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Abstract We propose a hybridizable discontinuous Galerkin (HDG) method to numerically
solve the Oseen equations which can be seen as the linearized version of the incompressible
Navier-Stokes equations. We use same polynomial degree to approximate the velocity, its
gradient and the pressure. With a special projection and postprocessing, we obtain optimal
convergence for the velocity gradient and pressure and superconvergence for the velocity.
Numerical results supporting our theoretical results are provided.

Keywords Oseen equations - Discontinuous Galerkin methods - Hybridizable -
Postprocessing - Superconvergence
1 Introduction

This paper presents an a priori error analysis of a hybridizable discontinuous Galerkin
(HDG) method for the Oseen problem. Oseen equations can be thought of as a linearized
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version of the incompressible Navier-Stokes equations. In fact, the only difference between
these two equations is in the convection term. A common practice to approximate the Navier-
Stokes flow is to use Picard iterations which results in a sequence of Oseen equations. Hence,
this paper is a natural extension of [7, 17] towards the goal of analyzing the HDG approxi-
mation to the Navier-Stokes equations.

Let us briefly discuss the HDG methods. The DG methods for elliptic problem [2], when
compared to mixed methods, have been criticized [6] to have suboptimal convergence or-
ders and that they give higher number of globally coupled degrees of freedom for the same
size mesh and yield lower sparsity for the stiffness matrices. The HDG methods were in-
troduced in [14] to address those criticisms. What makes HDG methods attractive is that
they significantly reduce these problems while keeping the superconvergence properties that
are observed with classical mixed methods. Roughly, the unknowns are functions and their
derivatives on the domain and traces of these functions along the interior boundaries of a
given mesh. Then, the globally coupled degree of freedoms are only those of the numerical
traces. This makes the implementation efficient by giving a sparser form for the related stiff-
ness matrix. This makes the HDG methods competitive with BDM [4] and RT [21] mixed
methods. The reader may refer to [14] for a more elaborate discussion.

Oseen equations have been numerically analyzed in [11] using LDG method and in [5]
using continuous interior penalty finite element method. The first method yields optimal a
priori estimates for the errors in the pressure and velocity when using polynomials of degree
k for the velocity and k — 1 for the pressure. In [5], only quasi optimal error estimates are
given when equal degree polynomials are used for the velocity and pressure. In [17], HDG
approximation applied to the Stokes problem has been analyzed by using a special projection
designed to fit the structure of the numerical traces. Then, [10] simplifies the definition of
this projection by using L2-projection for the pressure. In [7], HDG method applied to the
convection-diffusion problem has been analyzed. In the Oseen case, if we let the convective
velocity to be zero, then we get the Stokes problem whereas when we eliminate the pressure
term we get a convection-diffusion problem. Hence, the projection we use in this paper is a
hybrid version of the projections used in [7, 10, 17].

The organization of the rest of paper is as follows. We continue this section by defining
the incompressible Oseen problem in velocity gradient-velocity-pressure form and intro-
ducing general notation. In the next section, we formulate our HDG approximation. There
we introduce the stabilization tensor S and the numerical traces. Then, a projection defined
specifically for this problem is constructed and its approximation properties are stated. Next,
we define the postprocessing which enables us to get superconvergence in the velocity ap-
proximation. We end the results section by stating our main theorem that the errors are
optimal and that we have superconvergence of the velocity after the postprocessing step. In
Sect. 3, we give detailed proofs for all the results stated in the previous section. We would
like to note that our method is not robust with respect to the Reynolds number. This can
be seen in the numerical results section where we use the well-known Kovasznay flow, an
analytical solution for the Navier-Stokes equations. We apply our method with two different
Reynolds numbers and elaborate on the agreement of the numerical results with our theo-
retical analysis. We also discuss the choice of the stabilization parameters on the accuracy
of the scheme. Finally, we conclude by a brief summary and possible extensions. The ap-
pendix is dedicated to the approximation properties of the auxiliary projection introduced in
Sect. 2.
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1.1 Oseen Equations

Let 2 C R”" be a polygonal domain for n = 2 or a Lipschitz polyhedral domain for n =
3. The incompressible Oseen equations are given by the following set of equations and
boundary condition:

L-Vu=0 in$2, (1.1a)
—VwW.L+B-Vu+Vp=f in$2, (1.1b)
V.-u=0 in £, (1.1c)

u=g onoasf2, (1.1d)

/p:O, (1.1e)
2

where u is the velocity, p is the pressure, v is the kinematic viscosity and f € L?(£2)" is the
external body force. The Dirichlet boundary datum g € H'/2(3£2)" is assumed to satisfy

/ g-n=0,
a2

for compatibility. Finally the convective velocity f is assumed to be divergence free for
simplicity and we further suppose that § € W ()",

The rest of this section is devoted for the notation to be used throughout the paper. For a
given function space X, we denote X"*" by X and X" by X. We use the usual definitions [1]
for the Sobolev spaces W5 (D) for a given domain D with norm

