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Abstract
We present the recent development of hybridizable and embedded discontinuous Galerkin
(DG) methods for wave propagation problems in fluids, solids, and electromagnetism. In
each of these areas, we describe the methods, discuss their main features, display numerical
results to illustrate their performance, and conclude with bibliography notes. The main ingre-
dients in devising these DG methods are (1) a local Galerkin projection of the underlying
partial differential equations at the element level onto spaces of polynomials of degree k to
parametrize the numerical solution in terms of the numerical trace; (2) a judicious choice
of the numerical flux to provide stability and consistency; and (3) a global jump condition
that enforces the continuity of the numerical flux to obtain a global system in terms of the
numerical trace. These DG methods are termed hybridized DG methods, because they are
amenable to hybridization (static condensation) and hence tomore efficient implementations.
They share many common advantages of DGmethods and possess some unique features that
make them well-suited to wave propagation problems.
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1 Introduction

Discontinuous Galerkin (DG) methods possess many attractive properties for wave propaga-
tion problems. In particular, they are locally conservative, high-order accurate, amenable to
complex geometries and unstructured meshes, low dissipative and dispersive, highly paral-
lelizable, and more stable than continuous Galerkin (CG) methods for convection-dominated
problems. As a result, DG methods have been widely used in conjunction with explicit time-
marching schemes to simulatewave phenomena. Explicit time-integration schemes, however,
often become impractical due to the severe time-step size restriction, an issue that is over-
come by implicit time-marching schemes. When they are paired with implicit time-marching
schemes, DG methods yield a much larger system of equations than CG methods due to the
duplication of degrees of freedom along the element faces. The high computational cost and
memory footprint make implicit DGmethods considerably more expensive than CGmethods
for a wide variety of applications.

The hybridizable DG (HDG)methods were introduced in [25] in the framework of steady-
state diffusion as part of the effort of devising efficient implicit DG methods for solving
elliptic partial differential equations (PDEs). Indeed, the HDG methods guarantee that only
the degrees of freedom of the approximation of the scalar variable on the interelement
boundaries are globally coupled, and that the approximate gradient attains optimal order
of convergence for elliptic problems [17,27,28]. The development of the HDG methods was
subsequently extended to a variety of other PDEs: diffusion problems [10,65], convection-
diffusion problems [18,85,86,111], incompressible flow [26,29,34,87,88], compressible
flows [52,76,84,95,104], continuum mechanics [7,84,95,108], time-dependent acoustic and
elastic wave propagation [33,89], the Helmholtz equation[47,58,61], the time-harmonic
Maxwell’s equations [72,90] with the hydrodynamic model [113], and the time-dependent
Maxwell’s equations [15]. Since the HDG methods inherit many attractive features of DG
methods and offer additional advantages in terms of reduced globally coupled degrees of
freedom and enhanced accuracy, they have been widely used in conjunction with implicit
time-marching schemes to solve time-dependent problems.

Another appealing feature of the HDG methods is that a superconvergent approximation
can be computed through a local (and thus inexpensive and highly parallelizable) post-
processing step. The superconvergence property cannot be taken for granted since only some
combinations of discontinuous finite element spaces and stabilization functions can ensure
that property [31,32]. Recently, the theory of M-decompositions has provided a simple suf-
ficient condition for the superconvergence. By comparing the dimensions of the space of
the approximate trace with the dimensions of the traces of the local volumetric approxi-
mations, the M-decompositions provide some guidelines to enrich the gradient space such
that the superconvergence is ensured. After being presented for diffusion [19,20,23], the M-
decompositions tool has been successfully applied to devise superconvergent HDG methods
for Stokes flows [22] and linear elasticity [21].

In the setting of wave propagation problems, the HDG methods compare with other finite
element methods favorably because they achieve optimal orders of convergence for both
the scalar and gradient unknowns and display superconvergence properties [33,47,61,89].
Recently, explicit HDG methods [109] have been introduced for numerically solving the
acousticwave equation. The explicit HDGmethods have the same computational cost as other
explicit DGmethods and provide optimal convergence rates for all the approximate variables.
Furthermore, it displays a superconvergence property in agreementwith the theoretical results
obtained in [33]. In spite of the optimal convergence properties, the HDGmethods presented
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in [89,109] might not be suitable for long-time computations, due to their energy-dissipative
characteristics. The dissipative characteristics of HDG for convection-diffusion systems are
investigated in [55]. Indeed, it has been observed that dissipative numerical schemes suffer a
loss of accuracy for long-time computations, despite their optimal error estimates. Symplectic
Hamiltonian HDG methods introduced in [103] are capable of preserving the Hamiltonian
structure of the wave equation, while displaying superconvergence properties. Symplectic
HDG methods conserve energy and compare favorably with dissipative HDG methods for
long-time simulations.

Further extension of theHDGmethod leads to the introduction of the embeddedDG(EDG)
method [63,96] and the interior EDG (IEDG) method [50,54,91]. In this paper, we refer to
these DGmethods as hybridized DGmethods, because they are all amenable to hybridization
(static condensation) and hence to more efficient implementations. The essential ingredients
of hybridized DG methods are (1) a local Galerkin projection of the underlying PDEs at the
element level onto spaces of polynomials of degree k to parametrize the numerical solution
in terms of the numerical trace; (2) a judicious choice of the numerical flux to provide
stability and consistency; and (3) a global jump condition that enforces the continuity of
the numerical flux to arrive at a global weak formulation in terms of the numerical trace.
The only difference among them lies in the definition of the approximation space for the
numerical trace. In particular, the numerical trace space of the EDG method is a subset of
that of the IEDG method, which in turn is a subset of that of the HDG method. While the
EDG method and the IEDG method do not have superconvergence properties like the HDG
method, they yield a smaller system of equations than the HDG method. Indeed, the EDG
method has the same degrees of freedom and sparsity pattern as the static condensation of
the CGmethod. Since the degrees of freedom of the numerical trace on the domain boundary
can be eliminated in the IEDGmethod, IEDG has even less globally coupled unknowns than
the EDG method. Thus, the IEDG method is more computationally efficient than both the
EDG method and the HDG method.

The remainder of the paper is organized as follows. In Sect. 2, we introduce preliminary
concepts and the notation used throughout the paper. In Sect. 3, we describe hybridized
DG methods for solving the incompressible and compressible Navier–Stokes equations, and
present numerical results to demonstrate their performance for a range of flow regimes and
wave phenomena. In Sect. 4, we focus on HDG methods for linear and nonlinear elastody-
namics, and show some convergence results for a thin structure. In Sect. 5, we introduce
HDG methods for time-dependent Maxwell’s equations with the divergence-free constraint,
and present results to verify the convergence and accuracy order. We conclude the paper with
our perspectives on future research in Sect. 6.

2 Preliminaries

2.1 Finite Element Mesh

Let T > 0 be a final time and let � ⊂ R
d be an open, connected and bounded physical

domain with Lipschitz boundary ∂�. We denote by Th a collection of disjoint, regular, p-th
degree curved elements K that partition �,1 and set ∂Th := {∂K : K ∈ Th} to be the

1 Strictly speaking, the finite element mesh can only partition the problem domain if ∂� is piecewise p-th
degree polynomial. For simplicity of exposition, and without loss of generality, we assume hereinafter that Th
actually partitions �.

123



Journal of Scientific Computing (2018) 77:1566–1604 1569

collection of the boundaries of the elements in Th . For an element K of the collection Th ,
F = ∂K ∩∂� is a boundary face if its d−1 Lebesgue measure is nonzero. For two elements
K+ and K− of Th , F = ∂K+ ∩ ∂K− is the interior face between K+ and K− if its d − 1
Lebesguemeasure is nonzero.We denote by E I

h and E B
h the set of interior and boundary faces,

respectively, and we define Eh := E I
h ∪ E B

h as the union of interior and boundary faces. Note
that, by definition, ∂Th and Eh are different. More precisely, an interior face is counted twice
in ∂Th but only once in Eh , whereas a boundary face is counted once both in ∂Th and Eh .

2.2 Finite Element Spaces

Let Pk(D) denote the space of polynomials of degree at most k on a domain D ⊂ R
n , let

L2(D) be the space of Lebesgue square-integrable functions on D, and C0(D) the space of
continuous functions on D. Also, let ψ

p
K denote the p-th degree parametric mapping from

the reference element Kref to an element K ∈ Th in the physical domain, and φ
p
F be the p-th

degree parametric mapping from the reference face Fref to a face F ∈ Eh in the physical
domain. We then introduce the following discontinuous finite element spaces in Th ,

Qk
h = {

r ∈ [L2(Th)]m×d : (r ◦ ψ
p
K ) ∈ [Pk(Kref )]m×d ∀K ∈ Th

}
,

Vk
h = {

w ∈ [L2(Th)]m : (w ◦ ψ
p
K ) ∈ [Pk(Kref )]m ∀K ∈ Th

}
,

Wk
h = {

ψ ∈ L2(Th) : (ψ ◦ ψ
p
K ) ∈ Pk(Kref ) ∀K ∈ Th

}
,

(1)

and on the mesh skeleton Eh ,

̂Mk
h = {

μ ∈ [L2(Eh)]m : (μ ◦ φ
p
F ) ∈ [Pk(Fref )]m ∀F ∈ Eh

}
,

˜Mk
h = {

μ ∈ [C0(Eh)]m : (μ ◦ φ
p
F ) ∈ [Pk(Fref )]m ∀F ∈ Eh

}
,

(2)

where m is an integer whose particular value depends on the PDE. Note that ̂Mk
h consists of

functions which are discontinuous at the boundaries of the faces, whereas ˜Mk
h consists of

functions that are continuous at the boundaries of the faces. We also denote byMk
h a traced

finite element space that satisfies ˜Mk
h ⊆ Mk

h ⊆ ̂Mk
h . In particular, we define

Mk
h = {

μ ∈ [L2(Eh)]m : (μ ◦ φ
p
F ) ∈ [Pk(Fref )]m ∀F ∈ Eh, and μ|EE

h
∈ [C0(EE

h )]m},
where EE

h is a subset of Eh . Note that Mk
h consists of functions which are continuous on

EE
h and discontinuous on EH

h := Eh\EE
h . Furthermore, if EE

h = ∅ then Mk
h = ̂Mk

h , and if

EE
h = Eh then Mk

h = ˜Mk
h .

