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We introduce a hybridized multiscale discontinuous Galerkin (HMDG) method for the
numerical solution of compressible ows. The HMDG method is developed upon extending
the hybridizable discontinuous Galerkin (HDG) method presented in [30]. The extension
is carried out by modifying the local approximation spaces on elements. Our local ap-
proximation spaces are characterized by two integers (n�; k�), where n� is the number of
subcells within an element and k� is the polynomial degree of shape functions de�ned on
the subcells. The selection of the value of (n�; k�) on a particular element depends on the
smoothness of the solution on that element. More speci�cally, for elements on which the
solution is smooth, we choose the smallest value n� = 1 and the highest degree k� = k.
For elements containing shocks in the solution, we use the largest value n� = n and the
lowest degree k� = 0 so as to capture shocks without using arti�cial viscosity and limiting
slopes/uxes. The proposed method thus combines the accuracy and e�ciency of high-
order approximations with the robustness of low-order approximations. Numerical results
are presented to demonstrate the performance of the proposed method.

I. Introduction

The numerical simulation of compressible ows has become an indispensable tool for many important
applications such as aero-acoustics, vehicle design and turbomachinery. Although the ever increasing com-
puter power allows us to solve complex problems that would have been intractable a few years ago, there
are still many problems of practical interest for which the existing methods are inadequate. Therefore, the
development of robust, accurate, and e�cient methods for the numerical solution of the compressible Navier-
Stokes equations in complex geometries remains a topic of considerable importance. Many complex ows
are not amenable to low-order descriptions due to a number of intrinsic limitations in these schemes. Specif-
ically, the description of shock propagation is particularly challenging as common low-order shock-capturing
schemes necessarily smear the shock across the scale of interest. The wave-dispersion errors associated with
low-order schemes are unacceptable for many applications. On the other hand, when high-order methods are
used to describe shock waves and sharp discontinuities, they are generally less robust than their low-order
counterparts due to the Gibbs phenomenon. Hence, it is desirable to develop numerical schemes that identify
solution smoothness across the entire domain and apply suitable local approximations at element level to
achieve both robustness and accuracy.

In recent years, discontinuous Galerkin (DG) methods [2{4,11,12,14,15,33{35] have attracted considerable
attention because they possess a number of desirable properties for solving nonlinear hyperbolic systems of
conservation laws. In particular, the DG methods work well on arbitrary meshes, result in stable high-order
discretization of the convective and di�usive operators, allow for a simple and unambiguous imposition of
boundary conditions, and are well-suited to adaptive strategies. However, the DG methods were criticized
for providing sub-optimally convergent approximations for the ux as well as for producing a substantially
larger amount of globally-coupled degrees of freedom (for the same mesh and polynomial degree of the
approximation) in comparison to the well-established �nite element methods for di�usion problems. In

�Research Scientist, Department of Aeronautics and Astronautics, M.I.T., 77 Massachusetts Avenue, AIAA Member.
yPostdoctoral Associate, Department of Aeronautics and Astronautics, M.I.T., 77 Massachusetts Avenue, AIAA Member.
zPhD Candidate, Department of Aeronautics and Astronautics, M.I.T., 77 Massachusetts Avenue, AIAA Student Member.
xProfessor, Department of Aeronautics and Astronautics, M.I.T., 77 Massachusetts Avenue, AIAA Associate Fellow.

1 of 13

American Institute of Aeronautics and Astronautics

51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition
07 - 10 January 2013, Grapevine (Dallas/Ft. Worth Region), Texas

AIAA 2013-0689

Copyright © 2013 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

D
ow

nl
oa

de
d 

by
 M

IT
 L

IB
R

A
R

IE
S 

on
 A

ug
us

t 1
6,

 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
3-

68
9 

http://crossmark.crossref.org/dialog/?doi=10.2514%2F6.2013-689&domain=pdf&date_stamp=2013-01-05


response of these criticisms, the hybridizable discontinuous Galerkin (HDG) methods were �rst introduced
in [10] and later extended in [7{9,21{27].

The �rst HDG method for the compressible Euler and Navier-Stokes equations was introduced in [30].
This method possesses a number of desirable properties. First, in implicit formulations they reduce the
globally coupled unknowns to the numerical trace of the solution on element boundaries, thereby leading to
a signi�cant reduction in the degrees of freedom. Second, they provide, for smooth (e.g. viscous-dominated)
problems, approximations of all the variables which converge with the optimal order of k+1 in the L2-norm.
And third, they possess some superconvergence properties that allow us to compute a new approximate
velocity which converge with order k + 2 for k � 1.

