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We present a class of embedded discontinuous Galerkin (EDG) methods for numerically 
solving the Euler equations and the Navier–Stokes equations. The essential ingredients are 
a local Galerkin projection of the underlying governing equations at the element level 
onto spaces of polynomials of degree k to parametrize the numerical solution in terms 
of the approximate trace, a judicious choice of the numerical flux to provide stability and 
consistency, and a global jump condition that weakly enforces the single-valuedness of the 
numerical flux to arrive at a global formulation in terms of the numerical trace. The EDG 
methods are thus obtained from the hybridizable discontinuous Galerkin (HDG) method by 
requiring the approximate trace to belong to smaller approximation spaces than the one in 
the HDG method. In the EDG methods, the numerical trace is taken to be continuous on a 
suitable collection of faces, thus resulting in an even smaller number of globally coupled 
degrees of freedom than in the HDG method. On the other hand, the EDG methods are no 
longer locally conservative. In the framework of convection–diffusion problems, this lack 
of local conservativity is reflected in the fact that the EDG methods do not provide the 
optimal convergence of the approximate gradient or the superconvergence for the scalar 
variable for diffusion-dominated problems as the HDG method does. However, since the 
HDG method does not display these properties in the convection-dominated regime, the 
EDG method becomes a reasonable alternative since it produces smaller algebraic systems 
than the HDG method. In fact, the resulting stiffness matrix has a similar sparsity pattern 
as that of the statically condensed continuous Galerkin (CG) method. The main advantage 
of the EDG methods is that they are generally more stable and robust than the CG method 
for solving convection-dominated problems. Numerical results are presented to illustrate 
the performance of the EDG methods. They confirm that, even though the EDG methods are 
not locally conservative, they are a viable alternative to the HDG method in the convection-
dominated regime.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Discontinuous Galerkin (DG) methods [3–5,19–23,28,29,31,34,35,38–41,57–59,61,64] have emerged as a competitive al-
ternative for solving nonlinear hyperbolic systems of conservation laws because they possess some important advantages 
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over classical finite differences and finite volume methods. In particular, they can easily handle complicated geometries, 
have low dissipation, are locally conservative, high-order accurate, highly parallelizable, and more robust than continuous 
Galerkin (CG) methods for convection-dominated problems. However, in spite of these advantages, DG methods have not 
yet made a more significant impact for practical applications. This is largely due to the main criticism that DG methods are 
computationally expensive since they have too many global degrees of freedom. Indeed, the high computational cost and 
memory storage are a major impediment to the widespread application of DG methods for real-world problems. Therefore, it 
would be highly desirable to develop new DG methods that have all the advantages of DG methods and are computationally 
competitive with continuous Galerkin (CG) methods and finite volume methods.

In the spirit of making DG methods more competitive, researchers have developed more efficient DG methods such 
as the multiscale discontinuous Galerkin (MDG) method [37,7] and the embedded discontinuous Galerkin (EDG) method 
[32,14]. The MDG method was originally introduced in the framework of convection–diffusion problems [37], whereas the 
EDG in the framework of linear shells [32] and linear diffusion [14]. These two methods, which can give rise to identical 
schemes, are devised to solve for a globally continuous approximation of the solution (the numerical trace of the scalar 
variable for the MDG, and the numerical trace of the approximate displacement for the EDG) on the element boundaries. 
A brief comparison of the ideas upon which these methods are defined is given in [32].

The EDG methods are constructed by using a suitable modification of an associated method called a hybridizable dis-
continuous Galerkin (HDG) method. The modification is applied to the variational formulation defining the system of 
globally-coupled degrees of freedom and consists in reducing its size by simply using a strict subspace to define it. The 
HDG method was introduced in [14] in the framework of diffusion problems. It was analyzed in [11,16,18,24,25] where it is 
shown that it has many common features with the Raviart–Thomas (RT) mixed method [60] and the Brezzi–Douglas–Marini 
(BDM) mixed method [6]. In particular, in [16], it was proven that the HDG method using simplexes and polynomials of 
degree k ≥ 0 in all the unknowns, provides approximations to the scalar variable and the flux which converge with the 
optimal order k + 1 in the L2-norm for any k ≥ 0, and that the element-by-element averages of the scalar variable super-
converges with order k + 2 for k ≥ 1; a local postprocessing scheme can then be used to obtain a new approximation to 
the scalar variable converging with order k + 2 for k ≥ 1. The EDG method constructed from this HDG method by using 
continuous approximate traces for the scalar variable was analyzed in [17]. Therein, it was shown that, although this results 
in a smaller system for the globally-coupled degrees of freedom, it also produces the loss of the local conservativity of the 
method. As a direct consequence, although the approximation for the scalar variable still converged with order k + 1 for any 
k ≥ 0, the approximation for the flux converges with the suboptimal order of k. Hence, the above-mentioned postprocessing 
converges only with order k + 1 for k ≥ 1. Numerical experiments indicated that the EDG method was in fact less efficient 
than its associated HDG method.

This disappointing result precluded further study of EDG methods associated to HDG methods with similar optimal con-
vergence and superconvergence properties. This is the case for HDG methods for linear convection–diffusion problems [51,
12,8,9] and nonlinear convection–diffusion problems [12,52,65] in the diffusion-dominated regime, for HDG methods for the 
Stokes system of incompressible flow [13,15,47,53,26], for HDG methods for the incompressible Navier–Stokes equations [49,
50,54] in the diffusion-dominated regime, and for HDG methods for linear elasticity [26,27]. In particular, a unique feature 
of the HDG method for incompressible fluid flow is that the approximate velocity, pressure and velocity gradient converge 
with the optimal order k + 1 in the L2-norm for diffusion-dominated flows for any k ≥ 0. Moreover, the element-by-element 
averages of the velocity superconverge and, a local postprocessing scheme proposed in [15,49] can be used to obtain a new 
approximate velocity which converges with order k + 2 for k ≥ 1.

On the other hand, it is reasonable to believe that, in the convection-dominated regime, all the above-mentioned HDG 
methods must behave like the classic DG methods in the pure convection limit. As a consequence, the optimality of the con-
vergence, for example, to the gradient of the scalar variable, in the case of convection–diffusion problems is lost along with 
the above-mentioned superconvergence property. Numerical evidence of this fact is provided in [12]. It is then reasonable 
to expect that in this situation, the EDG methods might prove to be more efficient than the original HDG method. In other 
words, the EDG method [55] constructed from the HDG method for the compressible Euler and Navier–Stokes equations 
[44–46,56] in the convection-dominated regime, might be more efficient than the HDG method.

In this paper, we extend our previous work [55] to develop a class of EDG methods. The EDG methods are obtained 
from the HDG method by requiring the approximate trace to belong to smaller spaces than the one in the HDG method. 
In the EDG methods, the numerical trace is taken to be continuous on a suitable collection of faces, thus resulting in an 
even smaller number of globally coupled degrees of freedom than in the HDG method. Indeed, the original EDG method 
[55] produces a global matrix system that has the same sparsity pattern as that of the statically condensed continuous 
Galerkin (CG) method. As one instance of the class of EDG methods developed in this paper, the interior embedded DG 
(IEDG) method has slightly less globally coupled unknowns than the EDG method. Furthermore, the IEDG method enforces 
the boundary conditions more accurately than the EDG method. Numerical results presented herein confirm that the IEDG 
method outperforms the EDG method and thus establishes itself as a viable alternative to the HDG method.

The paper is organized as follows. In Section 2, we introduce the notation used throughout the paper and compare var-
ious DG methods in terms of the number of degrees of freedom and the number of nonzeros in their Jacobian matrix. We 
then introduce the class of EDG methods for the Euler equations in Section 3 and extend it to the compressible Navier–
Stokes equations in Section 4. In Sections 3 and 4, we present numerical results to demonstrate the performance of the EDG 
methods. Finally, in Section 5, we end the paper with some concluding remarks.
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2. Preliminaries

Throughout this paper we shall denote scalar variables by italic letters with no boldface (a, A, b, B, etc.), vector vari-
ables by italic boldface lowercase letters (a, b, etc.), and second-order tensor variables by italic boldface uppercase letters 
(A, B, etc.). The identity tensor shall be denoted by I . The components of a and A shall be denoted as ai and Aij , re-
spectively. The symbols, ·, ×, ⊗, shall denote the usual scalar product, vector product, and tensor product, respectively. We 
shall use boldface roman uppercase letters (A, B, etc.) to denote matrices with entries (Aij, Bij, etc.) and boldface roman 
lowercase letters (a, b, etc.) to denote column vectors with elements (ai, bi, etc.). We shall also denote sets and spaces by 
calligraphic letters (A, B, etc.). In this paper, the tensor product notation and matrix product notation are interchanged, that 
is, a · b = aT b, a ⊗ b = abT , A · b = Ab and A · B = A B .