Due to the discontinuous nature of the approximation spaces in (1), only the degrees of
freedom of the approximate trace of the solution on the mesh skeleton Eh , approximated by
functions in Mk

h , are globally coupled in hybridized DG methods [85,91]. Hence, different
choices of EE

h lead to different schemes within the hybridized DG family. We briefly discuss

three important choices of EE
h . The first one is EE

h = ∅ and implies Mk
h = M̂k

h . This
choice corresponds to the hybridizable discontinuous Galerkin (HDG) method [25]. The
second choice is EE

h = Eh which implies Mk
h = M̃k

h and thus enforces the continuity of
the approximate trace on all faces. This choice corresponds to the embedded discontinuous
Galerkin (EDG) method introduced in [63,96]. Since M̃k

h ⊂ M̂k
h , the EDG method has

fewer globally coupled degrees of freedom that the HDG method. And the third choice of
the approximation spaceMk

h is obtained by setting EE
h = E I

h , which implies M̃k
h ⊂ Mk

h ⊂
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M̂k
h , where the inclusions are strict. The resulting approximation space consists of functions

which are discontinuous over the union of the boundary faces E B
h and continuous over the

union of the interior faces E I
h . The resulting method has a characteristic of the HDG method

on the boundary faces and a characteristic of the EDG method on interior faces. Because
the approximate trace is taken to be continuous only on the interior faces, we shall name
this method interior embedded DG (IEDG) method [50,54,91] to distinguish it from the
EDG method for which the trace is continuous on all faces. We note that the IEDG method
enjoys advantages of both the HDG and the EDG methods. First, IEDG inherits the reduced
number of global degrees of freedom of EDG. In fact, thanks to the use of face-by-face local
polynomial spaces on E B

h in the IEDG method, the degrees of freedom of the approximate
trace on E B

h can be locally eliminated to yield a global matrix system involving only the
degrees of freedom of the numerical trace on the interior faces. As a result, the globally
coupled unknowns of the IEDG method are even less than those of the EDG method, and
IEDG is more efficient than both EDG and HDG. Second, the IEDG scheme enforces the
boundary conditions as strongly as the HDG method, thus retaining the boundary condition
robustness of HDG. These features make the IEDG method an excellent alternative to the
HDG and EDG methods. For additional details on the efficiency and robustness of HDG,
EDG and IEDG, the interested reader is referred to [91].

It remains to define inner products associated with our finite element spaces. For functions
a and b in L2(D), we denote (a, b)D = ∫

D ab if D is a domain in R
d and 〈a, b〉D = ∫

D ab
if D is a domain inRd−1. Likewise, for functions a and b in [L2(D)]m , we denote (a, b)D =∫
D a ·b if D is a domain inRd and 〈a, b〉D = ∫

D a ·b if D is a domain inRd−1. For functions
A and B in [L2(D)]m×d , we denote (A, B)D = ∫

D tr(AT B) if D is a domain in R
d and

〈A, B〉D = ∫
D tr(AT B) if D is a domain in R

d−1, where tr (·) is the trace operator of a
square matrix. We finally introduce the following element inner products

(a, b)Th =
∑

K∈Th

(a, b)K , (a, b)Th =
∑

K∈Th

(a, b)K , (A, B)Th =
∑

K∈Th

(A, B)K ,

and face inner products

〈a, b〉∂Th
=
∑

K∈Th

〈a, b〉∂K , 〈a, b〉∂Th
=
∑

K∈Th

〈a, b〉∂K , 〈A, B〉∂Th
=
∑

K∈Th

〈A, B〉∂K .

These notations and definitions are necessary for the remainder of the paper.

2.3 Time-MarchingMethods

We describe time-marching methods to integrate in time the following index-1 differential-
algebraic equation (DAE) system:

M
du
dt

+ f (u, v, t) = 0, t > 0, (3a)

g(u, v, t) = 0, t ≥ 0, (3b)

with initial condition u(t = 0) = u0 and where M is a matrix. The above DAE system will
arise from the hybridized DG discretization of time-dependent PDEs in fluids, solids, and
electromagnetism. In this context, M is the so-called mass matrix.
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2.3.1 Linear Multistep Methods

We denote by un an approximation for the function u(t) at discrete time tn = n �t , where�t
is the time step and n is an integer. Linear multistep (LM) methods use information from the
previous s steps, {un+i }s−1

i=0 , to calculate the solution at the next step un+s . When we apply
a general LM method to the differential part (3a) and treat the algebraic part (3b) implicitly,
we arrive at the following algebraic system:

s∑

i=0

(
aiMun+i + �t bi f (un+i , vn+i , tn+i )

)
= 0, (4a)

g(un+s, vn+s, tn+s) = 0. (4b)

The coefficient vectors a = (a0, a1, . . . , as) and b = (b0, b1, . . . , bs) determine the method.
If bs = 0, the method is called explicit; otherwise, it is called implicit. Note we need to solve
the system of equations (4b) regardless of whether the LM method is explicit or implicit.
For this reason and due to their superior stability properties, implicit methods are usually
preferred over explicit methods for the temporal integration of DAE systems arising from
the spatial hybridized DG discretization of time-dependent PDEs.

Backward difference formula (BDF) schemes are the most popular implicit LM methods.
For a BDF scheme with s steps, the system (4) becomes

asMun+s + �t bs f
(
un+s, vn+s, tn+s)+

s−1∑

i=0

aiMun+i = 0, (5a)

g
(
un+s, vn+s, tn+s) = 0. (5b)

2.3.2 Implicit Runge-Kutta Methods

The coefficients of an s-stage Runge-Kutta (RK) method, ai j , bi , ci , 1 ≤ i, j ≤ s, are
usually arranged in the form of a Butcher tableau:

c1 a11 a12 . . . a1s
c2 a21 a22 . . . a2s
... . . .

...
...

cs as1 as2 . . . ass
b1 b2 . . . bs

(6)

For the family of implicit RK (IRK) methods, the RK matrix ai j must be invertible. Let
di j denote the inverse of ai j , and let un,i be the approximation of u(t) at discrete times
tn,i = (tn + ci�t), 1 ≤ i ≤ s. The s-stage IRK method for the DAE system (3) can be
sketched as follows. First, we solve the following 2s coupled systems of equations

s∑

j=1

di jM
(
un, j − un

)
+ �t f

(
un,i , vn,i , tn,i

)
= 0, i = 1, . . . , s,

g
(
un,i , vn,i , tn,i

)
= 0, i = 1, . . . , s,

(7a)
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for (un,i , vn,i ). Then we compute un+1 from

un+1 =
⎛

⎝1 −
s∑

i=1

bi

s∑

j=1

di j

⎞

⎠ un +
s∑

j=1

e jun, j , (7b)

where e j = ∑s
i=1 bidi j . Finally, we solve the following system of equations for vn+1:

g
(
un+1, vn+1, tn+1) = 0. (7c)

Note it is possible to advance the system (7a)–(7b) in time without solving (7c). Hence, we
only need to solve (7c) at the particular time steps that we need vn+1 for post-processing
purposes.

If the RK matrix ai j is a lower-triangular matrix, then the method is called diagonally
implicit RK (DIRK) scheme [2]. In the case of a DIRK method, each stage of the system (7)
is uncoupled from the previous ones due to the fact that the matrix di j is lower-triangular,
and can be viewed as a BDF step of the form (5).

2.4 Parallel Iterative Solvers

We briefly describe the parallel Newton–Krylov–Schwarz method used to solve the (possibly
nonlinear) system of algebraic equations that arises from the temporal discretization of the
DAE system (3) discussed in the previous section. A detailed description of the iterative
solver can be found in [50,54].

2.4.1 Nonlinear Solver

To simplify the notation, we shall drop the superscripts that denote the time steps. At any
given time step, the nonlinear system of equations (5) reads as

h(u, v) = 0, (8a)

g(u, v) = 0, (8b)

where h and g are the discrete nonlinear residuals associated with (5a) and (5b), respectively.
We solve this nonlinear system using Newton’s method. In particular, the linearization of (8)
around a given state vector (ū, v̄) yields the following linear system:

[
A B
C D

](
δu
δv

)
= −

(
h(ū, v̄)

g(ū, v̄)

)
. (9)

Here thematrices A, B, C, and D have entries Ai j = ∂hi (ū,v̄)
∂u j

, Bi j = ∂hi (ū,v̄)
∂v j

,Ci j = ∂gi (ū,v̄)
∂u j

,

Di j = ∂gi (ū,v̄)
∂v j

, respectively. Since the matrix A has block-diagonal structure due to the
discontinuous nature of the approximation spaces defined in Sect. 2.2, δu can be readily
eliminated to obtain a reduced system in terms of δv only

K δv = r, (10)

where K = D − C A−1B and r = g − C A−1h. This is the global system to be solved at
every Newton iteration.

To accelerate the convergence of Newton’s iterations we compute an initial guess as a
solution of a nonlinear least squares problem in which we seek to minimize the norm of the
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residuals over a subspace. The subspace consists of solutions already computed from the
previous time steps. The Levenberg–Marquardt algorithm is used to solve the nonlinear least
squares problem. Further details can be found in [50,54].

2.4.2 Linear Solver

The linear system (10) is solved in parallel using the restartedGMRESmethod [101]with iter-
ative classical Gram-Schmidt (ICGS) orthogonalization. In order to accelerate convergence,
a left preconditioner P−1 is used and the linear system (10) is replaced by

P−1K δv = P−1r. (11)

A restricted additive Schwarz (RAS) [6] method with δ-level overlap is used as parallel
preconditioner. This approach relies on a decomposition of the unknowns in δv amongparallel
workers; which is performed as described in [50]. The RAS preconditioner is defined as

P−1 = P−1
RASδ

:=
N∑

i=1

R0
i K−1

i Rδ
i , (12)

where K i = Rδ
i K Rδ

i is the subdomain problem, Rβ
i is the restriction operator onto the

subspace associated to the nodes in the β-level overlap subdomain number i , and N denotes
the number of subdomains. In our experience, δ = 1 provides the best balance between
communication cost and number of GMRES iterations for almost all problems. In practice,
we replace K−1

i by the inverse of the block incomplete LU factorization with zero fill-in,

BILU(0), of K i , that is, K
−1
i ≈ ˜U

−1
i

˜L
−1
i . The BILU(0) factorization in each subdomain is

performed in conjunction with a Minimum Discarded Fill (MDF) ordering algorithm [50].

3 Wave Propagation in Fluids

In this section, we focus on hybridized DGmethods for the incompressible and compressible
Navier–Stokes equations. Numerical treatment of shock waves using physics-based shock
detection and artificial viscosity is described. Numerical results are presented to demonstrate
the performance of the methods. The section is ended with bibliography notes.

3.1 Incompressible Navier–Stokes Equations

3.1.1 Governing Equations

The unsteady incompressible Navier–Stokes equations for a Newtonian fluid with Dirichlet
boundary conditions are given by

q − ∇v = 0, in � × (0, T )
∂v
∂t − ν ∇ · q + ∇ p + ∇ · (v ⊗ v) = 0, in � × (0, T ),

∇ · v = 0, in � × (0, T ),

v = g, on ∂� × (0, T ),

v = v0, on � × {t = 0},

(13)

where ν denotes the kinematic viscosity of the fluid, p the pressure, v = (v1, . . . , vd) the
velocity vector, v0 is the initial velocity field and satisfies the divergence-free condition
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∇ · v0 = 0 for all x ∈ �, and g is the Dirichlet data and satisfies the compatibility condition∫
∂�

g · n = 0 for all t ∈ (0, T ). We shall discuss the treatment of other boundary conditions
shortly later.

