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It is often the case that the computed optimal solution of an optimization problem cannot be implemented directly, irre-

spective of data accuracy, because of either (i) technological limitations (such as physical tolerances of machines or

processes), (ii) the deliberate simplification of a model to keep it tractable (by ignoring certain types of constraints that

pose computational difficulties), and/or (iii) human factors (getting people to “do” the optimal solution). Motivated by this

observation, we present a modeling paradigm called “fabrication-adaptive optimization” for treating issues of implemen-

tation/fabrication. We develop computationally focused theory and algorithms, and we present computational results for

incorporating considerations of implementation/fabrication into constrained optimization problems that arise in photonic

crystal design. The fabrication-adaptive optimization framework stems from the robust regularization of a function. When

the feasible region is not a normed space (as typically encountered in application settings), the fabrication-adaptive opti-

mization framework typically yields a nonconvex optimization problem. (In the special case where the feasible region is

a finite-dimensional normed space, we show that fabrication-adaptive optimization can be recast as an instance of modern

robust optimization.) We study a variety of problems with special structures on functions, feasible regions, and norms for

which computation is tractable and develop an algorithmic scheme for solving these problems in spite of the challenges

of nonconvexity. We apply our methodology to compute fabrication-adaptive designs of two-dimensional photonic crystals

with a variety of prescribed features.

Subject classifications : fabrication-adaptivity; robust regularization; robust optimization; bandgap optimization; photonic

crystal design; topology optimization.

Area of review : Optimization.

History : Received December 2012; revision received July 2013; accepted December 2013.

1. Introduction: Problem Statement,
Preliminaries, and Computational
Aspirations

Consider a general constrained optimization problem of

the form

z∗ =min
x

f �x�

s�t� x ∈ S�
(1)

where S ⊆ �n is the feasible region and f � · �� �n →� is

the objective to be optimized. The context of (1) may be as

diverse as portfolio optimization (Best 2010), where xi is
the number of shares to be invested in asset i, to optimal

microstructure material design, where xi is the concentration
of a dialectric material in pixel (or voxel) i of a discretized
physical region as in Men et al. (2010, 2011). Let x∗ be an

optimal solution of (1). The notion of fabrication-adaptivity,
or perhaps more generally implementation-adaptivity, has
to do with the concern that although the data and other

descriptors of the problem may be quite accurate, it may be

generically implausible to implement the optimal solution

x∗ exactly. Some reasons for this may include these:

1. Technological limitations. For example, the produc-

tion or fabrication technology might not be able to fabricate

the product exactly according to the plan specified in x∗,
perhaps because of limitations of machine tolerances.

2. Deliberate simplifications. The model (1) may be a

deliberate simplification of the real problem in order for

the optimization model to be computationally tractable. For

example, it may be computationally prohibitive to include

odd-lot constraints in a portfolio optimization model or

connectivity constraints in a microstructure material design

model, etc.
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3. Human factors. It may be implausible to assume that

people will “do” x∗ precisely as the optimization model

prescribes.

Indeed, the application that has given rise to this line

of study is a nonlinear optimization problem arising in

microstructure material design (Men et al. 2010), where

S �= �xmin� xmax�
n = 	x ∈�n� xmine� x� xmaxe
 is a hyper-

cube with n� 0 and the component values xi represent the

permittivity of a dielectric material at pixel (or voxel) i for

i = 1� � � � � n. The values xmin and xmax correspond to per-

mittivity constants for air and the dialectric material (e.g.,

gallium arsenide), respectively. The objective is to deter-

mine a design for which a prescribed relative eigenvalue

bandgap �2��m+1−�m��/��m+1+�m� is maximized, where

�m is the mth eigenvalue of a certain system. The resulting

optimization problem is nonlinear, nonconvex, and large

scale; nevertheless, effective methods for computing solu-

tions are developed in Men et al. (2010, 2011). (In fact, a

more proper microstructure material design model should

use binary conditions xi ∈ 	xmin� xmax
 instead of the inter-

val restrictions xi ∈ �xmin� xmax�; such binary conditions are

typically relaxed in the bandgap optimization problems

with almost no degradation in solution quality, see Men

et al. 2010.) The computed solution x∗ might not be fab-

ricable because of small feature sizes (disconnected pixels

with xi = xmax) or complicated material interfaces (such as

roughness of boundaries). In principle one can add con-

straints to ensure that features are not small and/or ensure

smooth boundaries of surfaces of the material, but such

an approach is decidedly unattractive because it leads to

an exponential number of constraints—and makes a com-

plex model even more complex computationally. Instead

we proceed as follows. First we observe that it is relatively

easy in practice to use human judgment to modify a given

design solution x to a fabricable solution y by switching

the concentration of material at a relatively small number �

of pixels from xmin to xmax (or vice versa) to remove small

features and/or rough material interfaces and, one hopes,

not degrade the objective function value too much in the

process. Here we presume that �� n. If we anticipate that

we will need to perform some sort of manual modifica-

tion of a solution x, then it is beneficial to account for this

a priori in the model specification. This is the basic idea of

fabrication-adaptive optimization, which we now formally

describe.

For a generic optimization problem of the form (1), let

x be a feasible and/or optimal solution. The basic premise

of our approach is that we will fabricate/implement some

solution y that is close to x in some prescribed norm, say

at most a distance � from x in the prescribed norm, and

that such a nearby fabricable solution y is very easy to

determine/compute for any given solution x. We construct

the fabrication-adaptive (FA) counterpart objective func-

tion f̃ � · � of the original objective function f � · � in (1), as

follows:

f̃ �x� �=max
y

f �y�

s�t� 	y− x	� �

y ∈ S�

(2)

where � > 0 is the FA parameter and 	 · 	 is the pre-

scribed norm. Then f̃ �x� is a (conservative) upper bound

on the objective function value of any (fabricable) solution

y whose distance from x is at most � in the prescribed

norm. We then construct the fabrication-adaptive optimiza-

tion problem, which is defined as

z̃∗ =min
x

f̃ �x�

s�t� x ∈ S�
(3)

The FA optimization problem (3) seeks to optimize the

conservative FA counterpart f̃ � · � of the original objective

function f � · �. In this way the FA model seeks to produce

a solution x∗
FA that is more adaptable to modification to a

nearby fabricable solution y whose objective value f �y� is
not significantly degraded.

The functional form (2) was first introduced by Lewis

(2002) for the special case when S is a finite-dimensional

normed space (essentially S = �n without loss of gener-

ality) and with the norm 	 · 	 replaced by a more gen-

eral gauge function g� · � (Rockafellar 1970), where it was

called the robust regularization of f � · �. The term “robust

regularization” is appropriate for the context given therein,

which includes issues of uncertain data in the construc-

tion of f � · �, uncertain implementation issues, and the like.

Indeed, the function f � · � in Lewis (2002) is considered

broadly and so might be a constraint function or an objec-

tive function in an optimization problem, or perhaps sim-

ply a function of interest. The name robust regularization

is also suggestive of a relationship to robust optimization

(Ben-Tal et al. 2009, Bertsimas et al. 2011), and it turns

out that in the very special case when S = �n, the model

(2) and (3) can be formatted as a particular instance of a

robust optimization problem; this is shown herein in EC.1

(available as part of the supplemental material at http://dx

.doi.org/10.1287/opre.2013.1252). However, when S 
= �n

(as one would typically expect), the connection between (2)

and (3) and robust optimization breaks down; this is also

shown in EC.1. Lewis and Pang (2009) generalize the defi-

nition of the robust regularization to the case when S 
=�n

and presents a variety of results regarding smoothness of

f̃ � · � and related mathematical properties. In somewhat of

a contrast, the focus of this paper is on the model (2)–(3)

as a mechanism for fabrication-adaptive optimization; as

such, we rely on the premise articulated above that we will

fabricate/implement some solution y that is close to x in

some prescribed norm, say, at most a distance � from x
in the prescribed norm, and that such a nearby fabricable
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solution y is very easy to determine/compute for any given

solution x. For this setting we expect S 
= �n, whereby

there is no connection to robust optimization. In the context

of our intended modeling setup, the premise of adapting

the solution after the fact to a nearby fabricable solution,

and because typically S 
= �n, we prefer to use the term

“fabrication-adaptive optimization” rather than “robust reg-

ularization” for the paradigm (2)–(3) because it is more

aligned with aspirations of modeling, application, optimiza-

tion, and computation.

The notion of fabrication-adaptivity is also related to the

modeling of implementation errors. Luo (2003) and Luo

et al. (2004) consider such models in the context of sig-

nal processing and digital communication, where solutions

are affected by errors due to discretization of the signal.

Pınar and Arıkan (2004) examine modeling of implementa-

tion errors in linear least squares problems (of which signal

processing is an application), and Stinstra and Den Hertog

(2008) consider implementation errors in generic optimiza-

tion modeling through the lens of various types of mod-

eling errors. The implementation-error models developed

in these works implicitly assume that the set of possible

errors is independent of the solution point; therefore, in this

case, the modeling of implementation errors can be treated

as an instance of robust optimization (Ben-Tal et al. 2009,

Bertsimas et al. 2011). This contrasts with fabrication adap-

tive optimization, as is discussed in EC.1.

