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We present a Time-Spectral Hybridizable Discontinuous Galerkin (HDG) method for the
solution of time-periodic flow problems. Our method combines the Time-Spectral method1

with a high-order HDG discretization2,3 in space to achieve the dual benefits of spectral
accuracy in time and high-order accuracy in space. Low numerical dissipation is inherited
from the HDG method, together with a reduced number of globally coupled degrees of
freedom compared to other DG methods. The Time-Spectral method solves the entire
time-periodic solution simultaneously, thereby avoiding the cost of resolving undesired
initial transient behavior. In contrast to other frequency-domain approaches, the Time-
Spectral method represents (N − 1)/2 Fourier modes by N discrete solution snapshots in
time, allowing re-use of many parts of a conventional time-marching code. Convergence
properties of the method are demonstrated through applications to periodic convection
problems and compressible Navier-Stokes flow over a 2D pitching airfoil. In the latter
example, we find that N = 23 snapshots are sufficient to predict airfoil loading with the
same accuracy as 600 timesteps of a 2-stage 2nd-order Diagonally Implicit Runge-Kutta
time-marching scheme.

I. Introduction

Periodic flow problems arise in a broad range of applications, including unsteady aerodynamic analysis of
turbomachinery, helicopter rotors, wind turbines and flapping wings. A common approach to computing

these flows is to start with a prescribed initial condition and use Runge-Kutta or other time-marching
methods to advance a time-accurate solution.4–6 This approach often requires hundreds of timesteps per
period for an acceptable level of time accuracy, and several periods of time-integration before undesired
initial transient behavior subsides to reveal the periodic flow solution.

By contrast, a Fourier representation in time can be exploited to compute the same periodic flow state
much more efficiently, requiring only a small number of Fourier modes. Reviews of a broad spectrum of
such methods are provided by Ekici & Hall,7 He8 and Hall et al.9 The first frequency domain methods were
the time-linearized methods for small disturbance flows,10–14 followed by the nonlinear harmonic method for
approximately solving large disturbance harmonic flows.15 A more general method was introduced by Hall
et al.16–18 for the computation of large-amplitude unsteady periodic turbomachinery flows. Their Harmonic
Balance method was formulated in the frequency domain and involved the solution of spatially-varying mode
coefficients. Gopinath & Jameson1 adapted this method into a new type of Time-Spectral formulation, in
which the Fourier representation of the solution was expressed in terms of discrete “snapshots” in the time
domain (solution states at discrete time values). This transformation of the Fourier series into the time
domain results in a linear system where all snapshots of a certain spatial degree of freedom are coupled
to one another. Such a time domain formulation has the advantage that many parts of a conventional
time-marching code can be re-used in the implementation of a Time-Spectral solver.

Gopinath & Jameson successfully applied their Time-Spectral method to periodic flow problems such as
flapping wings,1 periodic unsteady vortex shedding,19 and turbomachinery flows.20 Their approach employed
a low-order Finite Volume spatial discretization. However, in recent years there has been a growing interest
in high-order methods, such as the Discontinuous Galerkin (DG) Finite Element methods. These methods
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offer greater spatial accuracy and low numerical dissipation, obtained efficiently and with desirable numerical
stability properties. In particular, a new class of Hybridizable Discontinuous Galerkin (HDG) methods has
emerged which offers the same high-order accuracy and stability of DG methods, but with a reduced number
of globally-coupled degrees of freedom.2,3, 21

In this paper we present a Time-Spectral Hybridizable Discontinuous Galerkin (HDG) method, inheriting
the high-order accuracy and low numerical dissipation of the HDG method. One difficulty of many DG meth-
ods is the large number of degrees of freedom they employ, due to duplicated degrees of freedom at element
interfaces. Constructing a Time-Spectral DG method by coupling several snapshots in time would make for
a very expensive algorithm. However, this difficulty is partly mitigated by the special structure of the HDG
spatial discretization, which features a substantially reduced number of globally-coupled degrees of freedom
while still retaining the high-order accuracy and stability of DG methods. Combining these properties of
HDG with the spectral accuracy of a Fourier representation in time, the Time-Spectral HDG method shows
promise for delivering high-order accurate solutions to periodic flow problems in a computationally efficient
manner.

The sections that follow describe further details of our Time-Spectral HDG method, and examine its
performance when applied to both linear convection problems and nonlinear compressible Navier-Stokes
flow over a pitching airfoil. Finally, we present some conclusions about the method and directions for future
work.

