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Abstract

In this paper, we extend the earlier work [M. Barrault, Y. Maday, N. C. Nguyen, A.T. Patera, An ‘‘empirical interpo-
lation’’ method: application to efficient reduced-basis discretization of partial differential equations, C.R. Acad. Sci. Paris,
Série I 339 (2004) 667–672; M.A. Grepl, Y. Maday, N.C. Nguyen, A.T. Patera, Efficient reduced-basis treatment of non-
affine and nonlinear partial differential equations, M2AN Math. Model. Numer. Anal. 41 (3) (2007) 575–605.] to provide a

posteriori error estimation and basis adaptivity for reduced-basis approximation of linear elliptic partial differential equa-
tions with nonaffine parameter dependence. The essential components are (i) rapidly convergent reduced-basis approxima-
tions – (Galerkin) projection onto a space W u

N spanned by N global hierarchical basis functions which are constructed from
solutions of the governing partial differential equation at judiciously selected points in parameter space; (ii) stable and inex-
pensive interpolation procedures – methods which allow us to replace nonaffine parameter functions with a coefficient-
function expansion as a sum of M products of parameter-dependent coefficients and parameter-independent functions;
(iii) a posteriori error estimation – relaxations of the error-residual equation that provide inexpensive yet sharp error
bounds for the error in the outputs of interest; (iv) optimal basis construction – processes which make use of the error
bounds as an inexpensive surrogate for the expensive true error to explore the parameter space in the quest for an optimal
sampling set; and (v) offline/online computational procedures – methods which decouple the generation and projection
stages of the approximation process. The operation count for the online stage – in which, given a new parameter value,
we calculate the output of interest and associated error bounds – depends only on N, M, and the affine parametric com-
plexity of the problem; the method is thus ideally suited for repeated and reliable evaluation of input–output relationships
in the many-query or real-time contexts.
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1. Introduction

The design and optimization of engineering systems often requires repeated, reliable, and real-time predic-
tion of an (or more realistically, several) ‘‘output of interest’’ se 2 R-related to maximum displacements, crit-
ical stresses or strains, energies or forces, flowrates or pressure drops, temperatures or fluxes – as a function of
an ‘‘input’’ parameter P-vector l 2 D � RP -related to geometry, physical properties, boundary conditions, or
loads. These outputs are often functionals of a field variable ue(l),
seðlÞ ¼ ‘ðueðlÞÞ; ð1Þ

where ue(l) 2 Xe – say displacement, velocity, or temperature – satisfies the weak form of the l-parametrized
elliptic partial differential equation (PDE)
aðueðlÞ; v; lÞ ¼ f ðvÞ; 8v 2 X e: ð2Þ

Here Xe is the appropriate function space, and a (respectively ‘, f) are continuous bilinear (respectively, linear)
forms. The relevant system behavior is thus described by an implicit input–output relationship, l! se(l),
evaluation of which demands solution of the underlying PDE.

In general, we cannot find the exact solution, and hence we replace se(l), ue(l) with a Galerkin finite ele-
ment approximation, sN ðlÞ; uN ðlÞ: given l 2 D,
sN ðlÞ ¼ ‘ðuN ðlÞÞ; ð3Þ

where uN ðlÞ 2 XN satisfies
aðuN ðlÞ; v; lÞ ¼ f ðvÞ; 8v 2 XN : ð4Þ

Here XN � X e is a standard finite element approximation subspace of dimension N . Unfortunately, to achieve
the desired accuracy, N must typically be chosen very large; as a result, the evaluation l! sN ðlÞ is simply too
costly in the many-query and real-time contexts often of interest in engineering.

For parametrized PDEs, the fundamental observation is that uN ðlÞ in fact resides on a very low-dimen-
sional manifold Mu ¼ fuN ðlÞ; l 2 Dg induced by the parametric dependence. Furthermore, the field variable
uN ðlÞ will often be quite regular in l – the parametrically induced manifold Mu is smooth – even when the
field variable enjoys only limited regularity with respect to the spatial coordinate. The reduced-basis (RB)
method explicitly recognizes and exploits dimension reduction afforded by the low-dimensional smooth solu-
tion manifold to develop RB approximations of uN ðlÞ, sN ðlÞ.

In the RB method, we first require a space W u
N spanned by N global basis functions fn, 1 6 n 6 N; here the

dimension N is very small compared to N . Typically, these basis functions are constructed from a ‘‘snapshot
set’’ which consists of solutions of the underlying PDE at selected parameter points. We next seek an approx-
imation uNðlÞ 2 W u

N by applying a Galerkin projection
aðuN ðlÞ; v; lÞ ¼ f ðvÞ; 8v 2 W u
N : ð5Þ
We then substitute uN ðlÞ ¼
PN

j¼1uNjðlÞfj and choose v = fi, 1 6 i 6 N, to obtain
AN ðlÞuN ðlÞ ¼ F N ; ð6Þ

where AN ðlÞ 2 RN�N , F N 2 RN are the RB stiffness matrix and force vector with entries AN i j(l) = a(fj, fi; l),
FN i = f(fi), 1 6 i,j 6 N, respectively. Once solving for uN(l), we evaluate the RB approximation sN(l) to sN ðlÞ
as
sN ðlÞ ¼ ‘ðuNðlÞÞ ¼
XN

j¼1

uNjðlÞLNj: ð7Þ
Here LN 2 RN is the RB output vector with entries LN i = ‘(fi), 1 6 i 6 N. We note that the (full) RB system (6)
of size N · N is very small compared to the (sparse) N �N linear system associated with the finite element
discretization (4). Since N � N , the RB method can effect a significant reduction in the degrees of freedom.
Nevertheless, the RB system (6) can still be expensive as the operation count of assembling the stiffness matrix
a(fj, fi; l) depends on N .
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In the literature, RB methods [3–10] and associated a posteriori error estimation procedures [7,11–17] have
been developed for linear elliptic PDEs with affine parameter dependence, in particular, problems which
accept an affine decomposition hypothesis: for some finite (preferably small) integer Q, a may be expressed as
aðw; v; lÞ ¼
XQ

q¼1

HqðlÞaqðw; vÞ; 8w; v 2 X ; 8l 2 D; ð8Þ
where Hq : D! R and aqðw; vÞ : X � X ! R, 1 6 q 6 Q, are parameter-dependent functions and parameter-
independent continuous bilinear forms, respectively. Under the above hypothesis, we can write
AN ðlÞ ¼
XQ

q¼1

HqðlÞAq
N ; ð9Þ
where, for 1 6 q 6 Q, the matrices Aq
N 2 RN�N with entries aq(fj, fi) are parameter-independent and can thus be

pre-computed offline. Hence, in the online stage, forming AN(l) according to (9) and inverting it require only
O(QN2 + N3) operations. The online complexity is totally independent of N . The traditional RB approach
proves very effective for affine parameter problems.

Unfortunately, if a is not affine in the parameter this computational strategy breaks down; the online com-
plexity will still depend on N . For example, for general functions gr(x; l), 1 6 r 6 R, (here x 2 X and l 2 D),
the bilinear form
aðw; v; lÞ ¼
XR

r¼1

crðw; v; grðx; lÞÞ ð10Þ
will not admit an efficient (online N -independent) computational decomposition. Here cr : X � X
�L1ðXÞ ! R are trilinear forms. It is obvious that (9) is merely a special case of (10) in which Q = R,
gr(x; l) = Hr(l), and cr(w, v, gr(x; l)) reduces to Hr(l)ar(w, v) for 1 6 r 6 R – gr(Æ; l) depends only on the
parameter l, not on the spatial coordinates x. Although many property, boundary condition, load, and even
geometry variations can indeed be expressed in the affine hypothesis (9) for reasonably small Q, there are
many problems – for example, geometric variations considered in this paper – which do not admit such a
decomposition, but the more general nonaffine representation (10).

Indeed, the limitation of the affine decomposition hypothesis prompts the development of efficient RB
approaches for nonaffine-parametrized PDEs. In [1,2], the authors introduce the empirical interpolation
method and apply the method to replace nonaffine-parametrized functions with a coefficient-function approx-
imation which recovers N -independent complexity for the online computation. The RB technique developed
therein has been applied not only to nonaffine linear elliptic equations but also to highly nonlinear elliptic and
parabolic equations [2], as well as certain nonlinear problems in quantum chemistry [18]. The effective treat-
ment of nonaffine terms by the empirical interpolation approach results in a low order model which is typically
several orders of magnitude less expensive than the high-fidelity finite element model (4) and standard Galer-
kin reduced-order model built upon (5).

For parametrized PDEs with affine parameter dependence, a posteriori error estimation procedures have
been developed for linear elliptic and parabolic problems [7,11–13,17,19] and for nonlinear problems including
the incompressible Navier–Stokes equations [14–16,20]. However, in the case of nonaffine parameter depen-
dence, the development of a posteriori error estimators is not totally straightforward. Another important issue
is the construction of a reduced basis ffngN

n¼1. For many low-order methods, the reduced basis is constructed
upon a snapshot set consisting of finite element solutions of the underlying PDE at selected parameter points.
It is thus very important to find a small yet optimal set of parameter points by which we compute the snap-
shots and construct our reduced basis.