In this paper, building on the previous work [30], we introduce a hybridized multiscale discontinuous
Galerkin (HMDG) method for numerically solving compressible ows. The essential ingredients are (1) a
local Galerkin projection of the underlying PDEs at the element level onto suitable local approximation
spaces, (2) a judicious choice of the numerical ux to provide stability and consistency and (3) a global
jump condition that enforces the continuity of the numerical ux to arrive at a global system in terms of the
numerical trace. The local approximation spaces are characterized by two integers (n�; k�), where n� 2 [1; n]
is the number of subcells within an element and k� 2 [0; k] is the polynomial degree of shape functions de�ned
on the subcells. The selection of the value of (n�; k�) on a particular element depends on the smoothness
of the solution on that element. More speci�cally, for elements on which the solution is smooth, we choose
the smallest value n� = 1 and the highest degree k� = k. For elements containing shocks in the solution,
we use the largest value n� = n and the lowest degree k� = 0. The proposed method thus combines the
accuracy and e�ciency of high-order approximations with the robustness of low-order approximations. A
key advantage of the HMDG method is that it can capture shocks without using arti�cial viscosity and
limiting slopes/uxes.

The paper is organized as follows. In Section 2, we introduce the notation used throughout the paper.
We introduce the HMDG method for the compressible Euler equations in Section 3 and the compressible
Navier-Stokes equations in Section 4. In Section 5, we briey describe the smoothness and shock indicators
used to determine the smoothness and shock location. In Section 6, we provide numerical results to assess
the performance of the method.

II. Notation

Throughout this paper we shall denote scalar variables by italic letters with no boldface (a;A; b; B; etc.),
vector variables by italic boldface lowercase letters (a; b; etc.), and second-order tensor variables by italic
boldface uppercase letters (A;B; etc.). The identity tensor shall be denoted by I. The components of a
and A shall be denoted as ai and Aij , respectively. The symbols, �, �, 
, shall denote the usual scalar
product, vector product, and tensor product, respectively. We shall use boldface roman uppercase letters
(A;B; etc.) to denote matrices with entries (Aij ; Bij ; etc.) and boldface roman lowercase letters (a;b; etc.)
to denote column vectors with elements (ai; bi; etc.). We shall also denote sets and spaces by calligraphic
letters (A;B; etc.). In this paper, the tensor product notation and matrix product notation are interchanged,
that is, a � b = aT b, a
 b = abT , A � b = Ab and A �B = AB.

A. Finite element mesh

Let 
 be a physical domain in Rd with Lipschitz boundary @
 in Rd�1. We denote by Th(
) a collection
of disjoint elements (triangles and tetrahedrons) that partition 
. We also denote by @Th(
) the set f@K :
K 2 Thg, that is, a collection of the boundaries of all elements in Th. We shall denote by n the outward unit
normal of @K. For an element K of the collection Th(
), F = @K \ @
 is the boundary face if the d � 1
Lebesgue measure of F is nonzero. For two elements K+ and K� of the collection Th, F = @K+ \ @K� is
the interior face between K+ and K� if the d� 1 Lebesgue measure of F is nonzero. Let Fo

h(
) and F@
h (
)

denote the set of interior and boundary faces, respectively. We denote by Fh(
) the union of Fo
h(
) and

F@
h (
). Note that by de�nition @Th(
) and Fh(
) are di�erent. More precisely, an interior face is counted

twice in @Th(
) but once in Fh(
) and a boundary face is counted once in both @Th(
) and Fh(
).
For every element K of the collection Th(
), we divide it into n� subcells and denote by Sn�(K) a

collection of n� disjoint subcells that partition K. We denote by @Sn�(K) � f@S : S 2 Sn�(K)g a collection
of the boundaries of all subcells in Sn�(K). We also denote by En�(K) the set of all faces in Sn�(K).