II. Methodology

A. Time-Spectral Method

In this section we briefly review the formulation of this Time-Spectral method of Gopinath & Jameson, 1

as it applies to the discretization of the time derivative. In general, a conservation law can be written in
semi-discrete form as follows:

M
∂u

∂t
+ R(u) = 0, (1)

where u is the solution vector, M represents a mass matrix, t is time and R(u) is a nonlinear residual vector
that is a function of u. The discrete Fourier transform of u for a given time period T is:

ûk =
1
N

N−1∑

n=0

une−ikn 2π
T Δt, k = 1, . . . , N, (2)

where un = u(tn), 1 ≤ n ≤ N, with tn = n 2πΔt
T and N is the number of snapshots. And its inverse transform

is:

un =

N
2 −1∑

k=−N
2

ûkeikn 2π
T Δt. (3)

Therefore, if ûk are known then we can recover un, and vice versa.
Now, from differentiating Equation 3, the discrete time derivative operator can be expressed in terms of

frequency domain quantities as:

Dtu
n =

2π

T

N
2 −1∑

k=−N
2

ikûkeikn 2π
T Δt. (4)

This can be rewritten in terms of time domain quantities as:

Dtu
n =

N−1∑

j=0

dj
nuj , (5)

where dj
n are constant coefficients which couple all snapshots in time, uj , for each given spatial degree of

freedom. For odd N , these coefficients are defined:19

dj
n =

π

T
(−1)n−jcosec

(
π(n − j)

N

)

. (6)
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Together, Equations 5 & 6 define a Time-Spectral discretization of the time derivative, which can be applied
to the semi-discrete form of the governing equation (1). This discretization couples all snapshots of each
spatial degree of freedom, requiring that the entire periodic flow solution be solved simultaneously.

B. Hybridizable Discontinuous Galerkin Method

In the present work we employ a high-order Hybridizable Discontinuous Galerkin (HDG) spatial discretiza-
tion,2,3 in contrast to the Finite Volume methods employed in earlier Time-Spectral method work by
Gopinath & Jameson.1 In this section we provide a brief review of the formulation of the HDG method.
To this end, we consider the time-dependent convection-diffusion model written as a system of first-order
equations

q + κ∇u = 0, in Ω × (0, T ],
∂u

∂t
+ ∇ ∙ (cu + q) = f, in Ω × (0, T ],

u = gD, on ΓD × (0, T ],
(q + cu) ∙ n = gN , on ΓN × (0, T ],

u = u0, in Ω for t = 0.

(7)

Here Ω ∈ Rd is the physical domain with boundary ∂Ω, f ∈ L2(Ω) is a source term, κ ∈ L∞(Ω) is a positive
diffusivity coefficient, and c ∈ (L∞(Ω))d is a smooth velocity vector field.

Let Th be a collection of disjoint elements that partition Ω. We denote by ∂Th the set {∂K : K ∈ Th}.
For an element K of the collection Th, e = ∂K ∩ ∂Ω is the boundary face if the d− 1 Lebesgue measure of e
is nonzero. For two elements K+ and K− of the collection Th, e = ∂K+ ∩ ∂K− is the interior face between
K+ and K− if the d − 1 Lebesgue measure of e is nonzero. Let Eo

h and E∂
h denote the set of interior and

boundary faces, respectively. We denote by Eh the union of Eo
h and E∂

h .
Let Pp(D) denote the set of polynomials of degree at most p on a domain D. For any element K of

the collection Th we denote W p(K) ≡ Pp(K) and V p(K) ≡ (Pp(K))d. We introduce discontinuous finite
element spaces

W p
h = {w ∈ L2(Ω) : w|K ∈ W p(K) ∀K ∈ Th},

V p
h = {v ∈ (L2(Ω))d : v|K ∈ V p(K) ∀K ∈ Th}.

Here L2(D) is the space of square integrable functions on D. In addition, we introduce a traced finite element
space

Mp
h = {μ ∈ L2(Eh) : μ|e ∈ Pp(e), ∀e ∈ Eh}.