2.1. Finite element mesh

Let � be a physical domain in Rd with Lipschitz boundary ∂� in Rd−1. We denote by Th a collection of disjoint 
elements (triangles and tetrahedra) that partition �. We also denote by ∂Th the set {∂ K : K ∈ Th}, that is, the collection 
of the boundaries of all elements in Th . We shall denote by n the outward unit normal of ∂ K . For an element K of the 
collection Th , F = ∂ K ∩ ∂� is the boundary face if the (d − 1)-Lebesgue measure of F is nonzero. For two elements K + and 
K − of the collection Th , F = ∂ K + ∩ ∂ K − is the interior face between K + and K − if the (d − 1)-Lebesgue measure of F is 
nonzero. Let E I

h and E∂
h denote the set of interior and boundary faces, respectively. We denote by Eh the union of E I

h and 
E∂

h . Note that by definition ∂Th and Eh are different. More precisely, an interior face is counted twice in ∂Th but once in Eh
and a boundary face is counted once in both ∂Th and Eh .

2.2. Approximation spaces

Let Pk(D) denote the set of polynomials of degree at most k on a domain D . We introduce discontinuous finite element 
spaces

Uk
h = {a ∈ (L2(Th))

m : a|K ∈ (Pk(K ))m ∀K ∈ Th},
Qk

h = {A ∈ (L2(Th))
m×d : A|K ∈ (Pk(K ))m×d ∀K ∈ Th}, (1)

for a = (ai), 1 ≤ i ≤ m, and A = (Aij), 1 ≤ i ≤ m, 1 ≤ j ≤ d. Here L2(D) is the space of square integrable functions on D . We 
further introduce traced finite element spaces

M̂k
h = {μ ∈ (L2(Eh))

m : μ|F ∈ (Pk(F ))m ∀F ∈ Eh},
M̃k

h = {μ ∈ (C0(Eh))
m : μ|F ∈ (Pk(F ))m ∀F ∈ Eh}, (2)

for μ = (μi), 1 ≤ i ≤ m, where C0(D) is the space of continuous functions on D . Note that M̂k
h consists of functions which 

are discontinuous over Eh , whereas M̃k
h consists of functions which are continuous over Eh . Finally, we denote by Mk

h a 
finite element approximation subspace that satisfies M̃k

h ⊂ Mk
h ⊂ M̂k

h . In particular, we define

Mk
h = {μ ∈ (L2(Eh))

m : μ|F ∈ (Pk(F ))m ∀F ∈ Eh, and μ|EE
h

∈ (C0(EE
h ))m}, (3)

where EE
h is a connected subset of Eh .

Let us consider two important choices of Mk
h . The first choice is EE

h = ∅ which implies Mk
h = M̂k

h . This choice cor-
responds to the hybridizable discontinuous Galerkin (HDG) method [14]. The second choice is EE

h = Eh which implies 
Mk

h = M̃k
h and thus enforces the continuity of the approximate trace on all faces. This choice corresponds to the em-

bedded discontinuous Galerkin (EDG) method introduced in [55]. Hence, the main difference between the HDG method 
and the EDG method lies in the definition of the approximation space for the approximate trace. This subtle difference 
is responsible for potentially important differences between the two methods in terms of efficiency and accuracy. As we 
discussed in the Introduction, the HDG method has been shown to be more accurate and efficient than the EDG method 
for diffusion problems, even though the EDG method has a smaller system of globally-coupled degrees of freedom than 
the HDG method, see [17], and we expect this advantage to hold in diffusion-dominated regimes, see [12]. However, in 
convection-dominated regimes this is no longer true, as we shall see by comparing the performance of the EDG to that of 
the HDG method proposed in [44,45,56].

Another interesting choice of the approximation space Mk
h is obtained by setting EE

h = E I
h , which implies M̃k

h ⊂ Mk
h ⊂

M̂k
h , where the inclusions are strict. The resulting approximation space consists of functions which are discontinuous over 

the union of the boundary faces E∂
h and continuous over the union of the interior faces E I

h . The resulting method has a 
characteristic of the HDG method on the boundary faces and a characteristic of the EDG method on interior faces. Because 
the approximate trace is taken to be continuous only on the interior faces, we shall name this new method interior embedded 
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Table 1
Values of the coefficient αDOF as a function of the number of spatial dimensions, the approximating polynomial order and the 
numerical discretization algorithm. This coefficient can be used in expression (4) to determine the total number of degrees of 
freedom in the problem.

Degree

2D 3D

k = 1 k = 2 k = 3 k = 4 k = 5 k = 1 k = 2 k = 3 k = 4 k = 5

DG 6 12 20 30 42 24 60 120 210 336
HDG 6 9 12 15 18 36 72 120 180 252
EDG 1 4 7 10 13 1 8 27 58 101
IEDG <1 <4 <7 <10 <13 <1 <8 <27 <58 <101

DG (IEDG) method to distinguish it from the EDG method for which the trace is continuous on all faces, which, abusing 
the notation, we shall refer to simply as the EDG method. Thanks to the use of face-by-face local polynomial spaces on the 
domain boundary in the IEDG method, the degrees of freedom of the approximate trace on the boundary faces can be locally 
eliminated to yield a global matrix system involving the degrees of freedom of the numerical trace on the interior faces. 
As a result, the globally coupled unknowns of the IEDG method are even less than those of the EDG method. Furthermore, 
the IEDG method enforces boundary conditions more accurately than the EDG method. Hence, the IEDG method is more 
efficient and accurate than the EDG method.

We still need to introduce inner products associated with our finite element spaces. For functions a and b in L2(D), we 
denote (a, b)D = ∫

D ab if D is a domain in Rd and 〈a,b〉D = ∫
D ab if D is a domain in Rd−1. Likewise, for functions a and 

b in (L2(D))m , we denote (a, b)D = ∫
D a · b if D is a domain in Rd and 〈a, b〉D = ∫

D a · b if D is a domain in Rd−1. For 
functions A and B in (L2(D))m×d , we denote (A, B)D = ∫

D tr(AT B) if D is a domain in Rd and 〈A, B〉D = ∫
D tr(AT B) if D

is a domain in Rd−1, where tr is the trace operator of a square matrix. We finally introduce the following volume inner 
products

(a,b)Th =
∑

K∈Th

(a,b)K , (a,b)Th =
∑

K∈Th

(a,b)K , (A, B)Th =
∑

K∈Th

(A, B)K ,

and boundary inner products

〈a,b〉∂Th
=

∑
K∈Th

〈a,b〉∂ K , 〈a,b〉∂Th
=

∑
K∈Th

〈a,b〉∂ K , 〈A, B〉∂Th
=

∑
K∈Th

〈A, B〉∂ K .

These notations and definitions are necessary for the remainder of this paper.

2.3. Cost comparison with other DG methods

To put the EDG and IEDG methods in perspective, we compare them to the HDG method [44–46,56] and other DG 
methods such as the LDG method [28], the CDG method [57] or the method of Bassi and Rebay [4]. We consider triangular 
and tetrahedral discretizations and polynomial approximations of order k = 1, . . . , 5 and calculate the number of globally 
coupled degrees of freedom as well as the number of non-zero elements in the Jacobian matrix. For implicit iterative solvers, 
the number of non-zero elements in the Jacobian matrix provides a good indication of the computational cost. We consider 
large meshes so that, if Np is the number of vertices, the number of triangles in 2D is approximately 2N p and the number 
of tetrahedra in 3D is 6Np . Even though for general 3D meshes, the ratio of tetrahedra to vertices can be unbounded, the 
above assumptions are reasonable for well shaped meshes and consistent with those presented in [36].

