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SUMMARY

In this paper, we introduce a shock-capturing artificial viscosity technique for high-order unstructured mesh
methods. This artificial viscosity model is based on a non-dimensional form of the divergence of the velocity.
The technique is an extension and improvement of the dilation-based artificial viscosity methods introduced
in Premasuthan et al. [15] and further extended in Nguyen and Peraire [27]. The approach presented has a
number attractive properties including non-dimensional analytical form, sub-cell resolution, and robustness
for complex shock flows on anisotropic meshes. We present extensive numerical results to demonstrate the
performance of the proposed approach. Copyright © 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The development of robust, accurate, and efficient methods for the numerical solution of hyperbolic
nonlinear systems of conservation laws in complex geometries is a topic of considerable impor-
tance. Hyperbolic partial different equations (PDEs) govern a wide range of physical phenomena
and arise in several areas of applied mathematics and mechanics such as fluid dynamics, magneto-
hydrodynamics, multiphase flow, population dynamics, and traffic flow. A distinguishing feature of
the solutions of nonlinear hyperbolic systems is the potential for discontinuities, or shock waves, to
develop and propagate even if initial and boundary data are smooth. The presence of such disconti-
nuities is a major challenge when attempting to compute physically correct and stable solutions of
hyperbolic conservation laws. Although significant progress has been made over the past decades,
the numerical approximation of hyperbolic PDEs remains an active research area.

The compressible Euler and Navier–Stokes equations are one of the most important and widely
investigated systems of hyperbolic conservation laws. High-order methods have gained increasing
attention in recent years for the solution of the compressible Euler and Navier–Stokes equations
because of the need for high-order accuracy in applications such as direct numerical simulation,
large eddy simulation, and computational aeroacoustics. For these applications, current research
activity is aimed at the development of efficient and robust high-order methods, and their application
to real-world problems. This includes the numerical treatment of shocks, which is the focus of
this paper.

One of the most common approaches to deal with shocks in the context of high-order methods is
the use of flux/slope limiting techniques. The early Essentially non-oscillatory (ENO) and Weighted
ENO (WENO) schemes [1–3] for finite volume discretizations choose the reconstruction stencil to
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minimize oscillations around discontinuities. For discontinuous Galerkin (DG) methods, Cockburn
and Shu [4, 5] developed the Runge–Kutta discontinuous Galerkin scheme, which limits the high-
order representation of the solution inside each element. In this same fashion, Krivodonova [6]
proposed to detect shocks based on jumps at the interfaces between elements and later presented
a limiting strategy based on monitoring the high-order coefficients of the solution [7]. A major
drawback of most limiters is that they are non-smooth and thus present difficulties for implicit
time-stepping methods.

A different approach to shock capturing, dating back to the work of Von Neumann and Richt-
meyer [8] in the 1950s, is the use of artificial viscosity. Artificial viscosity has been widely used
in finite volume methods [9, 10], streamline upwind Petrov–Galerkin methods [11], and spectral
methods [12]. For higher order finite difference and finite volume methods, Cook and Cabot [13, 14]
incorporated artificial viscosity by scaling the physical viscosity terms such as the dynamic viscosity,
bulk viscosity, and thermal conductivity. The magnitude of the scaling factors is determined from
the strain rate tensor and the internal energy. This approach was later adopted by other authors in
the context of compressible turbulence simulations, and by Premasuthan et al. [15, 16] for spec-
tral difference method using only the dilation part of the shock sensor proposed by Bhagatwala and
Lele [17].

Artificial viscosity has also been employed with DG methods to capture shocks by applying
artificial viscosity to all the equations and using artificial viscosity coefficients, or sensors, based on
element residuals [18–22]. However, these residual-based methods tend to present some robustness
issues when used with high-order methods and strong shocks.

Persson and Peraire [23] introduced a sub-cell shock-capturing artificial viscosity approach for
high-order DG methods where the artificial viscosity coefficient is based on the smoothness of
the computed density, which in turn is determined by the rate of decay of the coefficients of an
orthogonal expansion of the density field. Later, Klockner et al. [24] and Persson [25] improved
this model by considering a continuous piecewise linear reconstruction of the artificial viscosity
coefficient. Barter and Darmofal [26] proposed a PDE-based artificial viscosity model appended to
the system of governing equations to obtain a smoother artificial viscosity coefficient at the expense
of solving an additional PDE.