3.1.2 Formulation

HDG methods are the only type of hybridized DG method that has been applied to incom-
pressible flows. The HDG method for the unsteady incompressible Navier–Stokes equations
(13), as originally proposed in [82,88], reads as follows: Find

(
qh(t), vh(t), ph(t), v̂h(t)

) ∈
Qk

h × Vk
h × Wk

h × M̂k
h such that

(qh, r)Th + (vh,∇ · r)Th − 〈̂vh, r · n〉∂Th
= 0, (14a)

(dvh

dt
,w
)

Th
+ (

ν qh − ph I − vh ⊗ vh,∇w
)
Th

+ 〈
f̂ h,w

〉
∂Th

= 0, (14b)

−(vh,∇q)Th + 〈̂vh · n, q〉∂Th
= 0, (14c)

〈
f̂ h,μ

〉
∂Th\∂�

+ 〈̂vh − g,μ〉∂� = 0, (14d)

(ph, 1)Th = 0, (14e)

for all (r,w, q,μ) ∈ Qk
h × Vk

h × Wk
h × M̂k

h and all t ∈ (0, T ), and

(vh(t = 0) − v0,w)Th = 0, (14f)

for all w ∈ Vk
h . The integer m in the definition of the spaces Qk

h , Vk
h and M̂k

h in Equations
(1)−(2) is m = d for the incompressible Navier–Stokes equations. Finally, the numerical
flux f̂ h is defined as

f̂ h (̂vh, vh, ph, qh; n) = (−ν qh + ph Id + v̂h ⊗ v̂h) · n + S(vh, v̂h; n) · (vh − v̂h),(14g)

where n is the unit normal vector pointing outwards from the elements, Id ∈ R
d×d is the

identity matrix, and S ∈ R
d×d is the so-called stabilization matrix which may depend on vh

and v̂h . The stabilization matrix is usually given by S = SI + SV , where SI is to stabilize
the inviscid (convective) operator and SV is to stabilize the viscous (diffusive) operator.
These stabilization matrices are typically chosen as SI = τi Id and SV = τv Id , where τi is
the inviscid stabilization parameter and τv is the viscous stabilization parameter. Common
choices for the former include local τi = |̂vh ·n| and global τi = sup∂Th

|̂vh ·n|Lax-Friedrichs
type approaches, whereas the later is typically defined as τv = ν/
 for some characteristic
length scale 
 [82,88] .

3.1.3 Boundary Conditions

We discuss the numerical treatment of other boundary conditions. In particular, we consider
boundary conditions of the form

v = gD, on ∂�D × (0, T ),

B(q, v, p) · n = gN , on ∂�N × (0, T ),
(15)

where B is a linear boundary operator, and ∂�D and ∂�N are such that ∂�D ∪ ∂�N = ∂�

and ∂�D ∩ ∂�N = ∅. In order to incorporate these boundary conditions into the HDG
discretization, it suffices to replace Eq. (14d) by

〈
f̂ h,μ

〉
∂Th\∂�

+ 〈
v̂h − gD,μ

〉
∂�D

+ 〈̂
bh − gN ,μ

〉
∂�N

= 0, (16)
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Table 1 Examples of other boundary conditions for the incompressible Navier–Stokes equations

Boundary condition type B b̂h

Stress −ν (q + qT ) + p I (−ν (qh + qTh ) + ph I) · n + S · (vh − v̂h)

Viscous stress∗ −ν (q + qT ) −ν (qh + qTh ) · n + S · (vh − v̂h)

Vorticity + pressure −ν (q − qT ) + p I (−ν (qh − qTh ) + ph I) · n + S · (vh − v̂h)

Vorticity∗,† −ν (q − qT ) −ν (qh − qTh ) · n + S · (vh − v̂h)

Gradient + pressure −ν q + p I (−ν qh + ph I) · n + S · (vh − v̂h)

Gradient∗ −ν q −ν qh · n + S · (vh − v̂h)

The asterisk symbol ∗ indicates that the average pressure condition (ph , 1)Th = 0 is also imposed. The dagger
symbol † indicates that a Dirichlet boundary condition for the normal component of the velocity has also to
be provided on ∂�N

where b̂h is a discretized version of B ·n. Some examples of B and the corresponding b̂h are
given in Table 1. Note that (q − qT ) · n = ω × n, where ω denotes the vorticity vector, and
thus the third and fourth rows in Table 1 correspond to boundary conditions on the vorticity.
Other linear boundary conditions can be treated in a similar manner.

3.1.4 Implementation and Local Post-processing

The implementation is discussed in [88]. In short, two different strategies for the Newton–
Raphson linearization are proposed in [82,88]. In the first strategy, the linearized system
is hybridized to obtain a reduced linear system involving the degrees of freedom of the
approximate velocity and average pressure. The reduced linear system has a structure of the
saddle point problem. In the second strategy, the augmented Lagrangian method developed
for the Stokes equations [29,87] is used to solve the linearized system. Within each iteration
of the augmented Lagrangian method, a linear system involving the degrees of freedom of
the approximate velocity only is solved.

The post-processing procedure proposed in [26,88] can be used to obtain an exactly
divergence-free, H(div)-conforming approximate velocity v∗

h . This post-processing proce-
dure is local (i.e. it is performed at the element level) and thus adds very little to the overall
computational cost. Numerical results presented in [88] show that the approximate pressure,
velocity and velocity gradient converge with the optimal order k+1 for diffusion-dominated
problems with smooth solutions. In such case, the post-processed velocity v∗

h converges with
the order k + 2 for k ≥ 1.

3.2 Compressible Navier–Stokes Equations

3.2.1 Governing Equations

The unsteady compressible Navier–Stokes equations read as

q − ∇u = 0, in � × (0, T ),
∂u
∂t

+ ∇ · F(u, q) = 0, in � × (0, T ),

B(u, q) = 0, on ∂� × (0, T ),

u − u0 = 0, on � × {t = 0}.
(17)
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Here, u = (ρ, ρv j , ρE), j = 1, . . . , d is the m-dimensional (m = d + 2) vector of
conserved quantities (i.e. density, momentum and total energy), u0 is an initial condition, B
is a boundary operator, and F(u, q) are the Navier–Stokes fluxes of dimension m × d , given
by the inviscid and viscous terms as

F(u, q) = FI(u)+FV (u, q) =
⎛

⎝
ρv j

ρviv j + δi j p
v j (ρE + p)

⎞

⎠−
⎛

⎝
0
τi j

viτi j − f j

⎞

⎠ , i, j = 1, . . . , d,

(18)
where p denotes the thermodynamic pressure, τi j the viscous stress tensor, f j the heat flux,
and δi j is the Kronecker delta. For a calorically perfect gas in thermodynamic equilibrium,
p = (γ − 1)

(
ρE − ρ |v|2 /2

)
, where γ = cp/cv > 1 is the ratio of specific heats and in

particular γ ≈ 1.4 for air. cp and cv are the specific heats at constant pressure and volume,
respectively. For a Newtonian fluid with the Fourier’s law of heat conduction, the viscous
stress tensor and heat flux are given by

τi j = μ

(
∂vi

∂x j
+ ∂v j

∂xi
− 2

3

∂vk

∂xk
δi j

)
+ β

∂vk

∂xk
δi j , f j = − κ

∂T

∂x j
, (19)

where T denotes temperature, μ the dynamic (shear) viscosity, β the bulk viscosity, κ =
cp μ/Pr the thermal conductivity, and Pr the Prandtl number. In particular, Pr ≈ 0.71 for
air, and additionally β = 0 under the Stokes’ hypothesis.

3.2.2 Formulation

The hybridized DG discretization of the unsteady compressible Navier–Stokes equations
(17) reads as follows: Find

(
qh(t), uh(t), ûh(t)

) ∈ Qk
h × Vk

h × Mk
h such that

(
qh, r

)
Th

+ (
uh,∇ · r)Th

− 〈
ûh, r · n〉

∂Th
= 0, (20a)

(∂uh
∂t

,w
)

Th
−
(
F(uh, qh),∇w

)

Th
+ 〈

f̂ h (̂uh, uh, qh),w
〉
∂Th

= 0, (20b)
〈
f̂ h (̂uh, uh, qh),μ

〉
∂Th\∂�

+ 〈̂
bh (̂uh, uh, qh),μ

〉
∂�

= 0, (20c)

for all (r,w,μ) ∈ Qk
h × Vk

h × Mk
h and all t ∈ (0, T ), and

(
uh(t = 0) − u0,w

)
Th

= 0, (20d)

for all w ∈ Vk
h . The integer m in the definition of the spaces Qk

h , Vk
h and Mk

h in Equations
(1)−(2) is m = d + 2 for the compressible Navier–Stokes equations. Finally, the numerical
flux f̂ h is defined as

f̂ h (̂uh, uh, qh; n) = F(̂uh, qh) · n + S(̂uh, uh; n) · (uh − ûh). (20e)

b̂h is a boundary flux and its precise definition depends on the type of boundary condition
as discussed in Sect. 3.2.3. Like in the incompressible case, the stabilizationmatrix S ∈ R

m×m

is usually given by the contribution of inviscid and viscous stabilization terms S = SI + SV .
Several choices for the stabilization of the inviscid fluxes have been proposed in [49,50,95],
including local

SI = 1

2

(
An (̂uh) + |An (̂uh)|

)
, SI = |An (̂uh)|, SI = λmax (̂uh) Im, (21)
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and global

SI =
(
sup
∂Th

λmax
(
ûh
))

Im (22)

approaches. Here, An = [∂FI/∂u]·n is the Jacobianmatrix of the inviscid flux normal to the
element face, λmax denotes themaximum-magnitude eigenvalue of An , | · | is the generalized
absolute value operator, and Im is the m × m identity matrix. In order to improve stability,
smooth surrogates for the operators ( · + | · |)/2 and | · | above are presented in [49]. The
following stabilization matrices for the viscous fluxes have been proposed in [39,56,85,96]:

SV = 1




γμ

Pr
Im, SV = 1



n · ∂FV (̂uh, qh)

∂q
· n, (23)

where 
 is either a viscous length scale 
v [39,56], a global length scale 
g [85,96] or a
characteristic element size h. For low Reynolds number flows (in the case 
 = {
v, 
g}) or
for low cell Péclet numbers (in the case 
 = h), the viscous stabilization plays an important
role in the accuracy and stability of the method. Otherwise, it plays a secondary role and is
usually dropped.

We note that, for well-resolved simulations, the choice of the stabilization matrix becomes
less critical as the polynomial order k increases since the inter-element jumps and numeri-
cal dissipation are of order O(hk+1) and O(h2(k+1)) [52,114], respectively, and thus vanish
rapidly with increasing k. This may not be the case in under-resolved simulations. A com-
parison of stabilization matrices for under-resolved turbulent flow simulations is presented
in [49]. The relationship between SI and the resulting Riemann solver is also discussed in
[48,49].

