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We present a multiscale continuous Galerkin (MSCG) method for the fast and accurate 
stochastic simulation and optimization of time-harmonic wave propagation through 
photonic crystals. The MSCG method exploits repeated patterns in the geometry to 
drastically decrease computational cost and incorporates the following ingredients: (1) a 
reference domain formulation that allows us to treat geometric variability resulting from 
manufacturing uncertainties; (2) a reduced basis approximation to solve the parametrized 
local subproblems; (3) a gradient computation of the objective function; and (4) a 
model and variance reduction technique that enables the accelerated computation of 
statistical outputs by exploiting the statistical correlation between the MSCG solution 
and the reduced basis approximation. The proposed method is thus well suited for both 
deterministic and stochastic simulations, as well as robust design of photonic crystals. We 
provide convergence and cost analysis of the MSCG method, as well as a simulation results 
for a waveguide T-splitter and a Z-bend to illustrate its advantages for stochastic simulation 
and robust design.

© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

A field that has attracted significant interest in recent years is the study of light propagation through photonic crys-
tals, which are heterogeneous materials engineered to exhibit properties that cannot be found in homogeneous materials. 
Photonic crystals are assembled by combining conventional materials in lattice structures usually at the microscopic level. 
Electromagnetic wave propagation through photonic crystals is characterized by band gaps, that is, ranges of frequencies 
for which light waves are not allowed to propagate through the periodic optical nanostructure [49]. Introducing defects 
in these periodic structures allows us to create waveguides, since waves traveling at frequencies within the band gap are 
exponentially attenuated within the crystal, and thus can only propagate along the defect. Waveguides exploiting this mech-
anism can be much more efficient than traditional waveguides based on total internal reflection (TIR). Photonic crystals have 
applications in fibers [34,46], waveguides [29,32] and superlenses [37,41].

The simulation of wave propagation phenomena in heterogeneous media is an active research field and several tech-
niques have been proposed. One of the most widely used approaches is the finite-difference time-domain (FDTD) method 
[35,40,52,53]. The FDTD method is simple and efficient, albeit not well suited to treat complex geometries, irregular domains 
and multiple length scales. Another family of approaches are the finite-volume time-domain (FVTD) methods [3,4], which 
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enable mesh adaptation and refinement and exhibit low dissipation and dispersion due to the use of high-order Godunov 
schemes. The finite element (FE) method both in the time and frequency domain [28,48,57] is also a popular alternative 
for solving wave propagation problems thanks to its ability to handle complex geometries and inhomogeneous materials, 
as well as allow h/p adaptivity. Furthermore, material interface conditions and boundary conditions can be implemented in 
a natural manner. Although low order methods are often used due to their simplicity, high order methods [2,20] are more 
accurate and efficient if high accuracy is required. All the above methods have been used to study the propagation of waves 
in photonic crystals [18,21,27,36,44,50].

The ability to accurately simulate wave propagation in photonic crystals presents unique challenges. Problems of interest 
typically involve complex geometries and a mismatch in critical length scales, which can be of several orders of magnitude. 
Resolving the small scales using uniform discretizations requires a prohibitive large number of grid points. An additional 
difficulty stems from the fact that mathematical models (e.g., based on Helmholtz and Maxwell’s equations) may not capture 
the real physical phenomena accurately enough due to simplifications and uncertainty in the model data, such as geometry, 
material properties, and boundary conditions.

Several methods have been developed to deal with multiple scales in composite materials [33]. Homogenization methods 
[6] allow the treatment of multiscale features by solving a coarse-scale model which has been modified to account for the 
small scales. These approaches can be quite successful at predicting the global macroscopic behavior but lack the detailed 
description of the physics at the smaller scales. The multiscale FE method [23,24] and the mixed multiscale FE method 
[14] are also alternatives that have been successfully applied to multiscale elliptic problems. The main idea is to construct 
multiscale FE basis functions on a coarse-scale that capture the fine-scale features of the solution. These multiscale functions 
are then coupled globally into a linear system, whose unknowns are the solution values on the coarse grid. The fine-
scale solution can be recovered combining the multiscale functions with the coarse-grid nodal values. The main drawback 
of these methods is their strong dependence on the boundary conditions of the subproblems and, for problems where 
strong heterogeneities are present at the interfaces, one needs to develop adaptive boundary conditions to avoid small scale 
resonances [24].

In our approach, we advocate for not modifying the original multiscale problem, but instead obtaining computational 
efficiency via domain decomposition. A successful domain decomposition approach is the mortar element method [9,10]. 
This method allows for an independent discretization of each subdomain and enforces continuity of the solution across 
subdomains weakly. Since the meshes across the subdomain boundaries do not need to match, this approach allows great 
flexibility in the definition of the subdomains, and becomes particularly attractive for problems requiring mesh adaptivity 
and complex geometries. Other methods include the multiscale DG method [1], which blends the multiscale FE method and 
imposes weak continuity at the subdomain interfaces, the hybridized multiscale DG method [39], the geometric multiscale 
FEM [11], and the method of polarized traces [58] used for high-frequency problems. For an extensive review of multiscale 
FE methods, we refer the reader to [16].

In this paper, we present the multiscale continuous Galerkin (MSCG) method to simulate wave propagation problems on 
structured materials. This method is an extension of the hybridized continuous Galerkin method (CG) introduced in [15]
and the hybridized multiscale DG method [39]. The multiscale CG method possesses considerable advantages over other 
simulation methods. First, the multiscale discretization results in a significantly smaller global linear system than that of the 
original problem, owing to static condensation of all the degrees of freedom corresponding to the domain interiors. Second, 
it exploits repetitive patterns in the structure to rapidly construct the global linear system by only solving a small number of 
local subproblems. As a result, the method provides fast and accurate simulations of wave propagation in structured media 
beyond the capabilities of current numerical methods.

Furthermore, we also consider the simulation and optimization of wave propagation problems in the presence of fabri-
cation uncertainties. For complicated structures the interaction of electromagnetic waves with heterogeneous materials can 
be very sensitive to geometry, thus small perturbations in the microscopic structure may significantly degrade the perfor-
mance of the device. To that end, we augment the MSCG method with the following ingredients: (1) a reference domain 
formulation [42] that allows us to treat geometric variability; (2) a reduced basis approximation [5,43,45] at the subdomain 
level [25,26] that drastically accelerates the solution of the parametrized local subproblems; (3) an adjoint technique for 
computing gradients of an output functional; and (4) a model and variance reduction technique [54,55] that enables the 
accelerated computation of statistical outputs by exploiting the statistical correlation between the MSCG solution and the 
reduced basis approximation.

This article is organized as follows. In Section 2, we introduce the wave propagation problem and present the MSCG 
method. In Section 3, we extend our approach to stochastic simulation and robust design problems. In Section 4, we present 
numerical results to demonstrate the performance of the proposed method. Finally, we summarize the main conclusions of 
this article in Section 5.

2. The multiscale continuous Galerkin method

2.1. Problem statement

The propagation of the time-harmonic electric and magnetic fields E, H is governed by the frequency-domain Maxwell’s 
equations. However, for two-dimensional problems the linearity of Maxwell’s equations implies the transverse magnetic 
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Fig. 1. Reference domain (left), physical domain (right) and subdomain mapping.