In this paper, we present a shock-capturing artificial viscosity technique for high-order methods.
The artificial viscosity coefficient is based on a non-dimensional form of the divergence of the veloc-
ity and is designed to obtain sub-cell shock resolution with high-order discretizations. The technique
is an extension and improvement of the dilation-based artificial viscosity methods considered by
Nguyen and Peraire [27] and Premasuthan et al. [15, 16]. The present technique has a smooth non-
dimensional shock sensor with analytical form and is robust for complex flows on highly anisotropic
meshes. Moreover, the technique can be implemented in any high-order numerical scheme in a
straightforward manner. In this paper, we employ the hybridizable discontinuous Galerkin (HDG)
method [28–31] with the proposed artificial viscosity model for the Euler equations. Compared with
other DG methods, the HDG method possesses some crucial advantages in terms of global degrees
of freedom count and convergence properties, as documented in recent work [30–33].

The paper is organized as follows. In Section 2, we introduce the governing equations, present
the numerical method used, and describe the proposed artificial viscosity technique. In Section 3,
we present extensive numerical results in 1D to calibrate and verify the model. In Section 4, we
consider the multi-dimensional problem and show a variety of 2D flows. Finally, in Section 5, we
present conclusions and discuss some directions for future research.

2. GOVERNING EQUATIONS AND DISCRETIZATION

We are interested in the solution of the equations that govern compressible flows. In the invis-
cid case, these are given by the Euler equations, which, written in conservative form, read
as follows:

@u
@t
Cr � F.u/ D 0; (1)
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where

u D

2
64
�

�vi

�E

3
75 ; F.u/ D

2
64

�vi

�vivj C Pıij

�viH

3
75 : (2)

Here, � represents the density, vi is the component of the velocity in the i-th cartesian space dimen-
sion, E is the total specific energy, H D E C P=� is the total specific enthalpy, and t is time. The
pressure, P , the density, and the temperature, T , obey the ideal gas law:

P D �RT; (3)

where R is the specific gas constant for air.
The governing equations in conservative form are discretized using a high-order HDG

method [27–31]. This method was developed to reduce the number of globally coupled unknowns
in DG discretizations and produce an approximation to the gradient of the solution that converges
optimally for diffusion problems. In addition, the HDG method retains certain desirable features of
DG methods such as arbitrarily high-order approximation, stability for convective operators, and the
ability to deal with unstructured meshes. In this work, we follow closely the HDG discretization of
the Euler equations introduced by Peraire et al. [30].

For the steady-state simulations presented in this paper, we use time continuation with a backward
Euler scheme of global time step �t . This requires the solution of a nonlinear system of algebraic
equations at each time step, which is carried out using Newton’s method and a backtracking line
search algorithm. Inside each Newton step, the standard HDG static condensation is performed [30],
and the linear system is inverted using a sparse direct solver. The time step selection rule proceeds
as follows: If the number of Newton iterations required to converge the current time step is less
than or equal to the number of Newton iterations required to converge the previous step, then the
time step is increased by a factor of 2. Otherwise, it is reduced by the same factor. Finally, when
the time step grows beyond a given value (usually 20 convective times for the geometry of interest),
a steady-state nonlinear solve is performed. Despite its simplicity, we found this time stepping rule
to be robust for all the 2D cases presented here. Other techniques like local time stepping might be
used in complex 3D cases in order to accelerate convergence.

3. SHOCK CAPTURING MODEL

The solution of the Euler equations for high speed flows usually contains discontinuities in the
flow field in the form of shock waves or contact discontinuities. These discontinuities require a
special treatment to avoid oscillations in the numerical approximation because of the appearance of
Gibbs phenomenon. For the case of shocks, these oscillations need to be suppressed to maintain the
stability of the computation.

In this paper, we propose an artificial viscosity approach inspired by the work of Nguyen and
Peraire [27] and Premasuthan et al. [16], which can be traced back to ideas by Bhagatwala and
Lele [17] in the LES context. This artificial viscosity model is based on a sensor that is triggered
around shocks and is crafted so that the shock is spread to a thickness that is matched to the
grid resolution.