3.2.3 Boundary Conditions

The definition of the boundary flux b̂h depends on the type of boundary condition. For
example, at the inflow and outflow sections of the domain, we define the boundary flux b̂h as

b̂h = A+
n (̂uh) · (uh − ûh) − A−

n (̂uh) · (u∂� − ûh), (24)

where A±
n = (An ± |An |)/2 and u∂� is a boundary state. At a solid surface with no slip

condition, we extrapolate density and impose zero velocity as follows

b̂h,1 = uh,1 − ûh,1, b̂h,i = −ûh,i for 2 ≤ i ≤ d + 1. (25)

The definition of the last component of b̂h depends on the type of thermal boundary condition.
For isothermal walls, for example, we prescribe the temperature Tw as

b̂hm = Tw − T̂h (̂uh), (26)

where the approximate trace of the temperature T̂h (̂uh) is computed from ûh . For adiabatic
walls, we impose zero heat flux as

b̂h,m = f̂h,m . (27)

Other boundary conditions can be treated in a similar manner.

3.2.4 Shock Capturing Method

For flows involving shocks, we augment the hybridized DG discretization with the physics-
based shock capturing method presented in [53]. In short, this shock capturing method
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increases selected fluid viscosities to stabilize and resolve sharp features, such as shock
waves and strong thermal and shear gradients, over the smallest distance allowed by the grid
resolution. In particular, the bulk viscosity, thermal conductivity and shear viscosity are given
by the contribution of the physical (β f , κ f , μ f ) and artificial (β∗, κ∗, μ∗) values, that is,

β = β f + β∗, κ = κ f + κ∗ = κ f + κ∗
1 + κ∗

2 , μ = μ f + μ∗.

Shock waves, thermal gradients, and shear layers are stabilized by increasing the bulk vis-
cosity, thermal conductivity, and shear viscosity, respectively. Contact discontinuities are
stabilized through one or several of these mechanisms, depending on their particular struc-
ture. The thermal conductivity is also augmented in hypersonic shock waves through the term
κ∗
1 . The artificial viscosities are devised such that the cell Péclet number is of order 1, and in
particular are given by

β∗ = �β

[
ρ
kβ hβ

k

( |v|2 + c∗2)1/2 ŝβ
]
, (28a)

κ∗ = κ∗
1 + κ∗

2 = �β

[
cp
Pr∗

β

(
ρ
kβ hβ

k

( |v|2 + c∗2)1/2 ŝβ
)]

+ �κ

[
ρ cp

kκ hκ

k

( |v|2 + c∗2)1/2 ŝκ
]
,

(28b)

μ∗ = �μ

[
ρ
kμ hμ

k

( |v|2 + c∗2)1/2 ŝμ
]
, (28c)

where c∗ is the speed of sound at the critical temperature T ∗, �{β,κ,μ}
[ · ] are smoothing

operators (not discussed here), ŝ{β,κ,μ} are the bulk viscosity, thermal conductivity and shear
viscosity sensors (not discussed here), Pr∗

β is an artificial Prandtl number relating β∗ and κ∗
1 ,

k{β,κ,μ} are positive constants of order 1, and

hβ = hre f
|∇ρ|

(∇ρt · M−1
h · ∇ρ + εh

)1/2 , (29a)

hκ = hre f
|∇T |

(∇T t · M−1
h · ∇T + εh

)1/2 , (29b)

hμ = hre f σmin(Mh) = hre f inf|a|=1

{
at · Mh · a}, (29c)

are the element size in the direction of the density gradient, the temperature gradient and the
smallest element size among all possible directions, respectively. In Eq. (29), Mh denotes
the metric tensor of the mesh, hre f the reference element size used in the construction of
Mh , and εh ∼ ε2m is a constant of order machine epsilon squared. The interested reader is
referred to [53] for additional details on the shock capturing method.

3.3 Numerical Examples

We present numerical results for several wave phenomena encountered in fluid mechanics,
including acoustic waves, shock waves, and the unstable waves responsible for transition to
turbulence in a laminar boundary layer. The stabilization matrix is set to S = λmax (̂uh) Im .
All results are presented in non-dimensional form. Pr f = cp μ f /κ f = 0.71, β f = 0 and
γ = 1.4 are assumed in all the test problems.

123



Journal of Scientific Computing (2018) 77:1566–1604 1579

Fig. 1 Non-dimensional density ρ/ρ∞ (left) and pressure p/(ρ∞|v∞|2) (right) fields of the strong-
vortex/shock-wave interaction problem at the times t1 (top) and t2 (bottom). After the shock wave and the
vortex meet, strong acoustic waves are generated and propagate on the downstream side of the shock

3.3.1 Inviscid Interaction Between a Strong Vortex and a Shock Wave

We consider the two-dimensional inviscid interaction between a strong vortex and a shock
wave. The problem domain is � = (0, 2L) × (0, L) and a stationary normal shock
wave is located at x = L/2. A counter-clockwise rotating vortex is initially located
upstream of the shock and advected downstream by the inflow velocity with Mach num-
ber M∞ = 1.5. Sixth-order IEDG and third-order DIRK(3,3) schemes are used for the
spatial and temporal discretization, respectively. The details of the problem and numerical
discretization are presented in [51]. Figure1 shows the density and pressure fields at the times
t1 = 0.35 γ 1/2L |v∞|−1 and t2 = 1.05 γ 1/2L |v∞|−1. When the shock wave and the vortex
meet, the former is distorted and the later split into two separate vortical structures. Strong
acoustic waves are then generated from the moving vortex and propagate on the downstream
side of the shock. The Mach number fields, together with zooms around the shock wave and
the details of the computational mesh, are shown in Fig. 2. The shock is non-oscillatory and
resolved within one element. The shock capturing method does not affect the propagation of
the acoustic waves in the sense that it does not introduce artificial dissipation or dispersion
[51].

3.3.2 Transitional Flow Over the NACA 65-(18)10 Compressor Cascade

Weexamine the ability of hybridizedDGmethods to resolve thewavepropagationphenomena
responsible for natural transition to turbulence in a boundary layer. To this end, we present
implicit large-eddy simulation (ILES) results of the three-dimensional NACA 65-(18)10
compressor cascade in design conditions at inlet Reynolds number Re1 = 250, 000 and
Mach number M1 = 0.081. Third-order IEDG and DIRK(3,3) schemes are used for the
discretization. The details of the flow conditions and the numerical setup, as well as the
methodology and nomenclature for the boundary layer analysis below, are presented in [50].

Due to the lack of bypass and forced transition mechanisms and the quasi-2D nature
of this flow, natural transition occurs through two-dimensional unstable modes. The two-
dimensional nature of transition is illustrated in Fig. 3 through the much larger amplitude of
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Fig. 2 Mach number field of the strong-vortex/shock-wave interaction problem at the times t1 (top) and t2
(bottom). Zooms around the shock wave are shown on the right images. The shock is non-oscillatory and
resolved within one element

Fig. 3 Amplitude of streamwise and cross-flow instabilities on the suction (left) and pressure (right) sides
for the NACA 65-(18)10 compressor cascade. The amplitude of the instabilities is non-dimensionalized with
respect to the freestream velocity

the streamwise instabilities compared to the cross-flow instabilities. In particular, Tollmien-
Schlichting (TS) waves form before the boundary layer separates, and Kelvin-Helmholtz
(KH) instabilities are ultimately responsible for transition after separation. The former are
shown in Fig. 4 (left) at different BL locations prior to separation. More specifically, the left
plot in Fig. 4 shows the superposition of (1) TSwaves and (2) the pressure waves generated in
the turbulent boundary layer of the blade at hand and the neighboring blades. The latter effect
is responsible for the nonzero fluctuating velocity outside the boundary layer. The growth
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Fig. 4 TS waves (left) and streamwise amplification factor (right) on the suction side for the NACA 65-(18)10
compressor cascade. The box on the right figure indicates the region of the BL in which the TS waves on the
left are located

Fig. 5 Transition from TS to KH
modes along the separated,
suction side boundary layer for
the NACA 65-(18)10 compressor
cascade

rate of TS waves along the BL is exponential, as shown on the right of Fig. 42 and predicted
by linear stability theory. It is worth noting the small magnitude of the instabilities compared
to the freestream velocity.3 This shows why very small amount of numerical dissipation
is required for transition prediction. Similarly, very low numerical dispersion is needed to
properly resolve all the frequencies present in the transition process. After separation, TS
waves turn intoKH instabilities, as illustrated in Fig. 5; which lead to very rapid vortex growth
and are ultimately responsible for natural transition in the separated shear layer.

2 Note the amplification factor N1 in the y-axis is a logarithmic quantity.
3 Note the amplitude of the instabilities in Fig. 3 is non-dimensionalizedwith respect to the freestreamvelocity.
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Table 2 Details of the computational meshes considered for the Eppler 387 wing

Mesh no. k No. elements Element type Global unknowns �t |v∞| / c
1 4 64,800 Tets 1,959,600 × 5 7.937E−3

2 4 126,360 Tets 3,814,380 × 5 6.300E−3

3 4 254,976 Tets 7,687,680 × 5 5.000E−3

k denotes the polynomial order of numerical approximation. c denotes the wing chord. The × 5 factor in
global unknowns accounts for the five components in the Navier–Stokes system

Fig. 6 ILES prediction of the transitional flow over the Eppler 387wing at Re = 100, 000: Pressure coefficient
(left), instantaneous spanwise velocity (top right), and iso-surface of the Q-criterion colored by pressure
(bottom right)

3.3.3 Transitional Flow Over the Eppler 387Wing

We investigate the grid requirements to predict natural transition to turbulence by ILES. In
particular, we present grid convergence studies for the transition location of the flow over the
three-dimensional Eppler 387 wing at Reynolds numbers of 100,000, 300,000 and 460,000.
TheMach number isM∞ = 0.1 and the angle of attack α = 4.0◦. Fifth-order HDG and third-
order DIRK(3,3) schemes are used for the discretization. Three meshes and non-dimensional
time-steps are considered; which correspond to uniform refinement in space and time. The
details of these meshes are summarized in Table 2. The interested reader is referred to [50,54]
for additional details on the computational setup.

The negative spanwise- and time-averaged pressure coefficient at Reynolds numbers
100,000, 300,000, and 460,000 are shown in Figs. 6, 7 and 8, respectively. The simula-
tion results converge to the experimental data [75] as the mesh is refined.4 In particular,
the error in the transition location is below 0.01c, 0.005c, and 0.01c at Reynolds number
100,000, 300,000, and 460,000, respectively, even with mesh No. 1. The effective resolution
of this mesh is equivalent to a cell-centered finite volume discretization with 691,200 ele-
ments. These grid requirements are much smaller than those typically needed with low-order
schemes.

