number of RB calls in each iteration Total RB calls

30 3 m = 90

Table 4. Comparison of computational time for the LMF model using FEM and RB as forward
solvers (for one particular μmeasure).

Total RB calls CPU time for each solver Total computation time

m = 90 tFEM 3750 (s) m × tFEM 93.75 (h)
tRB(online) 0.3405 (s) m × tRB(online) 35.65 (s)

the corresponding set
{
μcompute

}
. This set of computed parameters is then covered by a 95%

confidence ellipse which is drawn using the principal components analysis method.[37] For
a pe = 3% noise level, the estimation results which are the 95% confidence ellipses and the
computed parameter samples of 100, 500 and 1000 random tests are plotted in Figures 8
and 9(a), respectively. These figures show that the computed parameter samples converge
around the center point μmeasure = (8× 106Pa, 8× 10−6) and that the ellipses’ shapes are
nearly similar as the number of random tests increase (Figure 9(b)). Hence, 500 random
tests are sufficient to construct reliable 95% confidence ellipses for all test cases afterwards.

In order to test with many parameters, a sample set Strue of regular (4× 3) grid pattern
over [1.0 × 106, 15 × 106]Pa × [2 × 10−5, 5 × 10−5] is created. We then implement the
RB–LMF procedure with the fixed initial guess μ(0) = (1 × 106Pa, 5 × 10−6) and 500
random tests for each true parameter point in the grid. We show the plots of 95% confidence
ellipses of each true parameter point with added noise levels pe = 1%, 3%, 5% and 10%
in Figures 10 and 11, respectively. The accuracy and suitability of obtained results show
that at lower noise of displacement responses, reliable estimates can be provided by this
procedure.

To validate the efficiency of the RB–LMF procedure, total forward solver calls for
the RB–LMF inverse analysis are given in Table 3; the total CPU time is recorded and
provided in Table 4. It is found that the CPU time of the LMF model using the RB solver6

is significantly faster than the one using the FEM solver. Therefore, the proposed RB–LMF
approach strongly reduces the computational time and cost.

5. Conclusion

In this paper, a rapid inverse procedure (RB–LMF) is established, which consists of two
main stages: constructing a fast elastodynamic RB model and determining inversely material
properties via the Levenberg–Marquardt–Fletcher algorithm. We applied the RB–LMF
approach to a specific 3D simplified dental implant-bone structure. In the RB stage, the
results show that the RB model is very efficient and reliable. In the inverse analysis, the
identified results of the RB–LMF approach are very accurate and fast for all test cases:
noise-free, contaminated noise, one true parameter, various true parameters. The results of
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our example support our conclusion that the computational efficiency is greatly increased
due to the use of the RB, and that the RB–LMF approach is able to model the non-linear
relations between the structural parameters and the non-static responses of complex dental
implant structures.
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Notes
1. This assumption would introduce modelling error and approximation error (due to sharp inter-

faces) and that functionally graded materials (FGM) would be a more realistic assumption. Since
this paper is our first attempt on the development of the RB method for elastic wave equations
and its application to the inverse dental implant problem, we consider this simplified 3D model
to demonstrate the usefulness of the RB method for certain applications. The FGM assumption
approach will be another subject for future work.

2. Generally, for our dental implant problem u and ue (and hence s and se) are different due to various
environmentally contaminated noise. The simulation treatment of this noise will be described in
Section 4.2.2.

3. In this work, note that we use the Newmark’s scheme
(
ϕ = 1

2 , ψ = 1
4

)
as described in Section

2.2.2.
4. In fact, the POD–Greedy algorithm behaves unstably when N ≥ 60 basis functions, i.e. the

maximum error curves (in Figure 4(b)) will go up with N ≥ 60. This is because of the high
instability of the dual norm of the residual ‖R(v;μ, tk)‖Y ′ and the ill conditions of the RB
matrices AN and CN with larger N . However, as observed from Figure 4(b) we already obtain
acceptably small RB error even with N = 30 basis functions and hence, we chose to terminate
the procedure with Nmax = 60 basis functions.

5. Here, the vector μ should be typed in bold as μ, we use the mediumface italic for suitability with
previous sections.

6. The work focuses on the real-time context with many online computations, the offline stage is
done once and expensive: its computational time is approximately 16 h on the same computer
described in Section 3.5.
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Appendix. Calculation of the dual norm of the residual
In this section, we present explicitly the calculation of the dual norm of the residual associated with
the discrete RB equation (17) discretized by the Newmark’s scheme

(
ϕ = 1

2 , ψ = 1
4

)
. We consider

the residual defined in (22) and its dual norm given in (23). The dual norm of the residual can be
computed alternatively as:

‖R(v;μ, tk)‖Y ′ ≡ sup
v∈Y

R(v;μ, tk)

‖v‖Y ,

= ‖ê(μ, tk)‖Y , 1 ≤ k ≤ K − 1,

(A1)

where ê(μ, tk) ∈ Y is given by the Riesz representation:

(ê(μ, tk), v)Y = R(v;μ, tk), ∀v ∈ Y, 1 ≤ k ≤ K − 1. (A2)

From (22), (26) and the affine property (10) it thus follows that ê(μ, tk) satisfies

(ê(μ, tk), v)Y = geq (tk) f (v)

+
N∑

n=1

−uN n(μ, tk+1)+ 2uN n(μ, tk)− uN n(μ, tk−1)

�t2
m(ζn, v)

+
N∑

n=1

Qc∑
q=1

�
q
c (μ)
−uN n(μ, tk+1)+ uN n(μ, tk−1)

2�t
cq (ζn, v)

+
N∑

n=1

Qa∑
q=1

�
q
a (μ)
−uN n(μ, tk+1)− 2uN n(μ, tk)− uN n(μ, tk−1)

4
aq (ζn, v).