The key to the present approach is to use a non-dimensional form of the divergence of the velocity,
or dilation, (r � v) as a point-wise sensor that drives the application of artificial viscosity � to the
system. The artificial viscosity enters the governing equations through an artificial dissipation term
that is added to the conservation law in the following manner:

@u
@t
Cr � F.u/ D r � �ruAV.u/: (4)

Here, u are the conserved variables in the Euler equations, F denotes the inviscid fluxes, and the
terms on the right hand side represent the viscosity, which is based on a Laplacian-like term applied
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to uAV.u/ D ¹�; �v; �H º. The difference between u and uAV on the last term is designed to
ensure conservation of enthalpy across shocks [26] for steady-state simulations while still being a
dissipative term in the transient case [34].

3.1. Non-dimensional shock sensor

The amount of artificial viscosity added to the equations is given by �, which is a function of the
dilation, the state of the fluid, and the mesh resolution. In order to make the dependency of � on r �v
non-dimensional, we need to define a characteristic scale for length and velocity.

The choice of these scales is driven by the need to capture the shock within an element. In low-
order schemes, the length scale is of the order of the element size, denoted by h. For high-order
finite element methods, as described by Persson and Peraire [23], such length scale is of the order
of h=p, where p denotes the polynomial order used to approximate the solution. In general, h is not
constant in the whole domain, but rather, it varies from element to element. Therefore, it needs to
be defined at every point in the domain as a scalar field h D h.x/.

The simplest approach is to assign an element size he to each element in the mesh and assume
that h is constant within each element. In this way, the resulting element size field h.x/ becomes
piecewise constant. This results in a discontinuous artificial viscosity field, which degrades the accu-
racy of the solution and might lead to instabilities as shown by Barter and Darmofal [26]. For this
reason, we propose to use a piecewise linear reconstruction similar to the one they proposed [26] by
averaging the element size, he , for all the elements surrounding a vertex.

This process requires the definition of he , which is crucial when anisotropic adaptation is per-
formed and elements align and stretch along the discontinuities. In that instance, the natural length
scale for the shock is the element dimension in the direction of the gradient of the solution. A good
surrogate for this is the smallest altitude of the element, defined as the minimum distance from any
vertex of the polygon (triangle or quadrilateral in 2D) to any opposite side, as depicted in Figure 1.
In the case of high-order meshes, the element size field is computed before the mesh is curved.

Using this reconstruction, we define the reference length scale to be equal to khh.x/=p, where kh
is a correction term of O.1/, which will be determined empirically from 1D computations.

In addition to this, the non-dimensionalization of r � v requires a velocity scale. Other authors
have proposed to use the speed of sound c D

p
�RT , which is subject to change across the shock.

This variation is especially severe for strong shocks. To minimize this effect, we propose to use the
critical speed of sound c�:

c� D
p
�RT � D

s
�R

�
2

� C 1

�
T0 (5)

that only depends on the total temperature, T0, which is constant across a stationary shock.
Using these two scales, we can define the non-dimensional shock sensor Qs�.u/ as follows:

Qs�.u/ D �
.khh=p/r � v

c�
: (6)

Figure 1. Sketch of the procedure to extract he for triangles, based on identifying the smallest altitude in the
polygon. All the altitudes are colored in light gray except for the smallest one, colored in solid black. The
use of the smallest altitude ensures that the correct length scale is used under the assumption that anisotropic

meshes align with shocks.
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This sensor becomes positive in the presence of shock waves. Moreover, a simple analysis based on
1D shock theory shows that this sensor asymptotes to a constant as the shock strength increases. In
particular, if we assume that the shock thickness is of the order of khh=p, then

r � v �
v2n � v1n

khh=p
; (7)

where v1n and v2n are the normal velocities before and after the shock, respectively. Hence,

Qs� D �
.khh=p/r � v

c�
� �

v2n � v1n

c�
D

�
1 �

v2n

v1n

�
M1n

c1

c�
; (8)

which can be further expanded into

Qs� �
2M 2

1n � 2

.� C 1/M1n

s
� C 1

2C .� � 1/M 2
1n

(9)

and asymptotes to Qs� D 2=
p
�2 � 1 for very high incident Mach number, M1n. This result is

confirmed in Section 4 using 1D simulations. For comparison purposes, we note that the same
simplified analysis applied to the case where the velocity scale is given by the speed of sound
predicts a discrepancy in the sensor before, Qs1, and after, Qs2, the shock given by the following:

Qs1

Qs2
�
c2

c1
D

s
T2

T1
D

s�
2�M 2

1n � .� � 1/
� �
.� � 1/M 2

1n C 2
�

.� C 1/2M 2
1n

(10)

that grows linearly with the Mach number ahead of the discontinuity. The behavior of Qs1, Qs2, and Qs�

as a function of M1n is shown in Figure 2.