(TM) and transverse electric (TE) polarizations decouple, hence it is only necessary to solve the scalar Helmholtz equation in 
a domain � ∈R2, with Lipschitz boundary ∂� = ∂�D ∪ ∂�N where Dirichlet and Neumann conditions are both prescribed, 
namely:

−∇ · (ρ(x)∇u) − κ2(x)u = f , x ∈ � , (1a)

ρ∇u · n = h, x ∈ ∂�N , (1b)

u = uD , x ∈ ∂�D . (1c)

The auxiliary parameters ρ and κ enable the compact definition of the above non-dimensional equation for both polariza-
tions. In TM or E-polarization, the magnetic field is confined to the plane of propagation (which we assume the x − y plane), 
that is H = (Hx, H y, 0), and the electric field is perpendicular to this plane E = (0, 0, Ez), hence ρ = 1, κ2 = (ω/c)2ε(x) and 
u = Ez . Conversely, in TE or H-polarization, the electric field is confined to the plane and the magnetic field is perpendicular 
to it, that is E = (Ex, E y, 0) and H = (0, 0, Hz), hence ρ = ε(x)−1, κ2 = (ω/c)2 and u = Hz . The dimensionless relative per-
mittivity field ε(x) is a piecewise-constant function that prescribes distinct permittivity values to different spatial regions 
within the photonic crystal, thus enabling the simulation of heterogeneous materials. The angular frequency of the wave ω
is non-dimensionalized with the speed of light c and the periodicity of the photonic crystal a as ω = ωa/(2πc).

The Helmholtz equation above assumes a finite computational domain. Nonetheless, wave propagation problems often 
occur in unbounded domains. In order to simulate unboundedness while restricting our simulation to a finite domain, 
we resort to Perfectly Matched Layers (PMLs) [7] surrounding the photonic crystal. PMLs can be encoded in the auxiliary 
parameters with the transformations

ρ �→
⎡⎢⎣

sy

sx
0

0
sx

sy

⎤⎥⎦ρ , κ2 �→ sxsyκ
2 , (2)

where sx is a complex-valued frequency-dependent damping function that prescribes the attenuation of the x-propagating 
waves inside the PML, and analogously for sy . We refer to [30] for a detailed description of PMLs, their numerical imple-
mentation and definition of damping functions.

2.2. Structured heterogeneous materials

As mentioned earlier, our goal in this paper is to develop a method to efficiently simulate wave propagation through 
heterogeneous structured materials. Heterogeneity is encoded in ε(x) by assigning different permittivity values to distinct 
spatial regions forming the photonic crystal. As a motivating example, we consider the waveguide shown in Fig. 1 (left) 
consisting of a regular arrangement of dielectric rods (ε(x) > 1) in air (ε(x) = 1), and a row defect without rods. Our work 
relies on decomposing the domain into smaller subdomains that belong to distinct classes, hence within each class, the 
geometry of the subdomains is the same. In this case, only two different classes of subdomains are needed: the subdomains 
with the rod and subdomains without the rod. Unfortunately, in real photonic applications the rods are not identical, mainly 
due to manufacturing variability that arise as a consequence of the extreme-scale fabrication techniques as sketched in Fig. 1
(right). Thus, in order to achieve truly predictive simulations one must take into account these variations. In this paper we 
consider only circular dielectric rods, but the extension to other types/shapes of rods is straightforward.

2.3. Reference domain formulation

We assume that the geometry of the physical domain � is parametrized by z, defined on a compact set, and that we 
want to solve (1) for many different realizations of z. In this scenario, it is much more convenient to map the physical 
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domain � onto a fixed reference domain �r . For the waveguide example in Fig. 1, the reference domain �r is the structure 
with perfectly circular rods in Fig. 1 (left), whereas the physical domain � is the real waveguide with irregular rods in 
Fig. 1 (right). Furthermore, we can leverage the structure of the photonic crystal partitioning both the physical and the 
reference domain into M non-overlapping subdomains, that is � = ⋃M

m=1 �
m

, �r = ⋃M
m=1 �

m
r . These partitions enable us 

to define M independent diffeomorphisms {Gm}M
m=1 parametrized by {zm}M

m=1 to prescribe geometry transformations at the 
subdomain level �m = Gm(�m

r , zm), while leaving the subdomain interfaces fixed. The overall mapping is then given by 
G :=G1 × . . . ×GM and z := z1 × . . . × zM .

Solving (1) for a given z first requires either re-discretizing the transformed geometry or deforming the original dis-
cretization, which can be complex and cumbersome. Alternatively, we follow Persson et al. [42] and use the diffeomorphism 
G that maps xr ∈ �r to x ∈ � to transform the governing equations (1) into a new set of equations defined on the refer-
ence domain �r that remains unchanged. To derive these equations, we first integrate on a volume and use the divergence 
theorem. The mapping G has deformation gradient G = ∇rG and Jacobian g = detG , and for an arbitrary control volume 
v ⊂ � (with Lipschitz boundary) and its associated vr ⊂ �r , the transformed equation on the reference domain reads

0 =
∫
v

[
∇ · ρ∇u + κ2u − f

]
dv =

∫
s

ρ∇u · nds +
∫
v

(κ2u − f )dv

=
∫
sr

gG−1ρ∇u · nrdsr +
∫
vr

(κ2u − f )gdvr

=
∫
vr

[
∇r · gG−1ρ∇u + κ2 gu − f g

]
dvr

=
∫
vr

[
∇r · ρgG−1G−T ∇ru + κ2 gu − f g

]
dvr ,

where we have invoked the relationships ∇ = G−T ∇r , dv = gdvr and nds = gG−1nrdsr with outward-pointing normals 
n, nr . Transforming the boundary conditions, we arrive at

−∇r · (ρG∇ru) − κ2u g = f g, x ∈ �r , (3a)

ρ∇ru · nr = h gs, x ∈ ∂�r,N , (3b)

u = uD , x ∈ ∂�r,D , (3c)

where G = gG−1G−T and gs is the restriction of the Jacobian g to the face. Thus, for a given z instead of solving (1) on the 
deformed domain �, we may alternatively solve (3) on the original domain �r .

2.4. MSCG method

Let us introduce the MSCG method to solve the transformed governing equations (3) on the fixed reference domain 
�r . We first define a discretization T m

h on each subdomain �m
r , consisting of disjoint regular elements T that partition 

the subdomain. The discretization of the entire reference domain is thus Th = ⋃M
m=1 T m

h . Subdomain discretizations are 
disjoint between subdomains, thus one can seek for instance a triangulation for one subdomain and a quad discretization 
for its neighboring subdomain. The division of a sample reference domain into five subdomains with its corresponding 
discretizations is illustrated in Fig. 2a.

Let f	 be a subdomain face given by either ∂�m
r ∩ ∂�n

r (n 
= m) or ∂�m
r ∩ ∂�r . The collection of subdomain faces of Th

is {f	}L
	=1. Furthermore, each subdomain face f	 may be subdivided into N	 elements f	i , 1 ≤ i ≤ N	 . Thus we define the set 

of global face elements as Ff = {f	i , 1 ≤ i ≤ N	, 1 ≤ 	 ≤ L}, also referred to as the mesh skeleton. We note that, not only the 
discretizations of the faces and the boundaries of the adjacent subdomains are not required to coincide, but there is also 
flexibility in the way we define the subdomain faces. For instance, in Fig. 2a, the subdomain faces coincide with the global 
face elements except for the interface between �5

r and both �3
r , �4

r , wherein the subdomain face f1 is subdivided into two 
global face elements f11 (gold) and f12 (blue).

We can now introduce our approximation spaces as

Wh = {w ∈ L2(�r) : w ∈ C0(�m
r ), w|T ∈ P pm

(T ), ∀T ∈ T m
h , 1 ≤ m ≤ M},

Mh = {μ ∈ L2(∂�m
r ) : μ|∂�m

r
= w|∂�m

r
, for w ∈ Wh},

Vh = {v ∈ C0(Ff) : v|f ∈ P pf
(f), ∀f ∈ Ff},

where P pm
(T ) is the space of polynomials of degree at most pm on T ∈ T m

h and P pf
(f) is the space of polynomials of 

degree at most pf on f ∈ Ff . Note that we allow for polynomial spaces of different degrees for both different subdomains 
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Fig. 2. Multiscale schematics for local problems and Lagrange polynomial at interfaces.

and face elements on the subdomain’s boundaries. To impose Dirichlet boundary conditions, we introduce the set Vh(uD) =
{v ∈ Vh : v = PVh (uD), on ∂�r,D}, where the operator PVh represents the L2 projection onto the space Vh on the boundary 
∂�r,D . The volume inner products for these finite element spaces are defined as

(η, ζ )�r :=
M∑

m=1

(η, ζ )�m
r

=
M∑

m=1

∑
T ∈T m

h

(η, ζ )T =
M∑

m=1

∑
T ∈T m

h

∫
T

ηζ ,

and the surface inner products as

〈η, ζ 〉∂�m
r

:=
∑

T ∈T m
h

〈η, ζ 〉∂T =
∑

T ∈T m
h

∫
∂T

ηζ .

We then introduce the auxiliary variable qh which approximates the normal component of the flux q = ρG∇ru · nr , and 
seek an approximation (uh, λh, qh) ∈ Wh × Vh(uD) × Mh such that

(ρG∇ruh,∇r w)�r − (g κ2uh, w)�r −
M∑

m=1

〈qh, w〉∂�m
r

= (g f , w)�r ,

uh = PWh (λh), on Ff ,

M∑
m=1

〈qh, v〉∂�m
r

= 〈gs h, v〉∂�r,N ,

holds for all (w, v) ∈ Wh × Vh(0), where the operator PWh represents the projection onto the restriction of the space Wh on 
the subdomain boundary. Note the last equation enforces continuity of the normal component of the flux across subdomain 
interfaces, as well as the Neumann condition on the Neumann boundaries.

The next step is to eliminate the unknowns of (uh, qh) to obtain a formulation only in terms of the variables λh defined 
on the subdomain interfaces. Invoking linearity and superposition, we consider two subproblems for each subdomain �m

r : 
the first subproblem maps the function f ∈ L2(�) to u f

h |�m
r

∈ W m
h (0), and the second subproblem maps η ∈ Vh to uη

h |�m
r

∈
W m

h (η) as follows

(ρGm∇ru f
h ,∇r w)�m

r
− (gm κ2u f

h , w)�m
r

= (gm f , w)�m
r
, ∀w ∈ W m

h (0),

(ρGm∇ruη
h ,∇r w)�m

r
− (gm κ2uη

h , w)�m
r

= 0, ∀w ∈ W m
h (0).

Here W m
h = {w ∈ C0(�m

r ), w|T ∈ P pm
(T ), ∀T ∈ T m

h } and W m
h (η) = {w ∈ W m

h : w = PW m
h (η), on ∂�m

r }, where the opera-

tor PW m
h represents the projection onto the restriction of W m

h on the subdomain boundary. Finally, we find the Lagrange 
multiplier λh ∈ Vh(uD) as a unique solution of the weak formulation
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(ρG∇ruλh
h ,∇ruv

h )�r − (g κ2uλh
h , uv

h )�r = (g f , uv
h )�r + 〈gs h, v〉∂�r,N

for v ∈ Vh(0), and compute the numerical solution uh = u f
h + uλh

h .
One of the main features of the MSCG method is the flexibility of mesh generation and h/p adaptivity at the subdomain 

level, since the local subproblems are independent and are only coupled through the interface. Hence, the local subproblems 
may be statically condensed and expressed in terms of the variables defined on the subdomain faces. The idea is to relax 
the solution continuity at the subdomain interface and impose it back through a set of Lagrange multipliers λ, which 
correspond to the unique solution of the variational formulation on the mesh skeleton. Once the global solution is obtained, 
the solution for the local subproblems can be recovered independently for each subdomain. Another important advantage 
of the MSCG method is that the solution at the interfaces can be approximated with a different polynomial space than that 
of the subproblems, for instance using high-order Lagrange interpolation polynomials defined on the Chebyshev nodes. This 
approach results in a drastic reduction of the size of the global system that would otherwise need to be solved had (uh, qh)

not been eliminated. Finally, continuity of the approximate solution across subdomains is enforced by imposing Dirichlet 
boundary conditions for each subdomain determined by the value of the global solution at the interfaces.

2.4.1. Implementation
Let the total number of global (resp. local) degrees of freedom in the problem be given by NG (resp. NL ), and let Nm

G
(resp. Nm

L ) denote the number of global (resp. local) degrees of freedom associated to the m-th subdomain. Let the space 
Vh be spanned by a set of global basis functions {ϕi}NG

i=1. For each global face element f ∈ Ff , these global basis functions are 
chosen to be nodal Lagrange polynomials with the nodes placed at the Chebyshev points, as shown schematically in Fig. 2b. 
Then, we have λh = ∑NG

i=1 �iϕi(xr), where � = (�1, . . . , �NG ) solves the global linear system

K� = F , (4)

where λh = PVh (uD) is enforced on ∂�r,D . The formation of the global stiffness matrix K ∈ CNG ×NG and load vector 
F ∈CNG is detailed below.

Firstly, at the subdomain level we obtain u f m

h and uϕm
i

h ∈ W m
h (ϕm

i ), i = 1, . . . , Nm
G by solving

(ρGm∇ru f m

h ,∇r w)�m
r

− (gm κ2u f m

h , w)�m
r

= (gm f , w)�m
r

, (5a)

(ρGm∇ru
ϕm

i
h ,∇r w)�m

r
− (gm κ2u

ϕm
i

h , w)�m
r

= 0 , (5b)

for all w ∈ W m
h (0), where {ϕm

i }Nm
G

i=1 is the set of global basis functions that have non-zero support on ∂�m
r . A total of Nm

G +1
linear systems of dimension Nm

L ×Nm
L are therefore solved for the m-th subdomain. The corresponding local stiffness matrix 

and load vector are computed as

Km
ij = (ρGm∇ru

ϕm
j

h ,∇ru
ϕm

i
h )�m

r
− (gm κ2u

ϕm
j

h , u
ϕm

i
h )�m

r
, 1 ≤ i, j ≤ Nm

G , (6a)

Fm
i = (gm f , u

ϕm
i

h )�m
r

+ 〈gs h,ϕm
i 〉∂�r,N ∩∂�m

r
, 1 ≤ i ≤ Nm

G . (6b)

We then assemble Km, Fm for m = 1, . . . , M on the global stiffness matrix K and load vector F through the standard finite 
element assembly procedure. After computing the global unknowns � from the linear system (4), the solution on each 
subdomain �m

r may be recovered as uh|�m
r

= u f m

h + ∑Nm
G

i=1 �m
i u

ϕm
i

h , where �m
i , 1 ≤ i ≤ Nm

G are the degrees of freedom of λh
that are nonzero on �m

r .
All in all, in the absence of geometry deformations (that is, G = 1), only the local problem (5)-(6) for one representative 

of each subdomain class needs to be solved, since all the subdomains within the same class are identical. This feature is one 
of the key advantages of the MSCG method, which makes it particularly attractive for problems with periodic or repetitive 
structures. Indeed, a judicious subdomain partition enables the simulation of complex photonic crystal structures just by 
solving a handful of small local subproblems and a single global linear system (4) defined only on the skeleton of the mesh.

However, for real applications the geometry of each subdomain within a class may not be exactly the same, see Fig. 1, 
hence it would appear that this advantage is lost. In the next section, we introduce a reduced basis formulation that allows 
us to consider a more general parametrized problem that is, in fact, able to account for the small variations in the geometry 
that occur from subdomain to subdomain, and thus to partially retain the computational advantage of the MSCG method.

2.5. 3-D extension

The formulation and implementation described above for the Helmholtz equation can be naturally extended to three-
dimensional structures. However, there are some aspects of going from 2-D to 3-D that should be discussed.

The main obstacle is the increased computational cost that stems from considering linear systems that are larger and 
denser, that is going from 2-D to 3-D in solving the local subproblems (5) and from 1-D to 2-D in solving (4) on the global 
face elements. In addition, since the Lagrange polynomials that approximate the global solution are now defined on surfaces, 
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for each subdomain we have more global face elements and Dirichlet conditions per face. More precisely, using a tensorial 
grid on each global face squares the number of Dirichlet conditions. Even though sparse interpolation grids [51] can help 
mitigate this issue, the cost of (5b) augments significantly.

Finally, if the simulation of full three-dimensional photonic crystals is sought we can no longer reduce Maxwell’s equa-
tions to Helmholtz, since the polarizations are coupled. Changing from Helmholtz to Maxwell is not straightforward from 
both the formulation and computation standpoints, since we now have to solve for six coupled three-dimensional fields 
instead of one, while ensuring the formulation is curl-conforming. To that end, a multiscale method for Maxwell’s equations 
has been proposed and applied to 3-D optical fibers and 2.5-D photonic crystals in the dissertation [47], where the reader 
is referred for further details.

3. Stochastic MSCG

In this section, we introduce an approach for computing the statistics of quantities of interest, such as the transmission 
power of photonic devices. The main ingredients of our approach include: stochastic modeling to deal with geometry vari-
ability, a reduced order model [5,43,45] to economize the simulation at the subdomain level, a variance reduction method 
[19,54,55] to accelerate the convergence of the statistical outputs, and an adjoint technique to compute derivatives.

In photonic crystals, the most widely used patterns are either dielectric circular rods in air or air holes in a dielectric slab 
[29]. Ideally, all of these circular structures would be circles and have the same radius R0 . However, because of technological 
limitations at micro and nano scales, they are never perfectly round. For this work, we focus on photonic crystals with cir-
cular shapes, and model only geometry variations in the radial direction, albeit more geometries and complex deformations 
can be easily accommodated within our framework. The assumptions and mapping used for the examples in this article are 
thoroughly described in Appendix A.

3.1. Reduced basis approximation

A key component of our proposed approach is the use of a reduced basis (RB) approximation to efficiently compute the 
subdomain solutions for different rod geometries. For electromagnetism there has been considerable work to incorporate 
geometry as a parameter of the RB model [13,21,22,56]. Indeed, if the high-fidelity solutions lie in a low-dimensional 
manifold induced by the parametric dependence, then they can be accurately approximated using RB solutions at only a 
fraction of the cost, due to its rapid convergence. However, incorporating a reduced basis approximation in our multiscale 
framework is not straightforward, thus its construction is outlined below.

The bilinear forms involved in the local problems (5)-(6) depend non-affinely on the parameter vector z since the de-
formation mapping G is non-affine. To circumvent this issue, we use the empirical interpolation method (EIM) [5] at the 
subdomain level. For the m-th subdomain we approximate Gm and gm with the following affine expansions

Gm
Q (xr, zm) =

Q G∑
q=1

σq(zm)G
m
q (xr), gm

Q (xr, zm) =
Q g∑

q=1

ςq(zm)gm
q (xr) . (7)

In our context, we compute for multiple values of zm the fields Gm and gm evaluated on the Gaussian quadrature points of 
the subdomain discretization, required to evaluate the volume integrals of the weak formulations (5)-(6). Proper orthogonal 
decomposition (POD) [8] is then applied to attain the above expansions, keeping the modes necessary to retain at least (1 −
10−8)% of the system’s energy, thus guaranteeing the approximation error is not dominated by the empirical interpolation. 
Naturally, the affine expansions may be reused for subdomains in the same class.

We then substitute (7) into (5) and seek u f m

h ∈ W m
h (0) and uϕm

i
h ∈ W m

h (ϕm
i ), i = 1, . . . , Nm

G such that

Q G∑
q=1

σq(zm)(ρ G
m
q ∇ru f m

h ,∇r w)�m
r

−
Q g∑

q=1

ςq(zm)(gm
q κ2u f m

h , w)�m
r

=
Q g∑

q=1

ςq(zm)(gm
q f , w)�m

r
, (8a)

Q G∑
q=1

σq(zm)(ρ G
m
q ∇ru

ϕm
i

h ,∇r w)�m
r

−
Q g∑

q=1

ςq(zm)(gm
q κ2 u

ϕm
i

h , w)�m
r

= 0, (8b)

for all w ∈ W m
h (0).

For subproblem (8b) assume that we are given orthonormalized basis functions ζ i
n, 1 ≤ n ≤ Nmax, such that (ζ i

n, ζ i
n′)W m

h
=∫

�m
r

ζ i
nζ i

n′ = δn,n′ . The associated hierarchical RB space is defined as W m
i,N = span{ζ i

n, 1 ≤ n ≤ N}. In our case these spaces are 
constructed by computing a POD on a set of solutions. The main caveat of this formulation is that we typically have many 
Dirichlet conditions, which can impact the efficiency of the method since we must solve multiple RB systems. Instead, we 
propose to develop a single RB space W m

N , where the basis functions ζn are computed with a weighted POD on a set of 
solutions for all possible Dirichlet boundary conditions. In other words, we treat the Dirichlet condition as an additional 
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parameter, hence include the solutions for the various boundary conditions as independent snapshots. This strategy allows 
us to assemble and solve only one reduced basis system per subdomain group. For the first subproblem (8a), a similar 
process is followed if f has spatial dependence. In such case, the RB needs to be constructed for all possible variations of 
the source on the subdomains. Nonetheless, if the source is constant, the RB for (8a) may be obtained using the standard 
RB procedure, and we denote the associated RB space as W̃ m

N (0).

We then apply a Galerkin projection to find Nm
G + 1 RB solutions u f m

N ∈ W̃ m
N (0) and u

ϕm
i

N ∈ W m
N (ϕi), i = 1, . . . , Nm

G
satisfying, for all (w̃, w) ∈ W̃ m

N (0) × W m
N (0)

Q G∑
q=1

σq(z)(ρ G
m
q ∇ru f m

N ,∇r w̃)�m
r

−
Q g∑

q=1

ςq(z)(gm
q κ2u f m

N , w̃)�m
r

=
Q g∑

q=1

ςq(z)(gm
q f , w̃)�m

r
, (9a)

Q G∑
q=1

σq(z)(ρ G
m
q ∇ru

ϕm
i

N ,∇r w)�m
r

−
Q g∑

q=1

ςq(z)(gm
q κ2u

ϕm
i

N , w)�m
r

= 0. (9b)

The local stiffness matrix Km
ij and load vector Fm

i are then approximated as

Km
ij ≈

Q G∑
q=1

σq(zm)(ρ G
m
q ∇ru

ϕm
j

N ,∇ru
ϕm

i
N )�m

r
−

Q g∑
q=1

ςq(zm)(gm
q κ2u

ϕm
j

N , u
ϕm

i
N )�m

r
, (10a)

Fm
i ≈

Q g∑
q=1

ςq(zm)(gm
q f , u

ϕm
i

N )�m
r

+
Q g∑

q=1

ςq(zm)〈gm
q h,ϕm

i 〉∂�m
r,N ∩∂�m

r
, (10b)

for 1 ≤ i, j ≤Nm
G . The affine parametric dependence enables an offline-online computational strategy where the parameter-

independent instances are precomputed and stored beforehand, and the cost to obtain the approximate u
ϕm

i
N for any 

parameter zm and Dirichlet condition {ϕm
i }Nm

G
i=1 depends only on Q g, Q G and N .

It should be noted that, given the non-coercivity of the governing equation and the nature of the chosen projection, well-
posedness of the reduced basis is not guaranteed. Projection techniques such as minimum-residuals [38] can be leveraged 
to regain well-posedness, at the expense of a higher computational cost. However, in the numerical experiments presented 
here the natural Galerkin projection described above the RB is well-posed, mainly due to the low frequencies of interest in 
photonic crystal design, thus the minimum-residuals formulation has not been used for this work.

3.2. Model and variance reduction

Our approach exploits the structure of the problem using the MSCG method and the RB for subdomains under a defor-
mation mapping. We now study how these two ingredients can be combined to produce fast yet accurate estimates of the 
statistics of a quantity of interest. We propose a multilevel variance reduction method that exploits the statistical correlation 
between the different reduced basis approximations and the high-fidelity MSCG discretization to accelerate the convergence 
rate of Monte Carlo simulations. The multilevel variance reduction method provides efficient computation of the statistical 
outputs by shifting most of the computational burden from the high-fidelity MSCG approximation to the reduced basis 
approximations. The methodology presented below is the direct extension of our previous work [54,55] for the multiscale 
setting.

We first introduce a probability space (ϒ, �, P ), where ϒ is the set of outcomes, � is the σ -algebra of the subsets of 
ϒ, and P is the probability measure. If Z is a real random variable in (ϒ, �, P ) and υ a probability event, we denote its 
expectation by E[Z ] = ∫

ϒ
Z(υ)dP (υ). For an arbitrary subdomain �m

r , we shall consider functions w ∈ L2(�m
r ×ϒ) equipped 

with the following norm

‖w‖2 = E

⎡⎣∫
D

|w(xr, ·)|2dxr

⎤⎦ =
∫
ϒ

∫
D

|w(xr,υ)|2dxr dP (υ).

We assume that, for a given subdomain �m
r , the parameters that define the geometric mapping zm

d (υ) for d = 1 . . . , D are 
mutually independent random variables with zero mean. In addition, we assume that each of the zm

d (υ) is bounded in the 
interval �m

d = [−γ m
d , γ m

d ] with a uniformly bounded probability density function πm
d : �m

d → R+ . It thus follows that, with 
a slight overloading of notation, we can write zm = (zm

1 , . . . , zm
D ) and �m = ∏D

d=1 �m
d . Hence, the entire stochastic space is 

given by � = ∏M
m=1 �m and the random variable as z = ∏M

m=1 zm .
The solution u of the original problem can be written as a function of z ∈ �. Now let s be a bounded functional. We 

introduce a random output s defined as
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s(z) = s(u(·, z)).

We are interested in evaluating the expectation and variance of s as

E[s] =
∫
�

s(z)π(z)dz, V [s] =
∫
�

(E[s] − s(z))2 π(z)dz,

where π(z) = ∏M
m=1

∏D
d=1 πm

d (zm
d ). Since the exact output cannot be computed, we introduce the MSCG and RB outputs 

defined as sh(z), sN(z) respectively. The high-fidelity output sh(z), computed by the MSCG method, is a very accurate 
approximation to s(z) for any z ∈ �. Conversely, sN(z) denotes the output computed when we use an N-dimensional RB to 
evaluate (9)-(10) on the subdomains with parametric dependence, as well as the high-fidelity CG formulation (5)-(6) for the 
remaining subdomains. Moreover, since the RB spaces provide a rapidly convergent approximation to the CG solution, we 
expect a high statistical correlation between both outputs.

We now apply the above idea to compute an estimate of E[sh]. To achieve this goal, we introduce

s∗
h(z) = sh(z) + (E[sN ] − sN(z)),

where sN(z) is the RB output for some N ∈ [1, Nmax]. Because sN (z) generally approximates sh(z) very well, the two outputs 
are highly correlated. The expectation may be recast as

E[sh] = E[s∗
h] = E[sh − sN ] + E[sN ]. (11)

The underlying premise here is that the two expectation terms on the right hand side can be efficiently computed owing to 
variance reduction and model reduction: the first term requires a small number of samples because its variance is generally 
very small, while the second term is less expensive to evaluate because it only involves the RB output. The model and 
variance reduction (MVR) estimate of the expectation is computed through Monte Carlo simulations of the terms in (11)
with (I0, I1) i.i.d. samples, that is

E I0,I1 [sh] = E I0 [sh − sN ] + E I1 [sN ], (12)

which is an unbiased estimator of the expectation.
The application of the CLT enables us to derive a posteriori estimate for the error in the expectation, that is

lim
I0→∞ lim

I1→∞Pr
(∣∣E[sh] − E I0,I1 [sh]∣∣ ≤ �E

I0,I1

)
= erf

(
β√

2

)
, (13)

�E
I0,I1

= β

√
V I0 [sh − sN ]

I0
+ V I1 [sN ]

I1
, (14)

where β > 0 is the confidence level. For instance, in order to guarantee that 
∣∣E[sh] − E I0,I1 [sh]∣∣ is bounded by a specified 

error tolerance εtol with a high probability (say, greater than 0.95), we need to take β ≥ 1.96 according to the CLT. Similarly, 
the estimate of the variance is defined as

V I0,I1 [sh] = E I0 [ζh − ζN ] + E I1 [ζN ] , (15)

where the auxiliary variables are ζh := (
sh − E I0,I1 [sh]

)2 and ζN := (
sN − E I0,I1 [sh])2. The error bound for the variance is 

defined analogously. The above derivations, the extension to the multilevel context and the optimal choice of (I0, I1) and 
N are thoroughly discussed and analyzed in [55].

3.3. Computation of gradients

In the optimization context, the usage of first order optimization algorithms usually leads to accelerated convergence to 
the optimum value, as it guarantees a more efficient exploration of the design space. We now review how to obtain the 
gradients for the MSCG method.

Following our assumptions, the long vector of parameters z has at most dimension M D , since the subdomains not 
containing rods do not require any parameters. We now derive an adjoint approach to compute gradients in the multiscale 
context. The solution to the MSCG problem in matrix form is u = Uϕ� + U f , where Uϕ ∈CNL×NG is a matrix that contains 
the solutions to the Dirichlet subproblems and U f is a vector of dimension NL that contains the solution to the source 
problem. Note that both Uϕ, U f are complex-valued, since the governing equations on PML subdomains are characterized 
by imaginary values of ρ and κ2 per (2).

The derivatives of s(u, z) can be recovered as

ds = ∂s + ∂s ∂u = ∂s + ∂s
(

∂U f + ∂Uϕ
� + Uϕ

∂�
)

.

dz ∂z ∂u ∂z ∂z ∂u ∂z ∂z ∂z
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Table 1
L2(�) error and convergence rate for p = 1, 2 as a function of n.

n p = 1 p = 2

‖u − uh‖L2 Order ‖u − uh‖L2 Order

8 2.80e-2 – 6.23e-4 –
16 7.63e-3 1.86 7.55e-5 3.04
32 1.96e-3 1.97 9.38e-6 3.01
64 4.92e-4 1.99 1.17e-6 3.00
128 1.23e-4 2.00 1.46e-7 3.00

We invoke the adjoint technique to solve the last part, namely

∂s

∂u
Uϕ

∂�

∂z
= ∂s

∂u
UϕK

−1
(

∂F

∂z
− ∂K

∂z
�

)
= ψ†

(
∂F

∂z
− ∂K

∂z
�

)
,

where † is the conjugate transpose operator, and the adjoint variable ψ is the solution of

K†ψ =
(

∂s

∂u
Uϕ

)†

,

thus allowing us to compute the (at most) M D derivatives with only an additional adjoint solution.
The derivatives of Uϕ, Uf, K, F with respect to z are sparse since the parameters only have local influence, and can 

be evaluated with (5)-(6) for the MSCG case and with (9)-(10) for the RB case. An additional advantage of RB is the 
computation of these derivatives, since the affine dependence on the parameters that arises from the EIM greatly simplifies 
the computation.

4. Numerical results

The MSCG algorithm introduced above is implemented in Matlab. To maximize computational efficiency, the routines to 
calculate the local stiffness matrix and load vector for CG (6) and RB (10) are fully vectorized. In order to present fair time 
comparisons, the same script is used to solve the entire multiscale problem, and the only difference is the routine used 
for local subproblems, either CG or RB. Thus, the global problem is assembled and solved identically for both CG and RB. 
Time estimates are obtained averaging the wall time for 500 runs for each task using a single processor of a 512GB Linux
18.04 machine with 32 AMD Opteron(tm) Processors 6320×15. For the results presented here, the multiple different local 
subproblems are solved in series, and parallelization is applied to the MVR computation of statistical moments given by 
(12) and (15).

4.1. Convergence test and cost analysis

We start by studying the convergence of the MSCG method and compare it to that of the standard CG method for a 
simple problem. We consider problem (1) in a unit square � = (0, 1)2 for ρ = κ2 = 1, where the Dirichlet condition and 
source term are chosen such that the exact solution is

u(x) = x2 + y2 + sin(k(x cos θ + y sin θ)).

The exact solution is a plane wave of wavenumber k propagating in the θ direction. The results reported here correspond 
to θ = π/4 and k = 6.

For the CG discretization, we consider a homogeneous discretization of 2n2 triangular elements with uniform element 
size of h = 1/n. For the MSCG, we subdivide the domain into q2 uniform squares, each of them with 2n2/q2 triangles of 
uniform element size of h = q/n. To represent the solution, we consider both polynomial order p = 1, 2 for all subdomains; 
for the interfaces, besides considering a maximum polynomial order sufficient to capture the frequency of the problem, for 
instance 10, we also require for any boundary face that the local discretization is finer than the global discretization in 
order to capture the boundary conditions prescribed by the Lagrange polynomial. Hence we take pf = min{10, np/q}, and 
discretize each global face with a single high-order element.

We compute the L2(�) errors for both methods for n = 8, 16, 32, 64, 128. Since the global polynomial order suffices for 
the frequency of interest, the error is dominated by the subproblems, where both methods have the same discretization, 
hence both the CG and MSCG errors for different q values coincide, and yield the expected convergence rate of O(hp+1) for 
smooth solutions, see Table 1.

Another relevant study is the comparison of degrees of freedom for both methods. A uniform triangular mesh of 2n2

elements of order p renders NCG = (np + 1)2 high-order nodes. Conversely, for each of the q2 subdomains of the MSCG we 
have 2(n/q)2 elements and NL = (np/q + 1)2 degrees of freedom. Furthermore, if we assume a homogeneous polynomial 
order pf for the Lagrange polynomial at the interfaces, it can be shown that NG = (q + 1)(2qpf − q + 1). If we adopt 
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Table 2
Degrees of freedom for MSCG and CG for p = 2 as a function of n.

n MSCG CG

q = 2 q = 4 q = 8

NL NG NL NG NL NG NCG

8 81 93 25 145 9 225 289
16 289 117 81 305 25 513 1089
32 1089 117 289 385 81 1089 4225
64 4225 117 1089 385 289 1377 16641
128 16641 117 4225 385 1089 1377 66049

pf = min{10, np/q}, which suffices to represent the solution accurately for this case, we obtain the degrees of freedom 
presented in Table 2 for p = 2.

This analysis shows that, for this problem where there is only one subdomain type, the best strategy is to use more sub-
divisions per direction as we refine the mesh. Indeed, a multiscale configuration is deemed optimal whenever the number 
degrees of freedom for both the local and global problems are similar, thus the computational burden is divided evenly. 
Furthermore, notice that the benefit of the MSCG as opposed to regular CG becomes apparent as more elements are used in 
the discretization. The results presented here correspond to the very simple case where only one local computation needs 
to be performed, therefore if there is more than one subdomain type one needs to account for the multiple unique local 
subproblems.

4.2. Waveguide T-splitter simulation

We now focus on the simulation of waveguides in photonic crystals. Photonic crystals are assembled by combining 
different materials, giving rise to periodic nanostructures that exhibit the bandgap phenomenon. That is, there exist broad
bands of frequencies for which wave propagation through the crystal is disallowed. Common examples of such structures 
are obtained by uniformly placing dielectric rods in air or drilling regular patterns of holes in a dielectric slab. The bandgap 
response of these structures has been studied extensively [29]. Waveguiding arises as an application of photonic crystals 
whenever symmetry of the lattice is broken, for instance when a line of rods is removed from the crystal. In this scenario, if 
the crystal is illuminated with a wave whose frequency is in the gap, the wave will only be allowed to travel along the defect 
and will decay exponentially away from the defect. The MSCG presented in this paper is therefore an attractive candidate 
to simulate photonic crystal applications, since by solving a small number of subproblems it enables the simulation of large 
lattice structures by exploiting the repeated patterns.

The first example is a waveguide T-splitter consisting of Gallenium Arsenide rods (ε = 11.4) in air of radii R0 = 0.4a, 
where a is the periodicity of the crystal. For the TM polarization, this structure presents a first bandgap for ω ∈ (0.36, 0.40)

and a second bandgap for ω ∈ (0.52, 0.55). In order to numerically simulate the splitter with the MSCG method, we first 
have to identify the subdomains in which to split the computational domain. The subdomains should be invariant to rotation 
and translation to ensure that only a small number of subproblems are solved. The size of the subdomain along with 
the frequencies of interest determine the polynomial order chosen to approximate the solution at the global interfaces. 
Conversely, the discretization needed at the subdomain level is governed by the details of the geometry. Furthermore, the 
MSCG approach offers the possibility of using different polynomial approximation order for different subdomains, which can 
result in greater efficiency.

For the waveguide splitter shown in Fig. 3 (left), we choose three different classes of subdomains: (1) the rod subdomain, 
where we use p = 2, curved elements and adaptive mesh size to approximate the fine detail of the rod curvature; (2) 
the air subdomain, where we use an homogeneous mesh of straight-sided elements of order p = 2; and (3) the PML 
subdomain, with the same discretization as type 2. Although not represented in Fig. 3, three PML subdomains surround the 
computational domain in each direction to ensure outgoing waves are properly attenuated. The subdomain discretization is 
chosen through a grid convergence study on progressively refined meshes, until the relative error of the optical intensity 
at both output ports is below 0.1%, compared to an extremely fine subdomain discretization. For each global interface, 
we choose a single element of polynomial order pf = 10, which gives a sufficient resolution of more than 20 points per 
wavelength. The degree of freedom count is reported in Table 3. Note that solving the exact same problem with regular 
CG would suppose solving a linear system of more than 6M dof as opposed to a system of 26K dof, thus for structured 
geometries the MSCG is a very competitive approach.

In Fig. 3 (right) we show the amplitude field Ez for a frequency in the first bandgap, a frequency between the two 
bandgaps and a frequency in the second bandgap. An attractive feature of waveguiding with photonic crystals are the low 
losses that occur even for sharp bends, thus enabling the efficient manipulation of electromagnetic waves.

4.3. Waveguide Z-bend optimization

Here we consider the simulation and design of a photonic crystal consisting of a silicon (ε = 12.1) slab with drilled 
air holes of radius R0 = 275a/800 forming a lattice with triangular symmetry. This structure presents a broad bandgap for 
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Fig. 3. MSCG simulation of a TM waveguide splitter of GaAs (ε = 11.4) rods of radii R0 = 0.4a in air. Computational domain with subdomain decomposition 
(excluding PMLs) and meshes (left). Numerical simulation at frequencies ω = 0.39, ω = 0.46 and ω = 0.53 (left to right).

Table 3
Degrees of freedom for MSCG for the waveguide T-splitter separated by subdomain types.

Subdomain type # elements/subdomain Order # dof per subdomain # subdomains NL

1 3312 2 7K 613 4M
2 1352 2 3K 50 150K
3 1352 2 3K 663 1.8M

Global faces # elements/face Order # dof per face # faces NG

1 10 11 2729 26K

Table 4
Degrees of freedom for MSCG for the waveguide Z-bend separated by subdomain types.

Subdomain class # elements/subdomain Order # dof per subdomain # subdomains NL

1 9196 2 19K 58 1M
2 9196 2 19K 607 11M
3 4050 2 8K 37 0.3M
4 4050 2 8K 482 4M

Global faces # elements/face Order # dof per face # faces NG

1 10 11 2437 23K

ω ∈ (0.26, 0.34) for TE waves, see [17]. A waveguide is generated by opening a Z-shaped defect and illuminating the crystal 
with a wave impinging at the left input port. The quantity of interest is the intensity of the optical power at the right 
output port in the x-direction, namely

sh = 1

2ω

J∑
j=1

∣∣∣ ∫
�

j
out

ε−1 ex · �
[

iu∇u†
]∣∣∣,

where the subdomains at the output port �out comprise the line defect and one hole subdomain above and below. The 
schematics of the slab are shown in Fig. 4a (left), where we have ensured that the bends are sufficiently separated such that 
they do not interact. The objective here is to apply the methodology introduced above to design the bending region such 
that transmission is enhanced for certain frequencies of interest within the bandgap of the regular lattice [17], see Fig. 4b.

The different subdomain classes identified are shown in Fig. 4a (right). The subdomain classes 1 and 2 correspond both 
to the hole subdomain, but are treated independently since class 1 will be subject to shape optimization, whereas the 
subdomains from class 2 remain unaltered. The other two subdomain types correspond to the line defect and the PML 
respectively. The dof count for the different types and the global problem is collected in Table 4.

In the next sections, we present optimization results for three different scenarios: single frequency, range of frequencies 
and range of frequencies combined with the presence of geometric imperfections in the holes. In all cases, the optimization 
variables are the radii of the holes in subdomain class 1. Hence, we have M1 = 58 design parameters θm ∈ �m defined as 
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Fig. 4. Schematics, computational domain and solutions for the silicon slab wave propagation problem.

rm
0 = R0(1 +θm), 1 ≤ m ≤ M1. Box constraints are prescribed for all design parameters, and are set as �m = [−0.127, 0.047]a

such that rm ∈ [0.3, 0.36]a, hence the design region is � := �1 × . . . × �M1 .
The optimizations are performed using the nlopt [Johnson] optimization package. For each objective function, we first 

apply the multi-level single-linkage global optimization algorithm, and then choose the computed optimum as the starting 
point for a local gradient-based optimization using the preconditioned truncated Newton, in order to perform a better local 
exploration, see references in [Johnson]. Relative tolerances for both the objective function value and the design parameters 
are employed as termination criteria, and are set to 10−2 for the global optimization and 10−4 for the local optimization. 
Finally, for each objective function we compute multiple global-local optimization cycles with different initial guesses, in 
order to avoid getting stuck in local minima. The results shown here correspond to the optimization cycle that achieved the 
lowest objective function value.

4.3.1. Single frequency radii optimization
The first step towards efficient optimization is to develop a RB for subdomain class 1, which reduces to finding a RB 

for the Dirichlet subproblem (5b) as we have no source. The mapping for subdomain class 1 is described in Appendix A, 
whereas the mapping for the other subdomain classes is the identity. The application of the EIM on the three components 
of G (represents a second-order symmetric tensor) and the Jacobian g enables the affine parametrization of the mapping, 
for a total of Q G = 6 and Q g = 4 interpolation elements. We then compute snapshots to (5b) for the different Dirichlet 
conditions, where the parameters are θ and the frequency ω ∈ [0.3045, 0.3055] — thus the RB can be reused for the next 
example. Finally, the RB is constructed by compressing the snapshots for all the boundary conditions to form a single POD 
basis.

We now proceed to optimizing the radii of the holes for a single frequency ω = 0.305, for which intensity at the outlet 
is poor. For subdomains 2, 3 and 4 we use CG to compute (5b)-(6) in 0.42, 0.15 and 0.30 seconds respectively. Thus for each 
new θ we only need to solve for the 58 subdomains from class 1. The deterministic optimization problem reads

sN(θ∗) = max
θ∈�

sN , (16)

where the expensive CG local solution (5b)-(6) is substituted for its inexpensive RB counterpart (9)-(10) to accelerate the 
computations. We use a reduced basis of size N = 100, rendering a wall time for all 58 subproblems of 0.12 s, as opposed 
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Fig. 5. Results for the waveguide Z-bend optimization problem.

to 25.60 s required by the high-fidelity CG method. The global system is finally solved in 0.47 s. Overall, the reduced basis 
approach delivers the value of sN in just 1.45 s, that is 18 times faster than computing sh with CG on all subdomains, and 
without compromising accuracy as shown below.

Convergence is achieved after 1200 iterations. A frequency sweep for sN (θ∗) is shown in Fig. 5a (dashed red), showing a 
much higher transmission than the un-optimized version, see Fig. 4b. Lastly, accuracy of RB is verified by re-optimizing (16)
with sh instead of sN , setting the maximizer θ∗ as initial guess. The new optimum θ∗

h is attained only after 3 iterations, 
since sN is a faithful representation of sh . The relative error of the output for the same maximizer, 

∣∣sh(θ∗) − sN (θ∗)
∣∣/sh(θ

∗) =
5.8e − 4, as well as the relative error of the maximizer, ‖θ∗

h − θ∗‖2/‖θ∗
h‖2 = 8.9e − 4, are below the acceptable engineering 

standards, therefore concluding the RB effectively approximates the high-fidelity CG solutions of the local subproblems.

4.3.2. Frequency-range radii optimization
The next step is to seek a design that is robust with respect to a range of frequencies, which is desirable when the 

optimum presents a sharp peak with a rapid decay away from the single frequency optimum. This optimization problem 
can be recast in a stochastic optimization framework as

ŝN (̂θ) = max
θ∈�

Eω[sN ] − γ
√

Vω[sN ] (17)

where γ controls the weight assigned to the variance minimization. Since the stochastic space is unidimensional, the output 
statistics can be computed with simple Gauss-Legendre quadrature, reducing (17) to the weighted evaluation of the output 
sN at selected frequencies given by Legendre points. We choose a 20-point quadrature that integrates exactly polynomials up 
to degree 39, selected as the coarsest quadrature that renders a mean relative error on (17) of < 0.1% for multiple θ values, 
compared to the results of a 100-point quadrature. We reuse the RB constructed in the previous section for subdomain class 
1, again with 100 modes, and precompute (5b)-(6) for subdomain classes 2, 3 and 4 at the selected Legendre frequencies 
in the range ω = [0.3045, 0.3055] to expedite the optimization process. A frequency sweep for sh (̂θ) (dashed green) with 
γ = 1 is shown in Fig. 5a. The radii configuration ̂θ is indeed less sensitive to frequency variations in the prescribed range, 
albeit attaining a lower output intensity at ω = 0.305 compared to the single-frequency optimum θ∗ (dashed red).
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Similarly as before, we can assert the RB is accurate by inspecting both the relative error on the optimum if the 
objective function is evaluated with CG (̂sh) instead of RB (̂sN ) for the subproblems belonging to class 1, namely ∣∣̂sh (̂θ) − ŝN (̂θ)

∣∣/̂sh (̂θ) = 1.8e − 4, and the relative error of the optimum θ̂h when maximizing ŝh initialized with θ̂ , that 
is ‖̂θh − θ̂‖2/‖̂θh‖2 = 7e − 4.