In this paper we shall expand upon the earlier work [1,2] to provide a posteriori error estimation and basis
adaptivity for the RB approximation of linear elliptic PDEs with nonaffine parameter dependence. The new
contributions are the a priori convergence analysis, the derivation of a posteriori error estimators, and the opti-
mal construction of hierarchical RB spaces based on the greedy sampling procedure [16,20,19] and proper
orthogonal decomposition (POD) or Karhunen–Loève (KL) approach [21–23].
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This paper is organized as follows. In Section 2, we introduce the problem statement. In Section 3, we pres-
ent a short review of the empirical interpolation method. In Section 4, we discuss the RB approximation and
computational considerations. In Section 5, we develop the associated a posteriori error estimation procedure
to obtain error bounds for the field variable and output of interest. In Section 6, we describe the basis adap-
tivity procedure to generate optimal RB spaces. In Section 7, we present numerical results for a heat conduc-
tion problem in a parametrized domain in view of the engineering design of a heat shield configuration.
Finally, in Section 8, we conclude the paper with some remarks.

2. Problem statement

2.1. Preliminaries

We shall consider second-order elliptic PDEs, and hence our exact space Xe satisfies H 1
0ðXÞ � X e � H 1ðXÞ.

Here X � Rd (d = 1, 2, or 3) is a spatial domain with suitably regular boundary oX; H1(X) = {v 2 L2(X),
$v 2 (L2(X))d}; and L2(X) is the space of square integrable functions over X. The inner product and norm
associated with Xe are given by ð�; �ÞX e and k � kX e ¼ ð�; �Þ1=2

X e , respectively. A typical choice for our inner product
ð�; �ÞX e is
ðw; vÞX e ¼
Z

X
rw � rvþ wv; 8w; v 2 X e; ð11Þ
which is simply the standard H1(X) inner product. Any inner product which induces a norm equivalent to the
H1 norm is acceptable.

We shall denote by X 0e the dual space of Xe. For a h 2 X 0e, the dual norm is given by
khkX 0e � sup
v2X e

hðvÞ
kvkX e

: ð12Þ
If we introduce the representation operator Y : X 0e ! X e such that, for any h 2 X 0e,
ðYh; vÞX e ¼ hðvÞ; 8v 2 X e; ð13Þ

then
khkX 0e ¼ kYhkX e : ð14Þ

This is simply a statement of the Riesz representation theorem.

2.2. Problem formulation

Our exact output and field variable, seðlÞ 2 R and ue(l) 2 Xe, satisfy (1) and (2). Here, for any
l ” (l1 � � � lP) in our closed input domain D � RP , að�; �; lÞ : X e � X e ! R is a parameter-dependent bilinear
form, and ‘ð�Þ : X e ! R and f ð�Þ : X e ! R are parameter-independent linear forms.

Our ‘‘truth’’ or ‘‘reference’’ finite element approximation to the exact output and field variable,
sðlÞ � sN tðlÞ and uðlÞ � uN tðlÞ 2 XN t � X , satisfies (3) and (4) for the particular choice N ¼ N t: given
l 2 D, we find
sðlÞ ¼ ‘ðuðlÞÞ; ð15Þ

where u(l) 2 X satisfies
aðuðlÞ; v; lÞ ¼ f ðvÞ; 8v 2 X : ð16Þ

We assume that N t is chosen sufficiently large that s(l) and u(l) are essentially indistinguishable from se(l)
and ue(l), respectively. We shall build our reduced basis approximation upon this ‘‘truth’’ approximation;
and we shall evaluate the error in our reduced basis approximation with respect to this ‘‘truth’’ approximation.
As we will subsequently prove in Sections 4 and 5, the online complexity (and stability) of our reduced basis
approach is independent of N t; hence, we may choose N t to be ‘‘arbitrarily’’ large at no detriment to (online)

performance.
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In this paper, we shall consider a particular form for the operator a: for some fixed integer Q and R, a can
be expressed as
aðw; v; lÞ ¼
XQ

q¼1

HqðlÞbqðw; vÞ þ
XR

r¼1

crðw; v; grðx; lÞÞ ð17Þ
for all w, v 2 X and for all l 2 D. Here Hq : D! R and bqðw; vÞ : X � X ! R, 1 6 q 6 Q, are l-dependent
functions and l-independent continuous bilinear forms, respectively; and cr : X � X � L1ðXÞ ! R and
gr(Æ; l) 2 L1(X) \ C0(X), 1 6 r 6 R, are trilinear forms and prescribed functions, respectively.

We shall make the following assumptions. First, we assume that a is continuous,
aðw; v; lÞ 6 CðlÞkwkXkvkX 6 c0kwkXkvkX ; 8l 2 D ð18Þ

coercive,
0 < a0 6 aðlÞ ¼ inf
w2X

aðw;w; lÞ
kwk2

X

; 8l 2 D; ð19Þ
and symmetric, aðw; v; lÞ ¼ aðv;w; lÞ; 8w; v 2 X ; 8l 2 D. (We (plausibly) suppose that a0, C0 may be chosen
independent of N .) Second, we assume that the trilinear forms cr, 1 6 r 6 R, are bounded
crðw; v; zÞ 6 cr
0kwkXkvkXkzkL1ðXÞ; 8w; v 2 X ; 8z 2 L1ðXÞ: ð20Þ
Third, we assume that our linear forms f(Æ) and ‘(Æ) are bounded.
f ðvÞ 6 cf
0kvkX ; 8v 2 X ; ð21Þ

‘ðvÞ 6 c‘0kvkX ; 8v 2 X : ð22Þ
It is then standard, under the above assumptions, to prove existence and uniqueness of the exact solution and
the truth approximation. Finally, we assume that
‘ðvÞ ¼ f ðvÞ; 8v 2 X : ð23Þ
Hence, our output functional is ‘‘compliant’’; more general functionals and nonsymmetric a require adjoint
techniques to improve the output convergence [12,24–26].

Before developing the RB approximation and associated a posteriori error estimation for this problem, we
briefly review the empirical interpolation method [1,2] necessary for the treatment of nonaffine parameter
operators of the form (17).

3. Coefficient-function approximation

3.1. Interpolation procedure

We consider the problem of approximating a given l-dependent function gðx; lÞ 2 L1ðXÞ\ C0ðXÞ; 8l 2 D,
by a coefficient-function expansion gM(x; l). Toward this end, we assume that we are given Mmax basis func-
tions, /m, 1 6 m 6Mmax, and define nested approximation spaces, W g

M ¼ spanf/1; . . . ;/Mg, 1 6M 6Mmax.
We further assume that we are given associated nested sets of interpolation points TM = {z1 2 X, . . ., zM 2 X},
1 6M 6Mmax.

Next, we define our coefficient-function approximation as
gMðx; lÞ ¼
XM

m¼1

bMmðlÞ/mðxÞ ð24Þ
where the coefficient vector bMðlÞ ¼ ðbM1ðlÞ . . . bMMðlÞÞ 2 RM is found such that
XM

m¼1

/mðziÞbMmðlÞ ¼ gðzi; lÞ; i ¼ 1; . . . ;M : ð25Þ
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We define the associated error as
eMðlÞ � kgð�; lÞ � gMð�; lÞkL1ðXÞ: ð26Þ
In words, we find gM(Æ; l) by interpolating g(Æ; l) at the interpolation points fzmgM
m¼1.

Often we evaluate the quality of our approximation relative to the ‘‘best approximation’’
g�Mð�; lÞ ¼ arg min
w2W g

M

kgð�; lÞ � wkL1ðXÞ: ð27Þ
The associated error is defined as
e�MðlÞ � kgð�; lÞ � g�Mð�; lÞkL1ðXÞ: ð28Þ
Note that the best approximation g�Mðx; lÞ requires the full knowledge of g(x; l).
Of course, the approximation quality depends critically both on f/mg

Mmax

m¼1 and fzmgMmax

m¼1 . In this paper we use
the POD method [21–23] to compute f/mg

Mmax

m¼1 from a suitably fine set of snapshots
Sg
K � fn

g
kðxÞ ¼ gðx; lg

kÞ; lg
k 2 Sg

K ; 1 6 k 6 Kg;

where Sg

K ¼ flg
1; . . . ; lg

Kg is a large parameter sample set. The POD is detailed in Appendix A for reference. We
note that the POD will be expensive if the number of snapshots K is very large. It is thus important to select a
small snapshot set with good approximation properties. Often (especially for high-dimensional parameter do-
mains) we combine the POD with the greedy sampling procedure [16,20,19] in our basis construction process.
See Section 6 for a detailed discussion.

Once we have the basis set f/mg
Mmax

m¼1 , we can determine the point set fzmgMmax

m¼1 by using the empirical inter-
polation method as follows.