3.2. Viscosity scale

Dimensional consistency dictates that the artificial viscosity has units of velocity times length. For
the latter, we use the already defined characteristic length scale h.x/; hence, only the velocity scale
requires attention. A natural choice would be the fastest wave across the shock, given by �max D
jv � nj C c; however, this requires the extraction of the vector normal to the shock front n. A simpler
choice is to take

p
v � vC c2 instead of �max. With this, the viscosity scale is given by the following:

�AV D

�
kh
h

p

�p
v � vC c2: (11)

Figure 2. Estimates for Qs1, Qs2, and Qs� as a function of the incident Mach numberM1n, based on the assump-
tion that the shock is one-dimensional and captured within the available resolution. Note the divergence

between Qs1 and Qs2 with the shock strength and that Qs� asymptotes to a constant.
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Provided that the shock sensor is of order 1, this definition of viscosity scale yields a cell Peclet
number Pecell D O.1/, which reconciles well with linear theory for convection–diffusion and the
limit of Pecell < 2 for oscillation-free solutions.

3.3. Artificial viscosity

To define the final form of the artificial viscosity, we follow the approach by Nguyen and Peraire [27]
and introduce a soft-max function to switch on the viscosity when the indicator is positive (denoting
compression or shock) and minimize its effect in regions where the flow expands. Namely, we
propose to add viscosity according to the following formula:

� D

�
kh
h

p

�p
v � vC c2 f

�
Qs�
�
; (12)

where Qs� is defined by (6) and the function f is defined as follows:

f .x/ D
log .1C exp .˛.x � ˇ///

˛
: (13)

We note that this function is a smooth approximation to max.0; x � ˇ/ that is introduced to reduce
the risk of convergence problems because of discontinuity on the slope. In addition, the following
bounds hold:

0 < f .x/ �max.0; x � ˇ/ < .log 2/=˛: (14)

We note that ˛ governs the shape of the function f .x/ around x D ˇ, while ˇ controls the kick-in
value of the sensor Qs, which is a small positive number. This introduces a small gap in which Qs� > 0
and � are small compared with the numerical diffusion and is required to recover optimal asymptotic
convergence in the presence of smooth compressions (Section 5.4). After some numerical tests, we
propose to use ˛ D 104 and ˇ D 0:01.

4. ONE-DIMENSIONAL STUDIES

Here, we perform some simple 1D computations in order to determine the value of kh and assess
the performance of the artificial viscosity model proposed in a simple case over a range of shock
strengths and approximation orders.

For all the results presented here, we consider a stationary shock wave in a tube modeled using the
1D Euler equations. Given a Mach number upstream of the shock, the corresponding state behind
the shock can be computed using standard normal shock theory. These two states provide the super-
sonic inflow and subsonic outflow boundary conditions. To obtain a steady-state solution to this
problem, we initialize the flow to a smooth profile between the two states and march it in time using
a backward Euler discretization. In principle, this problem is ill posed because of the ambiguity in
location of the shock wave. We constrain the shock position by making the value of the density at
the midpoint of the domain be equal to the average value across the shock [23].

4.1. Choice of length-scale correction factor

To determine the effect of kh on the shock profile, we simulate a 1D steady shock in the domain
x 2 Œ0; 1�, using 40 elements of order p D 4. For this study, only two parameters are varied:M1n D
¹2; 5º and kh D ¹0:5; 1; 1:5; 2; 3º. The results for all these cases are summarized in Figure 3. The
x-axis in Figure 3 is transformed to non-dimensional units centered at the shock, using the element
size he as reference length. In both cases, the shock profiles agree with the expected behavior in that
the shock gets wider as kh grows. One can readily identify kh < 1 as an unsuitable choice due to the
strong oscillations in both pressure and density, as well as the shock sensor itself. Similarly, values
in the region kh > 2 are not interesting as they do not show improvement over the kh D 2 solution.
We conclude that kh 2 Œ1; 2� is a reasonable choice. We propose to take kh D 1:5 and use this value
in the following simulations.

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2016; 82:398–416
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Figure 3. Density, pressure, and sensor profile around a 1D shock with M1n D ¹2; 5º, computed using
different values of kh D ¹0:5; 1; 1:5; 2; 3º and polynomial degree p D 4. For kh 2 Œ1; 2�, the shock pro-
files virtually free of oscillations. (a) Density, M1n D 2, (b) density, M1n D 5, (c) pressure, M1n D 2,

(d) pressure, M1n D 5, (e) shock sensor, M1n D 2, and (f) shock sensor, M1n D 5.