For a system of conservation laws involving Nc components (for the Euler and laminar the Navier–Stokes equations 
Nc = 4 in 2D and Nc = 5 in 3D), the total number of degrees of freedom is given by

DOF = Np NcαDOF , (4)

where the coefficient αDOF is given in Table 1. The total number of non-zero entries in the Jacobian matrix is given by

NNZ = Np N2
c αNNZ . (5)

The coefficient αNNZ is given in Table 2. The detailed calculation of αDOF and αNNZ can be found in [36]. We note that the 
coefficients αDOF and αNNZ for the IEDG method cannot be determined precisely because they depend on the number of 
the interior faces and the number of the boundary faces. For very large meshes in which the number of interior faces is 
much larger than the number of boundary faces, the coefficients for the IEDG method will be close to those for the EDG 
method. For small meshes in which the number of interior faces is about the number of boundary faces, the coefficients for 
the IEDG method will be significantly less than those for the EDG method. The IEDG method always has smaller numbers 
of degrees of freedom and non-zero entries than the EDG method.

In all cases, we observe a dramatic reduction in computational cost when the EDG and IEDG methods are considered. 
We also note that the total number of degrees of freedom in HDG and EDG methods scales like k in 2D and k2 in 3D. This 
compares very favorably to a scaling of k2 and k3 in 2D and 3D, respectively, for the DG method. If we look at the number 
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Table 2
Values of the coefficient αNNZ as a function of the number of spatial dimensions, the approximating polynomial order and the 
numerical discretization algorithm. This coefficient can be used in expression (5) to determine the total number of degrees of 
freedom in the problem.

Degree

2D 3D

k = 1 k = 2 k = 3 k = 4 k = 5 k = 1 k = 2 k = 3 k = 4 k = 5

DG 72 288 800 1800 3528 480 3000 12 000 36 750 94 080
HDG 60 135 240 375 540 756 3024 8400 18 900 37 044
EDG 7 46 115 214 343 15 230 1311 4410 11 183
IEDG <7 <46 <115 <214 <343 <15 <230 <1311 <4410 <11 183

of non-zero entries in the matrix, the scaling of the EDG and HDG methods is like k2 in 2D and k4 in 3D, whereas for the 
DG method, the scaling is like k4 in 2D and k6 in 3D.

3. The Euler equations

3.1. Governing equations

We consider the steady-state Euler equations of gas dynamics written in nondimensional conservation form as

∇ · F (u) = f , in �, (6)

where u = (ui), 1 ≤ i ≤ m = d + 2, is a vector of conserved dimensionless quantities (namely, density, momentum and 
energy), F (u) is the inviscid flux (a m × d matrix-valued function), and f is a source term. The Euler equations (6) must be 
supplemented with appropriate boundary conditions at the inflow and outflow boundaries and at the solid wall. We shall 
discuss these boundary conditions later.

3.2. The EDG methods

3.2.1. Weak formulation
We consider the governing equations (6) on any element K ∈ Th , multiply them with some test functions w , and inte-

grate the resulting equations by parts to obtain

− (F (u),∇w)K + 〈F (̂u) · n, w〉∂ K = ( f , w)K , (7)

where û is the trace of the solution and n is the outward normal unit vector to ∂ K .
Following [44,45,56] we introduce the so-called local problem: For any approximation ûh to the trace of the solution û

on ∂ K we find uh ∈ Uk
h such that it satisfies

− (F (uh),∇w)K + 〈F (̂uh) · n + S (̂uh)(uh − ûh), w〉∂ K = ( f , w)K , ∀ w ∈ (Pk(K ))m. (8)

Here S is the so-called stabilization matrix which is added to render the local problem (8) well-defined for any given value 
of ûh in a suitable finite element space. The local problem defines uh as a function of ûh .

We still need to determine ûh . To this end, we require that ûh ∈ Mk
h satisfies

〈F (̂uh) · n + S (̂uh)(uh − ûh),μ〉∂Th\∂� + 〈b(uh, ûh),μ〉∂� = 0, ∀μ ∈Mk
h. (9)

Here b(uh, ̂uh) is the boundary numerical flux whose definition depends on the boundary conditions and will be given later.
Summing (8) over all elements and combining it with (9) we obtain that (uh, ̂uh) ∈Uk

h ×Mk
h satisfies

− (F (uh),∇w)Th
+ 〈F (̂uh) · n + S (̂uh)(uh − ûh), w〉∂Th

= ( f , w)Th , ∀ w ∈ Uk
h, (10a)

〈F (̂uh) · n + S (̂uh)(uh − ûh),μ〉∂Th\∂� + 〈b(uh, ûh),μ〉∂� = 0, ∀μ ∈Mk
h. (10b)

This is the weak formulation that defines a class of EDG methods for the Euler equations. In particular, the EDG method 
is obtained by setting EE

h = Eh in (3), whereas the IEDG method is obtained by setting EE
h = E I

h . It remains to define the 
boundary numerical flux and the stabilization matrix.

3.2.2. Boundary conditions
At the inlet section or outlet section of the flow, we define the boundary flux as

b(uh, ûh) = A+
n (̂uh)(uh − ûh) − A−

n (̂uh)(u∞ − ûh), (11)

where u∞ is the freestream value, A±
n = (An ± |An|)/2 and An = [∂ F (u)/∂u] · n.

At the solid surface with slip condition, we impose zero normal velocity and extrapolate the density, the tangential 
velocity, and the energy. Hence, we set
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b(uh, ûh) = g(uh) − ûh, (12)

where g(uh) is as follows

g1 = uh1, (g2, . . . , gm−1) = vh − (vh · n)n, gm = uhm. (13)

Here vh = (uh2/uh1, . . . , uhm−1/uh1) is the velocity component of uh . Note that since (vh − (vh · n)n) · n = 0 we have 
v̂h · n = 0 on the solid wall, where v̂h = (̂uh2/̂uh1, . . . , ̂uhm−1/̂uh1) is the velocity component of ûh .

3.2.3. Stabilization matrix
There are several possible choices for the stabilization matrix including the Roe scheme [63] and Lax–Friedrichs 

scheme [29]. For the Roe scheme, we have

S (̂uh) = L(̂uh)|�(̂uh)|R (̂uh), (14)

where L, R , and � are the matrices of the left and right eigenvectors, and eigenvalues of the Jacobian matrix 
[∂ F (̂uh)/∂ ûh] · n, respectively. The second choice is the local Lax–Friedrichs scheme

S = (|̂vh · n| + c(̂uh))I , (15)

where c(̂uh) is the local sound speed and I is the identity matrix. The third choice is the global Lax–Friedrichs scheme

S = τ
g

max I , (16)

where τ g
max is the global maximum speed of the system. The choice of the stabilization matrix becomes less important as 

k increases because the numerical dissipation, which is of the order of O (hk+1), decreases rapidly as k increases. The local 
Lax–Friedrichs stabilization matrix (15) is used in all the numerical examples presented in this paper.

3.3. Implementation

Applying the Newton–Raphson method to linearize the nonlinear weak formulation (10), we obtain the following linear 
weak formulation in terms of the Newton increment (δuh, δûh) ∈Uk

h ×Mk
h as

a(δuh, w) + b(δûh, w) = f (w), ∀ w ∈ Uk
h, (17a)

c(δuh,μ) + d(δûh,μ) = g(μ), ∀μ ∈Mk
h. (17b)

Here the forms are given by

a(v, w) = − (
F ′(uh)v,∇w

)
Th

+ 〈S (̂uh)v, w〉∂Th
,

b(η, w) = 〈
(F ′(̂uh) · n + S ′(̂uh)(uh − ûh) − S (̂uh))η, w

〉
∂Th

,

c(v,μ) = 〈S (̂uh)v,μ〉∂Th\∂� + 〈
b′(uh, ûh)v,μ

〉
∂�

,

d(η,μ) = 〈
(F ′(̂uh) · n + S ′(̂uh)(uh − ûh) − S (̂uh))η,μ

〉
∂Th\∂�

+ 〈
b′′(uh, ûh)η,μ

〉
∂�

,

f (w) = ( f , w)Th + (F (uh),∇w)Th
− 〈F (̂uh) · n + S (̂uh)(uh − ûh), w〉∂Th

,

g(μ) = −〈F (̂uh) · n + S (̂uh)(uh − ûh),μ〉∂Th\∂� − 〈b(uh, ûh),μ〉∂� , (18)

for all (v, η) and (w, μ) in Uk
h × Mk

h . Note that F ′ , S ′ , b′ , and b′′ denote ∂ F/∂uh , ∂ S/∂ ûh , ∂b/∂uh , and ∂b/∂ ûh , respec-
tively.