(A3)

It is clear from linear superposition that we can express ê(μ, tk) as:

ê(μ, tk) = geq (tk)F +
N∑

n=1

λm,n(μ, tk)Mn

+
N∑

n=1

Qc∑
q=1

�
q
c (μ)λc,n(μ, tk)Cq,n +

N∑
n=1

Qa∑
q=1

�
q
a (μ)λa,n(μ, tk)Aq,n .

(A4)

Here,

λm,n(μ, tk) = −uN n(μ, tk+1)+ 2uN n(μ, tk)− uN n(μ, tk−1)

�t2
,

λc,n(μ, tk) = −uN n(μ, tk+1)+ uN n(μ, tk−1)

2�t
,

λa,n(μ, tk) = −uN n(μ, tk+1)− 2uN n(μ, tk)− uN n(μ, tk−1)

4
;

(A5)

and the parameter-independent terms F , M, C, A are calculated from:

F ∈ Y from (F , v)Y = f (v), ∀v ∈ Y,

Mn ∈ Y from (Mn, v)Y = m(ζn, v), ∀v ∈ Y for 1 ≤ n ≤ N ,

Cq,n ∈ Y from (Cq,n, v)Y = cq (ζn, v), ∀v ∈ Y for 1 ≤ q ≤ Qc, 1 ≤ n ≤ N ,

Aq,n ∈ Y from (Aq,n, v)Y = aq (ζn, v), ∀v ∈ Y for 1 ≤ q ≤ Qa, 1 ≤ n ≤ N .

(A6)



1334 K.C. Hoang et al.

From (A1) and (A4) it follows that

‖ê(μ, tk)‖2Y = (ê(μ, tk), ê(μ, tk))Y
= geq (tk)geq (tk)� f f

+ 2
N∑

n=1

geq (tk)

{
λm,n(μ, tk)�

f m
n +

Qc∑
q=1

�
q
c (μ)λc,n(μ, tk)�

f c
qn

+
Qa∑

q=1

�
q
a (μ)λa,n(μ, tk)�

f a
qn

}

+
N∑

n,n′=1

{
λm,n(μ, tk)λm,n′(μ, tk)�mm

nn′ + 2
Qc∑

q=1

�
q
c (μ)λc,n(μ, tk)λm,n′(μ, tk)�mc

qnn′

+2
Qa∑

q=1

�
q
a (μ)λa,n(μ, tk)λm,n′(μ, tk)�ma

qnn′

+
Qc∑

q,q ′=1

�
q
c (μ)�

q ′
c (μ)λc,n(μ, tk)λc,n′(μ, tk)�cc

qnq ′n′

+2
Qc∑

q=1

Qa∑
q ′=1

�
q
c (μ)λc,n(μ, tk)�

q ′
a (μ)λa,n′(μ, tk)�ca

qnq ′n′

+
Qa∑

q,q ′=1

�
q
a (μ)λa,n(μ, tk)�

q ′
a (μ)λa,n′(μ, tk)�aa

qnq ′n′
}
,

(A7)
where the parameter-independent quantities � are defined as

� f f = (F ,F)Y ,

�
f m
n = (F ,Mn)Y , 1 ≤ n ≤ N ,

�
f c
qn = (F , Cq,n)Y , 1 ≤ q ≤ Qc, 1 ≤ n ≤ N ,

�
f a
qn = (F ,Aq,n)Y , 1 ≤ q ≤ Qa, 1 ≤ n ≤ N ,

�mm
nn′ = (Mn,Mn′)Y , 1 ≤ n, n′ ≤ N ,

�mc
qnn′ = (Mn′ , Cq,n)Y , 1 ≤ q ≤ Qc, 1 ≤ n, n′ ≤ N ,

�ma
qnn′ = (Mn′ ,Aq,n)Y , 1 ≤ q ≤ Qa, 1 ≤ n, n′ ≤ N ,

�cc
qnq ′n′ = (Cq,n, Cq ′,n′)Y , 1 ≤ q, q ′ ≤ Qc, 1 ≤ n, n′ ≤ N ,

�ca
qnq ′n′ = (Cq,n,Aq ′,n′)Y , 1 ≤ q ≤ Qc, 1 ≤ q ′ ≤ Qa, 1 ≤ n, n′ ≤ N ,

�aa
qnq ′n′ = (Aq,n,Aq ′,n′)Y , 1 ≤ q, q ′ ≤ Qa, 1 ≤ n, n′ ≤ N .

(A8)