1.1. Basic Nonconvexity Issues, and Practical
and Computational Aspirations

In a realistic application of the fabrication-adaptive model

(2)–(3), one would typically have S 
=�n. However, at least

from an academic perspective, the special case of S = �n

gives rise to interesting properties with respect to convexity

and with respect to connection to the modern domain of

robust optimization; see Ben-Tal et al. (2009) and Bertsimas

et al. (2011). When S =�n, the fabrication-adaptive objec-

tive function f̃ � · � is convex if f � · � is convex; see Propo-

sition 3.1 of Lewis (2002). Again when S = �n, it is also

straightforward to show that quasiconvexity is preserved as

well: if f � · � is quasiconvex, then the fabrication-adaptive

objective function f̃ � · � is quasiconvex.
When S 
=�n, the following example shows that the FA

counterpart optimization problem of a convex optimization

problem need not be convex.

Example 1 (A Nonconvex FA Objective Function
When f � · � Is Convex). Let S = 	x ∈ �2� 0 � x � e
,
the unit two-dimensional square, and consider the convex

(linear) objective function f �x� �= 2x1 + x2, and let 	 · 	 =
	 · 	1 and �= 1/10 for concreteness. At x1 �= �1− 2��1�,
we have

f̃ �x1�=max	2y1+y2� 0�y�e�	y−x1	1��
=3−2��

At x2 �= �1�1− 3��, we have

f̃ �x2�=max	2y1+y2� 0�y�e�	y−x2	1��
=3−2��

However, at x3 �= 1

2
x1+ 1

2
x2 = �1−��1−3�/2�, we have

f̃ �x3�=max	2y1+y2� 0�y�e�	y−x3	1��
=3−3�/2�

In this case we have f̃ �x3� = 3 − 3�/2 > 3 − 2� =
max	f̃ �x1�� f̃ �x2�
, thus showing that f̃ � · � is not even qua-
siconvex on the feasible region S because the level set

L
 �= 	x ∈ S� f̃ �x�� 

 is not convex for 
= 3− 2�.

Because the FA optimization problem (2)–(3) can be

nonconvex, it makes most practical sense to consider using

the FA modeling paradigm when the original function f � · �
in (1) is not convex. (Otherwise we are doing the com-

putational unpromising task of transforming a nominally

convex problem into a nonconvex problem.) We therefore

will take as given that f � · � is not required to be convex

and that we expect the FA optimization problem (2)–(3)

to be nonconvex. In consideration of goals of algorithms,

we aspire to compute solutions x̄ of (2)–(3) that are either

local optima or perhaps just have “good” objective func-

tion value f̃ �x̄� where such “goodness” will of necessity be

problem/context dependent. In order to design algorithms

to solve the FA optimization problem (2)–(3), we focus

on two computational tasks that seem natural to require

in order to design useful algorithms: (i) computing the

FA counterpart function value f̃ �x� for a given x ∈ S and

(ii) computing first-order function objects such as the gra-

dient �f̃ �x� or a (perhaps only local) subgradient of f̃ �x�,
or of the “pieces” of f̃ � · � in the case when f̃ � · � is the

pointwise maximum of other functions, for a given x ∈ S.
For a given x ∈ S, notice from (2) that computing f̃ �x�
is itself generally intractable because it involves maximiz-

ing a convex function over a convex set. Nevertheless, in

many useful instances with special structure on f � · �, S,
and/or 	 · 	, it will be computationally tractable to com-

pute f̃ � · � and �f̃ � · � (or other first-order information) effi-

ciently. Indeed, one of the main concerns of the rest of

this paper is with special structures of real interest for

which computation with the FA counterpart function f̃ � · �
is relatively efficient (§2) and with the practical use of the

FA paradigm for solving problems that gave rise to this

paradigm in the first place—namely, bandgap optimization

problems (§§3 and 4). In §2 we examine FA optimization

problems with certain structures of interest, mainly func-

tions that are in turn piecewise linear, linear fractional, and

piecewise linear fractional as well as a canonical eigen-

value function. We also propose an algorithm for FA opti-

mization in the piecewise linear fractional case. In §3, we

review the class of design optimization problems known

as bandgap problems that arise in engineering design opti-

mization, and we show how the FA optimization paradigm

can be applied to these problems. In §4 we present com-

putational results from applying the FA optimization to

various bandgap problems that arise in photonic crystal

design, and we demonstrate that our proposed algorithm

succeeds in producing much improved adaptive and fabri-

cable solutions.
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1.2. Notation

Let e= �1� � � � �1� denote the vector of ones, whose dimen-

sion will be given in context. Let 	 · 	 denote a norm on

�n, and let 	 · 	∗ be the associated dual norm, namely,

	v	∗ �=max	vT x� 	x	� 1
. The ball of radius � centered

at x̄ is denoted B�x̄� �� �= 	x� 	x − x̄	 � �
. Recall that
a function f � · � on S is convex if f ��x + �1 − ��y� �
�f �x�+ �1− ��f �y� for any � ∈ �0�1� and all x� y ∈ S.
Similarly, f � · � on S is quasiconvex if f ��x+ �1−��y��
max	f �x�� f �y�
 for any � ∈ �0�1� and all x� y ∈ S, and
f � · � is concave or quasiconcave if −f � · � is convex or

quasiconvex, respectively. Note that f � · � is quasiconvex if

and only if the lower level sets of f � · � are convex sets;

see Avriel (1976). If f � · � is convex on S, then g ∈�n is a

subgradient of f � · � at x̂ ∈ S if f �x�� f �x̂�+gT �x− x̂� for
all x ∈ S. Similarly for a concave function on S, g ∈�n is a

subgradient of f � · � at x̂ ∈ S if f �x�� f �x̂�+gT �x− x̂� for
all x ∈ S. A function f � · � on S is locally convex at x̂ ∈ S
if there exists some �> 0 for which f � · � is convex on S∩
B�x̂� ��, and we say that g is a local subgradient of f � · � at
x̂ if f �x�� f �x̂�+ gT �x− x̂� for all x ∈ S ∩B�x̂� ��. Simi-

lar remarks hold for local concavity and a local subgradient

of a locally concave function. Let X�Y be any symmetric

matrices. We write “X � 0” to denote that X is symme-

tric and positive semidefinite, “X � Y ” to denote that X −
Y � 0, and “X 
 0” to denote that X is positive definite.

If K ⊂ �n is a closed convex cone, then its dual cone K∗

is defined by K∗ �= 	s ∈�n� sT x� 0 for all x ∈K
.

2. Fabrication-Adaptive Optimization
Problems with Special Structures

We study some FA optimization problems with special

structures on f � · �, S, and/or 	 · 	.
2.1. Three Special Structures for S=�n

We show three classes of examples of special structures

for instances where S = �n. In the first class the objec-

tive function is the maximum of a finite number of affine

functions:

f �x� �= max
i=1�����m

�bi + �ai�T x�� (4)

and S = �n. It is easy to derive the fabrication-adaptive

objective function in this case:

f̃ �x�= max
	y−x	��

max
i=1�����m

�bi + �ai�T y�

= max
i=1�����m

max
	y−x	��

�bi + �ai�T y�

= max
i=1�����m

max
	d	��

�bi + �ai�T �x+d��

= max
i=1�����m

��bi + �	ai	∗�+ �ai�T x�� (5)

where 	 · 	∗ is the dual norm of 	 · 	. Therefore the FA

optimization problem can be written as

min
x∈�n

f̃ �x�=min
x∈�n

max
i=1�����m

��bi + �	ai	∗�+ �ai�T x�� (6)

The functional form of f̃ � · � is structurally identical to that

of f � · �, namely, the maximum of m linear functions, and

both f � · � and f̃ � · � are convex functions. Let us presume

that it is easy to compute the dual norm 	a	∗ for any a.
Under this presumption the computation of f̃ � · � will be

as easy as that of f � · �, and computing a subgradient of

f̃ � · � at a given value of x will be as easy as that of f � · �.
Furthermore, it is reasonable to expect that any algorithm

for minimizing f � · � in (4) should be easy to apply to solve

(6) with similar types of computational guarantees.

The second class of examples contains instances where

S =�n and f �x�= 	Ax+ b	2 or f �x� is a strictly convex

quadratic function and the prescribed norm on the space

of variables x is the Euclidean norm 	x	2. In these cases,

Lewis (2002) shows that the resulting fabrication-adaptive

optimization problem (3) can be modeled using semidefi-

nite optimization.

The third class of examples are instances of the maxi-

mum eigenvalue function where S =�n. Given symmetric

matrices A0�A1� � � � �An, let ��x� �= A0 +
∑n

i=1Aixi and

consider the maximum eigenvalue function f � · �� �n →�
given by:

f �x� �= �max���x���

Note that f � · � is convex on �n, and f � · � generalizes

the maximum of linear functions. (Indeed, f � · � special-

izes to the maximum of linear functions when all matri-

ces A0�A1� � � � �An are diagonal.) The fabrication-adaptive

counterpart function f̃ � · � of f � · � is
f̃ �x�= max

y∈S�	y−x	��
��max���y���� (7)

and f̃ � · � is also a convex function when S = �n from

Proposition 3.1 of Lewis (2002). However, there does not

appear to be any efficient method for computing f̃ � · � even
in the case when S = �n unless the norm 	 · 	 has very

special structure. When 	 · 	 = 	 · 	1, then the unit ball

is the convex hull of the 2n signed unit vectors e1� � � � �
en�−e1� � � � �−en, whereby f̃ �x� can be computed as

f̃ �x�= max
j=1�����n

{
�max���x+ �ej����max���x− �ej��

}
�

and so is computable so long as the 2n largest eigen-

value problems are efficiently computable. However, when

	 · 	=	 · 	�, it follows from Ben-Tal and Nemirovski (2002)

that computing f̃ � · � is NP-hard, and when 	 · 	=	 · 	2,
computing f̃ � · � is also NP-hard (Nemirovski 2012). Here

we see that the original objective function f � · � involves

the computation of the largest eigenvalue of a symmet-

ric matrix, which is typically tractable; however, the FA

counterpart function f̃ � · � is not tractable to compute when

	 · 	 = 	 · 	p and p= 2 or p=�. Indeed, intuition suggests

that only norms with a relatively small number of extreme

points on their unit ball will be suitable for practical com-

putation of the FA counterpart of the largest eigenvalue

function.
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2.2. Piecewise Linear Convex
Objective and S 
=�n

Let the objective function be given by (4), i.e., the same

as in §2.1, but now suppose that S 
=�n. For convenience

we assume in this subsection that S is closed and bounded,

i.e., compact. Then we have

f̃ �x�= max
y∈S�	y−x	��

max
i=1�����m

�bi + �ai�T y�

= max
i=1�����m

max
y∈S�	y−x	��

�bi + �ai�T y�

= max
i=1�����m

f̃i�x�� (8)

where

f̃i�x� �=max
y

�bi + �ai�T y�

s�t� 	y− x	� ��

y ∈ S�

(9)

We have the following result on the structure of f̃ � · �:
Proposition 1. If S is a convex set, then f̃i� · �� S → �
is a concave function, i = 1� � � � �m, whereby f̃ � · � is the
pointwise maximum of concave functions.

Proof. Let us fix i ∈ 	1� � � � �m
, and let x1� x2 ∈ S be

given. Let � ∈ �0�1�, and x3 = �x1 + �1− ��x2. Assum-

ing for simplicity that the optimization problem defining

f̃i�x� attains its optimum, let yj solve the optimization

problem in the definition of f̃i�x
j� for j = 1�2, whereby

f̃i�x
j� = bi + �ai�T yj , yj ∈ S, and 	xj − yj	 � � for j =

1�2. Therefore y3 �= �y1 + �1 − ��y2 satisfies y3 ∈ S,
	x3 − y3	 � �, and hence y3 is feasible for the optimiza-

tion problem in the definition of f̃i�x
3� in (9). Therefore

f̃i�x
3� � bi + �ai�T y3 = ��bi + �ai�T y1� + �1 − ���bi +

�ai�T y2�= �f̃i�x
1�+�1−��f̃i�x

2�, and hence f̃i� · � is con-
cave on S. �

It follows from Proposition 1 that f̃ � · � does not have

attractive convex structure. Nevertheless, the computation

of f̃ �x� for a given x via (8)–(9) is a tractable convex opti-

mization problem when 	 · 	 is the L2, L1, or L� norm, and

when S is polyhedral or is conveyed in a suitably easy conic

form S = 	x� b−Ax ∈K
 for some convex cone K. In these

cases, computing f̃ �x� amounts to solving m conic convex

optimization problems. This is not a particularly burden-

some task if m is not too large; and/or if S is a relatively

simple set such as a hypercube, simplex, or Euclidean ball;

or more generally if S is conveyed in conic form above

with structure for which conic optimization can be done

efficiently.

Using (8) and (9), the FA optimization problem (3) can

therefore be written as

P FA� z̃∗ �=min
x

f̃ �x� =min
x� t

t

s�t� x ∈ S� s�t� f̃i�x�� t�
i= 1� � � � �m�x ∈ S�

(10)

Furthermore, we know from Proposition 1 that f̃i� · � is con-
cave, i= 1� � � � �m.

In light of the structure of the FA optimization prob-

lem (10), we consider computing first-order objects for

each of the functions f̃i�x�, i = 1� � � � �m. Let us fix an

index i ∈ 	1� � � � �m
. We know from Proposition 1 that

f̃i� · � is concave on S and hence has a subgradient for all

x ∈ S. Furthermore, there exists a set Bi ⊂ S of measure

zero such that f̃i� · � will be differentiable for all x ∈ S\Bi

(Rockafellar 1970, Theorem 25.5). To see how to com-

pute such a subgradient, we appeal to duality theory, and

we assume that S is conveyed in conic form, namely, S =
	x ∈�n: b − Ax ∈ K
 where K ⊂ �k is a closed convex

cone. For i= 1� � � � �m, we can rewrite (9) as the following

problem Pi�x�:

Pi�x�� f̃i�x�=max
y

�bi + �ai�T y�

s�t� 	y− x	� ��

b−Ay ∈K�

(11)

which can be put in conic form by defining C �= 	�w���:
	w	� �
×K and rewriting Pi�x� as

Pi�x�� f̃i�x�=max
y

�bi + �ai�T y�

s�t�

⎛
⎝x
�
b

⎞
⎠−

⎛
⎝ I
0

A

⎞
⎠y ∈C�

(12)

The conic dual Di�x� of Pi�x� can then be written as

Di�x�� min
�

(
bi + �	ai −AT�	∗ + bT �

+ �ai −AT��T x
)

s�t� � ∈K∗�

(13)

We say that S has a Slater point if there exists x0 ∈ S for

which b−Ax0 ∈ intK. The following result describes a way

to compute a subgradient of f̃i�x�:

Proposition 2. Let i ∈ 	1� � � � �m
 be given. Suppose that
S has a Slater point, and suppose x ∈ S. Then Di�x�
attains its optimum at some �∗

i with no duality gap, and
furthermore,

pi �= pi�x� �= ai −AT�∗
i (14)

is a subgradient of f̃i� · � at x. Furthermore, there is a set
Bi ⊂ S of measure zero for which it holds that pi�x� is
uniquely defined and hence �f̃i�x�= pi�x� for all x ∈ S\Bi.

Proof. Let us fix i ∈ 	1� � � � �m
 and consider the duality

paired problems Pi�x� and Di�x�. It follows from standard

duality theory that there will be no duality gap and the

dual problem will attain its optimum under the condition

that the primal has a Slater point, namely, a point y for

which 	y− x	 < � and b − Ay ∈ intK; see Duffin (1956)

or Borwein and Lewis (2006) for a more modern treatment
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of conic duality. Let x0 be a Slater point of S, whereby
b−Ax0 ∈ intK. Since x ∈ S by supposition, it follows that

y��� �= �x0 + �1 − ��x is a Slater point of the feasible

region of (12) for all � > 0 and sufficiently small. It then

follows that Di�x� attains its optimum with no duality gap,

and it follows from the formulation of Di�x� that f̃i�x�
is the pointwise minimum of affine functions, whose lin-

ear terms are of the form �ai −AT�� for � ∈K∗. It then
follows directly from convexity arguments that ai −AT�∗

i

is a subgradient of f̃i� · � at x. Furthermore, it follows

from (Rockafellar 1970, Theorem 25.5) that there exists

a set Bi ⊂ S of measure zero such that f̃i� · � is differen-

tiable for all x ∈ S\Bi, and hence �f̃i�x� = pi�x� for all

x ∈ S\Bi. �

The computational viability of solving the dual prob-

lem Di�x� must of necessity presume that the dual norm

	 · 	∗ can be suitably treated in the objective function of

Di�x�. Of course, when the norm 	 · 	 can be described

with linear inequalities or second-order cone constraints,

then solving Di�x� is all the easier. For example, when

	 · 	 is the L1- or L�-norm, then Di�x� can be easily rep-

resented as a linear programming problem. When 	 · 	 is

the L2-norm or other quadratic norm of the form
√
xTQx

for Q
 0, then Di�x� can be represented as a second-order

cone problem using a standard transformation; see Boyd

and Vandenberghe (2004).

In §2.4 we will present an algorithm for solving (10)

that is based on the scheme of sequentially solving the first-

order approximation of (10) at a given point x̂ ∈ S, namely,

P x̂� min
x�t

t

s�t� f̃i�x̂�+�f̃i�x̂�
T �x− x̂�� t� i=1�����m�

x∈S�
(15)

where the values f̃i�x̂� and �f̃i�x̂�, i= 1� � � � �m, are com-

puted via Propositions 1 and 2, respectively.

2.3. Linear Fractional Objective and S 
=�n

Let us now consider the case when the objective function

is linear fractional:

f �x� �= aT x+ g

cT x+h
� (16)

and suppose that S 
=�n, we impose the condition that S is

compact and convex, and cT x+h> 0 for all x ∈ S. In this

case f � · � is quasilinear on S; i.e., it is both quasicon-

vex and quasiconcave on S. We can write the fabrication-

adaptive objective function as

f̃ �x� �=max
y

(
aT y+ g

cT y+h

)

s�t� 	y− x	� ��

y ∈ S�

(17)

We have the following result on the structure of f̃ � · �:

Proposition 3. f̃ � · �� S → � is a quasiconcave function
on S.

Proof. Let x1� x2 ∈ S be given, let � ∈ �0�1�, and let

x3 = �x1 + �1 − ��x2. Let yj solve the optimization

problem in the definition of f̃ �xj� in (17) for j = 1�2,
whereby 	xj − yj	 � �, yj ∈ S, and �aT yj + g�/�cT yj +
h� = f̃ �xj� for j = 1�2. Define 
 �= min	f̃ �x1�� f̃ �x2�
.
Then the equations f̃ �xj� = �aT yj + g�/�cT yj + h� for

j = 1�2 and the definition of 
 implies that aT yj + g =
f̃ �xj��cT yj +h� � 
�cT yj +h� for j = 1�2. Also y3 �=
�y1 + �1−��y2 satisfies y3 ∈ S and 	x3 − y3	 � � and

hence is feasible for the optimization problem in the defini-

tion of f̃ �x3� in (17). Furthermore aT y3+g � 
�cT y3+h�,
and hence f̃ �x3� � 
 = min	f̃ �x1�� f̃ �x2�
, whereby f̃ � · �
is quasiconcave on S. �

The next result shows that f̃ �x� is the optimal objective

function value of a convex optimization problem involv-

ing S and a norm constraint. In what follows we use the

notation that �S is the scaling of S by the constant � for

�� 0. (When �= 0, it is customary to define �S to be the

recession cone of S; however, since we assume here that S
is bounded, we have for � = 0 that �S �= 	0
 under either

definition.)

Proposition 4. If x ∈ S, then f̃ �x� is the optimal objective
value of the following convex optimization problem:

f̃ �x� �=max
ȳ� �

(
aT ȳ+ g�

)
s�t� 	ȳ− �x	� ���

cT ȳ+h�= 1�

ȳ ∈ �S�

�� 0�

(18)

If �ȳ� �� is feasible and/or optimal for (18), then y = ȳ/�
is feasible and/or optimal for (17), respectively.

Proof. Problem (18) is just a standard transformation of

the linear fractional optimization problem (17) via homog-

enization (see Charnes and Cooper 1962 or Craven and

Mond 1973). Note that we cannot have � = 0 in (18)

because this would imply that ȳ = 0 via the norm con-

straint, which would imply that cT ȳ+h�= 0 
= 1, which is

a contradiction. Thus division by zero in the transformation

y = ȳ/� cannot occur. �

The computational viability of solving (18) will depend

on (among other things) the ability to conveniently work

with the scaling �S. When S is conveyed in conic linear

form as in §2.2, it follows for � � 0 that �S = 	x ∈ �n:

�b−Ax ∈K
, in which case the scaling results in no loss

of generality of the representation of the feasible region.

Let us now turn to the computation of first-order objects

related to f̃ � · �. Let us further assume that S is conveyed

as a system of linear inequalities so that S = 	x ∈ �n:
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b−Ax� 0
; i.e., K = �k
+ in the conic linear representa-

tion. We then can write (18) as

f̃ �x� �=max
ȳ� �

�aT ȳ+ g��

s�t� 	ȳ− �x	� ���

cT ȳ+h�= 1�

�b−Aȳ � 0�

�� 0�

(19)

Let us further restrict our attention to the case when the

norm 	 · 	 is representable with linear inequalities, as in

the L1- or L�-norm. For concreteness let us examine

the case when 	 · 	 is a weighted L1-norm with weights

w �= �w1� � � � �wn� > 0, i.e., 	x	 �=∑n
j=1wj �xj �. Then (19)

can be represented as the following linear optimization

problem:

f̃ �x� �=max
ȳ� �� q

�aT ȳ+ g��

s�t� ȳ− �x� q� ��1�

−ȳ+ �x� q� ��2�

wT q � ��� ���

cT ȳ+h�= 1� ���

�b−Aȳ � 0� ���

�� 0� ���

(20)

where for future reference we assign names of linear opti-

mization dual variables for each of the constraint systems

above. We have the following result concerning the com-

putation of the gradient of f̃ � · �:
Proposition 5. There is a set B ⊂ S of measure zero that
makes the following hold: suppose x ∈ S\B, let �ȳ∗� �∗� q∗�
solve (20), let ��∗

1 ��
∗
2 � �

∗� �∗��∗� �∗� be optimal dual vari-
ables, and define

p �= p�x� �= �∗��∗
1 −�∗

2 �� (21)

Then �f̃ �x�= p�x�.

Below we present a proof of Proposition 5. This proof

relies on (20) being a linear optimization problem. This will

be the case whenever S is conveyed via linear inequalities

and whenever the norm 	 · 	 is polyhedral, or to be more

exact, whenever the norm level set constraint “	v	� t”
in variables v� t can be conveniently represented via lin-

ear inequalities. Although we specifically worked with the

weighted L1-norm in (20), there is no loss of general-

ity in working with a weighted L�-norm or other poly-

hedral norm.

Because (20) is a linear program parameterized by x,
it would be convenient to prove Proposition 5 by invok-

ing a standard right-hand-side sensitivity analysis result on

parametric linear programming. However, notice that the

parameter x appears in the left-hand side of the first two

constraints of (20), and this dependence of the constraint-

matrix coefficients of (20) on the parameter x appears to

be structural; i.e., we see no way to remove it by a sim-

ple change of variable. Thus to prove Proposition 5 we

will invoke the following result concerning changes in data

coefficients in linear programming.

Theorem 1. Consider the following primal and dual pair
of linear optimization problems:

P�x�� f �x�=min
y

cTx y

s�t� Axy = bx�

y � 0�

D�x�� max
z

bT
x z

s�t� AT
x z� cx�

z free�

(22)

Suppose Ax = A0 +
∑nx

k=1Akxk, bx = b0 +
∑nx

k=1 bkxk, and
cx = c0+

∑nx
k=1 ckxk, where x= �x1� x2� � � � � xnx � are param-

eters that determine the data Ax�bx� cx of the linear pro-
gram P�x�. Let S denote the subset of �nx for which P�x�
has an optimal solution. Then there exists a set B ⊂ S of
measure zero that makes the following hold: if x̂ ∈ S\B,
and y∗� z∗ are optimal solutions to P�x̂� and D�x̂�, then

�f �x�

�xk

∣∣∣∣
xk=x̂k

= cTk y
∗ + bT

k z
∗ − �z∗�T Aky

∗� (23)

Theorem 1 follows as the multivariate extension of the case

when nx = 1 using rational functions (see Freund 1985,

Lemma 1, Theorem 2). �

Proof of Proposition 5. The proof follows by applying

Theorem 1 in the linear optimization problem (20). Consid-

ering the kth component of x we have from Theorem 1 that

�f̃ �x�

�xk

∣∣∣∣
xk

= �∗��∗
1 �k − �∗��∗

2 �k�

except possibly on a set B of measure zero, which proves

the result. �

2.4. Piecewise Linear Fractional
Objective and S 
=�n

Let us now consider the case when the objective function

is piecewise linear fractional:

f �x� �= max
i=1�����m

�ai�T x+ gi
�ci�T x+hi

� (24)

and we impose the conditions that S is compact and convex,

and �ci�T x+hi > 0 for all x ∈ S and for all i= 1� � � � �m.
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Similar to §2.3, it holds that f � · � is quasiconvex on S
(but not quasiconcave). We can write the FA objective func-

tion as

f̃ �x�= max
y∈S�	y−x	��

max
i=1�����m

�ai�T y+ gi
�ci�T y+hi

= max
i=1�����m

max
y∈S�	y−x	��

�ai�T y+ gi
�ci�T y+hi

= max
i=1�����m

f̃i�x�� (25)

where

f̃i�x� �=max
y

�ai�T y+ gi
�ci�T y+hi

s�t� 	y− x	� ��

y ∈ S�

(26)

The following result on the structure of f̃ � · � is evident

from Proposition 3:

Proposition 6. f̃i� · �� S → � is a quasiconcave function,
i = 1� � � � �m, whereby f̃ � · � is the pointwise maximum of
quasiconcave functions.

Proof. The proof is an immediate consequence of Propo-

sition 3. �

Paralleling results in §2.3, we have the following result

on the computation of f̃ � · �, which shows that f̃ � · � is com-

putable by solving m convex optimization problems.

Proposition 7. If x ∈ S, then f̃ �x� = maxi=1�����m f̃i�x�

where for i= 1� � � � �m, f̃i�x� is the optimal objective func-
tion value of the following convex optimization problem:

Pi�x�� f̃i�x� �=max
ȳ� �

(
�ai�T ȳ+ gi�

)
s�t� 	ȳ− �x	� ���

�ci�T ȳ+hi�= 1�

ȳ ∈ �S�

�� 0�

(27)

For each i = 1� � � � �m, if �ȳ� �� is feasible and/or optimal
for Pi�x� in (27), then y = ȳ/� is feasible and/or optimal
for (26), respectively.

Proof. Proposition 7 is essentially a restatement of Prop-

osition 4 for each of the i = 1� � � � �m pieces f̃i� · �
of f̃ � · �. �

As in §2.2, using (25) and (26) the FA optimization prob-

lem (3) can be written as

P FA� z̃∗ �= min
x

f̃ �x�

s�t� x ∈ S�

= min
x�t

t

s�t� f̃i�x�� t�

i= 1� � � � �m�x ∈ S�

(28)

Furthermore, we know from Proposition 6 that f̃i� · � is qua-
siconcave, i= 1� � � � �m.

Let x̂ ∈ S be a given point. In light of the structure

of the fabrication-adaptive optimization problem (28), we

consider computing first-order objects for each of the func-

tions f̃i�x�, i = 1� � � � �m. Similar to §2.3, we assume that

S is conveyed as a system of k linear inequalities, namely,

S = 	x ∈�n� b−Ax� 0
, i.e., K =�k
+ in the conic linear

representation, and in particular we examine the case when

the prescribed norm is the weighted L1-norm with weights

w �= �w1� � � � �wn� > 0. Then for i= 1� � � � �m, problem (27)

can be represented as the following linear optimization

problem:

Pi�x�� f̃i�x� �= max
ȳi � �i� qi

(
�ai�T ȳi + gi�i

)
s�t� ȳi − �ix� qi� ��i�1�

−ȳi + �ix� qi� ��i�2�

wT qi � �i�� ��i�

�ci�T ȳi +hi�i = 1� ��i�

�b−Aȳi � 0� ��i�

�i � 0� ��i�

(29)

where for future reference we assign names of linear opti-

mization dual variables for each of the constraint systems

above. The analogous result of Proposition 5 is:

Proposition 8. Let i ∈ 	1� � � � �m
 be given. There is a
set Bi ⊂ S of measure zero which makes the following
hold: suppose x ∈ S\Bi. Let �ȳ∗i � �

∗
i � q

∗
i � solve Pi�x� of

(29) and let ��∗
i�1��

∗
i�2� �

∗
i � �

∗
i � �

∗
i � �

∗
i � be optimal dual vari-

ables, and define

pi �= pi�x� �= �∗
i ��

∗
i�1 −�∗

i�2�� (30)

Then �f̃i�x�= pi�x�.

Proof. The result follows directly from Proposition 5. �

Based on Propositions 7 and 8, we propose an algorithm

for solving the FA optimization problem P FA in (28). Let

x̂ ∈ S be a given point. We sequentially solve the first-order

approximation of (28) based on the point x̂, namely,

P x̂� min
x�t

t

s�t� f̃i�x̂�+�f̃i�x̂�
T �x− x̂�� t� i=1�����m�

x∈S�
(31)

where the values f̃i�x̂� and �f̃i�x̂�, i = 1� � � � �m are com-

puted via Propositions 7 and 8, respectively. This leads

to the sequential linear optimization scheme described

in Table 1, which we refer to as Algorithm FA (for

Fabrication-Adaptivity).

Note that Algorithm FA is designed for the case when

f � · � is piecewise linear fractional (24). When the denom-

inators in the linear fractional forms are all equal to 1, i.e.,
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Table 1. Algorithm for fabrication-adaptive optimiza-

tion problem when f � · � is piecewise linear

fractional and S is given by linear inequalities.

Algorithm FA when f � · � is piecewise linear fractional problem

Step 1. Start with initial guess x̂ �= x0 and tolerance �tol.

Step 2. For each i= 1� � � � �m, do:

Compute function value f̃i�x̂� via (29).
Compute first-order information pi�x̂� via (30).

Step 3. Form the linear optimization problem P x̂ in (31).

Step 4. Solve P x̂ for an optimal solution x∗.
Step 5. If 	x∗ − x̂	� �tol, stop.

Else update x̂← x∗ and go to Step 2.

ci = 0 and hi = 1 for i = 1� � � � �m, then it follows from

Proposition 1 that f̃i� · � is concave on S, whereby for x̂ ∈ S
we have:

f̃i�x�� f̃i�x̂�+�f̃i�x̂�
T �x− x̂� for all s ∈ S� i= 1� � � � �m�

This in turn implies that if �x� t� is feasible for P x̂ (31), then

�x� t� is also feasible for P FA (28), whereby the optimal

value of P x̂ will always be an upper bound on the value of

P FA in this case.

When we discuss bandgap optimization problems in §3

(for which the concept of fabrication-adaptivity was origi-

nally inspired), we will show that the original bandgap opti-

mization problem can be cast as an instance of the piecewise

linear fractional optimization problem (24), and that Algo-

rithm FA can therefore be used to solve the FA optimization

problem associated with this problem. We will show compu-

tational results for a particularly useful bandgap optimiza-

tion problem, namely, the photonic crystal design problem,

in §4.

2.5. A Very Special Piecewise Linear
Fractional Problem

Let us now consider the following very special piecewise

linear fractional objective function:

f �x� �= maxi∈���ai�T x+ gi�−minj∈� ��cj�T x+hj�

maxi∈���ai�T x+ gi�+minj∈� ��cj�T x+hj�
� (32)

Similar in spirit to §2.4, we suppose that S is compact

and convex, and we impose the condition that �ai�T x +
gi > 0 and �cj�T x+hj > 0 for all x ∈ S, i ∈ � , and j ∈ � .
Optimization problems with this structure arise naturally

and often in bandgap optimization applications, which will

be discussed in §3. (Indeed, bandgap optimization problems

gave rise to our interest in this particular structure to begin

with.)

In order to analyze the properties of f � · � as well as the
fabrication-adaptive objective f̃ � · �, we will use the follow-
ing result.

Proposition 9. Suppose that �ai�T x+gi > 0 and �cj�T x+
hj > 0 for all x ∈ S, i ∈� , and j ∈ � . Then

f �x� �= maxi∈���ai�T x+ gi�−minj∈� ��cj�T x+hj�

maxi∈���ai�T x+ gi�+minj∈� ��cj�T x+hj�

= max
i∈�� j∈�

��ai�T x+ gi�− ��cj�T x+hj�

��ai�T x+ gi�+ ��cj�T x+hj�
� (33)

Proof. To ease the notational burden let Ui = �ai�T x+ gi
for i ∈� and Lj = �cj�T x+hj for j ∈ � . Let us also define

the general function ��U�L� �= �U − L�/�U + L�, and

notice that �� · � · � is increasing in U and decreasing in L
for U > 0 and L > 0. For a given value of x ∈ S, let us
consider the left side and the right side of the equality (33)

we need to prove. Clearly the right side is at least as large

as the left side. Now suppose that �î� ĵ� is a pair of indices

that attains the maximum in the right side of (33). Then

we have from the monotonicity of ��U�L� that

maxi∈�Ui −minj∈�Lj

maxi∈�Ui +minj∈�Lj

�
Uî −minj∈�Lj

Uî +minj∈�Lj

�
Uî −Lĵ

Uî +Lĵ

�

thus showing that the left side of (33) is at least as large

as the right side, completing the proof. �

Proposition 9 shows that f � · � can alternatively be rewrit-
ten as the maximum of m �= �� � · �� � linear fractional func-
tions (where ��� denotes the cardinality of the set �), and

so is an instance of the format (24), and hence all of the

results of §2.4 apply herein.

Indeed, we can write the FA objective function as

f̃ �x�

= max
y∈S�	y−x	��

maxi∈���ai�T y+gi�−minj∈� ��cj�T y+hj�

maxi∈���ai�T y+gi�+minj∈� ��cj�T y+hj�

= max
y∈S�	y−x	��

max
i∈��j∈�

��ai�T y+gi�−��cj�T y+hj�

��ai�T y+gi�+��cj�T y+hj�

= max
i∈��j∈�

max
y∈S�	y−x	��

�ai−cj�T y+�gi−hj�

�ai+cj�T y+�gi+hj�

= max
i∈��j∈�

f̃i�j �x�� (34)

where for �i� j� ∈� ×� we have

f̃i� j �x� �=max
y

�ai − cj�T y+ �gi −hj�

�ai + cj�T y+ �gi +hj�

s�t� 	y− x	� ��

y ∈ S�

(35)

which has the exact same format as (25) and (26) with a

finite index set given by all pairs �i� j� ∈� ×� . Therefore,
f̃i� j � · � is quasiconcave and f̃ � · � is the pointwise maximum

of quasiconcave functions (Proposition 6), the computation

of f̃i� j �x� for a given x ∈ S is the solution of the convex

optimization problem described in Proposition 7, and the

computation of �f̃i� j �x� for a given x is obtained from dual

variables as described in Proposition 8. Furthermore, the

algorithm presented in §2.4 can be applied to solve the FA
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optimization problem derived from the original objective

function given in (32).

3. Fabrication-Adaptivity for Bandgap
Optimization Problems

The motivation for developing the fabrication-adaptivity

paradigm stemmed from work on bandgap design opti-

mization, and more specifically on photonic crystal design

optimization. The works of Cox and Dobson (2000), Kao

et al. (2005), and Men et al. (2010, 2011) contain meth-

ods to optimize bandgaps for this class of problems, but

of necessity none of these works addresses issues of fab-

ricability. The chief goal of this paper is to construct and

solve fabrication-adaptive optimization problems for this

class of problems. In this section we first review bandgap

optimization problems in general, and we present the class

of bandgap optimization models used in the previous work.

We then show how to apply the fabrication-adaptive for-

mulation to bandgap optimization problems. The presen-

tation herein is at a high level, and properties are stated

as summary results of previous work without proofs; for a

more detailed presentation, we refer the interested reader

to Men et al. (2010).

3.1. Bandgap Optimization Problems

A bandgap is a concept that arises in many engineer-

ing applications. In semiconductor physics, an electron can

sometimes transition from one energy state to another by

a change in crystal momentum. An energy bandgap thus

denotes a range of energy states that the electrons are for-

bidden to occupy despite any change in momentum (in the

absence of any external excitation). Analogously, in pho-

tonic crystals (periodic optical nanostructures), photons can

Figure 1. Bandgap optimization problem.
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Decision variables

Notes. The left figure is the schematic representation of the design problem. The design region is represented by piecewise constant values xi of pixel

(or voxel) i for each of i= 1� � � � � nx pixels, where xi is the value of the material property of design interest (such as permittivity, Poisson’s ratio, Young’s

modulus, etc.). The right figure is the band diagram: in this example, � is the interval �k1� knk �, which is discretized into a finite number of components

	k1� � � � � knk 
. Each curve shows an eigenvalue parameterized over the elements of �. The band shown in the figure is the difference between the sixth

and seventh eigenvalues and portrays the numerator of the objective function in (36). The objective is to determine the values of the design variables x for

which the resulting bandgap between these consecutive eigenvalues is largest.

behave as waves and propagate with certain frequencies

through the bulk material at admissible wavevectors. A fre-
quency bandgap is defined as the range of disallowed fre-

quencies of the photons; if a photon is traveling according

to a given wavevector, it will get attenuated within the crys-

tal if it is propagating at any frequency within the frequency

bandgap. The energy bandgap phenomenon has been used

in applications such as insulators, laser diodes, solar cells,

etc., and the frequency bandgap phenomenon has been used

in applications such as frequency filters, waveguides, and

optical buffers.

Bandgap optimization is the process of designing the

composition and structure of a material to maximize a

specific bandgap. The bandgap optimization problem is

generally written as the following nonlinear nonconvex

eigenvalue-constrained optimization problem:

P� max
x∈S

mink∈��m+1�k�x�−maxk∈��m�k�x�

�1/2��mink∈��m+1�k�x�+maxk∈��m�k�x��

s�t� A�k�x�uj�k�x�=�j�k�x�Muj�k�x��

j=m�m+1� for all k∈�� (36)

The decision variables of problem P are x ∈ S ⊂�nx , which

represent the discretized material property of the design

domain, as shown in the left panel of Figure 1. The objec-

tive of problem P is the eigenvalue gap-midgap ratio,

which is defined as the difference between two prescribed

consecutive eigenvalues divided by their mean (for scale

invariance). The constraints of problem P are described in

the equation line (36), which is shorthand for “for each k
in the index set �, �j�k� x� is the jth ordered (generalized)

eigenvalue (for j =m�m+1) of A�k� x� with respect to M,

for the given design variable x.” Here � is a particular gov-

erning index set and is typically discretized to have the
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nk values �= 	k1� � � � � knk
, as shown in the right panel of

Figure 1. (Indeed, in most bandgap problems � indexes a

discretization of the wave vectors that lie on the boundary

of the Brillouin zone.)

Much of the details and derivation of the generalized

eigensystem equation of (36) are beyond the scope of the

present paper. However, we call out certain properties of M
and the family of matrices A�k� x� because they are used

in subsequent reformulations.

Proposition 10. Let �1�k� x� � �2�k� x� � · · · � �N �k�x�
denote the eigenvalues of the generalized eigensystem
equation of (36), with corresponding normalized eigen-
functions u1�k� x��u2�k� x�� � � � � uN �k� x�. Then M and
A�k� x� have the following properties:
(i) M
 0,
(ii) A�k� x�� 0, for all k ∈ �� x ∈ S,
(iii) A�k� x�=A0�k�+

∑nx
i=1Ai�k� xi, for all k ∈ �,

(iv) �i�k� x�� 0, for all i= 1� � � � �N , and
(v) ui�k�x�

TMuj�k�x�=�ij , for all i�j=1�����N . �

Item (i) of Proposition 10 states that the (mass) matrix

M is positive definite, and item (ii) states that A�k� x� is

positive semidefinite for any feasible design x and for every

k ∈ �. Item (iii) states that the matrix A�k� x� depends

affinely on the design variables x for every k ∈ �. Items (iv)

and (v) state that the generalized eigenvalues are nonnega-

tive and the generalized eigenfunctions are M-orthogonal,

which are direct consequences of the previous three items.

Now let x̂ ∈ S be given. To ease the notation burden, we

identify the finite set � �= 	k1� � � � � knk
 with the counter

t ∈ 	1� � � � � nk
. In Men et al. (2010) it is shown how

to construct operators �x̂
l� t�x� = Ax̂

l� t�0 +
∑nx

i=1A
x̂
l� t� ixi and

�x̂
u� t�x� �= Ax̂

u� t�0 +
∑nx

i=1A
x̂
u� t� ixi, and also corresponding

mass matrices Mx̂
l� t and Mx̂

u� t , for each t ∈ 	1� � � � � nk
, all
of whose data depends on the current point x̂, which are

used to construct the following (convex) linear fractional

semidefinite optimization problem (SDP):

P x̂
SDP� max

x∈S��l��u
2
�u −�l

�u +�l

s�t� �x̂
l� t�x�� �lM

x̂
l� t� t = 1� � � � � nk�

�x̂
u� t�x�� �uM

x̂
u� t� t = 1� � � � � nk�

�l � 0� �u � 0�

(37)

Proposition 11. For a given x̂ ∈ S, the nonlinear non-
convex problem P is locally approximated as the (convex)
linear fractional semidefinite program P x̂

SDP of (37). �

Without going into the fine details, we note that �l

and �u in (37) are intended to model maxk∈� �m�k�x� and
mink∈� �m+1�k� x� in (36), respectively, and that the two

pairs of semidefinite inclusions in (37) locally model the

mth and (m + 1)st eigenvalue position for each k ∈ � =
	k1� � � � � knk
.

Our goal herein is to apply the fabrication-adaptivity

paradigm to bandgap optimization problems. Note that the

objective function of (37) is at least as challenging as the

largest eigenvalue function of §2.1. Recall from the discus-

sion in §2.1 that the fabrication-adaptive counterpart func-

tion of the largest eigenvalue function is typically not com-

putationally tractable. We therefore proceed by replacing

the semidefinite inclusions in (37) with linear inequality

approximations, the methodology for which is described in

EC.2.1, which yields the data Bx̂, Cx̂, gx̂, and hx̂ for the

linear fractional optimization problem:

P x̂
LFP� max

x∈S��l��u
2
�u −�l

�u +�l

s�t� Bx̂x+ gx̂ � e�l�

Cx̂x+hx̂
� e�u�

�l � 0� �u � 0�

(38)

Proposition 12. For a given x̂ ∈ S, the linear fractional
semidefinite program P x̂

SDP of (37) is approximated as the
linear fractional optimization problem P x̂

LFP of (38). �

Here the two groups of semidefinite inclusions in (37)

are replaced by � B and � C linear inequalities, respectively.

The detailed methodology and derivation of the approxi-

mating linear inequalities are not the focus of the current

work but are nevertheless presented in EC.2.1 for com-

pleteness. In addition, the computational results presented

in EC.2.3 show that solutions of (38) are nearly as good

and often are superior to those of (37). Our methodology

is similar in spirit to that of Sherali and Fraticelli (2002),

who replace semidefinite inclusions with linear inequali-

ties to solve nonconvex quadratic optimization problems on

the simplex.

3.2. Fabrication-Adaptivity Formulation

Notice that the linear fractional formulation in (38) can be

equivalently written in the following format that empha-

sizes the special piecewise linear structure of the objective

function:

max
x∈S

f x̂�x�

�= 2
mini∈��Cx̂x+hx̂�i −maxj∈� �Bx̂x+ gx̂�j

mini∈��Cx̂x+hx̂�i +maxj∈� �Bx̂x+ gx̂�j
� (39)

where � = 	1� � � � �� C
 and � = 	1� � � � �� B
. Note in (39)

that the only constraint is the feasibility inclusion x ∈ S.
This special piecewise linear fractional function is of the

exact structure as the problem discussed in §2.5 (with the

equivalence that now the objective is maximization rather

than minimization and hence the roles of the “max” and

“min” are switched in the fractional objective function).

Furthermore, it will also be the case in the bandgap applica-

tion that the suppositions of §2.5 are also satisfied; namely,

S is compact and is conveyed as a system of linear inequal-

ities S = 	x� Ax� b
, the norm 	 · 	 is a weighted 1-norm

	x	 �=∑nx
i=1wi�xi� for positive weights �w1� � � � �wnx

�, and
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�Cx̂x + hx̂�i > 0 and �Bx̂x + gx̂�j > 0 for all x ∈ S and

i ∈� and j ∈ � , respectively. Therefore, we can invoke the

results in §2.5 regarding computation and optimization of

the fabrication-adaptive counterpart function f̃ x̂�x�. Let us
see how this can be done. From Proposition 9 (with “min”

and “max” appropriately interchanged) we have that

f x̂�x�= min
i∈�� j∈�

2
�Cx̂

i −Bx̂
j �x+ �hx̂

i − gx̂j �

�Cx̂
i +Bx̂

j �x+ �hx̂
i + gx̂j �

� (40)

Furthermore, from (34) and (35) we have that

f̃ x̂�x�= min
i∈�� j∈�

f̃ x̂
i� j �x�� (41)

where for each �i� j� ∈� ×� we have

f̃ x̂
ij �x� �=min

y
2
�Cx̂

i −Bx̂
j �y+ �hx̂

i − gx̂j �

�Cx̂
i +Bx̂

j �y+ �hx̂
i + gx̂j �

s�t� 	y− x	� ��

y ∈ S�

(42)

It also follows that f̃ x̂
ij �x� and �f̃ x̂

ij �x� are computable

via the convex optimization problems described in Propo-

sitions 7 and 8, respectively, and that Algorithm FA of

Table 1 can be adapted (taking into account that the roles

of min and max are switched and that the linear frac-

tional pieces are indexed by pairs �i� j�) to solve the

fabrication-adaptive optimization problem. The format for

(28) becomes

max
x∈S

f̃ x̂�x�=max
x�t

t

s�t� f̃ x̂
i�j �x�� t� for all �i�j�∈�×� �

x∈S�
(43)

and the linearization of (43) at x̂ then is

max
x� t

t

s�t� f̃ x̂
i� j �x̂�+ ��f̃ x̂

i� j �x̂��
T �x− x̂�� t�

for all �i� j� ∈� ×� �
x ∈ S�

(44)

Table 2 presents the version of Algorithm FA, which we

call Algorithm FA-B, for solving bandgap problems.

4. Computational Results for
Fabrication-Adaptive Optimization

We first test the intended effectiveness of Algorithm FA

(Table 1) on random problems. These results are presented

in §4.1. We then apply Algorithm FA-B to a variety of

bandgap problems that arise in photonic crystal design,

which was the problem class that engendered this line of

research. We show via several examples how the solu-

tions produced by Algorithm FA-B succeed in producing

improved fabricable design solutions compared to solutions

based on the optimal solution of the original design opti-

mization problem. These results are presented in §4.2.

Table 2. Fabrication-adaptive optimization algorithm

for bandgap problems.

Algorithm FA-B for bandgap problems

Step 1. Start with initial guess x̂ �= x0 and tolerance �tol

Step 2(a). Construct the linear operators for (37) based on x̂, for
each t ∈ 	1� � � � � nk
:

�x̂
l� t�x� �=Ax̂

l� t�0 +
nx∑
i=1

Ax̂
l� t� ixi

�x̂
u� t�x� �=Ax̂

u� t�0 +
nx∑
i=1

Ax̂
u� t� ixi

Mx̂
l� t and Mx̂

u� t

Step 2(b). Construct the data for (38) based on x̂ and the linear

operators from Step 2(a): Bx̂, gx̂, Cx̂, and hx̂

Step 3. For each �i� j� ∈� ×� , do:
Compute the function value f̃i� j �x̂� of (42) via (29)

Compute first-order information �f̃i� j � · � at x̂
via (30)

Step 4. Form the linear optimization problem (44)

Step 5. Solve (44) for an optimal solution x∗

Step 6. If 	x∗ − x̂	� �tol, stop.

Else update x̂← x∗ and go to Step 2.

4.1. Computation on Random Piecewise Linear
Fractional Problems

We tested Algorithm FA on randomly generated instances

of the specially structured piecewise linear fractional opti-

mization problem (32) presented in §2.5. All problems

were generated using n = 50, n� = 20, and n� = 30 and

S set to a unit hypercube of the form S �= 	x ∈ �n� 1�0�
xi � 2�0� i= 1� � � � � n
. All of the components of ai, cj , gi,
and hj were chosen randomly from the uniform distribu-

tion 	�0�1�, for i = 1� � � � � n� , j = 1� � � � � n� . The choice

of S, the range of the data, and the size of the generated

problems are in close agreement with problems arising in

photonic crystal design problems to be discussed in §4.2.

Given a randomly generated instance of (32), let us

denote the optimal solution of the original optimization

problem (32) as

x∗
O �= argmin

x∈S
f �x�� (45)

To construct the fabrication-adaptive optimization problem,

we used the norm 	 · 	 �= 	 ·	1 and set � = 5�0; note that

this choice allows for changing up to 10% (5/50) of the

components xi of x by one unit, which is the full range of

xi by definition of S. Let x∗
FA denote the computed solu-

tion of the fabrication-adaptive optimization problem using

Algorithm FA.

Note that x∗
O is the optimal solution of (32), which

is solvable as a linear optimization problem. In contrast,

x∗
FA is not necessarily the (global) optimal solution of FA

optimization problem (28) and is computed using Algo-

rithm FA (Table 1). Here and in what follows we used the
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Gurobi Optimizer (Gurobi Optimization 2013) to solve all

linear optimization problems.

We generated 20 random instances of (32). Since the

results of all 20 instances lead to the same conclusion,

we only discuss detailed results from a particular one.

For this problem instance, the optimal objective function

value of the original problem is f �x∗
O� = 0�129, whereas

the value of the original objective function evaluated at the

fabrication-adaptive solution is f �x∗
FA� = 0�135, which is

inferior (larger) to that of the optimal value as expected.

We tested the adaptivity of x∗
O and x∗

FA as follows. For these

two solutions under consideration, and a given value of � ∈
�0� ��, we compute the most conservative objective function

value f �y� among all solutions y for which 	y − x̂	 � �
and y ∈ S. That is, we compute

ZADx̂��� �=max
y

f �y�

s�t� 	y− x̂	� � y ∈ S�
(46)

for x̂= x∗
O and x̂= x∗

FA. One can interpret (46) as comput-

ing the worst solution y whose distance from x̂ is at most

� . In the absence of an intelligent method for adapting a

solution x̂, (46) essentially assumes the solution x̂ will be

adapted to a nearby solution y in an adversarial manner

(hence the choice of notation “ZAD” in (46)). The values of

ZADx̂��� were computed using Steps 2 through 4 of Algo-

rithm FA in Table 1. Plots of ZADx∗O��� and ZADx∗AF���
for � ∈ �0� �� are shown in Figure 2(a). For small val-

ues of � , the range of adversarial solutions is small, and

hence the superior original objective function value of x∗
O

yields ZADx∗O��� < ZADx∗FA���. However, as the values of

� increase, the superior adaptability of the solution x∗
FA is

revealed. When the range of adversarial solutions is larger,

ZADx∗O��� > ZADx∗FA���, showing that nearby adversarial

solutions of x∗
FA are superior to those of x∗

O. These plots

reveal that the solution x∗
FA is indeed effectively more adap-

tive, with the advantage growing as the allowable range

of nearby solutions grows. We also repeated this compu-

tational exercise using � = 10�0. The resulting plots of

Figure 2. Adaptivity of x∗
O and x∗

FA to nearby adversarial solutions, as defined in (46).

�

�
*

�
*

�

� � 

�
*

�
*

ZADx∗O��� and ZADx∗AF��� for the case of � = 10�0 are

shown in Figure 2(b). Notice that the results for the case

�= 10�0 further reinforce the above observations.

Of the 20 randomly generated instances of (32), all

exhibited similar effectiveness of the adaptivity of x∗
FA in

terms of ZADx∗O��� and ZADx∗FA���.

4.2. Computational Experience on Bandgap

Problems in Photonic Crystal Design

In this section we present results from applying the

fabrication-adaptive optimization model to bandgap prob-

lems in photonic crystal design, which was the origina-

tor of our need to pursue this line of research. As briefly

reviewed in §3, the goal is to optimize the bandgap between

two consecutive eigenvalues, where the bandgap is the

largest gap that separates the two eigenvalues over all val-

ues of k in the governing index set �. We seek to solve

fabrication-adaptive models (43) using Algorithm FA-B

(Table 2). There are many different types of bandgap

optimization problems that one can construct as well as dif-

ferent schemes themselves for constructing bandgap opti-

mization problems in photonic crystal design. For exam-

ple, one arrives at different bandgap optimization problems

depending on which eigenvalue gap one seeks to optimize

(the mth bandgap, defined as the relative gap between the

mth and the �m+ 1�st eigenvalues for m= 1� � � � �N − 1),

the choice of polarization (TE (Transverse Electric) or TM

(Transverse Magnetic) or complete (TEM (Transverse Elec-

tric and Magnetic)) polarization), and the lattice structure

of the photonic crystal (typically a square lattice or a tri-

angular lattice). Different combinations of these choices

lead to different bandgap optimization problems with dif-

ferent optimal solutions. Among the numerous topologi-

cal varieties in the optimal structures derived from differ-

ent bandgap problems, one often encounters solutions that

are either not fabricable or pose onerous fabrication chal-

lenges because of thin connectors, small features, rough
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Figure 3. Solutions to the second TE bandgap problem in the square lattice.