The linear weak formulation gives rise to the following linear system[
A B
C D

](
δu
δû

)
=

(
f
g

)
, (19)

where δu and δû are the vectors of degrees of freedom of δuh and δûh , respectively. It is important to note that the matrix 
A has a block-diagonal structure due to the discontinuous nature of the approximation spaces. Therefore, it can be inverted 
at the element level to yield a block-diagonal matrix (A)−1. We can thus eliminate δu to obtain a reduced system in terms 
of δû as

K δû = r, (20)

where

K = −C(A)−1B + D, r = g − C(A)−1f. (21)

This is the global linear system to be solved at every Newton iteration. It is important to point out that the size and 
connectivity of the Jacobian matrix K depends on the choice of the approximation space Mk

h . For both the HDG method 
and the IEDG method, because the degrees of freedom on each boundary face are only connected to the degrees of freedom 
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on the other faces of the element containing that particular boundary face, we can further reduce the size of the linear 
system (20) by locally eliminating the degrees of freedom of δûh on the boundary faces. However, this additional static 
condensation cannot be applied to the EDG method because the degrees of freedom on boundary faces are connected to 
those on several elements. We refer to Subsection 2.3 for estimates about the size and the number of non-zero entries in 
the Jacobian matrix for the HDG, EDG and IEDG methods.

In practice, to form the global Jacobian matrix K, we do not need to explicitly compute the matrices A, B, C, and D. 
Instead, we compute the elemental matrices and elemental vectors, and perform the standard finite element assembly to 
form the system (20). In particular, the elemental matrix and vector on an element K ∈ Th are given by

KK = −CK (AK )−1BK + DK , rK = gK − CK (AK )−1fK , (22)

where

AK
i j = − (

F ′(uh)φ j,∇φi

)
K

+ 〈
S (̂uh)φ j,φi

〉
∂ K

,

BK
in = 〈

(F ′(̂uh) · n + S ′(̂uh)(uh − ûh) − S (̂uh))ζn,φi

〉
∂ K ,

CK
lj = 〈

S (̂uh)φ j, ζ l

〉
∂ K\∂�

+ 〈
b′(uh, ûh)φ j, ζ l

〉
∂ K∩∂�

,

DK
ln = 〈

(F ′(̂uh) · n + S ′(̂uh)(uh − ûh) − S (̂uh))ζn, ζ l

〉
∂ K\∂�

+ 〈
b′′(uh, ûh)ζn, ζ l

〉
∂ K∩∂�

,

fK
i = ( f ,φi)K + (

F (uh),∇φi

)
K − 〈

F (̂uh) · n + S (̂uh)(uh − ûh),φi

〉
∂ K ,

gK
l = − 〈

F (̂uh) · n + S (̂uh)(uh − ûh), ζ l

〉
∂ K\∂�

− 〈
b(uh, ûh), ζ l

〉
∂ K∩∂�

, (23)

for i, j = 1, . . . , M and l, n = 1, . . . , N . Here φ j, j = 1, . . . , M , are polynomial basis functions in the local space (Pk(K ∗))m

and ζn, n = 1, . . . , N , are polynomial basis functions in the local space (Pk(F ∗))m×e , where e is the number of faces on one 
element. Note here that K ∗ is the master element and F ∗ is the master face.

The elemental matrices and vectors are then assembled into the global Jacobian matrix and vector as

KI K (l),I K (n) := KI K (l),I K (n) + KK
ln, rI K (n) := rI K (n) + rK

n , l,n = 1, . . . , N, (24)

where, for each K ∈ Th , I K is the element connectivity vector that contains the numberings of the degrees of freedom of 
ûh on ∂ K . Note that the element connectivity vectors I K for all K ∈ Th depend on the choice of the approximation space 
Mk

h . Therefore, as regards the implementation, the only difference among the HDG method, the EDG method and the IEDG 
method lies in the assembly of the elemental quantities into the global Jacobian matrix and vector.

Finally, we note that we use the same shape functions to represent both the numerical solution and the geometry. It 
means that the space of polynomials of degree k on the master element K ∗ is used to represent the shape of every element 
K ∈ Th . The element and face integrals in (23) are transformed into the integrals on the master element and the master 
face, respectively. The resulting integrals are then computed by using Gauss quadratures.

3.4. The unsteady case

We consider the extension of the EDG method to the unsteady Euler equations:

∂u

∂t
+ ∇ · F (u) = f , in � × (0, T ], (25)

with the initial condition u(t = 0) = u0 and appropriate boundary conditions. We denote by (un
h, ̂un

h) the numerical approx-
imations to (u(tn), ̂u(tn)) at time tn = n�tn , where �tn is a timestep size at level n.

Using the EDG method to discretize (25) in space and the backward Euler method to discretize the time derivative, we 
obtain that (uh, ̂uh) ∈ Uk

h ×Mk
h satisfies

( un
h

�tn
, w

)
Th

− (
F (un

h),∇w
)
Th

+ 〈
F (̂un

h) · n + S (̂un
h)(un

h − ûn
h), w

〉
∂Th

=
(

f n + un−1
h

�tn
, w

)
Th

, (26a)〈
F (̂un

h) · n + S (̂un
h)(un

h − ûn
h),μ

〉
∂Th\∂�

+ 〈
b(un

h, ûn
h),μ

〉
∂�

= 0, (26b)

for all (w, μ) ∈ Uk
h × Mk

h . Since this system is similar to the system (10) for the steady-state case, we apply the same 
solution procedure described above to solve the problem (26) at every time step.

Higher-order time-stepping methods such as the backward difference formula schemes or the diagonally implicit Runge–
Kutta methods [1] can also be used to discretize the time derivative in a similar fashion. We refer to [45,48] for a detailed 
discussion.
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3.5. Numerical examples

3.5.1. Ringleb flow
We first consider the Ringleb flow to demonstrate the optimal accuracy of the EDG method. The Ringleb flow is an exact 

smooth solution of the Euler equations obtained using the hodograph method [10]. For any given (x, y), we first obtain the 
radial velocity V by solving the following nonlinear equation

(x − 0.5L2) + y2 = 1

4ρ2 V 4
,

where

c =
√

1 − V 2

5
, ρ = c5, L = 1

c
+ 1

3c3
+ 1

5c5
− 1

2
ln

1 + c

1 − c
.

We then compute the exact solution as

ρ = c5, p = c7/γ , v1 = V cos(θ), v2 = V sin(θ),

where

ψ =
√

1

2V 2
− (x − 0.5L)ρ, θ = arcsin(ψ V ).

Since the exact solution can be determined at any spatial point, we take the domain � to be (−2, −1) ×(1, 2). The boundary 
condition is prescribed by setting the freestream value u∞ to the exact solution on the boundary of the domain. We consider 
triangular meshes that are obtained by splitting a regular n × n Cartesian grid into 2n2 triangles. On these meshes, we use 
polynomials of degree k to represent all the approximate variables with a nodal basis.

We present the L2 error and convergence rate of the numerical solution uh as a function of h and k in Table 3 for the 
HDG method, Table 4 for the EDG method, and in Table 5 for the IEDG method. We observe that the approximate solution 
converges with the optimal order k + 1 for all the methods. Although the EDG and IEDG methods have less globally coupled 
degrees of freedom than the HDG method, they yield results as accurate as the HDG method. Furthermore, we note that the 
coefficients αDOF and αNNZ quickly approach those values in Tables 1 and 2, respectively, as the mesh size decreases.

3.5.2. Inviscid flow past a channel with a smooth bump
This problem is a Benchmark case proposed in the recent Workshop on High-Order CFD Methods [66], which aims at 

testing high-order methods for the computation of internal flow with a high-order curved boundary representation. The 
computational domain is bounded between x = −1.5 and x = 1.5, and between the bump and y = 0.8. The bump is defined 
as y = 0.0625e−25x2

. The inflow Mach number is 0.5 at zero angle of attack. In this subsonic flow problem, entropy is 
constant in the flow field. The L2 norm of the entropy error is then used as the indicator of solution accuracy since the 
analytical solution is unknown.

We consider quadrilateral meshes obtained by refining the coarsest mesh (a 2 × 8 Cartesian grid) as shown in Fig. 1. On 
these meshes, we use polynomials of degree k to represent all the approximate variables with a nodal basis. The entropy 
error convergence is presented in Fig. 2. We see that all the three schemes converge optimally with order k + 1. Both the 
EDG and IEDG methods yield errors and convergence rates equally well as the HDG method.

We report in Table 6 and Table 7 the number of degrees of freedom and the number of nonzero entries of the global 
linear system, and the CPU time to solve the system for each method. We clearly see that the IEDG method is more efficient 
than the HDG method and the EDG method because it requires less memory storage and computational time than the other 
two methods. However, the comparison is not fair for the HDG method because the MATLAB sparse direct solver used for 
solution of the linear system does not make use of the block structure of the HDG method. An implementation of a linear 
solver that takes advantage of the block structure will certainly improve the performance of the HDG method, see [33]. 
Furthermore, we note that each method takes the same CPU time to assemble the linear system. The CPU time to assemble 
the system is usually smaller than the CPU time to solve it [62].

3.5.3. Inviscid subsonic flow past a NACA0012 airfoil
This example involves inviscid subsonic flow over a NACA2012 airfoil at a free stream Mach number M∞ = 0.5 and an 

angle of attack α = 2 degrees. This problem is a Benchmark case proposed in the recent Workshop on High-Order CFD 
Methods [66], which aims at testing high-order methods for the computation of external flow with a high-order curved 
boundary representation. The far field boundary is placed at a distance of ten chords away from the airfoil. We refer to [66]
for a detailed description of this test case.

We consider two different meshes shown in Fig. 3. The coarse mesh consists of Ne = 256 quadrilateral elements, while 
the fine mesh has Ne = 1024 quadrilateral elements. We use polynomials of degree k = 4 to represent both the numerical 
solution and geometry on the coarse mesh, while using polynomials of degree k = 2 to represent both the numerical 
solution and geometry on the fine mesh. In addition, we also compute a reference solution on a very fine mesh of 4096 
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k = 4

NZ error order αDOF αNNZ

.411 2.08e−6 – 0.037 0.643

.527 7.90e−8 4.72 0.184 3.949

.05 2.80e−9 4.82 0.808 18.82

.25 9.36e−11 4.90 3.379 81.63

.3 3.09e−12 4.92 13.81 339.5

k = 4

NZ error order αDOF αNNZ

.478 2.32e−6 – 0.052 0.875

.801 9.21e−8 4.65 0.177 3.321

.980 3.56e−9 4.69 0.647 12.93

.48 1.60e−10 4.48 2.469 51.01

.0 5.41e−12 4.89 9.369 202.6

k = 4

NZ error order αDOF αNNZ

.241 2.23e−6 – 0.028 0.425

.329 1.04e−7 4.42 0.131 2.409

.037 3.97e−9 4.71 0.557 11.09

.59 1.45e−10 4.78 2.291 47.32

.3 5.10e−12 4.83 9.285 195.2
Table 3
History of convergence of the HDG method for the Ringleb flow.

Mesh
h = 3/n

k = 1 k = 2 k = 3

error order αDOF αNNZ error order αDOF αNNZ error order αDOF αN

3/2 4.35e−3 – 0.015 0.103 3.24e−4 – 0.022 0.231 2.35e−5 – 0.029 0
3/4 1.10e−3 1.98 0.073 0.632 4.85e−5 2.74 0.110 1.421 1.43e−6 4.04 0.147 2
1/8 2.80e−4 1.98 0.323 3.012 6.92e−6 2.81 0.485 6.777 8.63e−8 4.05 0.646 12
3/16 7.06e−5 1.99 1.352 13.06 9.37e−7 2.88 2.028 29.39 5.18e−9 4.06 2.703 52
3/32 1.77e−5 2.00 5.524 54.32 1.22e−7 2.94 8.287 122.2 3.83e−10 3.76 11.05 217

Table 4
History of convergence of the EDG method for the Ringleb flow.

Mesh
h = 3/n

k = 1 k = 2 k = 3

error order αDOF αNNZ error order αDOF αNNZ error order αDOF αN

3/2 4.31e−3 – 0.008 0.038 3.52e−4 – 0.023 0.199 2.47e−5 – 0.038 0
3/4 1.08e−3 2.00 0.023 0.126 5.99e−5 2.56 0.074 0.736 1.50e−6 4.05 0.126 1
3/8 2.76e−4 1.97 0.074 0.456 9.93e−6 2.59 0.265 2.822 8.74e−8 4.10 0.456 6
3/16 7.00e−5 1.98 0.265 1.735 1.51e−6 2.72 1.000 11.05 5.14e−9 4.09 1.735 27
3/32 1.75e−5 2.00 1.000 6.759 2.13e−7 2.83 3.880 43.73 3.62e−10 3.83 6.759 109

Table 5
History of convergence of the IEDG method for the Ringleb flow.

Mesh
h = 3/n

k = 1 k = 2 k = 3

error order αDOF αNNZ error order αDOF αNNZ error order αDOF αN

3/2 4.44e−3 – 0.006 0.028 3.65e−4 – 0.014 0.109 2.38e−5 – 0.021 0
3/4 1.11e−3 2.00 0.021 0.117 6.13e−5 2.57 0.058 0.565 1.42e−6 4.06 0.095 1
3/8 2.83e−4 1.97 0.073 0.447 1.02e−5 2.60 0.234 2.489 1.04e−7 3.78 0.396 6
3/16 7.18e−5 1.98 0.264 1.725 1.54e−6 2.72 0.939 10.39 5.94e−9 4.13 1.615 25
3/32 1.80e−5 2.00 0.998 6.750 2.37e−7 2.70 3.760 42.42 3.50e−10 4.08 6.522 105
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Fig. 1. Inviscid flow through a channel with a smooth bump: Initial mesh of 2 × 8 quadrilateral elements. Finer meshes are obtained by successively refined 
the initial mesh.

Fig. 2. Inviscid flow through a channel with a smooth bump: Entropy error norm versus mesh size, shown for (a) k = 2 and (b) k = 3.

Table 6
Inviscid flow through a channel with a smooth bump: Computational cost of solving the global linear system for the HDG, EDG, and IEDG methods for 
k = 2.

Mesh
n × m

Degrees of freedom Number of non-zero entries CPU time in seconds

HDG EDG IEDG HDG EDG IEDG HDG EDG IEDG

2 × 8 264 276 180 14 688 13 328 7952 0.0059 0.0035 0.0017
4 × 16 1296 932 756 92 736 50 704 40 528 0.0389 0.0124 0.0070
8 × 32 5664 3396 3060 442 368 197 648 177 872 0.1376 0.0580 0.0545
16 × 64 23 616 12 932 12 276 1 915 776 780 304 741 328 0.8954 0.2509 0.2359
64 × 128 96 384 50 436 49 140 7 959 168 3 100 688 3 023 312 3.9691 1.2546 1.2512

Table 7
Inviscid flow through a channel with a smooth bump: Computational cost of solving the global linear system for the HDG, EDG, and IEDG methods for 
k = 3.

Mesh
n × m

Degrees of freedom Number of non-zero entries CPU time in seconds

HDG EDG IEDG HDG EDG IEDG HDG EDG IEDG

2 × 8 352 444 268 26 112 31 344 16 816 0.0120 0.0114 0.0089
4 × 16 1728 1524 1188 164 864 120 528 91 920 0.0672 0.0341 0.0263
8 × 32 7552 5604 4948 786 432 472 464 415 696 0.1967 0.1143 0.1089
16 × 64 31 488 21 444 20 148 3 405 824 1 870 608 1 757 520 1.2723 0.6567 0.6460
64 × 128 128 512 83 844 81 268 14 149 632 7 443 984 7 218 256 10.5586 4.1901 4.1459

quadrilateral elements using polynomials of degree k = 4. We will use the reference solution to verify the accuracy of the 
numerical solutions computed on the coarse mesh and the fine mesh.