2 of 13

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 M

IT
 L

IB
R

A
R

IE
S 

on
 A

ug
us

t 1
6,

 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
3-

68
9 



B. Approximation spaces

Let P‘(D) denote the set of polynomials of degree at most ‘ on a domain D and L2(D) be the space of
square integrable functions on D. For K 2 Th(
) we introduce �nite element spaces

Wk�
(Sn�(K)) = fa 2 [L2(Sn�(K))]m : ajS 2 [Pk�

(S)]m; 8S 2 Sn�(K)g;

Vk�
(Sn�(K)) = fA 2 [L2(Sn�(K))]m�d : AjS 2 [Pk�

(S)]m�d; 8S 2 Sn�(K)g;

where a = (ai); 1 � i � m, and A = (Aij); 1 � i � m; 1 � j � d. For K 2 Th(
), we further introduce �nite
element spaces on En�(K) as

Yk�
(En�(K)) = fy 2 [L2(En�(K))]m : yjE 2 [Pk�

(E)]m; 8E 2 En�(K)g;

where y = (yi); 1 � i � m. Note that Yk�
(En�(K)) consists of functions which are continuous inside the

faces E 2 En�(K) and discontinuous at their borders. It is important to note that the polynomial degree k�

varies with K.
In addition, we introduce a �nite element space on Fh(
) as

Mk(Fh(
)) = f� 2 [L2(Fh(
))]m : �jF 2 [Pk(F )]m; 8F 2 Fh(
)g;

for � = (�i); 1 � i � m. Note that Mk(Fh(
)) consists of functions which are continuous inside the faces
F 2 Fh(
) and discontinuous at their borders. Note that the polynomial degree k is �xed.

For functions a and b in L2(D), we denote (a; b)D =
R

D
ab if D is a domain in Rd and ha; biD =

R
D
ab if

D is a domain in Rd�1. Likewise, for functions a and b in (L2(D))m, we denote (a; b)D =
R

D
a � b if D is

a domain in Rd and ha; biD =
R

D
a � b if D is a domain in Rd�1. For functions A and B in (L2(D))m�d,

we denote (A;B)D =
R

D
tr(ATB) if D is a domain in Rd and hA;BiD =

R
D

tr(ATB) if D is a domain in
Rd�1, where tr is the trace operator of a square matrix. Finally, we introduce the following volume inner
products

(a; b)Sn� (K) =
X

S2Sn� (K)

(a; b)S ; (A;B)Sn� (K) =
X

S2Sn� (K)

(A;B)S ;

on Sn�(K) for K 2 Th(
), and

(a; b)Th(
) =
X

K2Th(
)

(a; b)K ; (A;B)Th(
) =
X

K2Th(
)

(A;B)K ;

on Th(
). We also de�ne boundary inner products

ha; bi@Sn� (K) =
X

S2Sn� (K)

ha; bi@S ; hA;Bi@Sn� (K) =
X

S2Sn� (K)

hA;Bi@S ;

and
ha; bi@Th

=
X

K2Th

ha; bi@K ; hA;Bi@Th
=
X

K2Th

hA;Bi@K :

All of the above notations and de�nitions are necessary for the description of the ideas in this paper.

III. The Euler Equations

A. Governing equations

We consider the Euler equations of gas dynamics de�ned over a domain 
 � Rd written in nondimensional
conservation form as

@u

@t
+r � F (u) = 0; in 
; (1)

where u is the m-dimensional vector of conserved dimensionless quantities (namely, density, momentum
and energy) and F (u) are the inviscid uxes of dimension m � d. The nondimensional form of the Euler
equations we use here can be found in Ref. [1]. Of course, the Euler equations (1) must be supplemented
with appropriate initial conditions and boundary conditions at the inow section, outow section, and solid
wall.
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B. The HMDG method

We �rst introduce the numerical trace �h 2 Mk(Fh(
)) which is an approximation to the �eld variable
u on the set Fh(
). For any element K 2 Th(
) we de�ne a so-called local problem in which we seek an
approximation (uh; buh) 2Wk�

(Sn�(K))�Yk�
(En�(K)) such that�@uh

@t
;w
�
Sn� (K)

� (F (uh);rw)Sn� (K) +
D bFh � n;w

E
@Sn� (K)

= 0;D bFh � n;y
E

@Sn� (K)n@K
+ hbuh � �h;yi@K = 0;

(2)

for all (w;y) 2 Wk�
(Sn�(K)) � Yk�

(En�(K)). The above problem can be solved at the element level
whenever the numerical trace �h is known. In other words, the local problem de�nes (uh; buh) as a function
of �h. We would like to point out that the local problem (2) is nothing but the HDG discretization of the
Euler equations (1) with a Dirichlet boundary condition u = � at the element level.