3.2. Empirical interpolation procedure

To begin, we choose the first interpolation point as z1 = arg maxx2Xj/1(x)j and compute w1(x) = /1(x)/
/1(z1) and B1 = 1. For M = 2, . . ., Mmax, we first solve the linear system for rM�1,j, 1 6 j 6M, from
XM�1

j¼1

wjðziÞrM�1;j ¼ /MðziÞ; i ¼ 1; . . . ;M � 1; ð29Þ
and set
rMðxÞ ¼ /MðxÞ �
XM�1

j¼1

rM�1;jwjðxÞ; ð30Þ
we then define
zM ¼ arg maxx2XjrMðxÞj; ð31Þ

and compute wM(x) = rM(x)/rM(zM) and BM ij = wj(zi), 1 6 i,j 6M.

It is shown in [1,2] that the functions {w1, . . ., wM} form a basis for W g
M and that gM(x; l) defined earlier in

(24) can be also computed in terms of the wm as
gMðx; lÞ ¼
XM

m¼1

uMmðlÞwmðxÞ; ð32Þ
where the coefficient vector uMðlÞ 2 RM is determined from
XM

j¼1

BMijuMjðlÞ ¼ gðzi; lÞ; 1 6 i 6 M : ð33Þ
We shall use interpolation formula (32) and (33) from now on. We note that uM(l) requires O(M2) operations
once the inverse matrix B�1

M is pre-computed.
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Theoretical and numerical aspects of the empirical interpolation have been analyzed in great detail in [1,2].
We summarize here the main results: (i) the process is stable – BM is a well-conditioned lower triangular matrix
with dominant unity diagonal; and (ii) the Lebesgue constant is bounded above by 2M � 1.1

3.3. A posteriori estimators

Given an approximation gM(x; l), we define EMðx; lÞ � êMðlÞwMþ1ðxÞ, where êMðlÞ � jgðzMþ1; lÞ�
gMðzMþ1; lÞj. In general, eMðlÞP êMðlÞ, since eMðlÞ ¼ kgð�; lÞ � gMð�; lÞkL1ðXÞ P jgðx; lÞ � gMðx; lÞj for all
x 2 X, and thus also for x = zM+1. However, we can prove

Proposition 1. If gð�; lÞ 2 W g
Mþ1, then (i) gðx; lÞ � gM ðx; lÞ ¼ 	EM ðx; lÞ, and (ii) kgð�; lÞ � gM ð�; lÞkL1

ðXÞ ¼ êM ðlÞ.

The proof of this proposition was given in [1,2].
Of course, in general gð�; lÞ 62 W g

Mþ1, and hence our estimator êMðlÞ is unfortunately a lower bound. How-
ever, if eM(l)! 0 very fast, we expect that the effectivity,
1 Th
much
gMðlÞ �
êMðlÞ
eMðlÞ

; ð34Þ
shall be close to unity; furthermore, the estimator is very inexpensive – one additional evaluation of g(Æ; l) at a
single point in X.

In the subsequent sections, we shall incorporate our coefficient-function approximation gM(x; l) and asso-
ciate error estimator êM to develop the RB approximation and a posteriori error estimation for the field var-
iable u(l) and output s(l).

4. Reduced-basis approximation

4.1. Affine decomposition

We assume that we are given Nmax global basis functions ffngNmax

n¼1 and associated hierarchical RB spaces
W u

N ¼ spanff1; . . . ; fNg; 1 6 N 6 Nmax. In practice, these basis functions are constructed by the basis construc-
tion process described in Section 6. We first apply a standard Galerkin projection for the weak form (16) to
obtain an approximation uN ðlÞ 2 W u

N from
XQ

q¼1

Hq
bðlÞbqðuN ðlÞ; vÞ þ

XR

r¼1

crðuN ðlÞ; v; grðx; lÞÞ ¼ f ðvÞ; 8v 2 W u
N : ð35Þ
As mentioned in the Introduction, because of the nonaffine parameter operators cr(Æ, Æ, gr(x; l)), 1 6 r 6 R, the
online complexity of this standard Galerkin reduced-basis model depends on N t – the dimension of the finite
element truth approximation space X.

To recover (online) N t-independent cost, we simply replace gr(x; l), 1 6 r 6 R, with our coefficient-func-
tion approximations
gr
Mrðx; lÞ ¼

XMr

m¼1

ur
MrmðlÞw

r
mðxÞ; 1 6 r 6 R; ð36Þ
where
XMr

j¼1

Br
Mriju

r
MrjðlÞ ¼ grðzr

i ; lÞ; 1 6 i 6 Mr; 1 6 r 6 R: ð37Þ
e bound is very pessimistic and of little practical value. In applications, the actual asymptotic behavior of the Lebesgue constant is
lower than the upper bound 2M � 1, typically O(M); however, the bound does provide a theoretical basis for some stability.
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Here fzr
mg

Mr

m¼1, fwr
mg

Mr

m¼1, and Br
Mrij ¼ wr

jðzr
i Þ; 1 6 r 6 R, are constructed by following the procedures described in

Section 3. Let us denote M ¼
PR

r¼1Mr. Our RB approximation is then: given l 2 D, we evaluate
sN ;MðlÞ ¼ f ðuN ;MðlÞÞ; ð38Þ

where uN ;MðlÞ 2 W u

N satisfies
XQ

q¼1

HqðlÞbqðuN ;MðlÞ; vÞ þ
XR

r¼1

crðuN ;MðlÞ; v; gr
Mrðx; lÞÞ ¼ f ðvÞ; 8v 2 W u

N : ð39Þ
We shall develop the offline–online computational decomposition for this RB formulation in Section 4.3.

4.2. A priori theory

We consider the convergence rate of uN,M(l)! u(l) and sN,M(l)! s(l). In fact, it is a simple matter to
demonstrate the optimality of uN,M(l) in

Proposition 2. For er
MrðlÞ � kgrð�; lÞ � gr

Mrð�; lÞkL1ðXÞ; 1 6 r 6 R; satisfying 2
PR

r¼1e
r
MrðlÞcr

0 6 a0, we have
kuðlÞ � uN ;MðlÞk2
X 6

c0

a0

inf
wN2W u

N

kuðlÞ � wNk2
X þ 4

cf
0

a2
0

XR

r¼1

er
MrðlÞcr

0

 !

� c0

a0

inf
wN2W u

N

kwN � uðlÞkX þ
2cf

0

a2
0

XR

r¼1

er
MrðlÞcr

0

 !
ð40Þ
for all l 2 D.

The proof of this proposition and the following ones are given in Appendix B. We can further show that

Proposition 3. Assuming the same hypothesis in Proposition 2, we have
jsðlÞ � sN ;MðlÞj 6 c0kuðlÞ � uN ;MðlÞk2
X þ

2cf
0

a0

 !2XR

r¼1

er
MrðlÞcr

0 ð41Þ
for all l 2 D. Here iu(l) � uN,M(l)iX is bounded by (40) of Proposition 2.

Propositions 2 and 3 indicate that M should be chosen such that eM(l) is square of the error in the best
approximation, infwN2W u

N
kuðlÞ � wNk2

X , as otherwise the second term on the right-hand side of (41) may limit
the output convergence. In that case, we expect that the output error js(l) � sN,M(l)j will converge as the
square of the error norm iu(l) � uN,M(l)iX. As regards the error in the best approximation, we note that
W u

N comprises solutions on the parametrically induced manifold Mu � fuðlÞj8l 2 Dg � X . The critical obser-
vations are that Mu is very low-dimensional and that Mu is smooth under general hypotheses on stability and
continuity. We thus expect that the best approximation will converge to u(l) very rapidly, and hence that N

may be chosen small. (This is proven for a particularly simple case in [11].)

4.3. Offline–online procedure

We now insert uN ;MðlÞ ¼
PN

j¼1uN ;MjðlÞfj and (36) into (39) and choose v = fi, 1 6 i 6 N, to obtain
XQ

q¼1

HqðlÞBq
N þ

XR

r¼1

XMr

m¼1

ur
MrmðlÞCrm

N

 !
uN ;MðlÞ ¼ F N ; ð42Þ
where ur
MrðlÞ 2 RMr

; 1 6 r 6 R; are determined from (37). We then evaluate
sN ;MðlÞ ¼ F T
N uN ;MðlÞ: ð43Þ



N.C. Nguyen / Journal of Computational Physics 227 (2007) 983–1006 991
In the above, Bq
N 2 RN�N , Crm

N 2 RN�N , and F q
N ;2 RN are given by
Bq
Nij ¼ bqðfj; fiÞ; 1 6 i; j 6 N ; 1 6 q 6 Q;

Crm
Nij ¼ crðfj; fi;w

r
mÞ; 1 6 i; j 6 N ; 1 6 r 6 R; 1 6 m 6 Mr;

F Ni ¼ f ðfiÞ; 1 6 i 6 N :

ð44Þ
We proceed to develop the offline–online procedure [12,26,20] for the rapid evaluation of our RB output
sN, M(l).