We show in Fig. 4 the Mach number contours for the numerical solutions computed using the IEDG method on the 
coarse mesh and the fine mesh. Note that the IEDG discretization on the coarse mesh with k = 4 has 6904 degrees of 
freedom and 771 040 nonzero entries in the Jacobian matrix, while the one on the fine mesh with k = 2 has 12 088 degrees 
of freedom and 729 568 nonzero entries. While the Mach number contours resemble, it is verified that the k = 4 solution is 
actually more accurate than the k = 2 solution since the former yields smaller errors in the lift and drag coefficients than 
the latter.

We report in Table 8 the errors in the lift coefficient and drag coefficient for the HDG, EDG, and IEDG methods. It can be 
seen that the discretizations on the coarse mesh with k = 4 produce smaller errors than those on the fine mesh with k = 2. 
This demonstrates the benefit of using polynomials of high degree to approximate the solution and geometry. Furthermore, 
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Fig. 3. Inviscid subsonic flow past a NACA0012 airfoil: (a) coarse mesh and (b) fine mesh.

Fig. 4. Inviscid subsonic flow past a NACA0012 airfoil: Mach number contours for the numerical solutions computed using the IEDG method on (a) the 
coarse mesh with k = 4 and (b) the fine mesh with k = 2.

Table 8
Inviscid subsonic flow past a NACA0012 airfoil: Errors in the lift coefficient and drag coefficient for the HDG, EDG, and IEDG solutions computed on the 
coarse mesh with k = 4 and the fine mesh with k = 2.

Mesh
(Ne, k)

Error in lift coefficient Error in drag coefficient

HDG EDG IEDG HDG EDG IEDG

(256,4) 2.22 × 10−5 2.95 × 10−4 2.57 × 10−4 8.93 × 10−5 1.78 × 10−3 2.11 × 10−4

(1024,2) 6.59 × 10−5 3.80 × 10−4 3.25 × 10−4 1.53 × 10−4 2.30 × 10−3 3.07 × 10−4

we observe that the HDG method is more accurate than the EDG and IEDG methods, while the IEDG method is more 
accurate than the EDG method.

Finally, we display in Fig. 5 the pressure coefficient and skin friction coefficient over the airfoil surface, which are ob-
tained from the y-momentum and x-momentum components of the numerical flux F (̂uh) · n + S (̂uh)(uh − ûh), respectively. 
The pressure coefficient distributions are very close to the reference one except that there are some small overshoots near 
the trailing edge due to a singularity at the trailing edge of the airfoil. Note that the exact value of the skin friction is zero 
for the inviscid flow. While both the HDG and IEDG methods have zero errors (up to machine tolerance) in the skin friction, 
the EDG method has quite large errors in the skin friction especially near the trailing edge as shown in Fig. 5. These results 
confirm that the IEDG method outperforms the EDG method.
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Fig. 5. Inviscid subsonic flow past a NACA0012 airfoil: Pressure coefficient (top) and skin friction coefficient (bottom) for (a) the coarse mesh with k = 4
and (b) the fine mesh with k = 2. Note that REF stands for the reference solution.

4. The Navier–Stokes equations

4.1. Governing equations

We consider the steady-state compressible Navier–Stokes equations in conservation form as

∇ · (F (u) + G(u,∇u)) = f , in �, (27)

where u = (ui), 1 ≤ i ≤ m = d + 2, is a vector of conserved dimensionless quantities (namely, density, momentum and 
energy), F (u) are inviscid fluxes of dimension m × d, G(u, ∇u) are viscous fluxes of dimension m × d, and f is a source 
term. The nondimensional form of the Navier–Stokes equations as well as the definition of the inviscid and viscous fluxes 
can be found in [2]. The Navier–Stokes equations (27) are supplemented with appropriate boundary conditions which will 
be discussed later.

4.2. The EDG methods

4.2.1. Formulation and implementation
We begin by considering the Navier–Stokes system (27) on any element K ∈ Th and rewrite it as

q − ∇u = 0, in K ,

∇ · (F (u) + G(u,q)) = f , in K . (28)

Multiplying with some test functions (v, w) and integrating the resulting equations by part we obtain

(q, v)K + (u,∇ · v)K − 〈̂u, v · n〉∂ K = 0, (29a)

− (F (u) + G(u,q),∇w)K + 〈(F (̂u) + G (̂u,q)) · n, w〉∂ K = ( f , w)K , (29b)

where û is the trace of the solution and n is the outward normal unit vector to ∂ K .
We next introduce the local problem on any element K ∈ Th as: Find (qh, uh) ∈Qk ×Uk such that it satisfies
h h
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(
qh, v

)
K + (uh,∇ · v)K − 〈̂uh, v · n〉∂ K = 0, (30a)

− (
F (uh) + G(uh,qh),∇w

)
K + 〈

(F (̂uh) + G (̂uh,qh)) · n + S (̂uh)(uh − ûh), w
〉
∂ K = ( f , w)K , (30b)

for all (p, w) ∈ (Pk(K ))m×d × (Pk(K ))m . This local problem defines (qh, uh) locally as a function of ûh . To determine ûh ∈
Mk

h we require that〈
(F (̂uh) + G (̂uh,qh)) · n + S (̂uh)(uh − ûh),μ

〉
∂Th\∂�

+ 〈
b(uh, ûh,qh),μ

〉
∂�

= 0, ∀μ ∈Mk
h. (31)

Here S (̂uh) is the stabilization matrix and b(uh, ̂uh, qh) is the boundary numerical flux. The system (30)–(31) completely 
defines either the EDG method or the HDG method for the Navier–Stokes equations depending on the choice of the approx-
imation space Mk

h .
The implementation of the EDG method (or the HDG method) for the Navier–Stokes equations is similar to that of the 

EDG method (or the HDG method) for the Euler equations (6). We compute the elemental matrices and elemental vectors, 
and perform the standard finite element assembly to form the linear system at every Newton iteration. The elemental matrix 
and vector on an element K ∈ Th are given by

KK = −CK (AK )−1BK + DK , rK = gK − CK (AK )−1fK , (32)

where

AK =
[

AKqq AKqu

AK uq AK uu

]
, BK =

[
BKq

BK u

]
, CK = [ CKq CK u ] , fK =

[
fKq

fK u

]
, (33)

and

AKqq
ps = (

ψ s,ψ p

)
K

,

AKqu
pj = (

φ j,∇ · ψ p

)
K

,

AK uq
is = − (

G ′′(uh,qh)ψ s,∇φ i

)
K + 〈

(G ′′(̂uh,qh) · n)ψ s,φi

〉
∂ K ,

AK uu
i j = − (

(F ′(uh) + G ′(uh,qh))φ j,∇φ i

)
K

+ 〈
S (̂uh)φ j,φi

〉
∂ K

,

BKq
pn = − 〈

ζn,ψ p · n
〉
∂ K

,

BK u
in = 〈

((F ′(̂uh) + G ′(̂uh,qh)) · n + S ′(̂uh)(uh − ûh) − S (̂uh))ζn,φi

〉
∂ K ,

CKq
ls = 〈

(G ′′(̂uh,qh) · n)ψ s, ζ l

〉
∂ K\∂�

+ 〈
b′′′(uh, ûh,qh)ψ s, ζ l

〉
∂ K∩∂�

,

CK u
lj = 〈

S (̂uh)φ j, ζ l

〉
∂ K\∂�

+ 〈
b′(uh, ûh,qh)φ j, ζ l

〉
∂ K∩∂�

,

DK
ln = 〈

((F ′(̂uh) + G ′(̂uh,qh)) · n + S ′(̂uh)(uh − ûh) − S (̂uh))ζn, ζ l

〉
∂ K\∂�

+ 〈
b′′(uh, ûh,qh)ζn, ζ l

〉
∂ K∩∂�

,

fKq
i = − (

qh,ψ i

)
K − (

uh,∇ · ψ i

)
K + 〈̂

uh,ψ i · n
〉
∂ K ,

fK u
i = ( f ,φi)K + (

F (uh) + G(uh,qh),∇φi

)
K − 〈

(F (̂uh) + G (̂uh,qh)) · n + S (̂uh)(uh − ûh),φi

〉
∂ K ,

gK
l = − 〈

(F (̂uh) + G (̂uh,qh)) · n + S (̂uh)(uh − ûh), ζ l

〉
∂ K\∂�

− 〈
b(uh, ûh,qh), ζ l

〉
∂ K∩∂�

,

for i, j = 1, . . . , M , p, s = 1, . . . , P , and l, n = 1, . . . , N . Note that F ′ , S ′ , G ′ , G ′′ , b′ , b′′ and b′′′ denote ∂ F/∂uh , ∂ S/∂ ûh , 
∂G/∂uh (or ∂G/∂ ûh), ∂G/∂qh , ∂b/∂uh , ∂b/∂ ûh , and ∂b/∂q̂h , respectively. Here φ j , j = 1, . . . , M , are polynomial basis func-