Of course, we need to de�ne the numerical ux bFh � n such that it guarantees the stability of the local
problem. Following [30,31] the numerical ux is de�ned as

bFh � n = F (uh) � n+ S(uh; buh)(uh � buh); (3)

where S(uh; buh) is the so-called stabilization matrix which plays an important role in the stability of the
method. The choice of the stabilization matrix is discussed in [30, 31]. It should be obvious from (2) that
the numerical ux bFh � n is also a function of the numerical trace �h.

We �nally need to determine �h. This is done by requiring that �h 2Mk(Fh(
)) is the solution ofD bFh(�h) � n;�
E

@Thn@

+
Dbbh(�h);�

E
@


= 0; � 2Mk(Fh(
)): (4)

Here bbh(�h) is the boundary ux whose precise de�nition depends on the boundary conditions on @
 and
is discussed in detail in [30, 31]. Note that (4) is the global weak statement that enforces the continuity of
the numerical ux across element interfaces and imposes the boundary conditions.

C. Implicit time discretization

Implicit time stepping methods are used to advance the system (2)-(4). For simplicity of exposition we
consider the Backward-Euler scheme to discretize the time derivative since time integration using high-order
backward di�erence formulae (BDF) schemes and diagonally implicit Runge-Kutta (DIRK) methods admits a
similar procedure. At time level tj = j�t we seek an approximation (uj

h; buj
h) 2Wk�

(Sn�(K))�Yk�
(En�(K))

such that �uj
h � u

j�1
h

�t
;w
�
Sn� (K)

+ (F (uj
h);rw)Sn� (K) �

D bF j
h � n;w

E
@Sn� (K)

= 0;D bF j
h � n;y

E
@Sn� (K)n@K

+
Dbuj

h � �
j
h;y

E
@K

= 0;
(5)

for all (w;y) 2Wk�
(Sn�(K))�Yk�

(Sn�(K)). The local problem (5) de�nes (uj
h; buj

h) as a function of �j
h.

The numerical ux at time tj is de�ned as

bF j
h � n = F (uj

h) � n+ S(uj
h; buj

h)(uj
h � buj

h): (6)

Of course, bF j
h depends implicitly on �j

h via the local problem (5).
Finally, the numerical trace �j

h 2Mk(Fh(
)) satis�esD bF j
h(�j

h) � n;�
E

@Thn@

+
Dbbj

h(�j
h);�

E
@


= 0; � 2Mk(Fh(
)): (7)

This is the global weak statement that enforces the continuity of the numerical ux across element interfaces
and imposes the boundary conditions.

The implementation of the HMDG method can be carried in a similar fashion as that of the hybridized
discontinuous Petrov-Galerkin (HDPG) method introduced in [20].
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IV. The Navier-Stokes Equations

A. Governing equations

We consider the compressible Navier-Stokes equations written in conservation form as

q �ru = 0; in 
;
@u

@t
+r � (F (u) +G(u; q)) = 0; in 
;

(8)

where F (u) and G(u; q) are the inviscid and viscous uxes of dimension m and m � d, respectively. The
nondimensional form of the Navier-Stokes equations as well as the de�nition of the inviscid and viscous uxes
can be found in Ref. [1]. Of course, the Navier-Stokes equations (8) must be supplemented with appropriate
initial conditions and boundary conditions at the inow section, outow section, and solid wall.

B. The HMDG method

For any elementK 2 Th(
) we de�ne a so-called local problem in which we seek an approximation (qh;uh; buh) 2
Vk�

(Sn�(K))�Wk�
(Sn�(K))�Yk�

(En�(K)) such that

(qh;v)Sn� (K) + (uh;r � v)Sn� (K) � hbuh;v � ni@Sn� (K) = 0;�@uh

@t
;w
�
Sn� (K)

� (F (uh; qh);rw)Sn� (K) +
D bFh � n;w

E
@Sn� (K)

= 0;D bFh � n;y
E

@Sn� (K)n@K
+ hbuh � �h;yi@K = 0;

(9)

for all (v;w;y) 2 Vk�
(Sn�(K))�Wk�

(Sn�(K))�Yk�
(En�(K)). The above problem de�nes (qh;uh; buh) as

a function of �h. Again the local problem (9) is nothing but the HDG discretization of the Navier-Stokes
equations (8) with a Dirichlet boundary condition u = � at the element level.