1/p
_ o 4
Ipllip.p = (Z |D ¢||0,,,,D> :
loe|<k
For vector and matrix valued functions ¢ and @, we use
n n
I$lipo = Nllcpp:  1@lpo= D I1Plcpp-
i=1

ij=1

Specifically, when p =2 and k < oo, we denote W*2(D) by H*(D) and |- k2.5, by || lx.p
when k =0 and p =2, we denote W%2(D) by L?(D) and the norm by || - || p. The space of
polynomials of degree at most k defined on a simplex K is denoted by P, (K). Furthermore,
P (K) denotes the space of polynomials on K of degree at most k which are perpendicular
to the space of polynomials of order at most k — 1, i.e.,

PH(K) :={pe P(K):(p.q)x =0, ¥q € P_1(K)}.
Similarly, on a face F,
PH(F):={pe P(F): (p.q)r =0, Vg € P_1(F)}.

For a given matrix M, the transpose of M is given by M7 .
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2 Results

This section introduces the HDG approximation for the Oseen problem and states the results.
2.1 HDG Method for Oseen Problem

The triangulation 7, of §2 is assumed to be shape regular and conforming. We denote the set

of all faces F of all elements K € 7, by &, all the interior faces by S,? and all the boundary
faces by S,?. We equip these spaces with

@ V)7, = Y (@ V)k, (b Vg = D (b, )k

KeT, KeTy

for scalar functions, with

(b, V)7, = Z(‘bz"w:‘)Th» (@, ¥)og, = Z i, ¥ida,
i1 i1

for vector valued functions and with

(@, ¥)7, =Y (Pij, Uiy (@, W )ag, = Y (Pij, Wijhar,
ij=1 ij=1
for matrix valued functions. We denote the norm deduced from (-, -)7;, by || - |7, and from

(-, )az, by Il - llaz;, - We will also use the following broken Sobolev spaces:

H'(T) =[] H' k).  H@)=H"T)"™.  H'(T)=H(T)"
KeT,

Let us first introduce the approximation spaces for the velocity gradient L, velocity u, pres-
sure p and the velocity trace u|g, .

Gy :={G e L*(7;) : Glx € P(K), YK € T,},
={ve L*(Tp) : v|x € Pr(K), VK € T},
={peL*(Ty) : plx € P(K), YK € T,},
={p e L*&): nlx € Pu(F), VF € &}

Because we are dealing with discontinuous polynomials, for an interior face F = 9K~ N
9K in &) , we define jump and average by

{G) == (G*+G) [¢@nl=¢"®@n"+¢-®@n~, [Gn]=G'n*+Gn",

where T and ~ denote the trace of the function from inside of K* and K ~, respectively. By
convention, we extend these definitions to the boundary faces F € 5,? as follows:

G} =G, [¢@n]=9¢, [Gn] = Gn.

With the definitions of the approximation spaces, the method can be stated as follows:
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Find (Lh,uh,ph,ﬁh) EGh X Vh X Ph X Mh such that

Ly, G)7, + (. V - G) g, — (uy, Gn)yg, =0, (2.1a)

WLy, V)7, — (U ® B, V)7, — (P, V - v) 7,

—(vLan — phn — (uy ® Bin, v),, = (f, V)7, (2.1b)
—(un, Vq)7, + (W, -n,q)s7, =0, (2.1¢c)

(Wh, oo = (g, W)ag, (2.1d)

(vLun = phn — (), @ By, i), o =0, 2.1e)
(pr. D =0, (2.1f)

for all (G, v,q,p) € G, x V;, x P, x M), where the trace is defined to be
vEum = Pin — (wy @ Bn =vLyn — pyn — @, ® fyn — Sy @), ondT,, (2.1g)
where S, to be defined in the next section, ensures the stability of the scheme. To simplify

the notation we define the following linear mapping F on G, x V;, x P, x M, for the trace
of the flux :

F(L,u,p,u):=vLn—pn— (uQ B)n—Su—1u).
With this notation, (2.1b) and (2.1e) can be written as
(VLh’ Vv)'rh - (uh ® ﬁ5 Vv)'Th - (ph7 V. v)'Th - <F(L}17 up, phvﬁh)v v>37-h

=(f,v)g YveV, (2.2)

(F Ly, wns pi W), )y g =00 Y E M. 2.3)
Remark 2.1 If we pick G = ¢l, ¢ € P,(K) in (2.1a) and use (2.1c), we can deduce that

trL;, = 0. This means that we have a divergence-free approximate solution when tested with
the pressure space. This reflects the divergence-free condition on the exact velocity.