Note. (a) is the original optimal design x∗
O, with Gap�x∗

O�= 65�5%; (b) is the solution yO which is a manual modification of x∗
O, with Gap�yO�= 20�3%,

and 3% of pixels being modified; (c) is the computed solution x∗
FA of using Algorithm FA-B, with Gap�x∗

FA�= 49�6%, using �= 3%.

edges, isolated structures, and other related solution con-

figurations.

Among the more than 60 bandgap problems that we

have solved, the original optimal solutions of at least 15

are not fabricable without postprocessing modification. Fur-

thermore, most of the nonfabricable solutions are for opti-

mization problems for complete (TEM) bandgaps or other

multiple-bandgap problems (Men 2011, Men et al. 2011).

We applied the fabrication adaptive optimization paradigm

and algorithms to most of these problems. Herein we

report on some of our computational experience to address

questions such as (i) how sensitive are solutions of the

original problem to fabrication-adaptivity modifications?

(ii) How good are the solutions computed when solving

the fabrication-adaptive optimization problem? (iii) How do

fabrication adaptive solutions compare to solutions of the

original optimization problem?

For a given problem instance, let x∗
O be the optimal solu-

tion of the original bandgap problem (37) (or (38)), and

let x∗
FA be the computed solution of the fabrication-adaptive

optimization problem using Algorithm FA-B. In the case

when x∗
O and/or x∗

FA are not fabricable, we applied manual

changes of these solutions to produce fabricable solutions

yFA and/or yO by using our own problem-domain com-

mon sense to modify pixel values to create more fabricable

designs. The manual changes we employed are of the ordi-

nary variety such as removing thin rods, removing small

features, smoothing boundaries of materials, and straight-

ening inner edges of material boundaries. All of these mod-

ifications can be easily accomplished with standard image

processing filters.

As in §4.1, let x∗
O be the optimal solution of the original

bandgap problem (37) (or (38)). An example of the poor

performance of x∗
O after modification for fabrication arises

in solving for the second TE bandgap in the square lattice,

as shown in Figure 3. Figure 3(a) shows the design x∗
O,

which has a bandgap of 65�6% but which contains very thin

rods that are challenging to fabricate. One can remove the

thin rods by modifying 3% of the pixels, yielding the design

yO shown in part (b) of Figure 3. However, this small modi-

fication of the fabricable solution yO drastically reduces the

bandgap, from 65�6% down to 20�3%. Figure 3(c) shows

the computed solution x∗
FA of the fabrication-adaptive opti-

mization problem using Algorithm FA-B, for the value of

� = 3%. Not only is the bandgap for x∗
FA much higher

(49�6%) than that of yO, but it is actually fabricable as is.

This is very fortunate, but perhaps “accidental,” as it is

more typical that the solution x∗
FA would need to be mod-

ified to a nearby solution as we will see below. The main

point of this example is to show how unadaptable the solu-

tion x∗
O can be to modification that will make it fabricable

without unduly reducing the size of the bandgap.

An example of the quality of solutions computed using

Algorithm FA-B is shown in Figure 4, which shows solu-

tions to the complete (TEM) bandgap problem involving

the first TE bandgap and the second TM bandgap, in the

triangular lattice. For this bandgap problem, the bandgap

for the original (nonfabricable) solution x∗
O (Figure 4(a))

is 33�3%. Figure 4(b) shows the computed solution x∗
FA of

the fabrication-adaptive optimization problem using Algo-

rithm FA-B, for the value of � = 5%. Figure 4(c) shows

the manually modified solution yFA of x∗
FA, with about 4%

of pixels being modified. The modified solution yFA is sig-

nificantly more fabricable than x∗
O, yet its bandgap value

31�9% is only modestly decreased from that of the original

(nonfabricable) solution.

Our last two examples illustrate the comparative value

of the fabrication-adaptive optimization approach. First we

solve for the fifth TE bandgap in the triangular lattice, as

shown in Figure 5. By simply eliminating the small features

of the original optimal solution x∗
O shown in Figure 5(a)

(which comprise 5% of the pixels), the bandgap of the man-

ually modified solution yO is sharply decreased from 43�9%
to 28�8%. However, the fabrication-adaptive computed solu-

tion using Algorithm FA-B (using the same modification

allowance �= 5% of pixels) yields the solution x∗
FA (shown

in Figure 5(c)). The manual modification of this solution

is yFA, and is shown in Figure 5(d). The modified solution
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Figure 4. Solutions to the complete (TEM) bandgap problem involving the first TE bandgap and the second TM bandgap,

in the triangular lattice.

Note. (a) is the original optimal design x∗
O, with Gap�x∗

O�= 33�8%; (b) is the computed solution x∗
FA using Algorithm FA-B, with Gap�x∗

FA�= 32�7%, using

�= 5%; (c) is the solution yFA, which is a manual modification of x∗
FA, with Gap�yFA�= 31�9%, and 4% modification.

yFA is designed so that the inner edges of the triangular struc-

tures in x∗
FA are straight, in order to make the resulting solu-

tion more fabricable. The resulting bandgap of the modified

solution yFA is 32�9%, which is better than that of the fabri-

cable solution yO based on the original optimal solution.

A similar situation occurs to solutions of the fourth

TE bandgap in the square lattice. Figures 6(a) and 6(b)

Figure 5. Designs with fifth TE eigenbandgap in a tri-

angular lattice.

Note. (a) Original optimal design x∗
O, with Gap�x∗

O� = 43�9%; (b) man-

ually modified design yO based on the original design, with Gap�yO� =
28�8%, and 5% modifications; (c) fabrication-adaptive optimal design x∗

FA,

with Gap�x∗
FA� = 34�2% and �FA = 5%; (d) manually modified design

yFA based on the FA optimal design, with Gap�yFA�= 32�9%, and 0�8%

modification.

show the original optimal solution and its manual mod-

ification to a fabricable solution by removing the thin

rods, which reduces the original bandgap from 64�3% to

28�8%. In contrast, the computed solution x∗
FA shown in

Figure 6(c) is truly more adaptive to modification for

fabrication. Figure 6(d) shows the manually modified solu-

tion yFA of x∗
FA, which was done by straightening the inner

Figure 6. Solutions to the fourth TE bandgap in the

square lattice.

Note. (a) is the original optimal design x∗
O, with Gap�x∗

O�= 64�3%; (b) is

the solution yO which is a manual modification of x∗
O, with Gap�yO� =

28�8%, and 1�2% of pixels being modified; (c) is the computed solution

x∗
FA using Algorithm FA-B, with Gap�x∗

FA�= 45�8%, using �= 5%; (d) is

the solution yFA, which is a manual modification of x∗
FA, with Gap�yFA�=

43�7%, and also 1�2% of pixels being modified.
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sides of the square structures. In the manual modifications

of both solutions x∗
O and x∗

FA, the fraction of pixels mod-

ified was very small, both are roughly 1�2%. However, in

the case of the original solution, the bandgap was signifi-

cantly reduced (from 64�3% to 28�8%), whereas in the case

of the fabrication-adaptive solution, the bandgap reduction

was minor (from 45�8% to 43�7%).

These examples show that although manual modification

of solutions might appear to be minor, the negative effect

on the bandgap can be very significant at solutions to the

original problem, but (as intended) are less significant at

computed solutions to the fabrication-adaptive optimization

problem.

5. Conclusions

We have introduced the fabrication-adaptive optimization

modeling paradigm (2)–(3), which stems from the robust
regularization operation on functions (Lewis 2002). The FA

modeling paradigm does not necessarily yield a convex

optimization model even when the original optimization

problem is convex. Hence, we examined a variety of spe-

cial structures on functions, feasible regions, and norms,

for which computation is tractable, and we developed an

algorithmic scheme for solving certain FA optimization

problems that arise from piecewise linear fractional opti-

mization. We first tested the FA paradigm and algorithm

on randomly generated problems to show some general

behavior of solutions. We next applied our methodology to

bandgap optimization problems in photonic crystal design,

which were the originating class of problems that engen-

dered this line of research. These bandgap problems were

originally modeled using SDP formulations of iteration-

specific approximation problems. To apply the FA frame-

work, we developed piecewise linear approximations of

the semidefinite inclusions, which worked surprisingly well

and enabled replacing SDP inclusions with linear inequali-

ties that yielded linear optimization problems. We used the

FA model and algorithm to compute significantly improved

fabricable designs of a variety of bandgap optimization

problems in photonic crystal design.

As mentioned above, the success of piecewise linear

approximations of the semidefinite inclusions in bandgap

optimization models is counter to traditional notions that

such approximations are crude at best. It is unclear at this

point whether the success of our simple LP/SDP approx-

imation is due to the very specific structure of bandgap

design problems and the resulting eigenvalue bound inclu-

sions. Future research on our agenda includes other appli-

cations and extensions of fabrication-adaptive optimization,

as well as exploration aimed at understanding the possi-

ble reach of success of the LP/SDP approximation method

described in the EC.2 of this paper.

Supplemental Material

Supplemental material to this paper is available at http://dx.doi

.org/10.1287/opre.2013.1252.
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