We also set Mp
h(gD) = {μ ∈ Mp

h : μ = PgD on ΓD}, where P denotes the L2-projection into the space
{μ|∂Ω ∀μ ∈ Mp

h}. Note that Mp
h consists of functions which are continuous inside the faces (or edges) e ∈ Eh

and discontinuous at their borders.
For functions w and v in (L2(D))d, we denote (w, v)D =

∫
D

w ∙ v. For functions u and v in L2(D), we
denote (u, v)D =

∫
D

uv if D is a domain in Rd and 〈u, v〉D =
∫

D
uv if D is a domain in Rd−1. We finally

introduce
(w, v)Th

=
∑

K∈Th

(w, v)K , 〈ζ, ρ〉∂Th
=
∑

K∈Th

〈w, v〉∂K , 〈μ, η〉Eh
=
∑

e∈Eh

〈μ, η〉e ,

for functions w, v defined on Th, ζ, ρ defined on ∂Th, and μ, η defined on Eh.
For simplicity of exposition, we consider the Backward-Euler scheme for the discretization of the time

derivative. The HDG method then seeks an approximation (qk
h, uk

h, λk
h) ∈ V p

h × W p
h × Mp

h(gD) such that

(κ−1qk
h, v)Th

− (uk
h,∇ ∙ v)Th

+
〈
λk

h, v ∙ n
〉

∂Th
= 0,

1
Δtk

(
uk

h, w
)
Th

− (cuk
h + qk

h,∇w)Th
+
〈
(ĉu

k
h + q̂k

h) ∙ n, w
〉

∂Th

= (f, w)Th
+

1
Δtk

(
uk−1

h , w
)
Th

,
〈
(ĉu

k
h + q̂k

h) ∙ n, μ
〉

Th

= 〈gN , μ〉ΓN
,

(8)

for all (v, w, μ) ∈ V p
h × W p

h × Mp
h(0), where

ĉu
k
h + q̂k

h = c ûk
h + qk

h + τ(uk
h − λk

h)n, on ∂K.
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Here we denote uk
h = uh(tk) and qk

h = qh(tk), and u0
h as the L2 projection of u0 into W p

h . Note that τ is the
so-called stabilization parameter chosen as τ = ‖c ∙ n‖ + κ/` for some characteristic length scale `.

Other implicit time-stepping methods such as higher-order BDF methods and the fully implicit Runge-
Kutta methods can also be used to discretize the time derivative.

C. Time-Spectral HDG Method

By application of the Time-Spectral method to the PDE system (7), we obtain the following system of
equations

Q + κ∇u = 0, in Ω × (0, T ],
Du + ∇ ∙ F (u, Q) = f , in Ω × (0, T ],

(9)

where the vector u = [u1, . . . , uN ]T contains N snapshots of the solution over the period [0, T ], Q =
[q1, . . . , qN ]T with qn = κ∇un, n = 1, . . . , N , and F (u, Q) = [cu1 + q1, . . . , cuN + qN ]T . Note that D is
a square matrix with entries Dij = dj

i , 1 ≤ i, j ≤ N,, where dj
i is given by (6). (In cases where the initial

condition u0 is known a priori, it can be prescribed by removing the corresponding equations from the system
and replacing the source term f with f̃ = f −u0d0, where d0 is the 1st column of D excluding the 1st entry.)

To formulate the Time-Spectral HDG method we first introduce discontinuous finite element spaces

W p
h = {w ∈ (L2(Ω))N : w|K ∈ (W p(K))N ∀K ∈ Th},

Qp
h = {v ∈ (L2(Ω))N×d : v|K ∈ (V p(K))N ∀K ∈ Th},

Mp
h = {μ ∈ (L2(Eh))N : μ|e ∈ (Pp(e))N , ∀e ∈ Eh}.

We set Mp
h(gD) = {μ ∈ Mp

h : μ = PgD on ΓD}. The Time-Spectral HDG method then seeks an approxi-
mation (Qh, uh, λh) ∈ Qp

h × W p
h × Mp

h(gD) such that

(κ−1Qh, V )Th
− (uh,∇ ∙ V )Th

+ 〈λh, V ∙ n〉∂Th
= 0,

(Duh, w)Th
− (F (uh, Qh),∇w)Th

+
〈
F̂ (uh, Qh, λh) ∙ n, w

〉

∂Th

= (f , w)Th
〈
F̂ (uh, Qh, λh) ∙ n, μ

〉

Th

= 〈gN , μ〉ΓN
,

(10)

for all (V , w, μ) ∈ Qp
h × W p

h × Mp
h(0), where

F̂ (uh, Qh, λh) ∙ n = F (uh, Qh) ∙ n + τ(uh − λh), on ∂K.