2.2 Stabilization Tensor S

Let us define the stabilization tensor S that shows up in the definition of the trace (2.1g).
S=vp,pnn+v,I—n®n) ondk, 24

where the parameters 1, and 7,, which control the normal and tangential components of the

jumps in the approximate velocity, are assumed to be nonnegative constants on d K. The

matrix-valued function S is obviously symmetric and constant on each face of K. It is also

positive semidefinite as

2 2
(Sv,v)sx = vrulln - vl vl vl =0, veR"
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Fix anedge F of K. Then, S|y has two eigenvalues; vt,, the eigenvalue with scalar multiples
of the unit normal vector n as eigenvectors and vt;, the eigenvalue with scalar multiples of
any unit tangent vector T of K as eigenvectors.

As we will see in the error analysis, we will need to make the following assumption:

min(vr,, - %(,B . n))

for some positive constant y. Note that this assumption is equivalent to Sg := (S — %(ﬁ .
n)l)|yx being positive definite.

>y>0, (253
0K

>y >0, min(ur, — %(B . n)>

K

Remark 2.2 The assumption that 7, and 7, are constant on d K is taken only for the sake of
simplicity and it can easily be relaxed.

The eigenspaces of S are exactly the same for Sg and indeed A is an eigenvalue for S if
and only if A — %(ﬁ -n) is an eigenvalue of Sg with the same eigenvectors. Hence when we
assume (2.5), we are assuming that the eigenvalues of Sg on K are positive.

Let us label all the faces of K by F :={F;,i =1,...,n+ 1}. As 7, and 1, are constants
on dK, if we denote the maximum eigenvalue of S| over all F C F by AR™, then AF™ =
vmax (1,, 7,).

For 1, > 1,, we pick the unit normal vectors corresponding to n of the faces, say Bx =
{ng,, i=1,...,n}tobe the basis of R". Let us also denote the dual basis by By = {nj;l_, i =
1,...,n}. The elements of the dual basis are the rows of the inverse of the matrix whose
columns are the elements of Bg. Similarly, if 7, > 7,, we pick a vertex and choose as By
the unit vectors originating from this vertex along its associated edges. The dual basis By
can be picked in a similar fashion. Let us denote by A™" the minimum eigenvalue of S
corresponding to the vectors in Bg. In the case of 7, > 1,

A" =vT, = AR,
whereas when t; > 1,,
ARt =vr, = AR

By our assumptions on 7, and 7,
. ) 1
gt =gt — 3 max (max(ﬂ '")|F,~) > 0. (2.6)

As the stabilization tensor S is constant on each face F of K, we can write the numerical
traces explicitly in terms of (L, u;, p;) as in [17]. The numerical trace for the velocity is
U, = —AllvLyn — pynl + ASTu) + AS™u;,,
where A := (S* 4 S7)~! and the numerical trace for vL — plis
vl — Pul — (, ® B) = S"A(WL) — p1) + STA(WL, — p; 1)
—STAS [, @ nll — 1, ® B.

For the case where t; = 1, = 7 is constant on d7;,, we can compare the HDG method with
the LDG method applied to the Oseen equations [11], we see that the only difference is in
the definition of the numerical traces. In the case of the LDG discretization, the velocity
numerical trace does not depend on neither the velocity gradient nor the pressure.
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2.3 A Special Projection [T,

The error analysis of the HDG method relies on defining a special projection that is designed
specifically for the numerical traces that appear in the HDG method. We define the following
new projection inspired by the structure of the numerical trace of (VL — pI+u ® B)n, (2.1g).

For (L,u, p) € H'(7,) x H'(T;) x H'(T;), define I1,(L,u, p) = ([IL, Hu, IIp)
Gy, x V), x Py such that for any K € 7,

(v(IL-L),G), — (ITu —u)® B.G),, =0, VGeP_(K), (2.7a)
(Mu —u,v)x =0, YveP;_((K), (2.7b)

(IIp—p.9)xk =0, Vg € P(K), (2.7¢)

(FUIL—-L,Ou—u,Mp —p, Pyu—u),p), =0, Vpe Pi(F) (2.7d)

for all faces F of K where P, is the L2-projection into M. Even though it is not ob-
vious from our notation, which is chosen for simplicity, /7L and ITu depend on L, u and
p. Further, IT, depends on 8, v and S. Observe also that ITp is just the L2-projection of
p to the space P;(K). The next theorem shows that the projection 1, defined above is
well-posedness and satisfies good approximation properties. From now on C will denote a
generic constant independent of 4, L, u and p.

Theorem 2.3 (Well-posedness and the approximation properties of the projection IT,) As-
sume that T, and t,; are nonnegative constants on d K which satisfy (2.5). Then, the problem
(2.7a)—(2.7d) has a unique solution I, (L, u, p). Moreover, for each K € T}, this solution
satisfies

kp+1
ITp — pllx < Chy " 1Pl 1k 2.8)
AT 4 | Bl oo
ITu —ulgx < C( —— (“)h’;;“mu,,ﬂ,K
K
C ko +1
+ RV - (L — pI)|ka‘ (2.9)

F[r(nin
In addition, if tr L = 0, then we have
VIIITL — Lilx < