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The interaction of light with metallic nanostructures produces a collective excitation of 
electrons at the metal surface, also known as surface plasmons. These collective exci-
tations lead to resonances that enable the confinement of light in deep-subwavelength 
regions, thereby leading to large near-field enhancements. The simulation of plasmon res-
onances presents notable challenges. From the modeling perspective, the realistic behavior 
of conduction-band electrons in metallic nanostructures is not captured by Maxwell’s equa-
tions, thus requiring additional modeling. From the simulation perspective, the disparity in 
length scales stemming from the extreme field localization demands efficient and accurate 
numerical methods.
In this paper, we develop the hybridizable discontinuous Galerkin (HDG) method to solve 
Maxwell’s equations augmented with the hydrodynamic model for the conduction-band 
electrons in noble metals. This method enables the efficient simulation of plasmonic nanos-
tructures while accounting for the nonlocal interactions between electrons and the incident 
light. We introduce a novel postprocessing scheme to recover superconvergent solutions 
and demonstrate the convergence of the proposed HDG method for the simulation of a 2D 
gold nanowire and a 3D periodic annular nanogap structure. The results of the hydrody-
namic model are compared to those of a simplified local response model, showing that 
differences between them can be significant at the nanoscale.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The field of plasmonics [38,50] studies the collective excitation of conduction-band electrons in metallic nanostructures. 
These excitations, or plasmon resonances, enable the confinement of light in lengths several orders of magnitude smaller 
than the wavelength of light, leading to enormous near-field enhancements of the incident wave. The excitation of plasmons 
is magnified near the corners or sharp features of metallic nanoparticles, or within gaps formed by metallic structures 
at the nanoscale. Moreover, the extreme confinement and enhancement properties provide unparalleled means for the 
manipulation of light and its interaction with metals, at scales well beyond the diffraction limit. As a result, the field 
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of plasmonics has motivated applications for sensing [62], energy harvesting [10], near-field scanning microscopy [47], 
plasmonic waveguiding and lasing [60].

Plasmonic phenomena are governed by the propagation of electromagnetic waves. These waves propagate through di-
electric as well as metallic media, and several models have been proposed to characterize the behavior of metals. The most 
common approach to simulate plasmonic structures is to solve Maxwell’s equations in both the metal and the dielectric, and 
account for the losses in the metal through a complex permittivity in the metal given by Drude’s model [23]. The effect of 
the complex permittivity in the metal is to quickly dampen the electromagnetic wave away from the interface. This approach 
assumes the electrons in the valence band are fully detached from the ions, thus only accounting for electron–electron and 
electron–ion collisions. The Drude model has limitations due to simplifications in the description of the electron motion 
that appear at nanometer scales, where nonlocal interaction effects between electrons become predominant [25,26,67]. To 
account for these long-range interactions, the mathematical model must be enhanced. In this work, we consider the hy-
drodynamic model (HM) for noble metals, first introduced in the 1970s [24], which models the inter-electron coupling by 
including a hydrodynamic pressure term. The resulting model is solved simultaneously with Maxwell’s equations. For noble 
metal structures with nanometric and subnanometric features, the HM predicts lower field enhancements and resonance 
blue-shifts, which are in better agreement with experimental data than the results computed with the Drude model [53,64].

The ability to accurately model and simulate electromagnetic wave propagation problems for plasmonic applications 
requires capabilities that challenge traditional simulation techniques. The problems of interest involve the interaction of 
long-wavelength electromagnetic waves (μm and mm) with nanometric cavities for potential applications in sensing and 
spectroscopy. Additionally, plasmonic phenomena are characterized by the extreme confinement and tight localization of 
fields in nanometer-wide apertures, nanoparticles, nanometric sharp tips, and even atomically thick materials. As a con-
sequence, the discretizations required to attain accurate simulations need to be adaptive (to concentrate the degrees of 
freedom in the regions of interest) and anisotropic (to properly capture boundary-layer type structures that appear at the 
interface of metallic nanostructures).

The first and most widely used method for computational electromagnetics is the finite-difference time-domain (FDTD) 
algorithm [34,63], which discretizes both space and time using Yee’s scheme [65]. The main advantage of Yee’s scheme 
is its simplicity and efficiency, due to the use of staggered Cartesian grids and second-order schemes for both space and 
time. The main limitation of FDTD is their extension to complex geometries with complex features, since Cartesian grids 
can only approximate these irregular boundaries in a stair-cased manner. The FDTD method has recently been applied to 
the hydrodynamic model for the simulation of 2D nanoparticles [39].

Finite-volume time-domain (FVTD) methods have also been devised to solve Maxwell’s equations, leveraging high-order 
Godunov schemes to deal with the hyperbolicity of the system [30,40]. The use of high-order Godunov schemes on a 
single control volume is appealing, as it renders methods that are amenable to mesh refinement and adaptation, in ad-
dition to being low dissipative and dispersive. More recently, there has been an effort to fuse these high-order Godunov 
schemes from FVTD with the staggering techniques from FDTD, resulting in a new generation of FVTD methods [4,5] that 
are constraint-preserving, high-order accurate, A-stable, and that accommodate significant variations of material properties 
at media interfaces.

Finite element (FE) methods [32] are popular techniques for wave propagation problems, thanks to their ability to handle 
heterogeneous media and complex geometries with the use of unstructured grids. The class of face/edge elements intro-
duced by Nédélec [42] have been extensively used to simulate electromagnetic wave propagation, and have been shown 
to avoid the problem of spurious modes [9] by appropriately choosing the approximation spaces. A commonly used imple-
mentation of edge elements for Maxwell’s equations is the one provided by the RF Module of Comsol Multiphysics [22], 
which has been extended to include the hydrodynamic model [15,64]. Additionally, a frequency-domain implementation 
of the hydrodynamic model based on edge elements has been applied to the numerical simulation of 2D grooves and 
nanowires [28].

An attractive alternative to edge elements is the class of discontinuous Galerkin (DG) methods [6,21]. These meth-
ods approximate each component of the vector solution independently using standard finite element spaces within each 
discretization element. The solution across elements is discontinuous, and continuity of the flux is enforced weakly across 
element interfaces. The DG method with explicit time integration was applied to solve the time-domain Maxwell’s equations 
[27], and has been further developed to simulate wave propagation phenomena through metamaterials at the nanoscale [11], 
as well as for dispersive media [31,35,37] and more recently for 2D dimers using the hydrodynamic model [59]. DG methods 
face disadvantages when used for practical 3D applications in the frequency domain or in the time domain with implicit 
time integration, due to the computational burden that arises from nodal duplication at the interfaces. This shortcoming 
motivated the development of the hybridizable discontinuous Galerkin (HDG) method, first introduced in [18] for elliptic 
problems, subsequently analyzed in [17,19], and later extended to a wide variety of partial differential equations (PDEs) [43,
44]. More specifically, the HDG has proven very effective for acoustics and elastodynamics [45,58] as well as time-harmonic 
Maxwell’s equations in two dimensions [46] and three dimensions [36]. An additional attractive feature of the HDG method 
is that, unlike other DG methods, it has optimal convergence rates for both the solution and the flux. As a consequence, its 
flux superconvergence properties can be exploited to devise a local postprocess that increases the convergence rate of the 
approximate solution by one order.

The main contribution of this paper is a high-order numerical scheme, the HDG method, to simulate the interaction of 
light with metallic nanostructures by solving the frequency-domain Maxwell’s equations coupled with the hydrodynamic 
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model for the conduction-band electrons of noble metals. There are several features of the HDG method that make it 
particularly attractive for computational electromagnetics: (1) it can be used on general unstructured meshes, thus allowing 
complex geometries and facilitating the use of adaptive discretizations; (2) it is high-order accurate, meaning it exhibits 
low dissipation and dispersion and is therefore well suited for wave propagation problems; (3) the linear system that 
needs to be solved comprises only a reduced number of degrees of freedom, defined on the faces of the discretization 
cells; (4) the treatment of boundary conditions is naturally incorporated in the weak formulation; (5) it does not require 
special approximation spaces such as curl-conforming subspaces; and (6) it can easily accommodate material contrasts at 
the interfaces of several orders of magnitude.

This article is organized as follows. In Section 2, we introduce the equations and notation used throughout the paper. In 
Section 3, we introduce the HDG method to solve the hydrodynamic model for metals in frequency domain, and discuss the 
implementation and postprocessing strategies. In Section 4, we present numerical results to assess the performance of the 
HDG method. We finalize in Section 5 by providing some concluding remarks.