4.2. Mach number study

Here, we present 1D simulations for a wide variation of the upstream Mach number M1n D

¹2; 5; 10; 20; 30º. As in the previous results, the domain is composed of 40 uniform elements of
order p D 4. The density, pressure, and shock indicator profiles are plotted in Figure 4. We observe
that the shock width is independent of the strength that is because of the definition of the length
and velocity scales for the sensor as well as the viscosity. These results indicate that the formu-
lation is robust for high Mach number flows. That is, the transition between states in the shock
region is insensitive to the properties of the shock and happens within the available resolution. Fur-
thermore, the results demonstrate that the analysis outlined in Section 3.1 holds, that is, the sensor
saturates as the shock gets stronger, and hence validates the choice of c� as the velocity scale for the
shock sensor.

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2016; 82:398–416
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Figure 4. Density, pressure, and sensor profile computed using different values of the upstream Mach num-
ber M1n D ¹2; 5; 10; 20; 30º for kh D 1:5 and p D 4. The shock sensor asymptotes to a constant profile as

predicted by the analysis in Section 3.1. (a) Density, (b) pressure, and (c) shock sensor.

4.3. Polynomial order study

Here, we consider the case of M1n D 5 and modify the polynomial order to verify the effect of
the h=p scaling. For these runs, we consider the polynomial orders: p D ¹2; 3; 4; 5; 6; 7; 8º. The
results of this experiment are compiled in Figure 5. We can readily identify a narrowing of the
solution profile as the polynomial order is increased, without significant oscillations in the solution.
Furthermore, the shock thickness scales like 1=p as expected from the definition of the viscosity
scale (Equation 11). In that respect, the value kh 2 Œ1; 2� derived using solutions with p D 4 seems
to be independent of the approximation order.

4.4. Shock center study

All the cases shown previously require a numerical fix to avoid ill-posedness by ensuring that the
value of the density at one prescribed point in the domain is equal to the average value across
the shock. This removes the degree of freedom associated to the location of the shock and makes
the steady-state problem solvable. For simplicity, this point has been made to coincide with the
center of an element, which is not generally true in more complex cases. Next, we want to mod-
ify the constraint to allow for the shock center to be located anywhere along an element. The
results obtained for the case of M1n D 5 using polynomials of order p D 4 are shown in
Figure 6. The results indicate that the profile is not affected by the alignment of the mesh and the
shock, at least in one dimension. This property is crucial in moving to more complex cases where
the exact position of the shock is unknown a priori. Furthermore, this behavior ensures that the
scheme does not introduce spurious oscillations as the solution crosses the element boundaries in
unsteady cases.

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2016; 82:398–416
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Figure 5. Density, pressure, and sensor profile computed using different polynomial orders p D
¹2; 3; 4; 5; 6; 7; 8º for M1n D 5 and kh D 1:5. The results are clean of oscillations in the primal variables

for all the orders of approximation. (a) Density, (b) pressure, and (c) shock sensor.

Figure 6. Density, pressure, and sensor profile computed using different locations for the shock midpoint
along an element for M1n D 5, p D 4, and kh D 1:5. The results indicate that the shock profile is not
affected by the particular location of the shock midpoint within one element. (a) Density profile, (b) pressure

profile, and (c) shock sensor.

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2016; 82:398–416
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5. TWO-DIMENSIONAL STUDIES

In this section, we focus our attention on 2D test cases. In particular, we aim to demonstrate
the performance of our artificial viscosity model on highly anisotropic meshes. The use of adap-
tive anisotropic mesh methods introduces two challenges from a shock-capturing perspective, the
ability to compute solutions on coarse meshes typical of early phases of the adaptivity and the abil-
ity to maintain sub-cell shock resolution for highly adapted anisotropic meshes towards the end
of the process. To demonstrate the capability of our method in dealing with adaptive anisotropic
meshes, we perform adaptive mesh refinement on the solution with the help of the BAMG code
by Hecht [35].

5.1. Supersonic flow in a duct with a ramp

The first case considered is the simulation of a supersonic inviscid flow at Min D 1:5 inside a duct
with a compression ramp at 5 ı of inclination. In this case, there is a limited interaction between the
shock wave and the expansion fan.

The simulation starts from an isotropic mesh with minor refinement depicted in Figure 7(a). At
each step, a steady-state solution is computed using polynomials of order p D 4; then BAMG is
used to generate a new mesh. For all the results generated in this paper, BAMG was run with a
minimum edge size of 0.001, a maximum edge size of 0.5, and two iterations of Jacobi smoothing.
The final mesh, obtained after nine iterations, is adapted to capture the shock bouncing off the walls
as well as the expansion wave emanating at the end of the ramp (Figure 7(c)). In this case, the
maximum aspect ratio amongst the elements of the mesh is 250. The shock sensor field is depicted
in Figure 8. We note that the artificial viscosity model is robust enough to converge the problem
during the early iterations of adaptivity when the mesh is coarse and the solution is under-resolved.
This same model is capable of producing more accurate solutions as anisotropy appears in the mesh

Figure 7. Evolution of the anisotropic mesh adaptivity iteration, for the case of the supersonic compression
ramp. (a) Initial mesh, 102 elements, (b) adapted mesh after two iterations, 1324 elements, and (c) adapted

mesh after nine iterations, 2439 elements.

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2016; 82:398–416
DOI: 10.1002/fld



408 D. MORO, N. C. NGUYEN, J. PERAIRE

(a)

(b)

(c)

Figure 8. Evolution of the shock sensor with the anisotropic mesh adaptivity iteration. The proper scaling
of the shock removes the dependency of the sensor magnitude on the grid. (a) Shock sensor on initial mesh,
(b) shock sensor after two iterations of anisotropic refinement, and (c) shock sensor after nine iterations of

anisotropic refinement.

(a)

(b)

Figure 9. Mach number field (a) and entropy field (b) around the supersonic ramp computed using polyno-
mials of order p D 4 on the final mesh. The combination of anisotropic adaptivity and artificial viscosity

yields sharp shocks with a limited number of degrees of freedom.

and the flow is better resolved. We observe that the sensor is active over thinner regions as the mesh
is refined but its magnitude does not change, thus showing mesh independence. A sample of the
results obtained on the finest mesh is compiled in Figure 9. Notice the clean resolution of shocks
and expansion fans that is visible on both the Mach number and the entropy in the domain.

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2016; 82:398–416
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(a)

(b)

(c)

Figure 10. Evolution of the mesh for the Scramjet flow as a function of the number of iterations of
anisotropic adaptivity. (a) Initial mesh, 461 elements, (b) adapted mesh after four cycles, 898 elements, and

(c) adapted mesh after 12 cycles, 6509 elements.

5.2. Supersonic flow inside a Scramjet geometry

In this case, we consider the solution of the flow at M1 D 3:6 inside a Scramjet modeled using the
2D surrogate geometry proposed by Kumar [36]. This geometry is composed of two inner bodies
inside a duct, all of which are straight sided. The problem is symmetric across the horizontal axis
although this is not enforced in the meshes we use. This configuration produces a variety of flow
features (shock waves, expansion waves, and contact discontinuities) that interact with each other
to form a complex pattern.

As in the previous case, we start from an isotropic coarse mesh with moderate refinement at the
corners. At every step, we compute a steady-state solution that is used as a basis for BAMG to
generate a new mesh. All the intermediate solutions required in this process are computed using
polynomials of order p D 4. A total of 12 adaptivity iterations are performed. The last iteration
yields a mesh with a maximum aspect ratio of 125. A sample of the mesh evolution is summarized
in Figure 10. The flow field computed on the final mesh is depicted in Figure 11.

We verify that the flow field remains symmetric despite the fact that symmetry is not enforced
explicitly and the mesh is not symmetric. This indicates a certain level of robustness of the method
to mesh misalignments. We also observe how the artificial viscosity is only targeting the shocks
and not other flow features like contacts discontinuities or expansion waves. One place where this
is visible is the region around the wall in the nozzle throat. A detail of the flow there is shown in
Figure 12. We also note how the shock sensor is only active in the shock wave and is turned off at
the intersection with the expansion fan. Something similar happens at the trailing edge of the inner
body, where the shock sensor is not activated by the presence of a slip line as shown in Figure 13.
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(a)

(b)

(c)

Figure 11. Flow inside the Scramjet geometry computed on the finest mesh (12 adaptivity cycles) using
polynomials of order p D 4. The combination of adaptivity and the sub-cell shock resolution of the proposed

scheme can separate very fine details in the flow. (a) Pressure, (b) Mach number, and (c) shock sensor.

(a) (b)

Figure 12. Detail of the flow around the nozzle throat. The artificial viscosity is only applied in the shock
region and is turned off at the intersection with the expansion fan. (a) Pressure and (b) shock sensor.

5.3. Supersonic flow over a forward facing step

Here, we use the proposed shock-capturing scheme to simulate the well-known case proposed by
Woodward and Collela [37] consisting of a supersonic flow at M1 D 3 inside a straight channel
with a forward facing step. This problem was designed to test a variety of finite volume schemes and
since then has been used as a benchmark for compressible flow solvers. Our interest here lies in the
steady-state version of the problem that contains rich physics that will further validate the artificial
viscosity model.

In order to avoid the strong singularity caused by the expansion at the corner of the step, we
modify the geometry by replacing the corner with quarter circle of radius 1% of the total height of
the step. This modification is similar in spirit (although not in form) to the modified discretization
that Woodward and Collela used in the corner [37], or the viscosity that some schemes based on a
resolution indicator add there [25, 38].
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(a)

(b)

(c)

Figure 13. Detail of the flow around the trailing edge of the inner body. The presence of a contact disconti-
nuity, which is a purely vortical feature, does not trigger the shock sensor. (a) Pressure, (b) magnitude of the

velocity, and (c) shock sensor.

(a)

(b)

Figure 14. Evolution of the mesh for the forward facing step flow as a function of the number of anisotropic
adaptivity iterations. (a) Initial mesh, 677 elements and (b) adapted mesh after 12 cycles, 9584 elements.

We compute the solution to this flow on a series of meshes generated with BAMG using polyno-
mials of order p D 4. In total, 12 cycles of adaptation are enough to produce the final mesh shown
in Figure 14. In this case, the maximum aspect ratio amongst the elements of the mesh is 70. The
initial mesh is also plotted in the same figure. The solution field for the pressure, Mach number, and
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Figure 15. Flow solution for the forward facing step problem computed using polynomials of order p D 4
on the finest mesh (after 12 refinement iterations). Sharp flow features (e.g., shock waves, slip lines, etc.)
are properly captured by the mesh adaptivity and the artificial viscosity model, while smooth regions benefit
from the high-order approximation. (a) Pressure, (b) Mach number, (c) detail of the shock sensor around the

bow shock, and (d) detail of the shock sensor at the wall.

shock sensor is plotted in Figure 15. We note how the different flow features are properly described
within the available mesh resolution. In particular, we can readily observe the presence of a triple
point in the bow shock that leads to a contact discontinuity as well as a reflected shock. The latter
interacts with the expansion around the corner to generate a complex flow pattern that includes a
weak normal shock, and two additional triple points. Two out of the three contact discontinuities
are picked up by the anisotropic refinement along the adaptation cycle and can be seen in the final
meshes (Figure 14(b)). However, the weakest one, associated to the merging of the reflected shock
and the weak normal shock close to the wall, is not. This problem depends on the adaptivity strat-
egy and could be fixed by carefully tuning the parameters that govern BAMG but was considered
outside the scope of this paper.

5.4. Effect of the artificial viscosity on the convergence of the subsonic flow over a smooth bump

In this test case, we want to assess the effect of the proposed artificial viscosity model in the smooth
regions of the flow (which generally represent the majority of the domain). For this, we consider
the C1.1 case of the 1st International Workshop on High-Order CFD Methods [39]. This test case
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(a)

(b)

(c)

Figure 16. Sample mesh and solution for the subsonic flow over a smooth bump. The numerical solution
shows oscillations in the entropy around the bump that can be quantified to assess the effect of the artificial

viscosity on a smooth flow. (a) Mesh, (b) Mach number, and (c) entropy.

consists of a subsonic inviscid flow in a channel with a smooth bump on the lower surface. The
entropy for the exact solution is constant. However, the numerical approximation tends to introduce
small oscillations in the entropy close to the lower wall where there is flow curvature. Once gener-
ated, these oscillations persist downstream and induce a non-negligible error in the entropy norm,
which is measured as follows:

jjs � s1jj2 D

vuuutR
�

�
1 � P=��

P1=�
�
1

�2
dVR

� dV
: (15)

We are interested in quantifying how the artificial viscosity affects this error. For this, the
solution on a sequence of structured iso-parametric meshes using polynomials of order p D
¹1; 2; 3; 4º is performed. For comparison purposes, we run the solver with and without the artificial
viscosity terms.