In the offline stage, we compute and store the parameter-independent quantities in (44), which require Nmax

finite element solutions at the selected parameter points and OðN max þ QN 2
max þMN 2

maxÞ N t-inner products;
recall that M ¼

PR
r¼1Mr. The offline computation is thus expensive, but it is performed only one time. (Note

here that the offline cost does not include the construction of fwr
mg

Mr
max

m¼1 and fzr
mg

Mr
max

m¼1 ; 1 6 r 6 R.) However, in
the online stage – for each new parameter value l – we compute the vectors ur

MrðlÞ; 1 6 r 6 R; at cost

Oð
PR

r¼1ðMrÞ2Þ, perform the sum in the parentheses and the right-hand side of (42) at cost OðQN 2 þMN 2Þ,
invert the linear system at cost OðN 3Þ, and evaluate the output sN(l) at cost OðNÞ. The operation count

for the online stage is thus only Oð
PR

r¼1ðMrÞ2 þ QN 2 þMN 2 þ N 3Þ.
Hence, as required in the many-query or real-time contexts, the online complexity is independent of N t, the

dimension of the underlying finite element approximation space. Since Q;R;N ;Mr � N t, we expect significant
computational savings in the online stage relative to the finite element approximation (16) and relative to the
standard Galerkin RB approximation built upon (35).

5. A posteriori error estimation

5.1. Error bounds

We assume that we are given a positive lower bound for the coercivity parameter, âðlÞ, such that
aðlÞP âðlÞ > 0; 8l 2 D. Various recipes for the construction of âðlÞ can be found in [12,13]. We introduce
the residual for our RB approximation uN,M(l) as
rðv; lÞ ¼ f ðvÞ �
XQ

q¼1

HqðlÞbqðuN ;MðlÞ; vÞ �
XR

r¼1

crðuN ;MðlÞ; v; gr
Mrð�; lÞÞ; 8v 2 X : ð45Þ
We can show that

Proposition 4. Suppose that grðx; lÞ 2 W gr

Mrþ1; 1 6 r 6 R, then the error e(l) ” u(l) � uN,M(l) satisfies
keðlÞkX 6 Du
N ;MðlÞ; 8l 2 D; ð46Þ
where the error bound Du
N ;MðlÞ is defined as
Du
N ;MðlÞ ¼

1

âðlÞ krð�; lÞkX 0 þ sup
v2X

PR
r¼1ê

r
MrðlÞcrðuN ;MðlÞ; v;wr

Mrþ1Þ
kvkX

 !
: ð47Þ
Here êr
MrðlÞ ¼ jgrðzr

Mrþ1; lÞ � gr
Mrðzr

Mrþ1; lÞj is the estimator for the error er
MrðlÞ; 1 6 r 6 R.

We further obtain the error bound for the output estimate as

Proposition 5. Suppose that grðx; lÞ 2 W gr

Mrþ1; 1 6 r 6 R, then the error in the output of interest is bounded by
jsðlÞ � sN ;MðlÞj 6 Ds
N ;MðlÞ; 8l 2 D; ð48Þ
where Ds
N ;MðlÞ is defined as
Ds
N ;MðlÞ ¼ âðlÞðDu

N ;MðlÞÞ
2 þ

XR

r¼1

êr
MrðlÞcrðuN ;MðlÞ; uN ;MðlÞ;wr

Mrþ1Þ
�����

�����; ð49Þ
and Du
N ;MðlÞ is defined in Proposition 4.
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Of course, in general grðx; lÞ 62 W gr

Mrþ1, and hence our output bound Ds
N ;MðlÞ is not completely rigorous.

However, if er
MrðlÞ ! 0; 1 6 r 6 R; very fast such that the non-rigorous part

PR
r¼1ê

r
MrðlÞcrðuN ;MðlÞ;

��
uN ;MðlÞ;wr

Mrþ1Þj is relatively small to the rigorous part âðlÞðDu
N ;MðlÞÞ

2, we recover the square effect as for
the affine compliant case [11–13]:
Ds
N ;MðlÞ 
 âðlÞðDu

N ;MðlÞÞ
2
: ð50Þ
Our output bound Ds
N ;MðlÞ will thus be fully rigorous in the limit Mr!1, 1 6 r 6 R. However, if the output

bound is not yet rigorous for the current values Mr, 1 6 r 6 R, its rigor can be always consolidated by further
increasing Mr albeit at higher computational cost. In practice, we recommend to choose Mr, 1 6 r 6 R, such
that the non-rigorous part does not exceed the rigorous part.

It remains to develop the offline–online decomposition for the efficient calculation of Du
N ;MðlÞ and Ds

N ;MðlÞ.

5.2. Offline–online procedure

To begin, we invoke our duality argument (12)–(14) to obtain
krð�; lÞkX 0 � sup
v2X

rðv; lÞ
kvkX

¼ kêðlÞkX ; ð51Þ
where ê(l) is the solution of
ðêðlÞ; vÞX ¼ rðv; lÞ; 8v 2 X : ð52Þ

From (45) and (52) it follows that ê(l) satisfies
ðêðlÞ; vÞX ¼ f ðvÞ �
XQ

q¼1

XN

n¼1

HqðlÞuN ;MnðlÞbqðfn; vÞ �
XR

r¼1

XMr

m¼1

XN

n¼1

ur
MrmðlÞuN ;MnðlÞcrðfn; v;w

r
mÞ; 8v 2 X :

ð53Þ

It is clear from linear superposition that we can express ê(l) as
êðlÞ ¼ Lf þ
XQ

q¼1

XN

n¼1

HqðlÞuN ;MnðlÞLqn
b þ

XR

r¼1

XMr

m¼1

XN

n¼1

ur
MrmðlÞuN ;MnðlÞLrmn

c ; ð54Þ
where
ðLf ; vÞX ¼ f ðvÞ; 8v 2 X ;

ðLqn
b ; vÞX ¼ �bqðfn; vÞ; 8v 2 X ;

ðLmn
c ; vÞX ¼ �crðfn; v;w

r
mÞ; 8v 2 X ;

ð55Þ
for 1 6 q 6 Q, 1 6 r 6 R, 1 6 m 6Mr, 1 6 n 6 N; note that these are simple parameter-independent (scalar or
vector) Poisson, or Poisson-like, problems.

From (51) and (54) it follows that
krð�; lÞk2
X 0 ¼ Kff þ

XQ

q¼1

XN

n¼1

HqðlÞuN ;MnðlÞKqn
fb þ

XR

r¼1

XMr

m¼1

XN

n¼1

ur
MrmðlÞuN ;MnðlÞKrmn

fc

þ
XQ

q¼1

XN

n¼1

XQ

q0¼1

XN

n0¼1

HqðlÞuN ;MnðlÞHq0 ðlÞuN ;Mn0 ðlÞKqnq0n0

bb

þ
XQ

q¼1

XN

n¼1

XR

r¼1

XMr

m¼1

XN

n0¼1

HqðlÞuN ;MnðlÞur
MrmðlÞuN ;Mn0 ðlÞKqnrmn0

bc

þ
XR

r¼1

XMr

m¼1

XN

n¼1

XR

r0¼1

XMr

m0¼1

XN

n0¼1

ur
MrmðlÞuN ;MnðlÞur0

Mr0m0
ðlÞuN ;Mn0 ðlÞKrmnr0m0n0

cc ð56Þ
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where the parameter-independent quantities K are defined as
Kff ¼ ðLf ;Lf ÞX ;
Kqn

fb ¼ 2ðLf ;L
qn
b ÞX ;

Krmn
fc ¼ 2ðLf ;L

rmn
c ÞX

Kqnq0n0

bb ¼ ðLqn
b ;L

q0n0

b ÞX ; Kqnrmn0

bc ¼ 2ðLqn
b ;L

rmn0

c ÞX ;
Krmnr0m0n0

cc ¼ ðLrmn
c ;Lr0m0n0

c ÞX ;

ð57Þ
for 1 6 q,q 0 6 Q, 1 6 r,r 0 6 R, 1 6 m,m 0 6Mr, 1 6 n,n 0 6 N. Similarly, we obtain
sup
v2X

PR
r¼1ê

r
MrðlÞcrðuN ;MðlÞ; v;wr

Mrþ1Þ
kvkX

¼ kêcðlÞkX ; ð58Þ
where
kêcðlÞk2
X ¼

XR

r¼1

XN

n¼1

XR

r0¼1

XN

n0¼1

êr
MrðlÞuN ;MnðlÞêr0

Mr0 ðlÞuN ;Mn0 ðlÞKrnr0n0

cc ; ð59Þ
here, for 1 6 r,r 0 6 R, 1 6 n,n 0 6 N,
ðLrn
c ; vÞX ¼ crðfn; v;w

r
Mrþ1Þ; 8v 2 X ; ð60Þ

Krnr0n0
cc ¼ ðLrn

c ;L
r0n0
c ÞX ; ð61Þ
which are parameter-independent quantities. Furthermore, the nonrigorous part of the output bound can be
expressed as
XR

r¼1

êr
MrðlÞcrðuN ;MðlÞ; uN ;MðlÞ;wr

Mrþ1Þ ¼
XR

r¼1

XN

n¼1

XN

n0¼1

êr
MrðlÞuN ;MnðlÞuN ;Mn0 ðlÞKrnn0

c ; ð62Þ
where, for 1 6 r 6 R, 1 6 n,n 0 6 N,
Krnn0

c ¼ crðfn; fn0 ;w
r
Mrþ1Þ ð63Þ
are parameter-independent quantities.
The offline–online decomposition is now clear. In the offline stage – performed only once – we first compute

the vectors L from (55) and (60), and then form the scalar quantities K from (57), (61) and (63); this requires
(1 + QN + MN) Poisson solutions and (1 + QN + MN + Q2N2 + QMN2 + M2N2) N t-inner products. In the
online stage – given a new parameter value l and associated RB vector uN,M(l) – the operation count to per-
form the sums (56), (59), and (62) is O(Q2N2 + M2N2); the online storage is O(Q2N2 + M2N2). Hence, the
online calculation of Du

N ;MðlÞ and Ds
N ;MðlÞ is independent of N t.

6. Basis adaptivity

The a posteriori error bounds certainly play a crucial role in providing reliable estimation for quantities of
interest in applications. Our a posteriori error bounds also allow us to pursue an ‘‘optimal’’ construction of the
hierarchical RB spaces W u

N ¼ spanff1; . . . ; fNg; 1 6 N 6 Nmax; at greatly low average cost. The crucial point is
that Ds

N ;MðlÞ is an accurate yet ‘‘online-inexpensive’’ surrogate for the true (very-expensive-to-calculate) error
js(l) � sN,M(l)j. We can thus conduct an extensive search over the parameter space to find the optimal set of
snapshots upon which our basis set shall be constructed by using the POD procedure. In essence, our basis
construction process combines the greedy sampling procedure [16,20,19] and the POD procedure [21–23].

First, we pursue the adaptive sampling procedure to select an optimal sampling set Su
Nmax
¼ flu

1; . . . ; lu
Nmax
g.

We assume that we are given an initial parameter set Su
N ¼ flu

1; . . . ; lu
Ng, and hence associated Lagrange

approximation space W u;Lag
N ¼ spanffLag

n ¼ uðlu
nÞ; 1 6 n 6 Ng. We also assume that the basis sets fwr

mg
Mr

max
m¼1

and interpolation point sets fzr
mg

Mr
max

m¼1 ; 1 6 r 6 R, are available. (Often we shall initialize N = 1 and

Mr ¼ Mr
max � 1, and choose lu

1 randomly.) We set our RB space W u
N to be W u; Lag

N and solve
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lu
Nþ1 ¼ arg maxl2DDs

N ;MðlÞ; ð64Þ
we next append lu
Nþ1 to Su

N to form Su
Nþ1, and hence associated Lagrange space W u;Lag

Nþ1 ¼
W u; Lag

N þ spanfuðlu
Nþ1Þg; we then increment N = N + 1 and repeat the process until N = Nmax such that

��Nmax
¼ �tol;min, where ��N ¼ Ds

N ;Mðlu
N Þ; 1 6 N 6 Nmax. Here �tol,min is the smallest error tolerance anticipated a

priori offline.
Second, we apply the POD (in Appendix A) on the snapshot set Su

Nmax
¼ fuðlu

1Þ; . . . ; uðlu
Nmax
Þg to obtain a

POD basis set ffPOD
n gNmax

n¼1 . We define associated nested POD approximation spaces as W u; POD
N ¼

spanffPOD
1 ; . . . ; fPOD

N g; 1 6 N 6 N max. We must then also compute parameter-independent quantities for the

POD basis set ff POD
n gNmax

n¼1 , following the offline–online procedures described in Sections 4.3 and 5.2. We note
that the POD spaces are not in general Lagrange, since one POD basis function is a linear combination of

Nmax Lagrange basis functions. We have of course W u;POD
Nmax

¼ W u;Lag
Nmax

, but in general W u;POD
N 6¼ W u;Lag

N for

N < Nmax.
After this point, we can consider W u

N ¼ W u;POD
N for the online evaluation of the output sN,M(l) and error

bound Ds
N ;MðlÞ for any given new l. The justification for choosing POD spaces over Lagrange spaces lies

in the optimality property of W u;POD
N for all N 6 Nmax. Furthermore, as mentioned in Appendix A, the

POD spaces are also orthonormal and hierarchical. These properties are very important for good convergence
behavior of the RB approximation (related to optimal), well-conditioned RB system (related to orthonormal),
and efficient offline/online decomposition (related to hierarchical).

In this paper, the MATLAB� genetic algorithm toolbox is used to solve the maximization problem (64).
We start the genetic search process with a small (random or deterministic) sample set over the parameter
domain and let it evolve until either the objective value is no longer improved in a few iterations or the max-
imum number of iterations is exceeded. We note that the problem (64) is typically non-convex with many local
optima. This is because when a new parameter point lu

Nþ1 is selected, the error bound Ds
Nþ1;MðlÞ becomes effec-

tively zero at the point lu
Nþ1, thereby creating new local optima in the parameter space. This effect in turn

introduces many more local optima as N increases. Hence, we do not claim that our basis construction process
is truly optimal, as the global maximizer of (64) may not be reached by the genetic algorithm. However,
genetic algorithms as global search heuristics prove very well-suited to global optimization problems such
as the problem (64). Gradient or Hessian-based optimization methods with multi-start strategies can be also
used to solve (64), but such methods require the derivatives of Ds

N ;MðlÞ.
Instead of solving (64) directly, the greedy approach [16,20,19] finds lu

Nþ1 ¼ maxl2Ntrain
Ds

N ;MðlÞ; here

Ntrain ¼ fltrain
1 ; . . . ; ltrain

ntrain
g is a suitably fine training set of size ntrain over the parameter domain D. The greedy

approach relies on the finesse of the training set and the inexpensive RB error surrogate Ds
N ;MðlÞ to find a good

sample set. However, as ntrain may scale exponentially with the dimension of the parameter space, the greedy
approach appears quite prohibitive for high-dimensional parameter spaces even with the RB error surrogate
Ds

N ;MðlÞ.
Finally, we would like to point out that without inexpensive error surrogates the usual POD reduced order

model techniques [27–38] typically construct Nmax POD basis functions from the training snapshot set
Su

train ¼ fuðltrain
1 Þ; . . . ; uðltrain

ntrain
Þg. The associated offline work requires ntrain finite element solutions,

ntrain(ntrain + 1)/2 N
t
-inner products, and a singular value decomposition of a ntrain · ntrain full symmetric posi-

tive-definite matrix for Nmax leading eigenvalues and eigenvectors. Such basis construction approach can thus
be extremely expensive (much more than the greedy approach and our proposed approach) when ntrain is rel-
atively large compared to Nmax. Other approaches (such as goal-oriented, model-constrained optimization
framework) [39] suffer from similar drawbacks.

7. Numerical application

7.1. Problem description

We turn to a particular problem related to steady heat conduction. We consider the design of a heat shield,
one segment of which is shown in Fig. 1. The original domain Xo, a typical point of which is ðx1

o; x
2
oÞ, is given



Fig. 1. One segment of the heat shield. The ‘‘cut’’ domain Xc is one quarter of the heat shield.
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by Xo �� � 3þ L; 1þ L½�� � 1; 1½nfXin;1
o [ Xin;2

o g; here Xin;1
o and Xin;2

o are open sinusoidal domains parame-
trized by the length parameters H and L. The left and right boundaries, Cout

o , are exposed to a hot temperature
normalized to unity; the top and bottom boundaries are insulated. The heat conduction through the internal
boundaries Cin

o (i.e., the surfaces of the two ellipse cooling channels Xin;1
o [ Xin;2

o ) to the surrounding flowing air
is characterized by a zero sink temperature and non-dimensional heat transfer coefficient (Biot number) Bi.
Our input parameter vector is hence l � ðl1; l2; l3Þ � ðL;H ;BiÞ 2 D � ½0:25; 0:75�2 � ½0:1; 5� � RP¼3. The
physical model is simple conduction: the non-dimensional temperature field in the shield, ue

o, satisfies
Z
Xo

rue
o � rvþ Bi

Z
Cin

o

ue
ov ¼

Z
Cout

o

v; 8v 2 X e
o � H 1ðXoÞ: ð65Þ
Our output is the average temperature of the left and right boundaries.
We next exploit the symmetry to recast the problem into one quarter of the original domain, Xc, as shown

in Fig. 2(a). The non-dimensional temperature field ue
c on the domain Xc thus satisfies
Z