4.3.3. Frequency-range robust radii optimization
Finally, we analyze the robustness of the solutions with respect to geometry errors on a range of frequencies. The 

geometry errors, which will be considered for subdomains in classes 1 and 2, are given by (A.1), where we append the 
constant deformation θm for the optimization, namely rm

0 �→ Rm
0 [1 + θm] + δRm

0 . For the results below, we select D = 11, 
σ = 0.02, Lc = 1/16 and zm ∈ [−√

3, 
√

3]D in (A.1), for which the 95% confidence interval gives 
∣∣δRm

0

∣∣/Rm
0 < 3% if θ = 0. 

Note we encapsulate both the optimization and the stochastic parameters in the same expression, and thus the same RB for 
both classes of subdomains can be used by simply setting θm = 0 for the subdomains in class 2.

In order to achieve robust designs accounting for variation in both the frequency and the geometry parameters, we 
formulate the following stochastic optimization problem

s̃h (̃θ) = max
θ∈�

Eω,G[sh] − γ
√

Vω,G[sh]. (18)

The stochastic dimension of the problem under consideration is large, since we have 11 geometry parameters per subdo-
main, and there are 665 subdomains of classes 1 and 2 combined. Hence, we shall resort to the MVR method described in 
Section 3.2 to evaluate the objective function (18). We first develop a RB for the Dirichlet subproblem combining the EIM 
with POD for the non-homogeneous radius variation. We set θm ∈ [−0.127, 0.047]a as before for the optimization, which in 
this case leads to Q G = 61 and Q g = 23 elements in the interpolation basis. We again use N = 100 for the RB model, but 
since have considered 11 additional parameters to represent the geometry we can expect this RB to be less accurate than 
the one developed for the homogeneous radii variation. The main difference here is that the RB is seen as a surrogate that 
correlates with the high-fidelity model, not as a substitute, thus a coarser basis still casts excellent results.

Subdomains 3 and 4 are solved with CG in 0.15 and 0.30 seconds respectively, and the global system in 0.47 s. Un-
fortunately, the CG computation for subdomain class 2 can no longer be precomputed and reused due to the geometry 
errors, thus requiring 665 high-fidelity CG linear system solutions for subdomains 1 and 2 combined. This calculation takes 
301.3 s in our implementation, for a total MSCG wall time of 302.2 s for a single tuple (θ , z). Additionally, computing the 
output statistics at each optimization step typically demands multiple output evaluations for different z , thereby greatly 
hindering the computational feasibility of the optimization. To circumvent this issue we employ the RB on subdomains 1 
and 2, reducing the wall time to 3.22 s for a total MSCG time of 4.16 s. The MVR method combines the fact that sN is 
more efficiently evaluated than sh (a factor of 70), with high variance reduction between outputs V (sh − sN)/V (sh) > 50, 
therefore conveniently allocating many more samples to the RB output than to the variance reduction term (I1 = 15K and 
I0 = 355 for �E

I0,I1
= 10−3 at the optimum) in order balance the computational cost of (12).

In Fig. 5a we show in dashed line, for a set of discrete frequencies in the interval ω = [0.3045, 0.3055], the transmission 
sh for the several configurations considered: single frequency optimization θ∗ , frequency-range ̂θ and frequency-range robust 
design θ̃ . To assess the robustness with respect to geometry, for each design we introduce geometry variations on the 
subdomain classes 1 and 2, and evaluate the expected value of the output and its 95% confidence interval as EG [sh(θ)] ±�E

in Fig. 5a, as well as the variance VG [sh(θ)] ± �V in Fig. 5b, both represented in solid line. The single frequency optimum 
θ∗ produces the highest transmission for ω = 0.305, but it degrades significantly in the presence of geometric errors. 
Conversely, the other optima, despite achieving lower peak outlet intensities, maintain a consistent performance for all the 
frequencies in the range. Moreover, the robust optimum θ̃ outperforms the other two optima both in expected value and 
in variance, see Fig. 5b. These results show the importance of accounting for geometry variations in the objective function 
if robust designs with respect to geometry are sought. Finally, the optima configurations for the three scenarios considered 
are depicted in Fig. 5c, expressed as a variation on the nominal radius.

5. Conclusions

We have presented a multiscale continuous Galerkin method for computing wave propagation phenomena in photonic 
crystals. The method relies on partitioning the computational domain into subdomains, and computing the local solution in 
the subdomains as a function of the Lagrange multipliers at the interfaces. Thus, only a linear system for the global Lagrange 
multipliers is solved. The solution in the interior of the subdomains is recovered after the global problem has been solved. 
Furthermore, the MSCG method is especially advantageous for problems that exhibit repeated patterns, since the local 
subproblems only need to be solved once for each type of subdomain. In addition, we propose the construction of a reduced 
order model for the local subproblems that allows us to consider geometric variation within the subdomains, leveraging a 
reference domain formulation of the governing equation. We then use the model and variance reduction method to compute 
statistical outputs of stochastic wave propagation problems. Finally, we verify the convergence rate of MSCG, carry out a 
deterministic simulation of a waveguide splitter to illustrate the advantages of MSCG in photonic crystal, and a robust 
optimization of a photonic slab to demonstrate the performance of the MSCG method to attain robust designs.
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Fig. A.6. Mapping quantities and sample radius modifications.
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Appendix A. Stochastic modeling for geometric variability

In this appendix, we present the details of the deformation mapping that is employed for the circular rods/holes of the 
photonic crystal. We show only the case for square periodicity, as the hexagonal periodicity is a straightforward extension. 
For this study, we will assume that geometry variability is restricted to the radial direction and modeled with a random 
field of the angular coordinate α ∈ [0, 2π ] with known mean and covariance kernel [12]. In particular, the geometry of the 
rods is characterized by the following truncated Karhunen-Loève expansion of the radius:

r0(z) = R0 + δR0(z) = R0

⎡⎣1 + z1
√

λ0/2 +
D/2∑
d=1

√
λd [z2d sin (d(α + π/2)) + z2d+1 cos (d(α + π/2))]

⎤⎦ . (A.1)

Here 
√

λd = σ
(√

π Lc
)1/2

exp
(−(dπ Lc)

2/8
)
, d = 0, . . . , D , where σ is the variance of the covariance kernel and Lc is the 

correlation length, which is inversely related to the decay of the KL modes. Fig. A.6b shows some realizations of (A.1).
We now describe the mapping Gm used for subdomains containing a dielectric rod. We consider square subdomains as 

shown in Fig. A.6a, and require that the subdomain boundaries remain fixed, as well as a small box surrounding the origin 
(to prevent the mapping becoming singular). Since we are only considering deformation in the radial direction, the mapping 
can be expressed as (x, y) = Gm(xr) with x = r(xr) cosα and y = r(xr) sinα.

In order to define r(xr) for the interior points in the domain, we assume that the perimeter of the rod is deformed 
according to (A.1), and that the remaining points are linearly deformed according to

r(xr) =

⎧⎪⎪⎨⎪⎪⎩
B	 + (r0 − B	) · R − B	

R0 − B	

, if R ≤ R0

r0 + (B − r0) · R − R0

B − R0
, if R > R0

. (A.2)

The derivatives ∂r/∂xi may be computed with the chain rule. Note there are two distinct types of boundaries, see Fig. A.6a, 
and its distance to the origin can described as B = √

1 + (Y /X)2 (red) and B = √
1 + (X/Y )2 (black). The distance B	 to the 

boundary of the origin box is similarly computed.
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