To ensure the stability of the local problem, the numerical ux is de�ned asbFh � n = F (uh; qh) � n+ S(uh; buh)(uh � buh); (10)

It should be noted from (9) that the numerical ux bFh � n is also a function of the numerical trace �h.
Finally, we �nd �h 2Mk(Fh(
)) such thatD bFh(�h) � n;�

E
@Thn@


+
Dbbh(�h);�

E
@


= 0; � 2Mk(Fh(
)): (11)

This is the global weak formulation that enforces the continuity of the numerical ux across element interfaces
and imposes the boundary conditions.

Implicit time stepping methods are then used to discretize the time derivative of (9) as described in the
previous section. This results in a fully discrete nonlinear system which can then be solved by using the
Newton-Raphson method and the hybridization technique as described in [20].

V. Smoothness and Shock Indicators

A. Smoothness indicator

As mentioned in the Introduction section, we determine the number of subcells n� and polynomial degree
k� for our local approximation spaces based on the smoothness of the solution. In order to determine the
smoothness of the solution, we use the discontinuity sensor introduced in [29, 32]. In particular, we express
the solution within each element in terms of a hierarchical family of orthogonal polynomials. For smooth
solutions, the coe�cients in the expansion are expected to decay very rapidly. On the other hand, when
the solution is not smooth, the strength of the discontinuity will dictate the rate of decay of the expansion
coe�cients.

Let s be an appropriate sensor variable (e.g. density, pressure). We express s within each element
K 2 Th(
) in terms of a hierarchical orthogonal basis as

s =
NX

i=1

si i(x); (12)
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where N is the total number of terms in the expansion and  i(x) are the orthogonal basis functions. We
denote by �s a truncated expansion of the above expression up to leading M(� N) terms. We then de�ne
the smoothness indicator as

I(s) = log10

(s� �s; s� �s)K

(s; s)K
: (13)

The convergence rate of I(s) to zero as M ! N will determine the smoothness of the solution.

B. Shock indicator

In [19, 28], we propose to use the HDG method with arti�cial viscosity for shock capturing. In this paper,
we use it as a shock indicator. More speci�cally, our shock indicator variable is speci�ed as follows

sK =
Z

K

f
�‘r � v

c

�
dx; 8K 2 Th(
); (14)

where ‘ is a length scale, v is the velocity �eld, c =
p
p=� is the sound speed, and f is an analytic function

given by
f(x) = � log(1 + exp((� � x)=�)); (15)

for � = 0:1 and � = �0:5.
The value of the shock indicator variable sK will ultimately determine the strength of the shock at the

element K. The element K is marked to contain shocks if it has sK � 1=2. When shocks are detected on
K, we set k� = 0 and n� = n for a given user-speci�ed constant n.

VI. Numerical Results

A. Inviscid transonic ow past a K�arm�an-Tre�tz airfoil

The �rst example involves the transonic ow past a K�arm�an-Tre�tz airfoil at angle of attack � = 5o and
freestream Mach number M1 = 0:8. We perform a backward-Euler time integration from the free-stream
solution to obtain the steady-state solution. During this time evolution, the method automatically detect
shocks and modify the local approximation spaces at every time step. Figure 1 shows the zoom of the �nite
element meshes of 384 quadrilateral elements at the convergence of the steady-state solution for k = 2 and
k = 3. Here we use polynomials of degree k� = k to represent the numerical solution on elements with
smooth solution. For elements with non-smooth solution due to shock and leading/trailing edge, we divide
each of them into n� = 8� 8 subcells and use piecewise-constant polynomials of degree k� = 0 to represent
the numerical solution on those elements. Figure 2 displays the corresponding pressure contours. We observe
that the method is capable of capturing transonic shock and that using k = 3 yields better results than k = 2.

B. Inviscid supersonic ow past a NACA 0012 airfoil

This example involves inviscid supersonic ow past a NACA 0012 airfoil at angle of attack � = 1:5o. Figure 3
shows the zoom of the �nite element meshes of 893 triangular elements at the convergence of the steady-
state solution for M1 = 1:5 and M1 = 2:0. Here we use polynomials of degree k� = k = 4 to represent
the numerical solution on elements with smooth solution. For elements with non-smooth solution due to
shock and leading/trailing edge, we divide each of them into n� = 64 subcells and use piecewise-constant
polynomials of degree k� = 0 to represent the numerical solution on those elements. Figure 4 depicts the
corresponding Mach number contours. It is clear that our method can capture supersonic shocks robustly
without using arti�cial viscosity and a ux/slop limiter.

C. Inviscid hypersonic ow past a circular cylinder

We consider inviscid hypersonic ow past a circular cylinder at two di�erent free-stream Mach numbers
M1 = 10 and M1 = 20. This test case serves to illustrate the robustness of our method for capturing
very strong shocks in the hypersonic ow regime. We show in Figure 5 the �nite element mesh of 338
quadrilateral elements used in our computation. Each element is further divided uniformly into n� = 64
subcells for M1 = 10 or n� = 256 subcells for M1 = 20. Note that piecewise-constant polynomials k� = 0
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(a) (b)

Figure 1. The zoom of the �nite element meshes near the K�arm�an-Tre�tz airfoil for (a) k = 2 and (b) k = 3.
Here we use polynomials of degree k� = k to represent the numerical solution on elements which have the
shock indicator sK < 1=2. For elements with sK � 1=2, we divide each of them into n� = 8 � 8 subcells and
use piecewise-constant polynomials of degree k� = 0 to represent the numerical solution on those elements.
Polynomials of degree k are used to represent the numerical trace on the edges of the elements.

(a) (b)

Figure 2. Inviscid transonic ow past the K�arm�an-Tre�tz airfoil at � = 5o and M1 = 0:8: Pressure contours
for (a) k = 2 and (b) k = 3.
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(a) (b)

Figure 3. The zoom of the �nite element meshes near the NACA 0012 airfoil for (a) M1 = 1:5 and (b) M1 = 2:0.
Here we use polynomials of degree k� = k = 4 to represent the numerical solution on elements which have the
shock indicator sK < 1=2. For elements with sK � 1=2, we divide each of them into n� = 8 � 8 subcells and
use piecewise-constant polynomials of degree k� = 0 to represent the numerical solution on those elements.
Polynomials of degree k = 4 are used to represent the numerical trace on the edges of the elements.

(a) (b)

Figure 4. Inviscid supersonic ow past the NACA 0012 airfoil at � = 1:5o: Mach number contours for (a)
M1 = 1:5 and (b) M1 = 2:0.
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are used on all the subcells to represent the approximate solution. Polynomials of degree k = 4 are used to
represent the numerical trace over the edges in both cases. We present in Figure 6 the Mach number contour
and pressure contour for M1 = 10 and Figure 7 for M1 = 20. We observe that the proposed method can
capture strong bow shocks. Moreover, increasing the number of subcells per element leads to sharper shock
pro�le.

Figure 5. The �nite element mesh for inviscid hypersonic ow past a circular cylinder. Each element is
further divided into 64 subcells for M1 = 10 or 256 subcells for M1 = 20. Polynomials of degree k� = 0 are
used to represent the numerical solution on the subcells. Polynomials of degree k = 4 are used to represent
the numerical trace on the edges of the elements.

(a) (b)

Figure 6. Inviscid hypersonic ow past a circular cylinder at M1 = 10: (a) Mach number contour and (b)
pressure contour.

(a) (b)

Figure 7. Inviscid hypersonic ow past a circular cylinder at M1 = 20: (a) Mach number contour and (b)
pressure contour.

D. Laminar viscous hypersonic ow past a circular half-cylinder

The hypersonic ow over a half-cylinder is a simple test problem that highlights the di�culties in surface heat
transfer.2 The ow conditions are free-stream Mach number M1 = 17:605, Reynolds number Re = 376; 930,
heat speci�c constant  = 1:4, and Prandtl number Pr = 0:72. Boundary conditions are applied as follows.
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The no-slip adiabatic-wall condition is used on the cylinder wall, the full-state condition is used on the
outer boundary, and the extrapolation condition is use on the remaining boundary. Figure 8 shows the
computational mesh of 338 quadrilateral elements. Each element is further divided uniformly into n� = 256
subcells and piecewise-constant polynomials are used on all the subcells to represent the approximate solution.
Polynomials of degree k = 5 are used to represent the numerical trace over the edges. Figure 9 displays the
Mach number, temperature, pressure and density contours of the ow �eld. It is clear that the proposed
method is able to capture very strong shock waves without using arti�cial viscosity and a ux/slop limiter.
Moreover, the shock is very sharp and clean.