Xc

rue
c � rvþ Bi

Z
Cin

c

ue
cv ¼

Z
Cout

c

v; 8v 2 X e
c � H 1ðXcÞ: ð66Þ
The output of interest is given by se
cðlÞ ¼

R
Cout

c
ue

cðlÞ. Note Cout
c is the interval 0 6 x2

6 1 at x1 = �1 + L and

Cin
c is the sinusoidal curve x2

c ¼ H sinðpx1
c=2LÞ for 0 6 x1

c 6 2L.
We now introduce a fixed reference domain X ”] �0.5, 1.5[·]0,1[ as shown in Fig. 2b. We decompose Xc(l)

and X as
ba

Fig. 2. Domain decomposition for: (a) the cut domain Xc and (b) the reference domain X.
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XcðlÞ ¼ X1
cðlÞ [ X2

cðlÞ [ X3
cðlÞ; X ¼ X1 [ X2 [ X3; ð67Þ
where X1
cðlÞ �� � 1þ l1; 0½��0; 1½;X3

cðlÞ ��2l1; 1þ l1½��0; 1½;X2
cðlÞ � XcðlÞ n fX1

cðlÞ [ X3
cðlÞg;X

1 ��
�0:5; 0½��0; 1½;X2 ��0; 1½��0; 1½;X3 ��1; 1:5½��0; 1½. We then define a geometric transformation F from
x = (x1, x2) 2 X to xc ¼ ðx1

c ; x
2
cÞ 2 Xc: the mapping from X1 to X1

c is affine as
x1
c ¼
ð1� l1Þ

0:5
ðx1 þ 0:5Þ þ l1 � 1; x2

c ¼ x2; ð68Þ
the mapping from X2 to X2
c is nonaffine as
x1
c ¼ 2l1x1; x2

c ¼ x2 þ l2ð1� x2Þ sinðpx1Þ; ð69Þ

and the mapping from X3 to X3

c is affine as
x1
c ¼
ð1� l1Þ

0:5
ðx1 � 1:0Þ þ 2l1; x2

c ¼ x2: ð70Þ
We proceed to formulate the problem on the reference domain.
Our exact solution on the original cut domain XcðlÞ; ue

cðxc; lÞ, can be expressed in terms of the solution on
the mapped domain, ue(x; l), as ue

cðxc; lÞ ¼ ueðFðxcÞ; lÞ. The solution on the mapped domain,
ue(x; l) 2 Xe ” H1(X), satisfies a weak formulation of the form (15)–(17) in which the linear forms, bilinear
forms, trilinear forms, and nonaffine functions are given by
f ðvÞ ¼ ‘ðvÞ ¼
Z

Cout

v; ð71Þ
for f and ‘;
H1ðlÞ ¼ 1

2� 2l1
; b1ðw; vÞ ¼

Z
X1[X3

ow
ox1

ov
ox1

;

H2ðlÞ ¼ 2� 2l1; b2ðw; vÞ ¼
Z

X1[X3

ow
ox2

ov
ox2

;

H3ðlÞ ¼ 1

2l1
; b3ðw; vÞ ¼

Z
X2

ow
ox1

ov
ox1

;

H4ðlÞ ¼ � l2

2l1
; b4ðw; vÞ ¼

Z
X2

sinðpxÞ ow
ox1

ov
ox1
þ pð1� yÞ cosðpxÞ ow

ox1

ov
ox2
þ ow

ox2

ov
ox1

� �
;

ð72Þ
for Hq and bq, 1 6 q 6 Q = 4; and
c1ðw; v; g1ðx; lÞÞ ¼
Z

X2
g1ðx; lÞ ow

ox2

ov
ox2

;

g1ðx; lÞ ¼ p2ðl2Þ2ð1� x2Þ2 cos2ðpx1Þ þ 4ðl1Þ2

2l1ð1� l2 sinðpx1ÞÞ ; ð73Þ

c2ðw; v; g2ðx; lÞÞ ¼
Z

Cin

g2ðx; lÞwv;

g2ðx; lÞ ¼ l3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðl1Þ2 þ p2ðl2Þ2 cos2ðpx1Þ

q

for cr(w, v, gr(x; l)) and gr(x; l), 1 6 r 6 R = 2. Note that the functions g1(x; l) and g2(x; l) are defined on X2

and Cin, respectively; and that they are nonaffine only in the parameters l1 and l2.
For our truth approximations u(l) and s(l), we consider a linear finite element approximation subspace

X 2 H1(X) of dimension N t ¼ 4753. We define the associated inner product as
ðw; vÞX �
XQ

q¼1

Hðl1Þbqðw; vÞ þ c1ðw; v; g1ðx; l1ÞÞ þ c2ðw; v; gðx; l2ÞÞ; ð74Þ
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where l1 ¼ ð0:75; 0:75; 0:01Þ and l2 ¼ ð0:25; 0:25; 0:01Þ. We can then choose âðlÞ ¼ 1 for which it is readily
shown that âðlÞ 6 aðlÞ; 8l 2 D.

We show in Fig. 3 the temperature variation over the heat shield for different parameter values. We note
that for smaller values of l3 the temperature is, overall, much higher than for larger values of l3; and that the
temperature field varies significantly with the shape of the heat shield. In the next section, we present numer-
ical results obtained for the above problem.

7.2. Numerical results

We first present results for the coefficient-function approximation of g1(x; l) and g2(x; l). We choose for Sg
K

a deterministic grid of 15 · 15 parameter points over Dg � ½0:25; 0:75�2 � RP¼2 and then pursue the POD and

the empirical interpolation procedure described in Section 2 to construct fz1
mg

M1
max¼15

m¼1 , fw1
mg

M1
max¼15

m¼1 for g1(x; l)

and fz2
mg

M2
max¼9

m¼1 , fw2
mg

M2
max¼9

m¼1 for g2(x; l). We show in Fig. 4 the locations of z1
m; 1 6 m 6 M1

max, on the subdo-
main X2. We observe that all the interpolation points line up along the bottom and top boundaries of X2. This
is because g1(x; l) varies most significantly along these boundaries.

For convergence study, we introduce a parameter test sample Ng
Test over Dg of size ng

Test ¼ 961, and
define
Fig. 3. Temperature in the heat shield for: (a) l = (0.25, 0.75, 0.1); (b) l = (0.25, 0.75, 5); (c) l = (0.75, 0.25, 0.1); and (d)
l = (0.75, 0.25, 5).
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er
Mr ;max ;rel ¼ maxl2Ng

Test

er
MrðlÞ

kgrðx; lÞkL1ðX2Þ
;

er�
Mr ;max ;rel ¼ maxl2Ng

Test

er�
MrðlÞ

kgrðx; lÞkL1ðX2Þ
; ð75Þ

!r
Mr ;ave ¼

1

ng
Test

X
l2Ng

Test

er
MrðlÞ

er�
MrðlÞ

;

gr
Mr ;ave ¼

1

ng
Test

X
l2Ng

Test

gr
MrðlÞ;
for 1 6 r 6 R; here gr
MrðlÞ is the effectivity defined in (34). We present er

Mr ;max; rel, er�
Mr ;max ;rel, !r

Mr ;ave, and gr
Mr ;ave as

a function of Mr in Table 1 for r = 1 and in Table 2 for r = 2. We observe in both cases that er
Mr ;max ;rel and

er�
Mr ;max ;rel converge rapidly with Mr; that !r

Mr ;ave are quite close to unity–and hence er
MrðlÞ will be only slightly

larger than er�
MrðlÞ; and that the error estimator effectivities are quite close to unity.

We next present results for our basis generation. We choose our first sample point lu
1 ¼ ð0:25; 0:25; 0:1Þ and

set �tol,min = 1E�06. In the course of solving the problem (64) repeatedly, we initialize the genetic algorithm
with a small regular grid of size 3 · 3 · 3 over the parameter domain D and set the maximum number of iter-
ations to 20. We plot the resulting sampling set Su

Nmax
¼ flu

n; 1 6 n 6 Nmaxg in Fig. 5 – we need Nmax = 34 basis
functions to obtain the desired accuracy. Note that for this problem our basis construction algorithm selects
many sample points on the planes l3 = 0.1 and l3 = 5. Fig. 6 illustrates that Ds

N ;MðlÞ is indeed non-convex
with many local maxima. Furthermore, we show in Fig. 7 the maximum value of the objective function as
a function of N for the proposed sampling method and greedy sampling method. Here the greedy sampling
is performed on a fine regular grid of size ntrain = 15 · 15 · 15 over the parameter domain. We see that while
the two methods yield very similar results, the number of output evaluations is 540 for the proposed method
and 3375 for the greedy method. We should anticipate that the number of output evaluations will increase for
higher-dimensional parameter spaces. Nevertheless, in such cases, the proposed sampling method appears
much more efficient since it can provide good snapshots with a significantly smaller number of output
evaluations.

We now present numerical results for the RB approximation and a posteriori error estimation. For this pur-
pose, we introduce a parameter test sample Nu

Test over D of size nu
Test ¼ 512, and define
�u
N ;M ;max ¼ maxl2Nu

Test
kuðlÞ � uN ;MðlÞkX ;

�s
N ;M ;max ¼ maxl2Nu

Test
jsðlÞ � sN ;MðlÞj:

ð76Þ
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Fig. 5. Distribution of the sampling set Su
N max
¼ flu

n; 1 6 n 6 Nmax ¼ 34g over the parameter space.