The numerical results for the NACA 65-(18)10 cascade and the Eppler 387 wing demon-
strate the advantage of high-order DG methods to simulate transitional flows, as they require

4 The mismatch between the simulation and the experimental data near the leading edge is due to the missing
vortex upwash induced by the finite extent of the computational domain, and not due to discretization errors
[49,50].
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Fig. 7 ILES prediction of the transitional flow over the Eppler 387wing at Re = 300, 000: Pressure coefficient
(left), instantaneous spanwise velocity (top right), and iso-surface of the Q-criterion colored by pressure
(bottom right)

Fig. 8 ILES prediction of the pressure coefficient (left) and skin friction coefficient (right) for the Eppler 387
wing at Re = 460, 000

much fewer elements and degrees of freedom to accurately predict transition than low-order
methods. This is justified by the following observation [50]: Simulating transition is chal-
lenging mostly due to the small magnitude of the instabilities involved, rather than due to
their length and time scales. A low-order scheme may kill the small instabilities because of
high numerical dissipation even when the mesh size and time-step size are sufficiently small
to represent the length and time scales of the instabilities. We note, however, that high-order
methods become more and more computationally expensive (per degree of freedom) as the
order of accuracy increases. As discussed in [49,50], the hybridized DG methods seem to
yield the best trade-off between accuracy and computational cost for transitional flows when
the accuracy order is between 3 and 5.

3.3.4 Transonic Flow Over the T106C Low-Pressure Turbine

We present ILES results for the three-dimensional transonic flow around the T106C low-
pressure turbine (LPT) in off-design conditions [51]. The isentropic Reynolds and Mach
numbers on the outflow are Re2,s = 100, 817 and M2,s = 0.987, respectively, and the angle
between the inflow velocity and the longitudinal direction is α1 = 50.54◦. Third-order HDG
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Fig. 9 Pressure (top), temperature (center) and Mach number (bottom) fields on the periodic plane of the tran-
sonic T106C LPT. Time-averaged and instantaneous fields are shown on the left and right images, respectively.
The unsteady shocks involved are resolved within one element

and DIRK(3,3) schemes are used for the discretization. The details of the simulation setup
are presented in [51]. Figure 9 shows 2D slices of the time-averaged (left) and instantaneous
(right) pressure, temperature and Mach number fields. Several unsteady shock waves that
oscillate around a baseline position are present in this flow, as illustrated by the smoother
shock profiles in the average fields compared to the instantaneous fields. These unsteady
shocks are resolved within one element.

3.4 Bibliography Notes

The HDGmethod for the incompressible Euler and Navier–Stokes equations was introduced
in [82,88], and further developed in [59,69,81,84,99,112]. An analysis of theHDGmethod for
the steady-state incompressible Navier–Stokes equations is presented in [9]. A superconver-
gent HDGmethod for the steady-state incompressible Navier–Stokes equations is developed
in [98]. A comparison of HDG and finite volume methods for incompressible flows is pre-
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sented in [1]. No other schemes within the hybridized DG family, such as the EDG and the
IEDG methods, have been applied to incompressible flows.

The HDGmethod for the compressible Euler and Navier–Stokes equations was first intro-
duced in [95], and further investigated in [50,76,84,104,105,115]. Additional developments
of the HDGmethod for compressible flows include a multiscale method [93], a time-spectral
method [11,12], and a viscous-inviscid monolithic solver [78]. The Embedded Discontin-
uous Galerkin (EDG) and Interior Embedded Discontinuous Galerkin (IEDG) methods for
the compressible Euler and Navier–Stokes equations were presented in [96] and [54,91],
respectively, and further investigated in [49,50].

Other miscellaneous topics on hybridized DG methods for fluid flows include error esti-
mation and adaptivity [3,39,56,59,66,78,79,116,117], entropy-stable formulations [52,114],
and shock capturing for steady [77,83] and unsteady [51,53] flows. The relationship between
the stabilization matrix and the resulting Riemann solver is investigated in [48,49]. Finally,
parallel implementation and efficiency considerations are discussed in [50,100].

4 Wave Propagation in Solids

4.1 Linear Elastodynamics

Several HDG formulations have been proposed in the literature for linear elastic wave prop-
agation. Each of them has pro and cons, and they will be briefly reviewed in Sect. 4.4. We
will only focus here on the velocity—deformation-gradient formulation, which is close to
the HDG formulation we use for nonlinear elastodynamics.

4.1.1 Governing Equations

We consider small transient adiabatic perturbations of an elastic body, which is at rest in a
reference configuration �. The perturbations are described using a deformation mapping ϕ

between a reference configuration� and a current configuration�t of the form y = ϕ(X, t).
Here, X is the coordinate in the reference configuration � and y denotes the position of
material particle X after deformation at time t . The velocity is denoted by v = ∂tϕ, and
the density of the reference configuration is denoted by ρ. Let f be the body force per unit
reference volume. The motion of the elastic body under small perturbations is governed by
the following linear elastic wave equation

ρ ∂tv + ∇ · σ = f , in � × (0, T ). (30)

where σ is the Cauchy stress tensor depending on two Lamé parameters λ and μ for an
isotropic body, and on the local state of deformation ϕ. It is customary to write σ as a
function of the infinitesimal strain tensor ε under the assumption of small deformations.
However, one could also directly write σ as a function of the deformation gradient F, i.e.

σ (F) = μ
(
F + FT

)
+ (λ(tr(F) − d) − 2μ) I . (31)

Here d is the spatial dimension of the problem, I is the identity tensor and F is the deformation
gradient

F = ∂ϕ

∂X
. (32)
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Now the elastic wave equation can be rewritten as

∂t F − ∇v = 0, in � × (0, T ), (33a)

ρ ∂tv + ∇ · σ (F) = f , in � × (0, T ), (33b)

the first equation being the time derivative of (32). The boundary conditions are given as

v = vD, on ∂�D × (0, T ),

σn = tN , on ∂�N × (0, T ),
(34)

where ∂�N is a part of the boundary ∂� such that ∂�N ∪ ∂�D = ∂� and ∂�N ∩ ∂�D = ∅.

4.1.2 Formulation

The HDG method seeks an approximation (Fh, vh, v̂h) ∈ Qk
h × Vk

h × Mk
h such that

(∂t Fh, G)Th + (vh,∇ · G)Th − 〈̂vh, Gn〉∂Th = 0 (35a)

(ρ ∂tvh,w)Th + (σ (Fh),∇w)Th + 〈σ̂ hn,w〉∂Th − ( f ,w)Th = 0 (35b)

〈σ̂ hn,μ〉∂Th\� + 〈σ̂ hn − tN ,μ〉�N + 〈̂vh − vD,μ〉�D = 0 (35c)

for all G ∈ Qk
h , w ∈ Vk

h , and μ ∈ Mk
h , where the numerical flux σ̂ h is given by

σ̂ hn = σ (Fh)n − S(vh − v̂h). (35d)

Here we make use of the stabilization matrix S whose expression is discussed below.
The first two Eqs. (35a)–(35b) are obtained by multiplying the elastic wave Eqs. (33a)–(33b)
by test functions and integrating the resulting equations by parts. The third equation (35c)
enforces the continuity of the L2 projection of the numerical flux σ̂ hn and imposesweakly the
Dirichlet and Neumann boundary conditions. The last equation (35d) defines the numerical
flux.

As a side note, the pointwise stress–strain relation (31) could be applied through an
element-based L2-projection instead. For piecewise-constant Lamé parameters (used to pro-
duce the results shown in Table 3) both approaches are equivalent and provide similar results.

4.1.3 Stabilization Matrix

By using a simple dimensional analysis for the expression of the numerical flux (35d), it
turns out that the stabilization matrix should be homogeneous to an impedance. It is a natural
choice to consider impedances either the compressional elastic wave impedance, i.e. ρcp , or
the shear wave impedance, i.e. ρcs . A simple choice for S would therefore be

S = ρcp I, or S = ρcs I, (36)

where cp = √
(λ + 2μ)/ρ is the compressional wave velocity, and cs = √

μ/ρ is the shear
wave velocity. More sophisticated parameter-free S have been proposed in [110] do deal with
impedance jumps at element boundaries, and acoustic waves coupling. However, for linear
elastic wave problems, the accuracy of the approximation is only slightly dependent on S,
and therefore a wide range of values is acceptable for S. It appears that, most of the time,
choosing either one of the two impedances provides very satisfactory results.
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4.2 Nonlinear Elastodynamics

4.2.1 Governing Equations

We now consider large time-dependent deformations of an elastic body defined by a defor-
mation mapping ϕ between a reference configuration� and a current configuration�t of the
form y = ϕ(X, t). Here, X is the coordinate in the reference configuration � and y denotes
the position of material particle X after deformation at time t . The velocity is denoted by
v = ∂tϕ, and the density of the reference configuration is denoted by ρ. Let f be the
body force per unit reference volume. The boundary ∂� is divided into two complemen-
tary disjoint parts ∂�D and ∂�N , where the prescribed deformation vD and traction tN are
imposed, respectively. The motion of the elastic body under large deformations is governed
by the following equations stated in Lagrangian form

∂t F − ∇v = 0, in � × (0, T ), (37a)

ρ ∂tv − ∇ · P = f , in � × (0, T ), (37b)

P − FS(F) = 0, in � × (0, T ), (37c)

v = vD, on ∂�D × (0, T ), (37d)

Pn = tN , on ∂�N × (0, T ), (37e)

The equation (37a) is just the time derivative of the definition of the gradient of deformation
F. The conservation of linear momentum and equation is stated with (37b), and equation
(37c) relates the first Piola-Kirchhoff tensor P with the second one S. The two last equations
(37d)–(37e) express the boundary conditions. The gradient∇ and divergence∇· operators are
takenwith respect to the coordinate X of the reference configuration. To complete the problem
description, an initial configuration v(X, t = 0) = v0(X) and F(X, t = 0) = F0(X) for
all X ∈ � has to be prescribed.

For hyperelastic materials the first and second Piola-Kirchhoff stress tensors P and S are
derived from a scalar strain energy function ψ through

P = ∂ψ(F)

∂F
and S = 2

∂ψ(F)

∂C
, (38)

with C = FT F the right Cauchy-Green stress tensor. Hence, both P and S are functions
of the deformation gradient and material parameters. For the applications in this section, a
Saint Venant-Kirchhoff (SVK) model has been considered. For this model the second Piola-
Kirchhoff tensors is given by

S = λtr(E)I + 2μE (39)

whith the Lamé parameters (λ, μ), the Lagrangian strain tensor E = 1
2 (C − I).

Below we introduce a HDG method for solving the nonlinear elasticity Eq. (37).