Of course, the Time-Spectral HDG method will yield a linear system which is several times larger than the
linear system of the BDF-HDG method. However, we need to solve the linear system of the Time-Spectral
HDG method only once to obtain the numerical solution over the whole time span [0 , T ]. In this paper, we
use a direct solver to solve the linear system resulting from (10).

Thus far, we have devised the Time-Spectral HDG method for numerically solving the linear convection-
diffusion problem (7) with time-periodic solutions. Extension of this method to nonlinear systems of conser-
vation laws such as the Navier-Stokes equations is rather straightforward, and thus omitted here.

III. Application to a Time-Periodic Convection Problem

A. Governing Equation

For our first demonstration of the Time-Spectral HDG method, we solve a time-periodic convection problem
in one and two dimensions. A prescribed initial condition will be convected through a domain with spatially
periodic boundary conditions, such that the solution wraps around and returns to where it began (making
the exact solution of this problem periodic in time). The governing equation can be written:

∂u

∂t
+ ∇ ∙ (cu) = 0

in Ω × (0, T ]. (11)

In the one-dimensional case, we choose a convection velocity of c = 1 and a unit domain Ω = [0, 1] with
periodic boundary conditions on the left and right, such that the temporal period of the solution is T = 1.
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The initial condition is chosen to be a Gaussian u(x, 0) = exp[−200(x − 0.5)2)]. In the two-dimensional
case, we choose a convection velocity of c = (1, 0) and a unit square domain Ω = [0, 1] × [0, 1] with periodic
boundary conditions on the left and right, such that the temporal period of the solution is T = 1. For the
initial condition we choose a Gaussian function u(x, 0) = exp[−200((x− 0.5)2 + (y − 0.5)2))]. Homogeneous
Dirichlet boundary conditions (u = 0) are imposed on the top and bottom boundaries of the square domain,
and spatially periodic boundary conditions are imposed on the left and right boundaries.

Note that in this time-periodic convection problem, there is a prescribed initial condition ( t = 0 solution
in the periodic cycle). This contrasts to problems such as pitching airfoil flows, where the t = 0 solution is
not known a priori. In cases where an initial condition is known and required to be prescribed, it is necessary
to eliminate the t = 0 solution snapshot from the Time-Spectral HDG linear system, reducing by one the
number of snapshots to be solved and resulting in an augmented source term.

B. 1D Results

We first present results from the solution of a one-dimensional version of the time-periodic convection problem
described above. High order elements with p = 4 polynomials were used. Figure 1 shows that we attain the
expected exponential convergence of our Time-Spectral method, as measured in the space-time L2-norm of
solution error relative to the known exact solution (perfect convection). Further, this result demonstrates
the very small number of snapshots required to fully resolve the solution in time, with only N = 15 snapshots
(7 Fourier modes) required to fully resolve the solution on our finest grid (20 p = 4 high-order elements).
Note the behavior of the space-time solution error as the grid is refined – this shows that the total accuracy
of the solution is limited by the accuracy of the spatial discretization. With our high-order HDG method,
grid refinement increases solution accuracy more efficiently than for low-order methods.

3 5 7 9 11 13 15 17 19 21 23
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 

 
10 elements
15 elements
20 elements

Figure 1. Convergence of the Time-Spectral HDG method for a 1D time-periodic convection problem, mea-
sured by the L2-norm of solution error in both space and time.

C. 2D Results

We next present results from the application of our Time-Spectral HDG method to a time-periodic convection
problem in two dimensions (as defined in Section A). Figure 2 shows a few representative snapshots of the
time-periodic solution, as computed using both implicit time-marching (Backward Euler with 200 timesteps
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per period) and our Time-Spectral HDG method (with 21 snapshots, or 10 Fourier modes), on the same
spatial grid (128 p = 3 high-order elements). These plots visually illustrate the strong numerical dissipation
that arises from using low-order implicit timestepping methods without sufficiently small timestep sizes, in
contrast to the very high solution accuracy that can be obtained with a much smaller number of Fourier
modes by a Time-Spectral method. In this example, 200 timesteps of Backward Euler produced a first-period
solution that is visibly much poorer than a Time-Spectral solution with only 21 snapshots.

Figure 3 quantifies the convergence properties of our Time-Spectral HDG method in this 2D convection
application, showing that we attain the expected exponential convergence in the space-time L2 error norm.
Here we also show a comparison of the convergence behavior for high-order spatial grids with the same
number of elements but different polynomial orders p. Increasing p offers a convenient and efficient way
to decrease solution error. Here we see the spatial accuracy advantages of the high-order HDG method
appearing in combination with the temporal accuracy advantages of the Time-Spectral method.

Figure 2. Solution snapshots for a 2D time-periodic convection problem, contrasting the behavior of implicit
Backward Euler time-marching with 200 timesteps per period (upper plots) against the present work’s Time-
Spectral method with only N = 21 snapshots (10 harmonic modes) (lower plots).

IV. Application to a Pitching Airfoil

Here we demonstrate the performance of the Time-Spectral HDG method in a nonlinear setting by solving
the periodic flow over a pitching airfoil at Re = 1000.

A. Problem Description

The airfoil has a symmetric NACA 0012 profile, and moves with an oscillatory vertical translation and angle
of attack defined by:

y(t) = A cos(2πt/T ), α(t) = B sin(2πt/T ). (12)

Constants used in this example are: period T = 5, heaving amplitude A = 0.125, and pitch amplitude
B = 5◦. These parameters correspond to a Strouhal number of St = 0.05. The Reynolds number of the
flow is Re = 1000 and the inflow Mach number is M∞ = 0.2. The governing equations for this problem are
the laminar compressible Navier-Stokes equations, incorporating an Arbitrary Lagrangian-Eulerian (ALE)6

formulation to account for mesh motion. The computational domain is discretized by a high-order C-mesh
with 560 elements, shown in Figure 4.
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Figure 3. Convergence of the Time-Spectral HDG method for 2D time-periodic convection problem, measured
by the L2-norm of solution error in both space and time.

B. Computational Results

Flow around a pitching airfoil was solved using the Time-Spectral HDG method with several different
numbers of snapshots N , and on meshes with three different spatial orders (p = 3, 4, 5). To assess the
accuracy of the Time-Spectral HDG method in time, solutions were also obtained using an HDG method with
a Diagonally Implicit Runge-Kutta (DIRK) time-marching scheme.22,23 Time-marched solutions obtained
by a 3-stage, 3rd-order DIRK scheme with a very small timestep size (Δt = T/200) were used as “truth”
solutions for comparison with the Time-Spectral results.

Several interesting observations follow from the results of these computations. First of all, Figure 5
illustrates the effects of initial transient flow behavior on time-marched and Time-Spectral solutions. Shown
here through the lift coefficient time-series, a fully resolved DIRK(3,3) time-marched solution undergoes
an initial transient flow behavior that takes at least 3 full oscillation periods to subside. This behavior is
not due to numerical inaccuracy – rather, it is the physical behavior of the flow following the necessarily
imperfect initial condition prescribed for the flow at the beginning of time-marching. The result is that 3 full
periods of time-integration (300 or 600 timesteps in the example shown) are required before the computed
flow can reach a repeating periodic state. In contrast, the fully resolved Time-Spectral solution shown in
this figure completely avoids the initial transient behavior of the flow. The Time-Spectral method solves the
entire periodic flow state simultaneously. The ability to avoid the cost of resolving undesired initial transient
behavior is a key advantage of the Time-Spectral method.

The next observation is that the Time-Spectral HDG solution converges very rapidly to a fully time-
resolved solution. For example, Figure 6 shows the airfoil lift coefficient time-series computed by the Time-
Spectral HDG method with several different numbers of snapshots, N . Here we see that with only N = 5
snapshots (corresponding to just 2 harmonic modes), the lift coefficient time-series is surprisingly close to
the fully resolved solution. With N = 11 snapshots it is even closer, and at N = 21 snapshots we can no
longer see the difference visually.

For another perspective, Figure 7 uses the computed flow-fields to illustrate convergence of the Time-
Spectral HDG method. Here we show the flow-field at a few representative snapshots in time, as computed by
a Time-Spectral HDG method with N = 5 snapshots, a Time-Spectral HDG method with N = 27 snapshots,
and a highly resolved time-marched HDG solution serving as a “truth” reference (computed using DIRK(3,3)
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Figure 4. High-order mesh for pitching airfoil problem.

with timestep Δt = T/200 as previously mentioned). The flow-field from the N = 5 Time-Spectral solution
is clearly underresolved in time, smearing out the wake region of the flow. However, since the flow near the
airfoil appears well-resolved, the airfoil lift coefficient (Figure 6) can be predicted more accurately than one
might expect. At N = 27 snapshots however, the flow is so well resolved that we visually cannot distinguish
this flow from the highly resolved time-marched solution on the right.