Table 1
Numerical results for empirical interpolation of g1(x; l): e1�

M1 ;max ;rel
, e1

M1 ;max ;rel
, !1

M1 ;ave, and g1
M1 ;ave

as a function of M1

M1 e1�
M1 ;max ;rel

e1
M1 ;max ;rel

!1
M1 ;ave g1

M1 ;ave

2 2.45E�01 3.03E�01 1.09 0.81
4 2.30E�02 4.42E�02 1.58 0.72
6 2.22E�03 3.17E�03 1.24 0.67
8 1.91E�04 2.88E�04 1.61 0.79
10 1.37E�05 4.47E�05 3.69 0.90
12 8.36E�07 1.36E�06 1.69 0.79
14 2.54E�07 4.12E�07 1.12 0.98

Table 2
Numerical results for empirical interpolation of g2(x; l): e2�

M2 ;max ;rel
; e2

M2 ;max ;rel
;!2

M2 ;ave, and g2
M2 ;ave

as a function of M2

M2 e2�
M2 ;max ;rel

e2
M2 ;max ;rel

!2
M2 ;ave g2

M2 ;ave

1 2.77E�01 3.62E�01 1.28 0.97
2 2.29E�02 2.97E�02 1.45 0.94
3 2.79E�03 3.38E�03 1.31 0.91
4 3.59E�04 6.12E�04 2.16 0.97
5 4.64E�05 7.82E�05 1.63 0.96
6 5.76E�06 8.44E�06 1.78 0.93
7 7.09E�07 1.15E�06 1.79 0.94
8 9.30E�08 2.34E�07 2.33 0.90
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We present in Fig. 8(a) �s
N ;M ;max as a function of N for different values of (M1, M2). We observe very rapid con-

vergence of sN,M(l) to s(l). Clearly, the quality of the output approximation depends on N and (M1, M2) in a
strongly coupled manner: for a fixed value of the pair (M1, M2) the error decreases with N for small N and
then levels off for N large enough; when the error does not improve with increasing N, increasing (M1, M2)
effectively reduces the error. This trend of convergence basically suggests that optimal combinations of N

and (M1, M2) are at the ‘‘knees’’ of the error curves. It is important to note that our coefficient-function
approximations to the nonaffine functions are very accurate such that both M1 and M2 can be chosen opti-
mally smaller than N. We further illustrate in Fig. 8(b) that �s

N ;M ;max is effectively the square of �u
N ;M ;max for (suf-

ficiently large) M1 = 14 and M2 = 8 for which the errors e1
M1;max ;rel

and e2
M2;max ;rel

are below �tol,min = 1.0E�06 as

indicated in Tables 1 and 2. These results are consistent with our a priori convergence analysis of Section 4.2.
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Fig. 8. Convergence of the RB errors: (a) �s
N ;M ;max as a function of N for different values of M1 and M2; and (b) �s

N ;M ;max and �u
N ;M ;max as a

function of N for M1 = 14 and M2 = 8.
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Furthermore, in order to evaluate the performance of the error bounds, we define
Table
Conve

N

5
10
15
20
25
30

Table
Online

N

5
10
15
20
25
30
gs
N ;M ;ave ¼

1

nu
Test

X
l2Nu

Test

Ds
N ;MðlÞ

jsðlÞ � sN ;MðlÞj
;

gs
N ;M ;min ¼ min

l2Nu
Test

Ds
N ;MðlÞ

jsðlÞ � sN ;MðlÞj
;

Du
N ;M ;max ;rel ¼ maxl2Nu

Test

Du
N ;MðlÞ
kuðlÞkX

;

Ds
N ;M ;max ;rel ¼ maxl2Nu

Test

Ds
N ;MðlÞ
jsðlÞj :

ð77Þ
We present gs
N ;M ;ave in Fig. 9a and gs

N ;M ;min in Fig. 9b as a function of N for different values of (M1, M2). The
average output effectivity gs

N ;M ;ave is above unity and less than 6 for all N. However, as we may expect, the min-
imum output effectivity gs

N ;M ;min (above 0.2) is less than but not far off unity. Hence, our output error bound
Ds

N ;MðlÞ is very sharp, but not fully rigorous. We further tabulate in Table 3 Du
N ;M ;max ;rel and Ds

N ;M ;max; rel for
different values of (N, M1, M2). We observe very rapid convergence of the error bounds. Also, Ds

N ;M ;max ;rel con-
verges roughly as the square of Du

N ;M ;max ;rel.
Finally, in Table 4, we present the online computational times to calculate sN,M(l) and Ds

N ;MðlÞ. The values are
normalized with respect to the computational time for the direct calculation of the truth approximation output
Fig. 9. Output effectivity: (a) gs
N ;M ;ave; and (b) gs

N ;M ;min as a function of N for different values of (M1, M2).

3
rgence rate of the error bounds: Du

N ;M ;max ;rel and Ds
N ;M ;max; rel for different values of (N,M1, M2)

M1 M2 Du
N ;M ;max ;rel Ds

N ;M ;max ;rel

3 2 2.33E�01 5.06E�02
5 3 3.65E�02 1.08E�03
7 4 1.57E�02 2.71E�04
9 5 4.74E�03 2.22E�05

11 6 2.44E�03 5.13E�06
13 7 1.06E�03 9.79E�07

4
computational times (normalized with respect to the time to solve for s(l))

M1 M2 sN,M(l) Ds
N ;M ðlÞ s(l)

3 2 1.40E�04 4.66E�05 1
5 3 1.63E�04 1.16E�04 1
7 4 1.86E�04 3.96E�04 1
9 5 2.33E�04 1.05E�03 1

11 6 2.79E�04 2.00E�03 1
13 7 3.03E�04 3.98E�03 1
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s(l). We observe significant computational savings: for a relative accuracy of approximately 0.1 percent in the
output approximation corresponding to (N, M1, M2) = (10, 5, 3) in Table 3, the reduction in time is more than a
factor of 3500 owing to the dramatic dimension reduction provided by the Galerkin projection on the reduced
space W u

N and coefficient-function approximations for the nonaffine terms. Of course, this comparison is only
meaningful if we are in the real-time or many-query contexts (for example, in-the-field design and optimization)
– in which the extensive offline computations can be amortized over many output predictions.
8. Conclusions

We have presented a posteriori error estimation and basis adaptivity for reduced-basis approximation of
nonaffine-parametrized linear elliptic PDEs. Numerical results indicate that the approach provides rapid con-
vergence and sharp error bounds for the output of interest relevant to many engineering problems that require
repeated output simulations as in the design and optimization context. Nevertheless, several questions arise
and remain to be addressed for our approach and, in a larger context, for reduced order modeling of param-
etrized PDEs. As a first question: can we make our output error bound Ds

N ;MðlÞ more rigorous? Although
quite sharp and very efficient, the error estimators are rigorous upper bounds only in certain restricted situ-
ations, i.e., only if the assumption gð�; lÞ 2 W g

Mþ1 is satisfied. It turns out that we can readily improve the rigor
of our output error bound at only modest additional cost: if we assume that gð�; lÞ 2 W g

Mþk, then
êMðlÞ � 2k�1maxi2f1;...;kgjgðzMþi; lÞ � gMðzMþi; lÞj is an upper bound for eM(l) [2]. However, the most satisfac-
tory answer to this question lies in completely rigorous upper bounds for eM(l) without any further assump-
tion on g(Æ; l). Therefore, future work should address this issue.

As the second question: How many parameters P can we consider – for P how large are our techniques still
viable? It is undeniably the case that ultimately we should anticipate exponential scaling of N as P increases,
with a concomitant unacceptable increase certainly in offline but also perhaps in online computational effort.
Fortunately, for smaller P, the growth in N is rather modest, as (good) sampling procedures will automatically
identify the more interesting regions of parameter space. For example, the work by Sen [40] has demonstrated
the application of reduced-basis methods to ‘‘many-parameter’’ problems involving a few tens of parameters.
In any event, treatment of hundreds (or even many tens) of truly independent parameters by the global meth-
ods described here is clearly not practicable; in such cases, more local approaches must be pursued.