tions in the local space (Pk(K ∗))m , ψ p , p = 1, . . . , P , are polynomial basis functions in the local space (Pk(K ∗))m×d and ζn , 
n = 1, . . . , N , are polynomial basis functions in the local space (Pk(F ∗))m×e , where we recall that K ∗ is the master element 
and F ∗ is the master face.

Notice that the global Jacobian matrix for the Navier–Stokes equation also involves the degrees of freedom of ûh only 
and has the same structure as that for the Euler equations. Extension to the unsteady case is straightforward by using 
implicit time-stepping methods for temporal discretization as we already discussed in Subsection 3.4.

4.2.2. Wall boundary conditions
The inlet and outlet boundary conditions are imposed in the same manner as those of the Euler case. For the wall 

boundary conditions, we extrapolate the density, equate the fluid velocity to the wall velocity v = v w , and set either a 
fixed temperature T = T w (isothermal wall) or a fixed heat flux ∂T /∂n = qw (adiabatic wall). The strategy to impose these 
conditions is described as follows. First, we set

b1 = uh1 − ûh1, (34)

which means that we extrapolate the density. We then set
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bi = v wi − ûhi /̂uh1, 2 ≤ i ≤ m − 1, (35)

which means that we impose the no-slip condition at the solid wall. For the last component of b, we need to distinguish 
between the isothermal wall and the adiabatic wall. For the isothermal wall, we set

bm = T w − T (̂uh), (36)

where the approximate temperature T (̂uh) is calculated based on ûh . For the adiabatic wall, we set

bm = qw − q(qh, uh, ûh), (37)

where q is the m-th component of the numerical flux (F (̂uh) + G (̂uh, qh)) · n + S (̂uh)(uh − ûh).

4.2.3. Stabilization matrix
To define the stabilization matrix for the Navier–Stokes equations, we add to the stabilization matrix in the EDG method 

and the HDG method for the Euler equations a viscous stabilization as

S v = γ

Pr Re
I . (38)

Here Re is the Reynolds number, Pr is the Prandtl number, and γ is the heat capacity ratio. For compressible viscous flows 
the Reynolds number is typically very large and hence the contribution of the viscous component may be neglectable. 
However, the viscous stabilization may play an important role in cases where the Reynolds number is small.

4.3. Numerical examples

4.3.1. A linear convection–diffusion problem
The purpose of this example is to compare the proposed methods with the standard continuous Galerkin (CG) method. 

For this purpose, we consider the following linear convection–diffusion problem

∇ · (cu) − ∇2u = f , in �,

u = 0 on ∂�. (39)

Here � = (0, 1) × (0, 1), c = (cx, c y), and the source term f is chosen to yield the following exact solution

u(x, y) = xy
(1 − e(x−1)cx)(1 − e(y−1)c y )

(1 − e−cx)(1 − e−c y )
.

The solution develops boundary layers along the boundaries x = 1 and y = 1 for large values of the velocity c . This example 
serves to validate the performance of the proposed methods in the weakly convection-dominated regime. For this purpose 
we consider c = (20, 20) in our numerical experiments.

We consider triangular meshes obtained by splitting a regular n × n Cartesian grid into a total of 2n2 triangles, giving 
uniform element sizes of h = 1/n. On these meshes, we consider solutions of polynomial degree k represented using a nodal 
basis within each element, with the nodes uniformly distributed.

We present the error and order of convergence in L2-norm in Table 9 for the HDG, EDG, EDG0, IEDG, and CG methods. 
Here EDG0 represents the EDG method which strongly imposes the Dirichlet boundary condition by setting the approximate 
trace to zero on the domain boundary. For the HDG method the L2 error is computed using the postprocessed solution 
which is obtained by locally postprocessing the HDG solution [52]. As expected, the postprocessed solution of the HDG 
method converges with order k + 2, which is one order higher than the other methods. It is interesting to see that how 
the Dirichlet condition is enforced can affect the convergence rate of the EDG method especially for k = 1. In particular, 
for k = 1, strongly enforcing the Dirichlet condition yields optimal convergence rate of k + 1, whereas weakly imposing it 
results in suboptimal convergence of order k. However, both approaches yield optimal convergence rate of k + 1 for k > 1.

Furthermore, we see that both the IEDG method and the CG method deliver optimal convergence of order k + 1 for the 
numerical solution. However, the IEDG method yields smaller errors than the CG method, while both of them have the 
same number of global degrees of freedom and the same number of nonzero entries in the matrix system. It is known that 
the CG method for convection–diffusion problems produces overshoots when it does not have enough resolution to resolve 
the boundary layer feature. To demonstrate this point, we show in Fig. 6 the numerical solution computed using the IEDG 
method and the CG method computed for n = 8 and k = 2. We observe that the numerical solution of the CG method has 
considerable oscillations near the top and right boundaries, whereas the numerical solution of the IEDG method is quite 
smooth and clean. Indeed, as shown in Table 9, the IEDG solution has about 4 times smaller error than the CG solution 
for n = 8 and k = 2. The results presented here illustrate that the IEDG method is more robust and accurate than the CG 
method.
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Table 9
Comparison of the methods in terms of the L2 error in the solution and order of convergence. The postprocessed solution is used to compute the error for 
the HDG method. Note that EDG0 represents the EDG method which strongly imposes the boundary condition by setting the approximate trace to zero on 
the domain boundary.

Degree
k

Mesh
h = 1/n

HDG EDG EDG0 IEDG CG

error order error order error order error order error order

1 1/8 8.18e−3 – 2.57e−2 – 2.79e−2 – 1.42e−2 – 4.45e−2 –
1/16 1.74e−3 2.23 2.27e−2 0.18 9.48e−3 1.56 5.03e−3 1.50 1.26e−2 1.83
1/32 2.80e−4 2.63 1.72e−2 0.40 2.63e−3 1.85 1.75e−3 1.53 3.25e−3 1.95
1/64 3.92e−5 2.84 1.10e−2 0.65 6.64e−4 1.99 5.36e−4 1.70 8.19e−4 1.99
1/128 5.16e−6 2.93 6.27e−3 0.81 1.66e−4 2.00 1.49e−4 1.84 2.05e−4 2.00

2 1/8 1.52e−3 – 3.43e−3 – 4.28e−3 – 2.12e−3 – 7.97e−3 –
1/16 1.60e−4 3.25 8.08e−4 2.08 7.12e−4 2.59 4.63e−4 2.19 1.29e−3 2.62
1/32 1.21e−5 3.73 1.21e−4 2.74 9.4e−5 2.92 7.63e−5 2.60 1.73e−4 2.90
1/64 8.02e−7 3.91 1.58e−5 2.93 1.18e−5 2.99 1.07e−5 2.83 2.20e−5 2.98
1/128 5.12e−8 3.97 2.09e−6 2.92 1.49e−6 2.99 1.42e−6 2.92 2.76e−6 3.00

3 1/8 2.82e−4 – 7.89e−4 – 9.64e−4 – 5.28e−4 – 1.52e−3 –
1/16 1.53e−5 4.20 1.06e−4 2.90 8.43e−5 3.52 5.62e−5 3.23 1.34e−4 3.50
1/32 5.81e−7 4.72 9.78e−6 3.44 5.51e−6 3.94 4.42e−6 3.67 9.02e−6 3.90
1/64 1.92e−8 4.92 7.25e−7 3.75 3.31e−7 4.06 2.95e−7 3.90 5.56e−7 4.02
1/128 6.08e−10 4.98 4.87e−8 3.90 1.98e−8 4.06 1.87e−8 3.98 3.39e−8 4.04

Fig. 6. Plots of the approximate solution computed using (a) the IEDG method and (b) the CG method for the mesh n = 8 and the polynomial degree k = 2.