To quantify the convergence of the Time-Spectral HDG method more precisely, Figure 8 presents the
L2-norm of the error in the lift coefficient timeseries across a range of Time-Spectral HDG solutions with
different numbers of snapshots N and different spatial orders p. For each spatial order p, the error norm is
computed with respect to a very highly resolved time-marched solution on the same mesh, obtained using
the 3-stage, 3rd-order DIRK scheme mentioned previously. This plot shows the exponential convergence in
N that we expect of the Time-Spectral method, as we observed in the convection problems presented earlier
in this paper. The different curves for each spatial order p showcase the high-order accuracy of the HDG
method, the ease with which we can obtain a more accurate solution on the same mesh, and the large gains
in accuracy that can be achieved at higher p.

Finally, we note an interesting point of comparison between the Time-Spectral HDG method and the
DIRK time-marched HDG method. A periodic flow solution was obtained for the pitching foil problem
using a 2-stage, 2nd-order DIRK scheme with Δt = T/100 over 6 periods on a p = 5 high-order mesh.
Measuring solution error the same way as in Figure 8, we found the error norm to be 0.0036. Referring
the Figure 8, we find that the Time-Spectral HDG solution with N = 23 snapshots has an error no greater
than the DIRK(2,2) solution. That is, for this demonstration problem, N = 23 snapshots are sufficient to
predict airfoil loading with the same accuracy as 600 timesteps of a 2-stage 2nd-order Diagonally Implicit
Runge-Kutta time-marching scheme.

V. Conclusions & Future Work

In this paper we have presented a Time-Spectral, high-order Hybridizable Discontinuous Galerkin (HDG)
method for solving time-periodic flow problems, and have demonstrated the performance of the method on
linear convection problems and compressible Navier-Stokes flow over a 2D pitching airfoil. These examples
have demonstrated exponential convergence in time with the number of snapshots N , and similar performance
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Figure 5. The effect of undesired initial transient behavior is evident in the lift coefficient CL(t) computed from
a fully resolved DIRK(3,3) time-marched solution (red), compared with a fully resolved Time-Spectral solution
(black). In this case, the time-marched solution must be integrated for 3 full periods (300/600 timesteps) before
the initial transient gives way to a periodic flow state.

can be expected more generally for problems with a smooth variation in time.
Key advantages of the Time-Spectral HDG method for the solution of periodic flow problems include:

• High-order accuracy and low numerical dissipation are inherited from the HDG spatial discretization.

• HDG provides a reduced number of globally coupled degrees of freedom compared to other DG methods,
helping to mitigate the difficulties associated with the large size of the Time-Spectral linear system.

• The Time-Spectral discretization provides exponential convergence in the number of snapshots N , and
for many problems the required number of snapshots N could be very low. (For the pitching airfoil
problem presented in this paper, N = 23 was sufficient to predict airfoil loading with the same accuracy
as a highly resolved DIRK(2,2) solution time-marched over 600 timesteps.)

• The Time-Spectral approach also computes the periodic solution directly, avoiding the cost of resolving
undesired initial transient behavior.

A key challenge facing this method is the large size of the associated linear system, with N times more
degrees of freedom and a Jacobian matrix N2 times larger than the time-marching case. In favor of the
Time-Spectral HDG method, this larger system must only be solved once to obtain the solution over the
entire period [0, T ]. To enable the solution of larger flow problems, further work is now underway to develop
an iterative solver for the Time-Spectral HDG system which appropriately exploits the structure of the Time-
Spectral time-derivative term. Block Jacobi preconditioning may prove effective, given the larger block size in
the Time-Spectral HDG system matrix (dense diagonal blocks are N2 times larger). On the application side,
work is in progress to combine the Time-Spectral HDG method with a sliding mesh interface for application
to turbomachinery flow problems.
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Figure 6. Rapid convergence of the Time-Spectral HDG solution to the pitching airfoil problem is seen in the
lift coefficient CL(t), shown here for different numbers of snapshots, N .
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