4.2.2 Formulation

We seek an approximation (Fh, Ph, vh, v̂h) ∈ Qk
h × Qk

h × Vk
h × Mk

h such that

(∂t Fh, G)Th + (vh,∇ · G)Th − 〈̂vh, Gn〉∂Th = 0 (40a)

(ρ ∂tvh,w)Th + (Ph,∇w)Th + 〈 P̂hn,w〉∂Th − ( f ,w)Th = 0 (40b)

(Ph, Q)Th − (FhS(Fh), Q)Th = 0 (40c)
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〈 P̂hn,μ〉∂Th\� + 〈 P̂hn − tN ,μ〉�N + 〈̂vh − vD,μ〉�D = 0 (40d)

for all G, Q ∈ Qk
h w ∈ Vk

h , and μ ∈ Mk
h , where the numerical flux P̂h is given by

P̂hn = Phn − S(vh − v̂h). (40e)

Here the stabilization tensor S does have an important effect on both the stability and
accuracy of the method, and its design will be discussed below. Let us briefly comment
on the equations defining the HDG method. The first two Eqs. (40a)–(40b) are obtained by
multiplying the governing Eqs. (37a)–(37b) by test functions and integrating the resulting
equations by parts. The third equation (40c) is the weak version of (37c). The fourth equa-
tion (40d) enforces the continuity of the L2 projection of the numerical flux P̂hn and imposes
weakly the Dirichlet and Neumann boundary conditions. The last equation (40e) defines the
numerical flux.

4.2.3 Stability

We now give an insight into the energy evolution of our HDG method. Let us consider
Eq. (40a) with test function G = Ph , Eq. (40b) integrated by part withw = vh and Eq. (40d)
with μ = v̂h . After summing all these equations, and after some simplifications it comes the
following energy identity

(∂t Eh, 1)Th + 〈S(vh − v̂h), (vh − v̂h)〉∂Th = ( f , vh)Th + 〈t, v̂h〉�N (41)

with ∂t Eh the time derivative of the total discrete energy

∂t Eh = ∂t

(
1

2
ρv2h

)
+ Ph : ∂t Fh (42)

where the last term is equal to ∂tψh , i.e. the time derivative of the discrete elastic potential
energy. It comes from (41) that, without external actions ( f = 0 and tN = 0), and if S is
positive definite, the total energy decreases due to velocity jumps at element boundaries. The
proposed HDG scheme is therefore stable with the jump term playing a stabilization role.

4.2.4 Stabilization Matrix

The dimensional analysis done for the S in the linear case still applies for the nonlinear
one. However, when large deformations occurs it becomes necessary to increase S in order
to insure the convergence of the Newton’s method. Therefore, one simple choice for the
stabilization matrix is to scale the linear elastic S from (36) with an amplification factor, i.e.

S = α ρcp I, or S = α ρcs I, (43)

where the factor α is problem-dependent. In spite of its simplicity, the above stabilization
tensor works well for many nonlinear test cases, with, most of the time, α ∈ [1, 10]. Contrary
to the linear case, both the stability and the accuracy of our HDG scheme heavily depend on
S and therefore the coefficient α plays a crucial role. Practically, α is determined after only
a few trials.

We emphasize that it may not be a good idea to build S based on the material elasticity
tensor, as proposed for elastostatics in [107,108]. Indeed, in the linear elasticity case, this
tensor is symmetric positive-definite everywhere in the domain. However, in the nonlinear
elasticity case, it is generally no longer the case in regions where large deformation occurs. In
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Fig. 10 Clamped vibrating plate. Configurations at t = 0 (left), t = 1 (center) and t = 2 (right)

this last configuration the energy identity (41) no longer holds andNewton’smethod typically
fails to converge.

4.3 Numerical Results

We present here a simple numerical example in order to assess the convergence of our HDG
formulations for both linear and nonlinear elastodynamics. In particular, we consider a square
plate of dimensions 1 × 1 and of thickness 0.01 that is clamped on its four sides, i.e. with
homogeneous Dirichlet boundary conditions vD = 0. The plate vibrates such that the exact
deformation mapping—illustrated in Fig. 10-is

ϕ(X, t) = (0, 0, Z + 0.4 sin(π t) sin(πX) sin(πY ))T (44)

where X = (X , Y , Z)T are the positions in the undeformed initial configuration at t = 0.
Time dependent body forces, and tractions on the upper and lower surfaces are computed
from the exact solution and imposed all along the simulation. The Lamé parameters are
μ = 1 and λ = 1.5, the density ρ = 1 and the stabilization matrix is set S = 2ρcs I . The
DIRK(3,3) scheme is used for the temporal discretization, and the time-step size is chosen
sufficiently small so that the spatial discretization errors dominate. Both linear elastic and
nonlinear hyperelastic (SVK) materials have been considered.

Numerical results are compared at t = 1 with the exact ones for HDG-Pk with polynomial
degrees k ∈ {1, 2, 3}. The 3D mesh of the plate is uniformly refined in ex and ey directions.
All simulations make use of only one element in the thickness direction. The L2-errors with
estimated orders of convergence (e.o.c) are reported in Table 3 for the linear case, and in
Table 4 for the nonlinear one.

It is worth noting that for the linear case, both the velocity and the gradient Fh converge
with the optimal order k + 1. However, the analysis does not guarantee the optimal order
of convergence for the gradient (see the discussion in Sect. 4.4). For the nonlinear case, the
velocity still converges optimally while the convergence order for the gradient Fh is not clear,
being almost k + 1/2 for linear approximations, and somewhere beween k + 1/2 and k + 1
for k ∈ {2, 3}. We emphasize that this last result depends on the choice of the stabilization
matrix, and better convergence rates have been obtained when S is allowed to vary between
simulations. However, an automatic optimal design of S for nonlinear elastic problems is
still an open issue, and it is likely that S should be adaptive, as explained in [44,45].

4.4 Bibliography Notes

As explained in the introduction, two attractive features of the HDGmethods are the optimal
convergence of the approximate gradient and the superconvergence property. Namely, when a
polynomial degree k ≥ 1 is used to build the approximate primal solution and the approximate

123



1590 Journal of Scientific Computing (2018) 77:1566–1604

Ta
bl
e
3

N
um

er
ic
al
er
ro
rs
an
d
es
tim

at
ed

or
de
rs
of

co
nv
er
ge
nc
e
fo
r
th
e
lin

ea
r
el
as
to
dy
na
m
ic
ca
se

h
H
D
G
-P

1
H
D
G
-P

2
H
D
G
-P

3

‖v
−

v
h
‖

e.
o.
c

‖F
−

F
h
‖

e.
o.
c

‖v
−

v
h
‖

e.
o.
c

‖F
−

F
h
‖

e.
o.
c

‖v
−

v
h
‖

e.
o.
c

‖F
−

F
h
‖

e.
o.
c

0.
50

00
1.
91

E
−2

–
1.
38

E
−1

–
1.
74

E
−0

3
–

1.
46

E
−0

2
–

1.
29

E
−0

4
–

2.
16

E
−0

3
–

0.
33

33
9.
96

E
−3

1.
60

6.
76

E
−2

1.
76

4.
60

E
−0

4
3.
27

4.
40

E
−0

3
2.
97

4.
07

E
−0

5
2.
84

4.
14

E
−0

4
4.
08

0.
25

00
5.
90

E
−3

1.
82

3.
92

E
−2

1.
90

1.
91

E
−0

4
3.
06

1.
56

E
−0

3
3.
59

1.
64

E
−0

5
3.
17

7.
41

E
−0

5
5.
98

0.
16

66
2.
71

E
−3

1.
92

1.
77

E
−2

1.
95

6.
19

E
−0

5
2.
77

2.
26

E
−0

4
4.
77

2.
86

E
−0

6
4.
31

1.
06

E
−0

5
4.
80

0.
12

50
1 .
54

E
−3

1.
96

1.
01

E
−2

1.
97

2.
60

E
−0

5
3.
01

9.
30

E
−0

5
3.
08

9.
08

E
−0

7
3.
98

3.
23

E
−0

6
4.
13

0.
09

09
8.
22

E
−4

1.
97

5.
36

E
−3

1.
96

9.
71

E
−0

6
3.
10

3.
56

E
−0

5
3.
02

2.
52

E
−0

7
4.
03

8.
37

E
−0

7
4.
24

0.
06

25
3.
91

E
−4

1.
98

2.
55

E
−3

1.
98

2.
99

E
−0

6
3.
14

1.
00

E
−0

5
3.
38

0.
04

35
1.
90

E
−4

1.
99

1.
24

E
−3

1.
99

–
–

–
–

123



Journal of Scientific Computing (2018) 77:1566–1604 1591

Ta
bl
e
4

N
um

er
ic
al
er
ro
rs
an
d
es
tim

at
ed

or
de
rs
of

co
nv
er
ge
nc
e
fo
r
th
e
no
nl
in
ea
r
(S
V
K
)
el
as
to
dy
na
m
ic
ca
se

h
H
D
G
-P

1
H
D
G
-P

2
H
D
G
-P

3

‖v
−

v
h
‖

e.
o.
c

‖F
−

F
h
‖

e.
o.
c

‖v
−

v
h
‖

e.
o.
c

‖F
−

F
h
‖

e.
o.
c

‖v
−

v
h
‖

e.
o.
c

‖F
−

F
h
‖

e.
o.
c

0.
50

00
6.
25

E
−3

–
4.
06

E
−2

–
2.
37

e−
03

–
1.
14

e−
02

–
8.
85

e−
04

–
3.
49

e−
03

–

0.
33

33
7.
00

E
−3

−0
.2
8

3.
90

E
−2

0.
10

8.
47

e−
04

2.
55

4.
31

e−
03

2.
40

2.
78

e−
04

2.
85

8.
61

e−
04

3.
45

0.
25

00
4.
02

E
−3

1.
93

2.
75

E
−2

1.
22

4.
06

e−
04

2.
56

1.
99

e−
03

2.
67

1.
18

e−
04

2.
99

3.
56

e−
04

3.
06

0.
16

66
1.
65

E
−3

2.
19

1.
50

E
−2

1.
49

1.
47

e−
04

2.
50

7.
26

e−
03

2.
49

2.
45

e−
05

3.
86

6.
86

e−
05

4.
06

0.
12

50
8.
71

E
−4

2.
22

9.
91

E
−3

1.
44

6.
26

e−
05

2.
97

3.
41

e−
04

2.
63

8.
65

e−
06

3.
64

2.
40

e−
05

3.
66

0.
09

09
3.
96

E
−4

2.
47

6.
36

E
−3

1.
40

2.
60

e−
05

2.
78

1.
53

e−
04

2.
52

2.
44

e−
06

3.
97

7.
04

e−
06

3.
87

0.
06

25
1.
89

E
−4

1.
97

3.
81

E
−3

1.
37

8.
98

e−
06

2.
84

5.
84

e−
05

2.
56

5.
46

e−
07

4.
00

1.
71

e−
06

3.
78

123



1592 Journal of Scientific Computing (2018) 77:1566–1604

gradient, both of them may converge with an optimal order k + 1, and the post-processed
primal solution may then converge with an extra order k+2. Although the superconvergence
property has been observed for numerous PDEs (see [84] among many others), it is not
always guaranteed. This is especially true for linear elasticity since the symmetric nature of
the infinitesimal strain and Cauchy stress tensors adds an extra difficulty. This difficulty has
motivated the development of several HDG approaches, which are briefly reviewed here.