2. Modeling optical response in metallic nanostructures

2.1. Maxwell’s equations in a metal

The electric �E(�x, �t) and magnetic �H(�x, �t) fields, along with the electric displacement �D and magnetic flux density �B, 
satisfy Maxwell’s equations in a metallic domain �

∇ × �E + ∂�t �B = 0 (Ampère’s law),

∇ × �H− ∂�t �D = �Jim (Faraday’s law),

∇ · �D = �ρim, (Gauss’s law),

∇ · �B = 0, (magnetic Gauss’s law),

(1)

where �Jim represents the impressed electric current and �ρim the impressed volume charge density. In addition, we have 
the following constitutive relations

�B = �μ�H ,

�D = ε0�E + �P + �P∞ =�ε∞�E + �P ,

∇ · �P = −�ρ ,

�J = ∂�t �P .

(2)

The polarization density �P represents the density of permanent or induced electric dipole moments due to free electrons. 
Conversely, the background polarization �P∞ = (�ε∞ − ε0)�E represents the polarization of the bound electrons in the valence 
band. The last two relations relate the polarization density �P to the internal current �J and internal charge density �ρ . 
The total charge density �ρtot and total electric current �Jtot are the summation of both the impressed and the internal 
contributions. In this paper, we assume there are no impressed currents and charges, hence �ρtot = �ρ and �Jtot = �J .

2.2. Hydrodynamic model

A hydrodynamic model for the free electron gas was introduced in the 1970s [24]. This model, despite neglecting 
quantum phenomena such as quantum tunneling and quantum oscillations, introduces a hydrodynamic pressure term that 
accounts for the nonlocal coupling of the conduction-band electrons that becomes relevant in nanometric regimes. Hence, 
it is referred to as nonlocal model or hydrodynamic model (HM) for noble metals.

We provide a brief derivation of the hydrodynamic model, and point the reader to [8,24,52] for a more thorough deriva-
tion. We introduce the electron density n(�x, �t), the electron pressure p(�x, �t) and the hydrodynamic velocity v(�x, �t), which 
are related by the continuity equation as ∂�tn = −∇ · (nv). The equation of motion for the electron fluid under a macroscopic 
electromagnetic field is described as

me(∂�t + v · ∇ + �γ )v = −e(�E + v × �H) − ∇p

n
, (3)

where me is the effective electron mass, e is the electron charge and �γ is a damping constant related to the collision 
rate of the electrons. In order to simplify the above equation, we linearize the electron density field around the constant 
equilibrium density of the electron gas n0, such that n(�x, �t) ≈ n0 + n1(�x, �t); neglect the high order term for the derivative of 
the hydrodynamic velocity v · ∇v; and also neglect the effect of the magnetic field, since the electron fluid is driven mainly 
by the electric field. In addition, we simplify the pressure term in (3) assuming a Thomas–Fermi model where only the 
kinetic energy is relevant, that is
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∇p

n
≈ me �β2 ∇n1

n0
.

The quantum parameter �β , which represents the nonlocality, is usually expressed [8] in terms of the Fermi velocity �v F as 
�β = √

3/5�v F . Using the assumptions above, the equation of motion for the electron fluid can be simplified as

me(∂�t + �γ )v = −e�E − me �β2 ∇n1

n0
,

and if we differentiate with respect to time, we arrive at

me(∂�t�t + �γ ∂�t)v = −e∂�t �E + me �β2∇(∇ · v) , (4)

where the last term is obtained by linearizing the continuity equation ∂�tn1 = −∇ · (n0v) and neglecting the high-order term 
∇ · (n1v). Using the relation between the electric current and the electron gas density �J = −env, and multiplying (4) by 
−en/me , we obtain

∂�t�t �J + �γ ∂�t �J = e2n

meε0
ε0∂�t �E + �β2∇(∇ · �J ) . (5)

This equation, which prescribes a nonlocal relationship between the electric field and the electric current, needs to be solved 
simultaneously with Maxwell’s equations (1) inside the metal. The parameter involved in the third term is the square of the 
metal’s plasma frequency �ωp , defined as �ωp = e

√
n/(meε0). The plasma frequency represents the frequency above which 

the conduction electrons are not able to oscillate in phase with the incident light, thus effectively impeding the cancellation 
the incoming wave. That is, for frequencies larger than the plasma frequency the incident wave is allowed to propagate 
through the metal, although with losses.

It is convenient to nondimensionalize Maxwell’s equations. We use the following scalings for the electromagnetic fields

�x = x/Lc, �t = tc0/Lc, �E = αZ0E, �H = αH,

�D =ε0αZ0D, �B = μ0αZ0B, �J = αJ /Lc,

where Lc is a reference length scale, α is a reference magnetic field and ε0, μ0 are the free-space permittivity and 
permeability, that relate to the free-space speed of light c0 = 1/

√
ε0μ0 and free-space impedance Z0 = √

μ0/ε0. For a 
non-magnetic medium (�μ = μ0), applying the scalings above to Maxwell’s equations (1), the constitutive relations (2) and 
the hydrodynamic pressure equation (5), we obtain

∇ × E + ∂tH = 0,

∇ ×H− ∂tε∞E = J ,

β2∇(∇ ·J ) − ∂ttJ − γ ∂tJ = −ω2
p∂tE,

∇ · (ε∞E) = ρ,

∇ ·H = 0,

with the nondimensional variables ε∞ =�ε∞/ε0, ωp = �ωp Lc/c0, γ = �γ Lc/c0 and β = �β/c0.
Using the linearity of Maxwell’s equations we can write, for a given angular frequency ω, the components of, for instance, 

the electric field as E(x, t) = �{E(x) exp(−iωt)}. Consequently, the time-domain equations are recast into the frequency 
domain through the transformation ∂t 	→ −iω. Hence, the frequency-domain Maxwell’s equations with the hydrodynamic 
model for metals are given by

∇ × E − iωH = 0,

∇ × H + iωε∞E = J,

β2∇(∇ · J) + ω(ω + iγ )J = iωω2
pE,

∇ · (ε∞E) = ρ,

∇ · H = 0.

(6)

The system above is completed with boundary conditions

n × E × n = E∂ , on ∂�E ,

n × H = n × H∂ , on ∂�V ,

n · J = 0, on ∂�,
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where ∂� = ∂�E ∪ ∂�V . The last boundary condition [7] prescribes a vanishing normal electric current at the interface. 
Physically, it simulates a no electron spill-out condition, that is the electrons are precluded from leaving the metal. Effects 
such as electron tunneling, a quantum phenomenon that becomes relevant in subnanometric regimes, are therefore not 
included in the HM.

The more simplistic Drude model, also known local response approximation (LRA), may be obtained from (6) by setting 
β = 0, which recovers a local relation between the electric field and internal electric current J = iωω2

p
ω(ω+iγ )

E (Ohm’s law). The 
complex Drude permittivity can therefore be written as ε(ω) = ε∞ −ω2

p/(ω(ω+ iγ )). The Drude model for metals is attrac-
tive for its simplicity, and produces acceptable results for many electromagnetic applications. Nonetheless, the assumption 
that all electrons exhibit a local behavior produces unphysical results for frequencies close to the plasma frequency [57]
and for geometries and features below ten nanometers [56,67]. In these regimes the HM is able to capture more accurate 
electromagnetic responses than the LRA.

Another difference between the LRA and the HM is the distribution of the internal charge density ρ, defined as iωρ =
∇ · J. The solutions provided by the local model infinitely squash ρ at the metal surface, which results in a Dirac delta at 
the metal-dielectric interface. That is, the metal acts as a hard wall for the incoming EM wave, and impedes propagation 
through it. Conversely, the electron pressure term in the hydrodynamic model regularizes the induced charge density by 
smoothing its profile, thus allowing the penetration of the incident field. The spreading distance experienced by the charge 
density is on the order of the length δ = β/ωp , introduced in [16].

3. HDG method for the hydrodynamic model

3.1. Approximation spaces

We first review the basic notation, operators and approximation spaces needed for the HDG method for Maxwell’s 
equations in 3D, following [46]. We denote by Th a triangulation of disjoint regular elements T that partition an open 
domain D ∈ R

3. The set of element boundaries is then defined as ∂Th := {∂T : T ∈ Th}. For an arbitrary element T ∈ Th , 
F = ∂T ∩ ∂D is a boundary face if it has a nonzero 2D Lebesgue measure. Any pair of elements T + and T − share an interior 
face F = ∂T + ∩ ∂T − if its 2D Lebesgue measure is nonzero. We finally denote by Eo

h and E∂
h the set of interior and boundary 

faces respectively, and the total set of faces Eh = Eo
h ∪ E∂

h .
Let n+ and n− be the outward-pointing unit normal vectors on the neighboring elements T +, T − , respectively. We 

further use u± to denote the trace of u on F from the interior of T ± . The jump �·� for an interior face F ∈ Eo
h is defined as

�u � n� = u+ � n+ + u− � n−,

and is single valued for a boundary face F ∈ E∂
h with outward normal n, that is

�u � n� = u � n,

where the binary operation � refers to either · or ×. The tangential ut and normal un components of u, for which u =
ut + un , are then represented as

ut := n × (u × n), un := n(u · n).

Let L2(D) ≡ [L2(D)]3 denote the Lebesgue space of square integrable functions with three components and H1(D) the 
Hilbert space with H1(D) = {v ∈ L2(D) : ∫

D |∇v|2 < ∞}. We introduce the curl-conforming space

H curl(D) = {u ∈ L2(D) : ∇ × u ∈ L2(D)}
with associated norm ‖u‖2

H curl(D)
= ∫

D |u|2 + |∇ × u|2, as well as the div-conforming space

H div(D) = {u ∈ L2(D) : ∇ · u ∈ L2(D)}
with associated norm ‖u‖2

H div(D)
= ∫

D |u|2 + |∇ · u|2.

Let P p(D) denote the space of complex-valued polynomials of degree at most p on D. We introduce the following 
approximation spaces

Wh = {w ∈ L2(D) : w|T ∈ P p(T ), ∀T ∈ Th},
W h = {ξ ∈ L2(D) : ξ |T ∈ [

P p(T )
]3

, ∀T ∈ Th},
Mh = {μ ∈ L2(Eh) : μ|F ∈ P p(F ), ∀F ∈ Eh},
Mh = {μ ∈ L2(Eh) : μ|F ∈ P p(F )t1 ⊕P p(F )t2, ∀F ∈ Eh},
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where t1, t2 are linearly independent vectors tangent to the face, thus naturally including the H curl nature of the solutions, 
since by construction μ ∈ Mh satisfies μ = n × (μ × n) = μ1t1 + μ2t2. The tangent vectors can be defined in terms of n =
(n1, n2, n3) as t1 = (−n2/n1, 1, 0) and t2 = (−n3/n1, 0, 1). This definition assumes that |n1| ≥ max(|n2|, |n3|) but analogous 
expressions can be obtained when |n2| ≥ max(|n1|, |n3|) or |n3| ≥ max(|n1|, |n2|) to avoid division by a small number. Bound-
ary conditions are included by setting Mh(u∂ ) = {μ ∈ Mh : n × μ = 
u∂ on ∂D} and Mh(u∂ ) = {μ ∈ Mh : μ = 
u∂ on ∂D}, 
where 
u∂ (respectively, 
u∂ ) is the projection of u∂ onto Mh (respectively, u∂ onto Mh).

Finally, we define the various Hermitian products for the above finite element spaces. The volume inner products are 
defined as

(η, ζ )Th
:=

∑
T ∈Th

(η, ζ )T , (η, ζ )Th
:=

3∑
i=1

(ηi, ζi)Th
,

and the surface inner products by

〈η, ζ 〉∂Th
:=

∑
T ∈Th

〈η, ζ 〉∂T , 〈η, ζ 〉∂Th
:=

3∑
i=1

〈ηi, ζ i〉∂Th
.

For two arbitrary scalar functions η and ζ , its scalar product (η, ζ )D is the integral of ηζ ∗ on D.

3.2. Numerical approximation

We now describe an HDG method to numerically solve Maxwell’s equations with the hydrodynamic model (6) for a 
metallic computational domain �, which will serve as a building block towards more complicated scenarios. We introduce 
additional variables V = iωH, U = ∇ · J and rewrite system (6) as a first order system of equations in �:

L

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∇ × E − V = 0,

β2∇U + ω(ω + iγ )J − iωω2
pE = 0,

∇ × V − ω2ε∞E − iωJ = 0,

U − ∇ · J = 0.

(7)

The additional variable U is related to the induced free charge density in the metal as iωρ = U .
We seek (Vh, Eh, Jh, Uh, ̂Eh, ̂Uh) ∈ W h × W h × W h × Wh × Mh × Mh such that

(Vh,κ)Th − (Eh,∇ × κ)Th − 〈̂Eh,κ × n〉∂Th = 0,

−β2(Uh,∇ · η)Th + β2〈Ûh,η · n〉∂Th + ω(ω + iγ )(Jh,η)Th − iωω2
p(Eh,η)Th = 0,

(Vh,∇ × ξ)Th + 〈̂Vh, ξ × n〉∂Th − ω2(ε∞Eh, ξ )Th − iω(Jh, ξ)Th = 0,

(Uh, ζ )Th − 〈̂Jh · n, ζ 〉∂Th + (Jh,∇ζ )Th = 0,

−〈n × V̂h,μ〉∂Th\∂� + 〈̂Eh − E∂ ,μ〉∂�E
− 〈n × V̂h − n × V∂ ,μ〉∂�V

= 0,

〈̂Jh · n, θ〉∂Th = 0,

(8)

holds for all (κ, η, ξ , ζ, μ, θ) ∈ W h × W h × W h × Wh × Mh × Mh , where ̂Eh approximates the tangential field of E, and Ûh

approximates the trace of U . We close the system by introducing expressions for the hybrid fluxes of the magnetic field and 
electric current field as

V̂h = Vh + τt(Eh − Êh) × n,

Ĵh = Jh − τn(Uh − Ûh)n.
(9)

The parameters τt , τn are the stabilization parameters, defined globally to ensure the accuracy and stability of the HDG 
discretization. We propose the choice τt = √

ε∞ω and τn = 1/δ = ωp/β . This choice leads to numerically stable solutions 
even in the presence of tightly localized fields in the metal-dielectric interface.

Substituting (9) in (8) and integrating by parts, we write the final HDG discretization of the hydrodynamic model for 
metals as
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(Vh,κ)Th − (Eh,∇ × κ)Th − 〈̂Eh,κ × n〉∂Th = 0,

−β2(Uh,∇ · η)Th + β2〈Ûh,η · n〉∂Th + ω(ω + iγ )(Jh,η)Th − iωω2
p(Eh,η)Th = 0,

(∇ × Vh, ξ)Th + 〈τt[Eh − Êh],n × ξ × n〉∂Th − ω2(ε∞Eh, ξ )Th − iω(Jh, ξ)Th = 0,

−(∇ · Jh, ζ )Th + (Uh, ζ )Th + 〈τnUh, ζ 〉∂Th − 〈τnÛh, ζ 〉∂Th = 0,

−〈n × Vh + τtEh,μ〉∂Th\∂� + 〈τ̃t Êh,μ〉∂Th − 〈f,μ〉∂� = 0,

〈Jh · n, θ〉∂Th − 〈τnUh, θ〉∂Th + 〈τnÛh, θ〉∂Th = 0,

(10)

where

τ̃t =
{
τt, on ∂Th\∂�E

1, on ∂�E
, f =

{
E∂ , on ∂�E

−n × V∂ , on ∂�V
. (11)

The first four equations represent the weak formulation of equations (7), whereas the last two equations enforce zero jump 
in the tangential component of Vh and in the normal component of Jh respectively, along with the appropriate boundary 
conditions.

We now complete the definition of the HDG method for Maxwell’s equation with the hydrodynamic model, by showing 
the method is consistent, conservative and well defined.

Proposition 1. The HDG method defined by (10) is consistent and its numerical fluxes are uniquely defined over the edges, therefore is 
also conservative.

Proof. The last two equations of (8) imply that

�n × V̂h � = 0, on Eo
h ,

�n · Ĵh � = 0, on Eo
h .

Substituting (9) into the expressions above we arrive at

�n × Vh � + τ+
t E+

h + τ−
t E−

h − (τ+
t + τ−

t )̂Eh = 0, on Eo
h ,

�n · Jh � − τ+
t U+

h − τ−
t U−

h + (τ+
t + τ−

t )Ûh = 0, on Eo
h .

Isolating the value of the traces we get

Êh = τ+
t E+

h + τ−
t E−

h + �n × Vh �

τ+
t + τ−

t

, on Eo
h ,

Ûh = τ+
t U+

h + τ−
t U−

h − �n · Jh �

τ+
t + τ−

t

, on Eo
h ,

(12)

and substituting these expressions into (9) we obtain

V̂h = τ+
t V−

h + τ−
t V+

h + τ+
t τ−

t �Eh × n�

τ+
t + τ−

t

, on Eo
h ,

Ĵh = τ+
t J−h + τ−

t J+h − τ+
t τ−

t �Uhn�

τ+
t + τ−

t

, on Eo
h .

(13)

The expressions (12) and (13) show that the numerical traces of the HDG method are single valued across inter-element 
faces, hence the HDG method is conservative by virtue of the definition of conservation introduced in [1] for DG methods. 
Furthermore, since E ∈ H curl(�) and U ∈ H1(�), we have Ê = Et and Û = U on Eh . It follows from expressions (9) that 
V̂ = V and ̂J = J. Finally, if we substitute them into the first four equations of (8) and integrating back by parts, we arrive at

(V − ∇ × E,κ)Th = 0,

(β2∇U + ω(ω + iγ )J − iωω2
pE,η)Th = 0,

(∇ × V − ω2ε∞E − iωJ, ξ )Th = 0,

(U − ∇ · J, ζ )Th = 0.

The exact solution of (6) is therefore a solution of the HDG formulation (8), thus the HDG method is consistent. �
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In addition, it can also be shown that the solution of the HDG method proposed is unique away from the resonances.

Proposition 2. Assume that both ω2ε∞ and ω(ω + iγ ) are different from the eigenvalues λ1, λ2 of the following eigenproblem: find 
λ1, λ2 ∈C and (Nh, Qh, Sh, ψh, ̂Qh, ̂ψh) ∈ W h × W h × W h × Wh × Mh(0) × Mh such that

(Nh,κ)Th − (Qh,∇ × κ)Th − 〈Q̂h,κ × n〉∂Th = 0,

−β2(ψh,∇ · η)Th + β2〈ψ̂h,η · n〉∂Th − iωω2
p(Qh,η)Th = −λ2(Sh,η)Th ,

(∇ × Nh, ξ )Th + τt〈Qh − Q̂h,n × ξ × n〉∂Th − iω(Sh, ξ )Th = λ1(Qh, ξ)Th ,

−(∇ · Sh, ζ )Th + (ψh, ζ )Th + τn〈ψh, ζ 〉∂Th − τn〈ψ̂h, ζ 〉∂Th = 0,

−〈n × Nh + τt(Qh − Q̂h),μ〉∂Th = 0,

〈Sh · n, θ〉∂Th − τn〈ψh, θ〉∂Th + τn〈ψ̂h, θ〉∂Th = 0,

(14)

for any (κ, η, ξ , ζ, μ, θ) ∈ W h × W h × W h × Wh × Mh(0) × Mh. Furthermore, if the stabilization parameters are positive on ∂Th, 
then the HDG solution (Vh, Eh, Jh, Uh, ̂Eh, ̂Uh) exists and is uniquely defined.

Proof. Since the square system above is linear and finite dimensional, it is sufficient to show that the trivial solution is the 
unique solution of (10) if E∂ = V∂ = 0. If we take κ = Vh, η = Jh, ξ = Eh, ζ = Uh, μ = Êh and θ = Ûh in (10), multiply the 
second equation by −1/ω2

p , the fourth and sixth by β2/ω2
p , and add them together, we arrive at

(Vh,Vh)Th + τt〈(Eh − Êh) × n, (Eh − Êh) × n〉∂Th + β2

ω2
p
(Uh, Uh)Th +

τn〈Uh − Ûh, Uh − Ûh〉∂Th = ω2ε∞(Eh,Eh)Th + ω(ω + iγ )

ω2
p

(Jh, Jh)Th .

Similarly, for the eigenproblem in (14) we have

(Nh,Nh)Th + τt〈(Qh − Q̂h) × n, (Qh − Q̂h) × n〉∂Th + β2

ω2
p
(ψh,ψh)Th +

τn〈ψh − ψ̂h,ψh − ψ̂h〉∂Th = λ1(Qh,Qh)Th + λ2

ω2
p
(Sh,Sh)Th .

It follows from the previous two equations that both Eh and Jh are zero; otherwise, ω2ε∞ and ω(ω + iγ ) must be eigen-
values of (14) which contradicts the hypothesis. As a consequence, we get

(Vh,Vh)Th + τt 〈̂Eh × n, Êh × n〉∂Th + β2

ω2
p
(Uh, Uh)Th + τn〈Uh − Ûh, Uh − Ûh〉∂Th = 0,

hence Vh = 0, ̂Eh = 0, Uh = 0 and Ûh = 0 since the stabilization constants are strictly positive. In consequence, the trivial 
solution is the unique solution of the HDG discretization with homogeneous boundary conditions, thus completing the 
proof. �
3.3. Implementation

The system of equations in (10) is rewritten for convenience in terms of several bilinear forms. The weak formulation 
reads: find (Eh, Vh, Jh, Uh, ̂Eh, ̂Uh) ∈ W h × W h × W h × Wh × Mh(0) × Mh such that

A(Vh,κ) −B(Eh,κ) − C(̂Eh,κ) = 0,

ω(ω + iγ )A(Jh,η) − iωω2
pA(Eh,η) − β2P(Uh,η) + β2O(Ûh,η) = 0,

B(ξ ,Vh) − iωA(Jh, ξ) +D(Eh, ξ) − ω2Aε(Eh, ξ) − E(̂Eh, ξ) = 0, (15)

−P(ζ, Jh) +H(Uh, ζ ) −N(Ûh, ζ ) = 0,

−R(Vh,μ) −L(Eh,μ) +M(̂Eh,μ) = F(μ),

O(θ, Jh) −N(θ, Uh) + T(Ûh, θ) = 0,

holds for all (κ , η, ξ , ζ, μ, θ) ∈ W h × W h × W h × Wh × Mh(0) × Mh . The bilinear forms are given by
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A(V,κ) = (V,κ)Th , Aε(E, ξ ) = (ε∞E, ξ)Th ,

B(E,κ) = (E,∇ × κ)Th , C(̂E,κ) = 〈̂E,κ × n〉∂Th ,

P(U ,η) = (U ,∇ · η)Th , O(Û ,η) = 〈U ,η · n〉Th ,

D(E, ξ) = 〈τtE,n × ξ × n〉∂Th , E(̂E, ξ) = 〈τt Ê, ξ 〉∂Th ,

H(U , ζ ) = (U , ζ )Th + 〈τnU , ζ 〉∂Th , N(Û , ζ ) = 〈τnÛ , ζ 〉∂Th ,

R(V,μ) = 〈n × V,μ〉∂Th\∂�E
, L(E,μ) = 〈τtE,μ〉∂Th\∂�E

,

M(̂E,μ) = 〈τ̃t Ê,μ〉∂Th , T(Û , θ) = 〈τnÛ , θ〉∂Th ,

F(μ) = 〈f,μ〉∂�.

We then discretize the above bilinear forms using the corresponding basis functions on each element/face of the triangula-
tion Th , and assemble the system of equations that arises from the weak formulation in (15), namely⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

A 0 −B 0 −C 0

0 ω(ω + iγ )A −iωω2
pA −β2

P 0 β2
O

B
T −iωA D− ω2

Aε 0 −E 0

0 −P
T 0 H 0 −N

−R 0 −L 0 −M 0

0 −O
T 0 −N

T 0 T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

V

J

E

U

Ê

Û

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

F

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
where E, V, J, U , ̂E, Û are vectors containing the values of the corresponding fields at the degrees of freedom defined by 
the discretization Th . The system above, however, is never formed in practice. Instead, we invoke the discontinuity of the 
approximation spaces to locally eliminate the degrees of freedom of ϒ = (V, J, E, U ), or local unknowns, and express them 
as a function of only the degrees of freedom of the approximate traces ϒ̂ = [̂E, Û ], or global unknowns. This numerical 
strategy, also known as hybridization, is paramount to achieve an efficient implementation of the HDG method. The relation 
between global and local unknowns ϒ = Zϒ̂, defined at the element level, takes the form⎡⎢⎢⎢⎣

V

J

E

U

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
A 0 −B 0

0 ω(ω + iγ )A −iωω2
pA −β2

P

B
T −iωA D− ω2

Aε 0

0 −P
T 0 H

⎤⎥⎥⎥⎦
−1 ⎡⎢⎢⎢⎣

C 0

0 −β2
O

E 0

0 N

⎤⎥⎥⎥⎦ ϒ̂, (16)

which can be computed efficiently since the matrix is block diagonal, due to the discontinuous nature of the approximation 
spaces. The elimination of degrees of freedom through hybridization renders a linear system that involves only the global 
degrees of freedom, defined at the discretization faces. Hence, we eliminate the local unknowns – 10 components defined 
in the high-order volume nodes – and solve only for the global unknowns – 3 components defined in the high-order face 
nodes – thus drastically reducing the size of the linear system that must be solved. This is one of the most attractive 
features of the HDG method. Finally, the system involving only the global unknowns is given by([

−M 0

0 T

]
+

[
−R 0 −L 0

0 −O
T 0 −N

T

]
Z

)
ϒ̂ =

[
F

0

]
. (17)

This procedure characterizes the solution to (10) in terms of Êh and Ûh . The local volume variables can be recovered at 
the element level through (16), incurring a small cost as it only involves a matrix–vector product per element, and can be 
trivially parallelized across elements.

3.4. Local postprocessing

We now propose a postprocessing scheme which exploits the superconvergence properties of the HDG method and 
allows us to recover a more accurate solution in an inexpensive manner. The postprocessed electric and magnetic fields 
achieve an additional order of convergence in the H curl(Th)-norm, and according to [20] they may be obtained by solving 
in each element T ∈ Th the following problem(∇ × E∗

h,κ
)

T = (Vh,κ)T , ∀κ ∈ ∇ × [
P p+1 (T )

]3
,(

E∗
h, ξ

)
T = (Eh, ξ)T , ∀ξ ∈ ∇P p+2 (T ) ,

for the postprocessed electric field E∗ ∈ [
P p+1 (T )

]3
, along with
h
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(∇ × V∗
h,κ

)
T =

(
ω2ε∞Eh + iωJh,κ

)
T
, ∀κ ∈ ∇ × [

P p+1 (T )
]3

,(
V∗

h, ξ
)

T = (Vh, ξ)T , ∀ξ ∈ ∇P p+2 (T ) ,

for the postprocessed magnetic field V∗
h ∈ [

P p+1 (T )
]3

. The curl of E∗
h, V∗

h corresponds to projections onto the subspace of 
functions in 

[
P p+1 (T )

]3
with zero divergence, hence we expect a p + 1 convergence rate for the postprocessed variables in 

H curl (Th)-norm.
Similarly, the electric current may be postprocessed by solving(∇ · J∗h, ζ

)
T = (Uh, ζ )T , ∀ζ ∈ P p+1 (T ) ,(

J∗h, ξ
)

T = (Jh, ξ)T , ∀ξ ∈ [
P p+1 (T )

]3
,

where J∗h ∈ [
P p+1 (T )

]3
achieves a p + 1 convergence rate in the H div(Th)-norm. Finally, in order to postprocess the addi-

tional variable Uh , we recall that ∇Uh can be computed locally by virtue of the third equation in (7). Hence, we can recover 
a postprocessed U∗

h ∈P p+1 (T ) element-wise solving

(∇U∗
h ,∇ζ

)
T = 1

β2

(
iωω2

pEh − ω(ω + iγ ) Jh,∇ζ
)

T
, ∀ζ ∈ P p+1 (T ) ,(

U∗
h ,1

)
T = (Uh,1)T ,

which is shown to converge at the rate of p + 2.
The main advantage of this approach is that the postprocessed approximate fields (V∗

h, E∗
h, J∗h, U∗

h) are significantly less 
expensive to obtain than the original approximate fields (Vh, Eh, Jh, Uh), as its computation does not involve the solution 
of any global system. Furthermore, each variable is independently postprocessed at the element level, hence the linear 
systems above are much smaller than the linear system (16) required to assemble the global system during hybridization. 
In addition, local postprocessing is an embarrassingly parallel task. It can therefore be concluded that postprocessing the 
local variables will have a minor impact in the overall computational cost.

3.5. Metal-dielectric coupling

In this section, we examine the scenario where a metal �, described by the hydrodynamic model, is embedded in 
a dielectric medium � with permittivity εd . Consider, for instance, a metallic nanostructure, surrounded by a dielectric 
medium, scattering an incident p-polarized plane wave E0 propagating in the d-direction, that is E0 = p exp(iω

√
εd d · x), as 

shown in Fig. 1 (left).
In this situation, there are two subdomains with different governing equations. The solution within the metallic structure 

is governed by

L = 0, in �,

J · n = 0, on ∂�,

whose HDG discretization is given by (10). Note that the no electron spill-out condition enforces that the electric current at 
the metallic interface is tangential Jh = Jt

h .
Conversely, the response in the dielectric � is given by regular time-harmonic Maxwell’s equations, namely

∇ × E − V = 0,

∇ × V − ω2εdE = 0.

The HDG discretization of the time-harmonic Maxwell’s equations is described in detail in [46]. The boundaries of the 
surrounding dielectric medium � represent the farfield truncation of the infinite space, where radiation is imposed with 
the Silver–Müller conditions, which are first order absorbing boundary conditions [41,61], namely

(V − V0) × n − iω
√

εd n × (E − E0) × n = 0, on ∂�rad . (18)

Finally, we need to impose a compatibility condition to stitch the subdomains together. For any two elements T +, T −
that satisfy T + ∩ T − ∈ ∂�, see Fig. 1 (right), we enforce continuity of the tangential component of the trace of the magnetic 
field �n × V̂h � = 0 at the interface. Furthermore, since the traces are single-valued across inter-element boundaries, the 
global degrees of freedom on the faces F ∈ ∂T − have two {̂Eh} (resp. three {̂Eh, Ûh}) components for F /∈ ∂� (resp. F ∈ ∂�). 
Thus, the assembly of the global matrix needs to account for the global compatibility condition and the different number of 
global components.
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Fig. 1. Left: Metallic structure � embedded in dielectric � illuminated by plane wave. Right: Detail of metal-dielectric interface with global degrees of 
freedom.

Table 1
History of convergence for the approximate solution.

p n ‖E − Eh‖L2 ‖E − Eh‖H curl ‖J − Jh‖L2 ‖J − Jh‖H div ‖ρ − ρh‖L2

Error Order Error Order Error Order Error Order Error Order

1 8 3.6e-2 – 3.8e-1 – 6.7e-2 – 1.1e0 – 3.9e-2 –

16 8.6e-3 2.06 1.9e-1 1.02 1.5e-2 2.15 5.3e-1 1.07 5.5e-3 2.84

32 2.1e-3 2.02 9.5e-2 1.00 3.6e-3 2.05 2.6e-1 1.03 9.3e-4 2.56

64 5.3e-4 2.01 4.7e-2 1.00 8.9e-4 2.02 1.3e-1 1.01 2.0e-4 2.24

2 8 1.1e-3 – 1.9e-2 – 1.8e-3 – 5.5e-2 – 4.7e-4 –

16 1.3e-4 3.04 4.7e-3 2.02 2.2e-4 3.07 1.3e-2 2.04 5.6e-5 3.08

32 1.6e-5 3.02 1.2e-3 2.01 2.7e-5 3.03 3.3e-3 2.02 6.9e-6 3.02

64 2.0e-6 3.01 2.9e-4 2.00 3.3e-6 3.01 8.2e-4 2.01 8.6e-7 3.00

3 8 2.7e-5 – 6.8e-4 – 4.7e-5 – 2.1e-3 – 1.3e-5 –

16 1.7e-6 4.01 8.5e-5 3.01 2.9e-6 4.05 2.6e-4 3.04 7.9e-7 4.01

32 1.1e-7 4.00 1.1e-5 3.00 1.8e-7 4.02 3.2e-5 3.02 4.9e-8 4.00

64 6.6e-9 4.00 1.3e-6 3.00 1.1e-8 4.01 4.0e-6 3.01 3.1e-9 4.00

4. Numerical results

4.1. Convergence test

In this section, we perform numerical tests to examine the convergence and accuracy of the HDG method for the HM 
introduced above. To that end, we solve (7) in a square domain � = (0, π)2 with ε∞ = 2. In addition, we set ω = ωp = 1, 
γ = 0 and β2 = 0.5 and select boundary data E∂ and n · J such that the problem has the following exact solution

E = (cos x − i sin y, cos y − i sin x), V = i cos y − i cos x,

J = (sin y + 2i cos x, sin x + 2i cos y), ρ = −2 sin x − 2 sin y.

The stabilization parameters are set according to the values proposed above, that is τt = τn = √
2. We analyze the 

convergence of the method on a sequence of structured triangular meshes Th with n2/2 elements by computing the 
L2(Th), H curl(Th) and H div(Th) norm of the errors for the above variables.

We consider polynomials of degree p = 1, 2 and 3 to represent the solution, and present the results in Table 1 for 
the approximate solutions and in Table 2 for the postprocessed solutions. We observe that both the electric field, electric 
current and induced free charge converge at the optimal rate of O(hp+1) in the L2(Th)-norm, whereas the electric field 
(resp. electric current) converges at the rate of O(hp) in the Hcurl(Th)-norm (resp. Hdiv(Th)-norm).

Nonetheless, the local postprocessing described above recovers an additional order of convergence p + 1 on the 
H curl(Th)-norm for the electric field and on the H div(Th)-norm for the electric current, as well as an optimal convergence 
rate of p + 2 for the induced free charge ρ.

4.2. Single cylindrical nanowire

In order to show the differences between the LRA and the HM, we consider a golden nanowire of diameter D in free 
space. We assume the nanowire is infinite in the z direction, and is excited by an x-polarized electric field propagating the 
y-direction, that is E0 = exp(iωy)x̂, see Fig. 2a. For this simple geometry, the analytical solution is available for both the 
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Table 2
History of convergence for the postprocessed solution.

p n ‖E − E∗
h‖L2 ‖E − E∗

h‖H curl ‖J − J∗h‖L2 ‖J − J∗h‖H div ‖ρ − ρ∗
h‖L2

Error Order Error Order Error Order Error Order Error Order

1 8 3.9e-2 – 4.6e-2 – 6.9e-2 – 8.5e-2 – 3.8e-2 –

16 9.4e-3 2.06 1.1e-2 2.10 1.5e-2 2.15 1.8e-2 2.22 4.7e-3 3.02

32 2.3e-3 2.02 2.6e-3 2.03 3.7e-3 2.05 4.3e-3 2.07 5.9e-4 3.01

64 5.8e-4 2.01 6.5e-4 2.01 9.1e-4 2.02 1.1e-3 2.02 7.3e-5 3.01

2 8 1.1e-3 – 1.3e-3 – 1.7e-3 – 2.0e-3 – 1.7e-4 –

16 1.4e-4 3.04 1.6e-4 3.03 2.0e-4 3.07 2.4e-4 3.06 8.6e-6 4.31

32 1.7e-5 3.02 2.0e-5 3.01 2.5e-5 3.03 3.0e-5 3.02 4.9e-7 4.12

64 2.1e-6 3.01 2.4e-6 3.00 3.1e-6 3.01 3.7e-6 3.01 3.0e-8 4.05

3 8 2.9e-5 – 3.2e-5 – 4.5e-5 – 5.2e-5 – 2.9e-6 –

16 1.8e-6 4.01 2.0e-6 4.01 2.7e-6 4.04 3.2e-6 4.03 8.3e-8 5.12

32 1.1e-7 4.01 1.3e-7 4.00 1.7e-7 4.02 2.0e-7 4.01 2.5e-9 5.05

64 6.9e-9 4.00 7.8e-9 4.00 1.0e-8 4.01 1.2e-8 4.01 7.7e-11 5.02

Fig. 2. (a) Schematic diagram of single nanowire under plane wave illumination. (b) Two views of the cubic discretization, with gold nanowire highlighted.

LRA and the HM using Bessel and Hankel functions [57], and is useful to illustrate the physics captured by both models. 
The quantity of interest is the extinction cross section

σext = − 1

D |E0|2
∫
A

� [
E0 × H∗ + E × H∗

0

] · dA

where A is an arbitrary area enclosing the wire. Results are computed for both local and nonlocal models, with diameters 
4 and 40 nm. The values for the gold constants are ε∞ = 1, �ωp = 9.02 eV and �γ = 0.071 eV [33], where � = h/2π is the 
reduced Planck constant, and �v F = 1.39 · 106 m/s [2].

For this simulation, we set the computational domain to be a square of 0.4 μm × 0.4 μm, and prescribe Silver–Müller 
conditions on the boundaries. The size of the computational domain is chosen such that the location of the radiating 
boundaries is far enough so that it has no significant effect on the solution. The domain is discretized with an anisotropic 
mesh of 3600 cubic quadrangular elements, ensuring that greater resolution is achieved near the nanoparticle, see Fig. 2b, 
with element sizes ranging from 50 nm to 0.05 nm. The theoretical results given in [57] are visually indistinguishable from 
the numerical ones, with relative errors below 1% for all frequencies.

As anticipated, for small metallic nanoparticles the effects of the hydrodynamic current are significant, causing not only 
a blue-shift of around 3% in the main resonance, but also a sequence of resonances above the plasma frequency that are 
not excited with the local model, see Fig. 3. These excitations correspond to volume plasmon states, which are confined 
longitudinal oscillations of the electron gas. It can be shown [16] that below the plasma frequency both the transverse 
and the longitudinal modes decay exponentially, whereas above the plasma frequency both modes propagate. As a matter 
of fact, it is the propagation of the longitudinal modes that causes the additional resonances shown in Fig. 3 for ω > ωp . 
Conversely, the more simplistic local model only allows a longitudinal mode at the plasma frequency.

Furthermore, results for the 40 nm wire show that the hydrodynamic model predicts a response very similar to that of 
the LRA. Hence, including the hydrodynamic pressure term is only relevant for nanometric geometries.

We shall now inspect the solutions of the EM field for the 4 nm wire. The inclusion of the electron pressure term excites 
features that occur at the sub-Fermi-wavelength scale. This wavelength is associated to the Fermi energy – the maximum 
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Fig. 3. Extinction cross section σext (logscale) of gold nanowire with diameters 4 and 40 nm for LRA and HM. Nonlocal effects modeled with the HM are 
only relevant at nanometric scales, blue-shifting the main resonance and exciting volume modes above the plasma frequency.

Fig. 4. Solution fields for 4 nm gold wire at ω/ωp = 1.157, with boundary highlighted.

energy of the electrons in the metal – and is typically much smaller than the length scale of the problem. Indeed, the field ∣∣Ey
∣∣ for both models at the resonant frequency ω/ωp = 1.157 shown in Fig. 4 illustrates this phenomenon. Even though 

the solution outside the metal is similar, modeling the hydrodynamic current results in wave patterns inside the nanowire 
of wavelength 100 times smaller than the wavelength of the incident field, see 

∣∣Ey
∣∣ in Figs. 4b and 

∣∣Jy
∣∣ in 4c, due to the 

excitation of a longitudinal plasmon. Consequently, to properly capture the nonlocal effects predicted by the HM we require 
significantly finer discretizations in the metallic structure.

4.3. 3D periodic annular nanogap

We now consider a 3D structure, the periodic annular nanogap, which has been shown to produce extraordinary optical 
transmission and enormous field enhancements [51,55,66]. These structures consist of periodic arrays of subwavelength 
annular apertures of a dielectric material patterned in a metallic film, and unlike arrays of circular and rectangular apertures 
they sustain plasmon resonances for a broad range of frequency regimes. That is, for a fixed gap size one can adjust the 
ring diameter and the array periodicity to generate resonances for the visible, the mid infrared (MIR), the far infrared (FIR) 
regime and the terahertz (THz) regime.

Researchers have demonstrated high-throughput fabrication schemes to make nanometer-wide annular gaps with 
perimeters of microns to millimeters [12,13,29,51,66]. Such resonant nanogap structures have been used for plasmonic 
sensing applications as well as fundamental studies of nanophotonics phenomena. These technological advances motivate 
fast numerical modeling of such extreme-scale 3D structures, consisting of sub-10 nm-gap annular apertures with micron-
to millimeter-scale diameters.

The structure that will be analyzed is a gold thin-film with annular nanogaps arranged according to the symmetries 
of the square, see Fig. 5a. In order to focus only on the impact of the metal, we shall assume the film is suspended in 
free space (no substrate), and that there is no material filling the nanometer-wide gap. Although this structure cannot be 
manufactured, it is of interest to achieve a deeper understanding of the ring structure from a theoretical perspective. The 
structure is illuminated from below with an x-polarized plane wave E0 = exp(iωz)x̂ with frequencies in the low THz regime. 
Note that the problem may be further reduced by exploiting the symmetries of the lattice, hence we only need to solve for 
one quadrant of the ring structure as indicated in Fig. 5b. Symmetry is enforced, for an x-polarized plane wave, by imposing 
E × n = 0 on the x-constant boundaries and H × n = 0 on the y-constant boundaries. Radiation conditions (18) are imposed 
on the z-constant boundaries.
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Fig. 5. (a) Schematic of periodic array of annular gaps with relevant dimensions. (b) Top and cross section view of unit computational cell for periodic 
annular array. (c) 3D high-order mesh and 2D slice (with details) used in calculations.

We consider aperture widths w ranging from 0.5 nm to 100 nm, for frequencies between 0.2 THz and 5.5 THz, and 
investigate the response using the distinct models for light-metal interaction introduced above. More specifically, the outputs 
monitored are the transmitted power ς through the structure and the enhancement π of the x-component of the electric 
field in the gap volume, computed as

ς =
∫

A1
|� [E × H∗] · n|dA∫

A0

∣∣� [
E0 × H∗

0

] · n
∣∣dA

, π =
∫

gap |Ex|dV∫
gap

∣∣E0,x
∣∣dV

, (19)

where A0 is an arbitrary xy plane below the gold film and A1 an arbitrary xy plane above the gold film. In this fre-
quency regime, the 3D periodic annular nanogap excites resonances whose electric field’s x-component is constant along 
the aperture, thus we focus only on the enhancement of this component.

The discretization consists of 1.8K hexahedral cubic elements, and is constructed by extruding in the z-direction the 2D 
curved mesh in Fig. 5c, with the inset showing the concentration of elements in the vicinity of the gap. In addition, we 
also present the entire 3D mesh, along with an inset showing a zoom of the gold film region. The hexahedral elements 
in the vertical direction are smaller close to the upper and lower surfaces of the gold film, and gradually increase as we 
separate from the metal. The radiation conditions are prescribed at 30 microns for the glass substrate and 30 microns for 
air, ensuring there is no numerical interaction between the boundary and the extraordinary optical transmission that occurs 
in the ring. This highly anisotropic mesh allows us to solve for the full 3D EM wave field using a reduced number of degrees 
of freedom. The numerical accuracy is verified by carrying out grid convergence studies on consecutively refined meshes, 
until the relative error for the field enhancement of the smallest gap is below 0.1%. We then perform, for each electron 
model and gapsize under consideration, 5000 3d HDG simulations at different frequencies within the interval of interest. 
These frequency sweeps give rise to the π and ς profiles presented in Fig. 6, and enable the tracking of the resonance for 
each case.

The simplest model assumes the gold film behaves as a perfect conductor with infinite conductivity. Prescribing perfect 
electric conductor (E × n = 0) conditions at the metal interface ensures the electric field is reflected at the metal boundary 
and no penetration is allowed. The field enhancement profile is presented in Fig. 6a with solid lines, exhibiting sharp 
peaks and enormous enhancements across gapsizes, showing that smaller gaps lead to larger resonances. This response 
corresponds to that of an undamped oscillator, which differs significantly to what has been observed experimentally for 
arrays of annular nanogaps [3]. Quite interestingly, this unrealistic behavior may also be observed with the undamped 
Drude model (γ = 0). The field enhancement curves for this case, using �ωp = 9.02 eV and ε∞ = 1 adopted from Ordal 



562 F. Vidal-Codina et al. / Journal of Computational Physics 355 (2018) 548–565
Fig. 6. (a) Field enhancement (logscale) for perfect electric conductor (solid) and undamped Drude (dashed). (b) Field enhancement (logscale) for damped 
Drude. (c) Transmission (logscale) for damped Drude. (d) Area-normalized transmission for damped Drude. Legend is shared across all subfigures.

et al. [48,49], are also depicted in Fig. 6a with dashed lines. We note that the maximum enhancement attained with 
undamped Drude and with PEC models is identical for a given gap size. Hence, the collision rate plays a pivotal role in 
the accurate characterization of the electromagnetic response through Drude’s permittivity, since it is responsible for the 
imaginary component that models losses in the metals.

Secondly, we introduce damping in the Drude model with �γ = 0.02678 eV given by [48,49], otherwise known as the 
LRA. The losses introduced by a nonzero damping lead to lower field enhancements and broader resonances, see Fig. 6b, 
in comparison with both PEC and undamped Drude in Fig. 6a. Among distinct gap widths, these profiles are qualitatively 
similar, although smaller apertures lead to stronger field localizations and narrower resonance peaks.

The metal is an opaque lossy medium, thus higher transmission rates are expected for wider gaps since light is only 
transmitted through the aperture in the metal, see Fig. 6c. In order to balance the extraordinary optical transmission among 
gapsizes, transmission is normalized by the open area ratio Aw/(Aw + AAu), see Fig. 6d. For instance, the annular 0.5 nm gap 
transmits a maximum of 0.13% of incident light through an open area of 0.0016%, for an area-normalized transmission of 
7774%, whereas the annular 100 nm gap is able to transmit 23% of the incoming light through a wider open area of 0.33%, 
giving an area-normalized transmission of 6934%. Indeed, the normalized transmission for nanometric and sub-nanometric 
gaps is superior to that of nanogaps 100 times wider, as a consequence of the extreme amplification of the incident EM 
field that occurs for deep-subwavelength apertures.

Finally, we extend the study above with the hydrodynamic model using �v F = 1.39 · 106 m/s. The nonlocal model for 
electron interaction leads to spectral changes that heavily depend on the gap width. The field enhancement and transmitted 
power profiles are qualitatively similar to those of the LRA in Figs. 6b–6d, although quantitative discrepancies arise as we 
explore gaps below tenths of nanometers. To quantify the impact of the hydrodynamic model for the periodic annular 
nanogap, we evaluate the relative blue-shift δω∗ = (ω∗

H M − ω∗
LR A)/ω∗

LR A in the resonant frequency ω∗ , as well as the ratios 
of maximum field enhancement 
∗ = π∗

H M/π∗
LR A and maximum transmission �∗ = ς∗

H M/ς∗
LR A , for multiple gap widths 

in Fig. 7. Certainly, smaller gaps exhibit large shifts, even beyond 15% for sub-nanometric widths, whereas the spectral 
response for gaps above 10 nm remains unchanged.

These changes are a consequence of the spreading of the electron density at the metal interface explained above. For 
noble metals, such as gold, the smoothed profile of induced electron density causes an effective enlargement of the aperture 
seen by the incident EM wave. Larger effective gaps lead to resonance shifts towards the blue end of the spectrum, along 
with a decay in the maximum field enhancement (less confinement) and increment in maximum transmission (wider gap 
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Fig. 7. Nonlocal effects are noticeable only at scales below 10 nm.

Fig. 8. Cross section view at several angles for 5 nm gap structure of solution field
∣∣ρh

∣∣ at the resonant frequency 1.45 THz, shown in logarithmic scale.

region). In Fig. 8, we inspect the induced charge density 
∣∣ρ∣∣ in the cross section of a 5 nm annular gap for several angular 

slices y/x = tanα, specified in Fig. 5b. We observe for α = 0◦ a boundary-layer pattern, with a maximum value at the 
interface and a decay of five orders of magnitude just a few nanometers away from the aperture. These two features 
gradually decrease as we move from the y-constant symmetry plane to the x-constant symmetry plane. Indeed, for α = 75◦
the charge density profile is almost constant in the interior of the metal. Conversely, for the local model 

∣∣ρ∣∣ is infinitely 
localized at the gold surface, thus allowing less EM wave penetration in the metal.

These effects have been observed for nanoparticles and plasmonic dimers [14,15,26,53,54], but have never been reported 
for neither annular structures nor at low THz frequencies. These results motivate the need to account for the hydrodynamic 
pressure in the simulation of realistic 3D plasmonic structures, since the nonlocal effects do have a substantial impact on 
the performance of the device for shrinking nanogaps.

5. Conclusions

In this paper, we have presented a hybridizable discontinuous Galerkin method to simulate the propagation of elec-
tromagnetic waves for metal-dielectric media at the nanoscale. Simulation of plasmonic phenomena is inherently complex 
due to the enormous disparity in length scales and the extreme localization of electromagnetic fields that can be observed 
as a consequence of the collective excitation of electrons. The HDG method for Maxwell’s equations, and the extension to 
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the hydrodynamic model for metals are well-suited to the numerical simulation of plasmonic devices, due to its ability to 
handle complex geometries through anisotropic unstructured meshes, the efficient treatment of material interfaces and the 
possibility of solving reduced linear systems that only involve the degrees of freedom at the faces of the discretization.
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[62] B. Špačková, P. Wrobel, M. Bocková, J. Homola, Optical biosensors based on plasmonic nanostructures: a review, Proc. IEEE 104 (12) (2016) 2380–2408.
[63] A. Taflove, S.C. Hagness, Computational Electrodynamics, Artech house, 2005.
[64] G. Toscano, S. Raza, A.-P. Jauho, N.A. Mortensen, M. Wubs, Modified field enhancement and extinction by plasmonic nanowire dimers due to nonlocal 

response, Opt. Express 20 (4) (2012) 4176–4188.
[65] K.S. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media, IEEE Trans. Antennas Propag. 14 (3) 

(1966) 302–307.
[66] D. Yoo, N.C. Nguyen, L. Martin-Moreno, D.A. Mohr, S. Carretero-Palacios, J. Shaver, J. Peraire, T.W. Ebbesen, S.-H. Oh, High-throughput fabrication of 

resonant metamaterials with ultrasmall coaxial apertures via atomic layer lithography, Nano Lett. 16 (3) (2016) 2040–2046.
[67] W. Zhu, R. Esteban, A.G. Borisov, J.J. Baumberg, P. Nordlander, H.J. Lezec, J. Aizpurua, K.B. Crozier, Quantum mechanical effects in plasmonic structures 

with subnanometre gaps, Nat. Commun. 7 (2016) 11495.

http://refhub.elsevier.com/S0021-9991(17)30863-X/bib6D6169657232303037706C61736D6F6E696373s1
http://refhub.elsevier.com/S0021-9991(17)30863-X/bib6D636D61686F6E3230313063616C63756C6174696E67s1
http://refhub.elsevier.com/S0021-9991(17)30863-X/bib6D756E7A32303030646976657267656E6365s1
http://refhub.elsevier.com/S0021-9991(17)30863-X/bib6D756E7A32303030646976657267656E6365s1
http://refhub.elsevier.com/S0021-9991(17)30863-X/bib6D7572313938316162736F7262696E67s1
http://refhub.elsevier.com/S0021-9991(17)30863-X/bib6D7572313938316162736F7262696E67s1
http://refhub.elsevier.com/S0021-9991(17)30863-X/bib6E6564656C6563313938306D69786564s1
http://refhub.elsevier.com/S0021-9991(17)30863-X/bib6E677579656E323030396C696E6561724344s1
http://refhub.elsevier.com/S0021-9991(17)30863-X/bib6E677579656E323030396C696E6561724344s1
http://refhub.elsevier.com/S0021-9991(17)30863-X/bib6E677579656E323031316E73s1
http://refhub.elsevier.com/S0021-9991(17)30863-X/bib6E677579656E323031316E73s1
http://refhub.elsevier.com/S0021-9991(17)30863-X/bib6E677579656E3230313161636F7573746963s1
http://refhub.elsevier.com/S0021-9991(17)30863-X/bib6E677579656E3230313161636F7573746963s1
http://refhub.elsevier.com/S0021-9991(17)30863-X/bib6E677579656E323031316D617877656C6Cs1
http://refhub.elsevier.com/S0021-9991(17)30863-X/bib6E677579656E323031316D617877656C6Cs1
http://refhub.elsevier.com/S0021-9991(17)30863-X/bib6E6F766F746E7932303131616E74656E6E6173s1
http://refhub.elsevier.com/S0021-9991(17)30863-X/bib6F7264616C313938336F70746963616Cs1
http://refhub.elsevier.com/S0021-9991(17)30863-X/bib6F7264616C313938336F70746963616Cs1
http://refhub.elsevier.com/S0021-9991(17)30863-X/bib6F7264616C313938356F70746963616Cs1
http://refhub.elsevier.com/S0021-9991(17)30863-X/bib6F7264616C313938356F70746963616Cs1
http://refhub.elsevier.com/S0021-9991(17)30863-X/bib6F7A62617932303036706C61736D6F6E696373s1
http://refhub.elsevier.com/S0021-9991(17)30863-X/bib7061726B323031356E616E6F676170s1
http://refhub.elsevier.com/S0021-9991(17)30863-X/bib7061726B323031356E616E6F676170s1
http://refhub.elsevier.com/S0021-9991(17)30863-X/bib70697461726B65323030367468656F7279s1
http://refhub.elsevier.com/S0021-9991(17)30863-X/bib72617A6132303135726576696577s1
http://refhub.elsevier.com/S0021-9991(17)30863-X/bib72617A6132303135726576696577s1
http://refhub.elsevier.com/S0021-9991(17)30863-X/bib72617A6132303133626C75657368696674s1
http://refhub.elsevier.com/S0021-9991(17)30863-X/bib72617A6132303133626C75657368696674s1
http://refhub.elsevier.com/S0021-9991(17)30863-X/bib726F647269676F3230313665787472616F7264696E617279s1
http://refhub.elsevier.com/S0021-9991(17)30863-X/bib726F647269676F3230313665787472616F7264696E617279s1
http://refhub.elsevier.com/S0021-9991(17)30863-X/bib726F6D65726F32303036706C61736D6F6E73s1
http://refhub.elsevier.com/S0021-9991(17)30863-X/bib726F6D65726F32303036706C61736D6F6E73s1
http://refhub.elsevier.com/S0021-9991(17)30863-X/bib72757070696E32303031657874696E6374696F6Es1
http://refhub.elsevier.com/S0021-9991(17)30863-X/bib7361613230313262696E617279s1
http://refhub.elsevier.com/S0021-9991(17)30863-X/bib7361613230313262696E617279s1
http://refhub.elsevier.com/S0021-9991(17)30863-X/bib7363686D6974743230313664677464s1
http://refhub.elsevier.com/S0021-9991(17)30863-X/bib7363686D6974743230313664677464s1
http://refhub.elsevier.com/S0021-9991(17)30863-X/bib736D616C6C657932303136616D706C696669636174696F6Es1
http://refhub.elsevier.com/S0021-9991(17)30863-X/bib736F6D6D657266656C64313934397061727469616Cs1
http://refhub.elsevier.com/S0021-9991(17)30863-X/bib7673706176636B6F7661323031366F70746963616Cs1
http://refhub.elsevier.com/S0021-9991(17)30863-X/bib7461666C6F766532303035636F6D7075746174696F6E616Cs1
http://refhub.elsevier.com/S0021-9991(17)30863-X/bib746F7363616E6F323031326D6F646966696564s1
http://refhub.elsevier.com/S0021-9991(17)30863-X/bib746F7363616E6F323031326D6F646966696564s1
http://refhub.elsevier.com/S0021-9991(17)30863-X/bib796565313936366E756D65726963616Cs1
http://refhub.elsevier.com/S0021-9991(17)30863-X/bib796565313936366E756D65726963616Cs1
http://refhub.elsevier.com/S0021-9991(17)30863-X/bib796F6F3230313668696768s1
http://refhub.elsevier.com/S0021-9991(17)30863-X/bib796F6F3230313668696768s1
http://refhub.elsevier.com/S0021-9991(17)30863-X/bib7A6875323031367175616E74756Ds1
http://refhub.elsevier.com/S0021-9991(17)30863-X/bib7A6875323031367175616E74756Ds1

	A hybridizable discontinuous Galerkin method for computing nonlocal electromagnetic effects in three-dimensional metallic nanostructures
	1 Introduction
	2 Modeling optical response in metallic nanostructures
	2.1 Maxwell's equations in a metal
	2.2 Hydrodynamic model

	3 HDG method for the hydrodynamic model
	3.1 Approximation spaces
	3.2 Numerical approximation
	3.3 Implementation
	3.4 Local postprocessing
	3.5 Metal-dielectric coupling

	4 Numerical results
	4.1 Convergence test
	4.2 Single cylindrical nanowire
	4.3 3D periodic annular nanogap

	5 Conclusions
	Acknowledgements
	References