We close by noting that the offline aspects of the approaches described are both complicated and compu-
tationally expensive. The former can be at least partially addressed by appropriate software and architectures
[41,42]; however, the latter will in any event remain. It follows that these techniques will really only be viable
in situations in which there is truly an imperative for real-time certified response: a real premium on (i) greatly
reduced marginal cost (or asymptotic average cost), and (ii) rigorous characterization of certainty. There are
many classes of engineering problems and contexts for which the model reduction methods are appropriate;
and certainly there are many classes of engineering problems and contexts for which more classical methods
remain distinctly preferred.
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Appendix A. Proper orthogonal decomposition

We describe the POD to generate an optimal (in the mean square error sense) basis set ffPOD
n gN

n¼1 from
any given (parameter-correlated) set of K(PN) snapshots fnkgK

k¼1. Our below derivation is a classical result
of [21–23].
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Let VN = span{v1, . . ., vN} be an ‘‘arbitrary’’ space of dimension N, the POD space, W POD
N ¼

spanffPOD
1 ; . . . ; fPOD

N g, is defined as
W POD
N ¼ arg inf

V N

1

K

XK

k¼1

inf
ak2RN

nk �
XN

n¼1

ak
nvn

�����
�����

2

X

0
@

1
A: ðA:1Þ
Without loss of generality, we assume that the space VN is orthonormal – (vn,vm)X = dnm, 1 6 n,m 6 N. It fol-
lows that ak

n ¼ ðnk; vnÞX ; 1 6 n 6 N ; 1 6 k 6 K; and hence we have
W POD
N ¼ arg inf

V N

1

K

XK

k¼1

nk �
XN

n¼1

ðnk; vnÞX vn

�����
�����

2

X

0
@

1
A; ðA:2Þ
subject to the constraints ðvn; vn0 ÞX ¼ dnn0 ; 1 6 n; n0 6 N . We then expand the objective and invoke the orthor-
normality of the space VN to obtain
W POD
N ¼ arg sup

V N

XN

n¼1

1

K

XK

k¼1

nk; vnð Þ2X

 !
; ðA:3Þ
subject to the constraints ðvn; vn0 ÞX ¼ dnn0 ; 1 6 n; n0 6 N .
By application of the Euler–Lagrange formulation, the problem (A.3) amounts to solve the eigenproblem,
XK

k¼1

1

K
ðnk; f

PODÞX ðnk; vÞX ¼ kðfPOD; vÞX ; 8v 2 X ;

ðfPOD; fPODÞX ¼ 1;

ðA:4Þ
for the first N eigenfunctions fPOD
n ; 1 6 n 6 N ; corresponding to the first N largest eigenvalues k1 P k2 P

. . . P kN. We note however that the eigenproblem (A.3) posed in the finite element approximation space X

of dimension N
t

is quite expensive.
In practice, we typically have K < N

t
(anticipated in the limit N

t !1), we apply the method of snapshots
[23] to express a typical empirical eigenfunction fPOD as a linear combination of the snapshots
fPOD ¼
XK

k¼1

aknk: ðA:5Þ
Inserting this representation into (A.4) and choosing v = ni, 1 6 i 6 K, we immediately obtain
Ca ¼ ka; ðA:6Þ

where C 2 RK�K is a symmetric positive-definite matrix with entries Cij ¼ 1

K ðni; njÞX ; 1 6 i; j 6 K. The eigen-
problem (A.6) can then be solved for the first N largest eigenvalues, k1 P k2 P . . . P kN, and corresponding
eigenvectors an, 1 6 n 6 N. Finally, the POD basis functions are computed as fPOD

n ¼
PK

k¼1ak
nnk; 1 6 n 6 N .

From the above construction it should be clear that POD spaces are not only optimal and orthonormal, but
also hierarchical – W POD

1 � W POD
2 � � � � � W POD

N . Also, more generally, the POD can work in other Banach
spaces such as L2(X).

Appendix B. Proof of the propositions

B.1. Proof of proposition 2

Proof. For any wN ¼ uN ;M ðlÞ þ vN 2 W u
N , vN 6¼ 0, we have
aðuðlÞ � wN ; uðlÞ � wN ; lÞ ¼ aðuðlÞ � uN ;MðlÞ; uðlÞ � uN ;MðlÞ; lÞ � 2aðuðlÞ � uN ;MðlÞ; vN ; lÞ
þ aðvN ; vN ; lÞ

P aðuðlÞ � uN ;MðlÞ; uðlÞ � uN ;MðlÞ; lÞ � 2aðuðlÞ � uN ;MðlÞ; vN ; lÞ; ðB:1Þ
since a is symmetric and coercive. We next note from (16), (17), (39), and (20) that
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aðuðlÞ � uN ;MðlÞ; vN ; lÞ ¼ f ðvN Þ � aðuN ;MðlÞ; vN ; lÞ

¼ f ðvN Þ �
XQ

q¼1

HqðlÞbqðuN ;MðlÞ; vN Þ �
XR

r¼1

crðuN ;MðlÞ; vN ; gr
Mrð�; lÞÞ

�
XR

r¼1

crðuN ;MðlÞ; vN ; grð�; lÞ � gr
Mrð�; lÞÞ

6

XR

r¼1

er
MrðlÞCr

0kuN ;MðlÞkXkvNkX : ðB:2Þ
Similarly, it follows from (19), (17), (39), (21), and (20) that
a0kuN ;MðlÞk2
X 6 aðuN ;MðlÞ; uN ;MðlÞ; lÞ ¼ f ðuN ;MðlÞÞ þ

XR

r¼1

crðuN ;MðlÞ; uN ;MðlÞ; grð�; lÞ � gr
Mrð�; lÞÞ

6 Cf
0kuN ;MðlÞkX þ

XR

r¼1

er
MrðlÞCr

0kuN ;MðlÞk2
X ;
which yields
kuN ;MðlÞkX 6
2Cf

0

a0

ðB:3Þ
after invoking our hypothesis on eM(l).
Furthermore, it follows from (19), (18), and (B.2) that
a0kvNk2
X ¼ a0kwN � uN ;MðlÞk2

X 6 aðwN � uN ;MðlÞ;wN � uN ;MðlÞ; lÞ
¼ aðwN � uðlÞ; vN ; lÞ þ aðuðlÞ � uN ;MðlÞ; vN ; lÞ

6 C0kwN � uðlÞkXkvNkX þ
XR

r¼1

er
MrðlÞCr

0kuN ;MðlÞkXkvNkX
which, after dividing by a0ivNiX and appealing to (B.3), gives
kvNkX 6
C0

a0

kwN � uðlÞkX þ
2Cf

0

a2
0

XR

r¼1

er
MrðlÞCr

0: ðB:4Þ
Finally, gathering (19), (18), (B.1), and (B.2), we obtain
a0kuðlÞ � uN ;MðlÞk2
X 6 aðuðlÞ � uN ;MðlÞ; uðlÞ � uN ;MðlÞ; lÞ
6 aðuðlÞ � wN ; uðlÞ � wN ; lÞ þ 2aðuðlÞ � uN ;MðlÞ; vN ; lÞ

6 C0kuðlÞ � wNk2
X þ 2

XR

r¼1

er
MrðlÞCr

0kuN ;MðlÞkXkvNkX ðB:5Þ
The desired result follows directly from (B.3)–(B.5). h
B.2. Proof of proposition 3

Proof. We just apply the compliance assumption ‘ = f, (16), symmetry of a, (18), and (B.2) to obtain
sðlÞ � sN ;MðlÞ ¼ f ðuðlÞ � uN ;MðlÞ; lÞ ¼ aðuðlÞ; uðlÞ � uN ;MðlÞ; lÞ
¼ aðuðlÞ � uN ;MðlÞ; uðlÞ � uN ;MðlÞ; lÞ þ aðuðlÞ � uN ;MðlÞ; uN ;MðlÞ; lÞ

6 C0kuðlÞ � uN ;MðlÞk2
X þ

XR

r¼1

er
MrðlÞCr

0kuN ;MðlÞk2
X : ðB:6Þ
The desired result then follows from (B.3). h
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B.3. Proof of proposition 4

Proof. We first note from (16), (17), and (45) that e(l) satisfies
aðeðlÞ; v; lÞ ¼ rðv; lÞ �
XR

r¼1

crðuN ;MðlÞ; v; grð�; lÞ � gr
Mrð�; lÞÞ; 8v 2 X : ðB:7Þ
The result immediately follows from
keðlÞkX 6
1

aðlÞ
aðeðlÞ; eðlÞ; lÞ
keðlÞkX

6
1

âðlÞ
rðeðlÞ; lÞ �

PR
r¼1crðuN ;MðlÞ; eðlÞ; grð�; lÞ � gr

Mrð�; lÞÞ
keðlÞkX

6
1

âðlÞ krð�; lÞkX 0 þ sup
v2X

PR
r¼1ê

r
MrðlÞcrðuN ;MðlÞ; v;wr

Mrþ1Þ
kvkX

 !
¼ Du

N ;MðlÞ ðB:8Þ
where we have used a-coercivity in the first step, âðlÞ 6 aðlÞ and (B.7) in the second step, and our assumption
grð�; lÞ 2 W gr

Mrþ1 and Proposition 1 in the last step. h
B.4. Proof of proposition 5

Proof. We first note from (B.6) and (B.2) that
sðlÞ � sN ;MðlÞ ¼ aðeðlÞ; eðlÞ; lÞ þ aðeðlÞ; uN ;MðlÞ; lÞ

¼ aðeðlÞ; eðlÞ; lÞ �
XR

r¼1

crðuN ;MðlÞ; uN ;MðlÞ; grð�; lÞ � gr
Mrð�; lÞÞ: ðB:9Þ
It thus follows from (B.9), (B.8), our assumption grð�; lÞ 2 W g
Mþ1 and Proposition 1 that
jsðlÞ � sN ;MðlÞj 6 âðlÞDu
N ;MðlÞkeðlÞkX þ

XR

r¼1

êr
MrðlÞcrðuN ;MðlÞ; uN ;MðlÞ;wr

Mrþ1Þ
�����

�����: ðB:10Þ
The desired result follows from Proposition 4. h
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