Figure 8. The �nite element mesh for laminar viscous hypersonic ow past a circular half-cylinder at M1 =
17:605 and Re = 376; 930. Each element is further divided into 256 subcells on which polynomials of degree
k� = 0 are used to represent the numerical solution. Polynomials of degree k = 5 are used to represent the
numerical trace on the edges of the mesh.

(a) (b)

(c) (d)

Figure 9. Laminar viscous hypersonic ow past a circular half-cylinder at M1 = 17:605 and Re = 376; 930: (a)
Mach number contour, (b) temperature contour, (c) pressure contour, and (d) density contour.

E. Laminar viscous hypersonic ow past a circular half-cylinder: Shock-shock interaction

This example is similar to the previous example except for the ow conditions and boundary conditions.
The ow conditions are Reynolds number Re = 194; 000, heat speci�c constant  = 1:4, and Prandtl number
Pr = 0:72. The no-slip adiabatic-wall condition is used on the cylinder wall, the full-state condition is used
on the outer boundary, and the extrapolation condition is use on the remaining boundary. For the full-state
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condition, we apply the following free-stream values

�1
1 = 1; �1

1u
1
1 = 1; �1

1v
1
1 = 0; �1

1E1 = 0:5277; M1
1 = 8:03; (16)

on one part of the outer boundary, and the following free-stream values

�2
1 = 3:3333; �2

1u
2
1 = 3:1080; �2

1v
2
1 = 0:6890; �2

1E1 = 1:7171; M2
1 = 5:25; (17)

on the remaining part. This example serves to illustrate the unique characteristics of the proposed method
for solving complex interaction of coexisting discontinuous and smooth solution regions. The interaction
results in the formation of a supersonic impinging jet, a series of shock waves, expansion waves, and shear
layers in a local region of interaction. The supersonic impinging jet, which is bounded by two shear layers
separating the jet from the upper and lower subsonic regions, impinges on the body surface, and is terminated
by a jet bow shock just ahead of the surface. This impinging jet bow shock wave creates a small stagnation
region of high temperature, pressure, and heating rates. Meanwhile, shear layers are formed to separate the
supersonic jet from the lower and upper subsonic regions.

We show in Figure 10 the �nite element mesh of 1911 quadrilateral elements. Each element is further
divided uniformly into n� = 64 subcells and piecewise-constant polynomials are used on all the subcells to
represent the approximate solution. Polynomials of degree k = 4 are used to represent the numerical trace
over the edges. We present in Figure 11 the Mach number, temperature, pressure and density contours of the
ow �eld. It is clear that the proposed method is able to resolve the complex ow �eld and capture a wide
range of shock phenomena including transonic, supersonic, and hypersonic shocks. Finally, we emphasize
that these results are obtained without using arti�cial viscosity and a ux/slop limiter.

Figure 10. The �nite element mesh consists of 1911 quadrilateral elements. Each element is further divided into
256 subcells on which polynomials of degree k� = 0 are used to represent the numerical solution. Polynomials
of degree k = 4 are used to represent the numerical trace on the edges of the mesh.

VII. Conclusions

In this paper, we have introduced a hybridized multiscale discontinuous Galerkin method for numerically
solving compressible ows. We presented several test cases to illustrate the performance of the proposed
method for a wide range of shock ows from transonic regime to hypersonic regime. The results are quite
promising as the proposed method can capture very strong shocks and produce sharp shock pro�les without
using arti�cial viscosity and a ux/slop limiter. Despite the good results, there remains some important
issues to be addressed. First, we need to improve our shock indicator because it did not perform well in the
test cases considered here. Second, we may need to increase the approximation order in the shock region
because piecewise-constant approximation is quite di�usive and a�ecting solutions in the smooth region.
Future work will aim at tackling these issues and apply this method to other applications such as RANS
ows.
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(a) (b)

(a) (b)

Figure 11. Laminar hypersonic ow past a circular half-cylinder at M1 = 8:03 and Re = 194; 000: (a) Mach
number contour, (b) temperature contour, (c) pressure contour, and (d) density contour.
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