The first HDG method for linear elastostatics was introduced by [107,108], and makes
use of a displacement-strain-stress formulation. Optimal convergence of the gradient and
superconvergence were then numerically observed. However, the analysis [57] of the same
method demonstrated that although the displacement converges with order k + 1, the sym-
metric part of the gradient converges with only k + 1/2, and the antisymmetric part of the
gradient with k. Moreover, numerical experiments illustrated that suboptimal convergence.
Thus no superconvergence property is ensured with this method, although it may sometimes
be observed. The strain-velocity formulation in [110] extends the previous method to the
elastic wave equations, with an emphasis on the proper design of S for heterogeneous media,
following a methodology similar to [5]. Numerical results for the post-processed solution
in [110] confirmed the elastostatics results. TheHDG formulation (35) presented in this paper,
as well as the stress–velocity formulation presented in the frequency domain by [4] are both
variations of the initial [108] HDGmethod (see [57]). Recently theM-decompositions theory
has been used to modify that original HDG method such that it becomes superconvergent on
2D meshes by enriching the local gradient spaces (see [21]).

Based on the study of superconvergent HDG methods for diffusion [31], the method
proposed in [36]makes use of approximateweakly symmetric stresses. The superconvergence
is then ensured, but at the cost of the extra computation of the approximate rotation tensor,
and by enriching the gradient space with matrix bubble functions, which depend on the shape
of the elements. However, it is difficult to extend this method to nonlinear elasticity since it
involves the explicit inversion of the constitutive relation.

An alternative superconvergent HDG method was proposed for elastostatics [13,97].
In [64], a 3D time-harmonic elastodynamics version of this method was presented, with
an analysis and some numerical experiments. These methods achieve an optimal k + 1 con-
vergence for the gradient, and ensure the superconvergence property at the cost of an extra
polynomial degree k + 1 for the the approximate displacement. However this computational
overcost is small since the standard degree k is still used for the approximate trace, so that
the size of the global system is not increased.

Finally, a last family of HDG methods for linear elasticity has been presented in [84,89].
Its elastodynamic version is based on a displacement gradient-velocity-pressure formulation,
making use of the relation

∇ · σ = ∇ · (μ∇u − p I) with p = −(λ + μ)∇ · u, (45)

in order to mimic the HDG formulation for the Stokes flow. Therefore it inherits all the
superconvergence properties of HDG for the Stokes equations (see [26,30,35]). This method
does not require any enrichment of the gradient space, and it allows for the treatment of
nearly-incompressible elastic materials. However, this formulation has some drawbacks.
The identity (45) holds only for homogeneous μ, and when normal stresses are applied as a
boundary condition, the superconvergence may be lost (see [88]).

Recently, a new Hybrid High Order (HHO) method was designed for linear elasticity
in [41]. Contrary to HDG, the HHO methods are based on a primal formulation, i.e. the
gradient is not considered as a separate variable. But like HDG, HHO methods make use of
a static condensation procedure to solve a global system on the approximate traces, wich are
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typically polynomials of degree k, making the computational cost of both methods similar.
Moreover, a locally reconstructed displacement field superconverges with a garanteed k + 2
order of convergence. Interestingly, in [37], the HHO method was recast into the HDG
framework to study the hidden links between the two approaches.

The HDG literature for nonlinear elasticity is less abundant. A first HDG method was
proposed in [107] and later recast as aminimization of a nonlinear functional in [67]. Optimal
convergence of the deformation and its gradient were numerically observed. The extension
of this method to nonlinear elastodynamics is provided in this paper in Sect. 4.2.

In [84] a nonlinear elastodynamic HDG scheme was proposed using a deformation
gradient-velocity-pressure formulation. Like for its linear counterpart, this formulation is
attractive since it allows for the treatment of nearly-incompressible materials. The method
presented in this paper is close, but it does not consider the pressure as a separate variable.
Interestingly, both formulations seems to provide suboptimal convergence of the approximate
gradient for k = 1, 2 while it is optimal for k = 3.

Finally, an original Green strain-displacement-velocity formulationwas proposed in [106]
for the purpose of solving fluid-structure interaction problems. Observed convergence rates
were k + 1 for the approximate displacements and velocities, but only k for the approximate
strains.

5 Electromagnetic Wave Propagation

In this section, the HDG methods are extended to the generalized Maxwell’s equations. The
resolution of Maxwell’s equations presents one major difference with the systems presented
previously. Because of the presence of the vector operator curl the electromagnetic field is
determined from its tangential component. As a consequence, theHDGmethods are redefined
with the introduction of tangential components. In addition, in low frequency regime, the
Gauss’s law needs to be numerically enforced on themodel. In case of the charge conservation
is not satisfied on the discrete level, numerical errors and instabilities are introduced. Many
techniques have been developed to impose the charge conservation condition on the system
matter [43,70]. Among them, the generalized Lagrange multiplier (GLM) method [40,80]
enforces the divergence condition by solving amodified systemwhere the constraint condition
is imposed through the using of Lagrange multiplier. The nature of the correction allows the
control of the propagation and the dissipation of divergence errors. This approach preserves
the conservation formof the generalizedMaxwell’s equations at aminimal cost of introducing
one additional scalar variable inside the system.

5.1 Governing Equations

5.1.1 Generalized Maxwell’s Equations

The generalized Maxwell’s equations are given by

ε∂t e − curl h = − j , in � × (0, T ), (46a)

μ∂th + curl e = 0, in � × (0, T ), (46b)

∇ · e = ρ

ε0
, in � × (0, T ), (46c)

∇ · h = 0, in � × (0, T ), (46d)
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where e is the electric field, h the magnetic field, and j the current density. In addition, ε, μ
and ρ denote the permittivity, permeability and the electric charge density, respectively. We
assume boundary conditions of the form

n × e × n = −n × einc × n, on ∂� × (0, T ), (47)

where n denotes the unit outward normal to ∂�, and (einc, hinc) is the incident field. Finally,
the system is supplemented with the initial conditions

e = e0, on � × {t = 0}, (48a)

h = h0, on � × {t = 0}, (48b)

where e0 and h0 are the initial electric and magnetic fields.

5.1.2 Generalized Lagrange Multipliers

In order to avoid instabilities and unphysical solutions related to electric field e, we need
to impose (46c) on the electromagnetic model. The generalized Lagrange multiplier (GLM)
method has been succesfully applied to Maxwell’s equations [40,80]. The principle of the
method is to introduce a new (non-physical) scalar fieldφ into the system (46a)–(46d) through
the differential operator D(φ) as follows

ε∂t e − curl h + ∇φ = − j , in � × (0, T ), (49a)

μ∂th + curl e = 0, in � × (0, T ), (49b)

D(φ) + ∇ · e = ρ

ε0
, in � × (0, T ). (49c)

In addition to (47), the following homogeneous Dirichlet condition is imposed

φ = 0, on ∂� × (0, T ). (50)

In order to preserve hyperbolicity of the new system, the operator D(φ) is defined as follows

D(φ) = 1

α2
1

∂tφ + 1

α2
2

φ, (51)

where α1 ∈ R
+ and α2 ∈ R

+ are dimensionless coefficients that control the amount of
artificial coupling between (49a)–(49b) and (49c). The resulting system is referred to as the
generalized Lagrange multiplier formulation of the Maxwell’s equations (GLM-Maxwell).

5.2 Formulation

To define the HDG method for the GLM-Maxwell equations we introduce the following
space:

Sk
h = {

μ ∈ [L2(Eh)]m : (μ ◦ φ
p
F ) ∈ [Pk(Fref )]mand μ · n|F = 0, ∀F ∈ Eh

}
. (52)

Note that this space consists of vector-valued functions whose normal component, μn :=
n (μ · n), vanishes on every face F of Eh . In other words, we have μ = μt := n× μ × n for
all μ ∈ Sk

h .
Multiplying the GLM-Maxwell equations by appropriate test functions and using the

fact φ = 0, the HDG discretization reads as follows: Find the approximate solution
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(
eh, hh, φh, êth

) ∈ Vk
h × Vk

h × Wk
h × Sk

h such that the following equations are satisfied
on each element K :

(ε∂t eh, v)K − (hh, curl v)K −
〈
ĥ
t
h, v × n

〉

∂K
− ( φh,∇ · v)K = − ( j , v)K , (53)

(μ∂thh,w)K + (eh, curlw)K + 〈
êth,w × n

〉
∂K = 0, (54)

1

α2
1

(∂tφh, ψ)K + 1

α2
2

(φh, ψ)K + 1

α2
3

〈φh, ψ〉∂K + (∇ · eh, ψ)K =
(

ρ

ε0
, ψ

)

K
. (55)

Note that ĥ
t
h and êth denote the approximate trace of ht := n × h × n and et := n × e × n

on the element boundaries, respectively. Next, we define ĥ
t
h as follows

ĥ
t
h = hth − τ

(
eh − êth

)× n (56)

where τ is a local stabilization parameter, and enforce the conservativity condition and the
boundary condition as follows

〈
n × ĥ

t
h,μ

〉

∂Th\∂�
+ 〈

êth + n × einc × n,μ
〉
∂�

= 0. (57)

The test functions are taken as (v,w, ψ,μ) ∈ Vk
h ×Vk

h ×Wk
h ×Sk

h . The term
1
α2
3

〈φh, ψ〉K
is added in (55) to provide additional stabilization of the divergence-free constraint.

According to the discussion on time-marching techniques in Sect. 2.3, the semi-discrete
HDG formulation can be written as the DAE system (3) with u being the vector degrees
of freedom of (eh, hh, φh) and v being the vector of degrees of freedom of êth . Note also
that when constructing the global linear system for the degrees of freedom of êth , we locally
eliminate the degrees of freedom of φh by substituting it from (55) into (53). Therefore, the
introduction of theLagrangemultiplierφh does not affect the computational complexity of the
HDGmethod. In other words, the computational complexity of the proposed HDGmethod is
the same as that of the HDG methods presented in [15,72,73,90]. Unlike the proposed HDG
method, those HDG methods do not discretize the divergence-free constraint.