The mesh generation at each stage of refinement starts from a structured mesh of quads for the
bounding rectangle that is broken along the SE-NW diagonal to generate a structured mesh of tri-
angles. The high-order nodes are placed on the rectangular mesh and then transformed analytically
as described in the case specification [39]. We construct a sequence of meshes starting from a 6� 2
mesh by doubling the number of elements in each direction at each stage. We repeat this process
seven times for p D 1 and p D 2 and six times for the higher order cases. This is well beyond
the resolution requirements for a smooth flow like this one; however, the purpose here is to grid
converge the solution to assess convergence rates.

The solution on each mesh is computed using the standard HDG solver. For the cases with arti-
ficial viscosity, the standard parameters are used, namely, ˛ D 104, ˇ D 0:01, and kh D 1:5.
A sample mesh and solution (Mach number and entropy) are shown in Figure 16. The solution
exhibits oscillations of the entropy in the lower wall. The convergence of the entropy error for the
mesh sequences is plotted in Figure 17. The horizontal scale measures the square root of the num-
ber of elements in the mesh, which is equivalent to a measure of the element size. The solid lines
denote results computed using artificial viscosity, while the dashed lines denote results without it.
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Figure 17. Comparison of the convergence in the entropy error for different polynomial orders using struc-
tured triangular meshes. The results using artificial viscosity show a pre-asymptotic behavior that seems
to limit convergence between second and third orders. This effect disappears once the element size is

small enough.

We can readily identify the effect of the artificial viscosity for the coarse meshes (right half of the
plot) especially for the highest order polynomials. In particular, for the case of p D 1, the effect of
adding an artificial viscosity term of order h2 barely affects the entropy error. This is consistent with
the assumption that the equivalent dissipation of the original HDG scheme is order h2 or lower for
p D 1, and greater than h2 for p > 2.

As the mesh is refined, there is a point in which the gap introduced by the choice of ˛ and
ˇ (Section 3.3) takes effect and the results with and without artificial viscosity coincide. This is
because the flow might contain smooth regions where dilation is negative but finite. In these regions,
Qs� decreases as the mesh is refined, and, at some point, is effectively turned off. This is clearly seen
on the left half of Figure 17. A similar pre-asymptotic behavior was documented by Barter and
Darmofal [26] for another bump geometry using a variety of shock indicators with and without their
PDE smoothing.

This study indicates that the proposed scheme converges to the inviscid solution for flows without
discontinuities. For practical cases, however, there is a pre-asymptotic range that is governed by the
finite value of r � v in certain parts of the flow.

6. CONCLUSIONS AND FUTURE WORK

We have presented a shock-capturing strategy for high-order methods based on artificial viscosity.
We derived the model, paying special attention to the scaling of the divergence of the velocity that
acts as a sensor for the presence of shocks. We have tested the model extensively in 1D and 2D in
combination with anisotropic adaptive refinement. The results indicate that the model can capture
shocks in a variety of flows and does not interact with other flow features such as expansion fans or
contact discontinuities, which do not require stabilization.

Compared with other existing models, the proposed model has several attractive features. The
model does not require the solution of an extra equation to solve for the artificial viscosity field [26]
because it produces artificial viscosity fields that are C0 in the continuous limit (and almost so in
practical applications). This satisfies the conditions laid out by Barter and Darmofal [26] without
the need for constructions that either limit the CFL number when treated explicitly, or widen the
stencil when treated implicitly [24, 25]. Indeed, the model is fully analytical and can be implemented
in any solver where gradients of the solution are available or can be computed. This is crucial to
deliver steady-state solutions at a reasonable cost. Of course, the model also has its weaknesses. For
example, the need for gradients of the solution that can be of low quality for certain discretization
schemes and incur an extra cost in the computation. Neither of these is the case for the HDG scheme,
which is ideally suited for the proposed model.
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The model could be improved in a variety of ways. First, other definitions of uAV could yield
sharper shocks or a better behavior at high Mach number [23]. Also, the whole definition of the
shock length scale could be revisited to try other reconstructions for the h field as well as more
sophisticated approaches based on a tensor field rather than a scalar one. The later would make sure
that the dilation is measured in the metric induced by the element so that misalignments with the
shock could be better identified and stabilized. This might be a requirement for the applicability to
viscous flows where typical meshes present other sources of anisotropy. All these subjects will be
the focus of future research.
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