4.3.2. Viscous subsonic flow past a NACA0012 airfoil
We consider the viscous analog of the inviscid case described in Subsection 3.5.3. The problem is now a viscous subsonic 

flow over a NACA2012 airfoil at a free stream Mach number M∞ = 0.5, Reynolds number Re = 5000, and an angle of attack 
α = 2 degree. We construct a sequence of C meshes. Each C mesh has m × n quadrilateral elements, where m denotes 
the number of divisions along the radial direction and n denotes the number of divisions along the airfoil surfaces and 
wakes. Fig. 7 shows the coarsest C mesh of Ne = 4 × 16 (m = 4, n = 16) quadrilateral elements and the first refinement 
(m = 8, n = 32) of the coarsest mesh. The second refinement (m = 16, n = 64) is obtained by refining the first refinement. 
In addition, the third refinement (m = 32, n = 128) is only used to obtain the reference solution using the HDG method 
with polynomials of degree k = 4.

We show in Fig. 8 the Mach number of the numerical solutions computed using the IEDG method on the coarsest mesh 
with k = 4 and the first refinement with k = 2. Note that the IEDG discretization on the coarse mesh with k = 4 has 1656 
degrees of freedom and 173 536 nonzero entries in the Jacobian matrix, while the one on the fine mesh with k = 2 has 
3064 degrees of freedom and 180 960 nonzero entries. While the Mach numbers look similar, it can be seen from Fig. 9 that 
the k = 4 solution is actually more accurate than the k = 2 solution since the former yields smaller errors in the pressure 
coefficient and skin friction coefficient than the latter. Fig. 9 depicts the pressure coefficient and skin friction coefficient 
over the airfoil surface, which are obtained from the y-momentum and x-momentum components of the numerical flux 
F (̂uh, qh) · n + S (̂uh)(uh − ûh), respectively. We see that the k = 4 solutions computed on the coarsest mesh yield the 
pressure coefficient and skin friction coefficient distributions very close to the reference ones, while the k = 2 solutions 
computed on the first refinement produce some small oscillations in the pressure coefficient distribution near the leading 
edge. These results clearly demonstrate the benefit of using high-order discretizations.

Finally, we report in Table 10 the errors in the lift coefficient and drag coefficient for the HDG, EDG, and IEDG methods 
for polynomial degrees from 1 to 4. We observe that the errors decrease rapidly as the polynomial degree k increases, which 
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Fig. 7. Viscous subsonic flow past a NACA0012 airfoil: (a) the coarsest grid of 4 × 16 elements and (b) its first refinement of 8 × 32 elements.

Fig. 8. Viscous subsonic flow past a NACA0012 airfoil: The Mach number of the numerical solutions computed using the IEDG method on (a) the coarsest 
mesh with k = 4 and (b) the first refinement with k = 2.

Table 10
Viscous subsonic flow past a NACA0012 airfoil: Errors in the lift coefficient and drag coefficient for the HDG, EDG, and IEDG solutions.

Degree 
k

Mesh 
m × n

Error in lift coefficient Error in drag coefficient

HDG EDG IEDG HDG EDG IEDG

1 4 × 16 2.22 × 10−1 3.15 × 10−1 2.57 × 10−1 2.93 × 10−2 3.48 × 10−2 3.11 × 10−2

8 × 32 6.59 × 10−2 8.94 × 10−2 6.65 × 10−2 8.03 × 10−3 9.68 × 10−3 8.47 × 10−2

16 × 64 1.71 × 10−2 2.26 × 10−2 1.73 × 10−2 2.43 × 10−3 3.12 × 10−3 2.76 × 10−3

2 4 × 16 8.54 × 10−2 9.05 × 10−2 8.67 × 10−2 8.01 × 10−3 8.70 × 10−3 8.32 × 10−3

8 × 32 1.32 × 10−2 1.43 × 10−2 1.35 × 10−2 1.23 × 10−3 1.38 × 10−3 1.27 × 10−3

16 × 64 1.90 × 10−3 1.95 × 10−3 1.87 × 10−3 1.64 × 10−4 2.20 × 10−4 1.98 × 10−4

3 4 × 16 1.95 × 10−2 1.94 × 10−2 1.92 × 10−2 1.72 × 10−3 2.09 × 10−3 1.88 × 10−3

8 × 32 1.32 × 10−3 1.56 × 10−3 1.39 × 10−3 1.21 × 10−4 1.52 × 10−4 1.35 × 10−4

16 × 64 9.82 × 10−5 1.08 × 10−4 9.97 × 10−5 8.75 × 10−6 1.20 × 10−5 9.09 × 10−6

4 4 × 16 6.84 × 10−3 7.38 × 10−3 6.79 × 10−3 6.37 × 10−4 6.98 × 10−4 6.52 × 10−4

8 × 32 2.71 × 10−4 3.06 × 10−4 2.75 × 10−4 2.49 × 10−5 2.82 × 10−5 2.65 × 10−5

16 × 64 1.13 × 10−5 1.35 × 10−5 1.21 × 10−5 9.71 × 10−7 1.20 × 10−6 1.05 × 10−6

illustrates again the benefit of using polynomials of high degree to approximate the solution and geometry. Note that all the 
methods converge optimally with order k + 1 for k = 1, while they do not converge optimally for k > 1 due to singularity 
near the trailing edge. The IEDG method is just as accurate as the HDG method, while having significant less degrees of 
freedom.
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Fig. 9. Viscous subsonic flow past a NACA0012 airfoil: Pressure coefficient (top) and skin friction coefficient (bottom) for (a) the coarsest mesh and k = 4
and (b) the first refinement with k = 2. Note that REF stands for the reference solution.

5. Conclusions

We have presented a class of embedded discontinuous Galerkin methods for numerically solving systems of conservation 
laws arising in computational fluid dynamics. Although the paper is focused on the Euler and Navier–Stokes equations, the 
EDG method can be used to solve other systems of equations. The proposed EDG methods inherit many features of HDG 
methods and thus possess unique advantages which distinguish themselves from other DG methods. The main advantage 
of the EDG methods is that it gives rise to a matrix system which has the sparsity structure of the statically condensed CG 
method, while requiring less memory storage and computation time than other DG methods.

In this paper, we studied two particular EDG methods: the original EDG method presented in our previous work [55] is 
constructed by requiring the approximate trace to be continuous on all the faces, while the IEDG method is constructed by 
enforcing the continuity of the approximate trace only on the interior faces. There are two advantages of the IEDG method 
relative to the original EDG method. First, with the IEDG method, the boundary conditions are enforced more rigorously 
and accurately because the local spaces for the approximate trace on the domain boundary are exactly the same as those in 
the HDG method. Second, for the IEDG method, the degrees of freedom of the approximate trace on the domain boundary 
can be locally condensed without changing the sparsity pattern of the Jacobian matrix. Numerical results presented herein 
show that the accuracy of the IEDG method appears to be comparable to that of the HDG method for many test cases. This 
feature makes the IEDG method computationally competitive with other finite element methods and finite volume methods.

Both the HDG and EDG methods have been used to solve RANS flows, shock flows, as well as unsteady flows [44–46,55,
56]. Future work will focus on extending the IEDG method to simulate these flows and developing effective Newton–Krylov 
solvers for solving the algebraic systems arising from the IEDG discretization of nonlinear systems of conservation laws in 
fluid mechanics. We close the paper by noting that the EDG methods can be combined with the discontinuous Petrov–
Galerkin (DPG) method [30] to capture shocks more robustly. This line of research has been investigated in our recent work 
[42,43], wherein the DPG method is used for solving the local problems of the HDG method. The resulting hybridized DPG 
scheme enables shock capturing of the viscous Burgers equation. The EDG methods may also benefit from the DPG method 
just as the same way as the HDG method does. This is a subject worthy of further investigation.
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