5.3 Stability and Consistency

We can show that the local problem (53)–(55) is well-defined. Indeed, inserting (56) into
(53) and summing up the three equations (53)–(55) yields

(ε∂t eh, v)K + (μ∂thh,w)K + 1

α2
1

(∂tφh, ψ)K + 1

α2
2

(φh, ψ)K

+ 1

α2
3

〈φh, ψ〉∂K + 〈τ eh × n, v × n〉∂K

= 〈
τ êth × n, v × n

〉
∂K − ( j , v)K − 〈

êth,w × n
〉
∂K +

(
ρ

ε0
, ψ

)

K
. (58)

Integrating this equation from time t1 = 0 to t2 = t and choosing (v,w, ψ) = (eh, hh, φh)

as test functions, we obtain

1

2
(εeh(t), eh(t))K + 1

2
(μhh(t), hh(t))K + 1

2α2
1

(φh(t), φh(t))K

+
∫ t

0

(
1

α2
2

(φh, φh)K + 1

α2
3

〈φh, φh〉∂K + 〈τ eh × n, eh × n〉∂K
)

ds
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= 1

2
(εeh(0), eh(0))K + 1

2
(μhh(0), hh(0))K + 1

2α2
1

(φh(0), φh(0))K

+
∫ t

0

(〈
τ êth × n, eh × n

〉
∂K − ( j , eh)K − 〈

êth, hh × n
〉
∂K +

(
ρ

ε0
, φh

)

K

)
ds. (59)

This identity implies the local problem has a unique solution.
In a similar manner, the following energy identity holds for the semi-discrete HDG for-

mulation:

1

2
(εeh(t), eh(t))Th

+ 1

2
(μhh(t), hh(t))Th

+ 1

2α2
1

(φh(t), φh(t))Th

+
∫ t

0

(
1

α2
2

(φh, φh)Th
+ 1

α2
3

〈φh, φh〉∂Th
+ 〈

τ(eh − êth) × n, (eh − êth) × n
〉
∂Th

)

ds

= 1

2
(εeh(0), eh(0))Th

+ 1

2
(μhh(0), hh(0))Th

+ 1

2α2
1

(φh(0), φh(0))Th

+
∫ t

0

(
− ( j , eh)K +

(
ρ

ε0
, φh

)

K
−
〈
n × ĥ

t
h, n × einc × n

〉

∂�

)
ds. (60)

This energy identity shows the existence anduniqueness of the numerical solution. In addition,
the discrete energy

E(t) = 1

2
(εeh(t), eh(t))Th

+ 1

2
(μhh(t), hh(t))Th

+ 1

2α2
1

(φh(t), φh(t))Th
(61)

decays in time whenever j = 0, ρ = 0, and einc = 0. Hence, the HDG method is well-
defined and stable. Finally, it is easy to show that the exact solution also satisfies the HDG
formulation (53)–(57). Therefore, the HDG method is consistent.

5.4 Numerical Results

In order to demonstrate the convergence and accuracy of the HDG method, a three-
dimensional problemwith no electric charge density (i.e. ρ = 0) is considered. This problem
involves the propagation of a standing wave in a cubic cavity � = (0, 1) × (0, 1) × (0, 1)
with perfect electrical conductor (PEC) boundaries up to a final time T = 1. The permittivity
is εr = 2, the permeability μr = 1, and the current density is neglected, i.e. j = 0. The
exact solution of the problem is given by

e(x, t) =
⎡

⎣
sin(ωy) sin(ωz) sin(ωt)
sin(ωx) sin(ωz) sin(ωt)
sin(ωy) sin(ωx) sin(ωt)

⎤

⎦ ,

h(x, t) =
⎡

⎣
(cos(ωy) sin(ωx) − cos(ωz) sin(ωx)) cos(ωt)
(cos(ωz) sin(ωy) − cos(ωx) sin(ωy)) cos(ωt)
(cos(ωx) sin(ωz) − cos(ωy) sin(ωz)) cos(ωt)

⎤

⎦ ,

where the angular frequency (or pulsation) is ω = 1. The GLM coefficients are set to
α1 = α2 = α3 = 1, and the stabilization parameter to τ = 2. The DIRK(3,3) scheme is used
for the temporal discretization, and the time-step size is chosen sufficiently small so that the
spatial discretization errors dominate.

Tables 5, 6 and 7 present the numerical errors and estimated orders of convergence (e.o.c)
for HDG-Pk with polynomial degrees k = 1, 2 and 3, respectively. The convergence rates

123



Journal of Scientific Computing (2018) 77:1566–1604 1597

Table 5 Numerical errors and estimated orders of convergence with HDG-P1

h L2 norm H(curl) norm

‖h − hh‖ e.o.c ‖e − eh‖ e.o.c ‖h − hh‖ e.o.c ‖e − eh‖ e.o.c

1/2 4.25E−02 – 7.41E−02 – 1.98E−01 – 6.59E−01 –

1/4 8.94E−03 2.2 1.08E−02 2.8 4.72E-02 2.0 2.34E−01 1.5

1/8 1.88E−03 2.3 1.97E−03 2.5 1.97E−02 1.3 9.67E−02 1.3

Table 6 Numerical errors and estimated orders of convergence with HDG-P2

h L2 norm H(curl) norm

‖h − hh‖ e.o.c ‖e − eh‖ e.o.c ‖h − hh‖ e.o.c ‖e − eh‖ e.o.c

1/2 9.15E−03 – 1.86E−02 – 5.40E−02 – 1.45E−01 –

1/4 3.23E−04 4.8 6.76E−04 4.8 7.56E−03 2.8 1.58E−02 3.2

1/8 2.75E−05 3.6 5.13E−05 3.7 1.54E−03 2.3 2.85E−03 2.5

Table 7 Numerical errors and estimated orders of convergence with HDG-P3

h L2 norm H(curl) norm

‖h − hh‖ e.o.c ‖e − eh‖ e.o.c ‖h − hh‖ e.o.c ‖e − eh‖ e.o.c

1/2 1.06E−03 – 1.04E−03 – 9.14E−03 – 1.39E−02 –

1/4 1.50E−05 6.1 1.33E−05 6.3 3.36E−04 4.8 4.73E−04 4.9

1/8 5.73E−07 4.7 4.54E−07 4.9 2.69E−05 3.7 3.55E−05 3.7

Table 8 Numerical errors and
estimated orders of convergence
for the Lagrange multiplier φ

with HDG-Pk , k = {1, 2, 3}

h HDG-P1 HDG-P2 HDG-P3

‖φ − φh‖ e.o.c ‖φ − φh‖ e.o.c ‖φ − φh‖ e.o.c

1/2 8.90E−03 – 7.39E−04 – 1.48E−04 –

1/4 1.13E−03 3.0 2.52E−05 4.9 1.80E−06 6.4

1/8 2.07E−04 2.5 1.59E−06 4.0 5.86E−08 4.9

and errors for φh are shown in Table 8. We observe that the convergence rates are optimal for
all the variables. Finally, we compare the time evolution of the L2-error norm of ∇ · eh for
the uncorrected Maxwell’s equations and the GLM-Maxwell system. In particular, Fig. 11
shows the time evolution for various polynomial orders on a 8 × 8 × 8 mesh. We observe
that the errors with the GLM-Maxwell model are smaller than those with the uncorrected
Maxwell’s equations. Therefore, the numerical treatment of the divergence-free constraint
using the GLM-Maxwell model enhances accuracy and long-time stability.
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Fig. 11 Comparison of the numerical errors in the L2 norm of∇·eh computedwith the uncorrectedMaxwell’s
equations (black) and the corrected GLM-Maxwell model (blue): HDG-P2 (left) and HDG-P3 (right)

5.5 Bibliography Notes

Discretization of Maxwell’s equations in high-frequency regime using HDG methods has
been done in both frequency and time domains [14,15,46,71–74,90,113,119]. The first HDG
method for the time-harmonicMaxwell’s equationswas proposed in [90] for two-dimensional
problems. The extension of the method to three dimensions was presented in [72,73]. HDG
was employed for full 3D modeling of the resonant transmission of THz waves through
annular gaps in the field of nanoplasmonics [94,118]. An HDG method for computing non-
local electromagnetic effects in three-dimensional metallic nanostructures has been recently
introduced in [113].

6 Perspectives

In spite of considerable effort towards making DGmethods more robust and computationally
efficient, there are still open problems demanding advances on several research fronts. We
end this paper with perspectives on ongoing extension and new development of hybridized
DG methods for wave propagation problems. While HDG has been only applied to a wide
variety of wave propagation problems, EDG and IEDG have been applied to compressible
flows. Due to their significantly lower computational cost, the application of EDG and IEDG
methods to solid mechanics, incompressible flows, and electromagnetism is encouraged.

Hybridized DG methods use polynomial spaces to approximate the solution on elements
and faces. A possible extension is the enrichment of the approximation spaces with non-
polynomial functions in order to capture discontinuities, singularities, and boundary layers.
The hybridized DG framework may lend itself for this task because the enrichment can be
done at the element level thanks to the discontinuous nature of the approximation spaces.
Indeed, an HDG method using exponential kernels for high-frequency wave propagation is
proposed in [92], and an extendedHDGmethodwith heaviside enrichment for heat bimaterial
problems is developed in [62].

In this paper, we have exclusively focused on implicit hybridized DG methods. It is
highly desirable to develop hybridized DG methods that can be coupled with explicit time
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discretization for time-dependent problems. They should be computationally competitive to
other explicit DGmethods, while retaining some important advantages such as the supercon-
vergence property. As a step in this direction, explicit HDG methods have been devised for
the acoustics wave equation [109]. While extension of the explicit HDG methods to elasto-
dynamics and electromagnetics is quite straightforward, it is not trivial to develop efficient
explicit HDG methods for fluid dynamics. Another area of interest is to devise hybridized
DGmethods coupled with implicit-explicit (IMEX) time-marching schemes. This is recently
persued for acoustics wave problems [68].

Also, the time-marching schemes for hybridized DG methods discussed herein are dis-
sipative in the sense that the discrete energy is decaying in time for problems in which the
exact energy is invariant in time. For many wave propagation problems, it is crucial to equip
numerical methods with desirable conservation properties such as energy and momentum
conservations for long-time simulations. There have been recent work on symplectic HDG
methods for acoustic waves [24,103]. It will be interesting to develop symplectic HDGmeth-
ods for shallow water waves, elastic waves, and electromagnetic waves.

Finally, we point out other work on the development of HDG methods for wave propa-
gation problems. The first HDG method for the Helmholtz equation was introduced in [61].
In [47], a wide family of discontinuous Galerkin methods, which included the HDG meth-
ods, were proven to be stable regardless of the wave number. The methods used piecewise
linear approximations. In [38], an analysis of the HDGmethods for the Helmholtz equations
was carried which shows that the method is stable for any wave number, mesh and polyno-
mial degree and which recovers the orders of convergence and superconvergence obtained
previously in [61]. In [60], the HDG method for eigenvalue problems was developed and
analyzed. HDGmethods for the Oseen equations were developed and analyzed in [8]. A sys-
tematic way of defining HDGmethods for Friedrichs’ systems has been developed in [5]. An
explicit HDGmethod for Serre-Green-Naghdi wavemodel is devised in [102]. The first HDG
method for solving Korteweg-de Vries (KdV) type equations is developed and analyzed in
[42]. An HDGmethod for coupled fluid-structure interaction problems is presented in [106].
Hybridized DG methods for ideal and resistive MHD problems are recently developed in
[16].
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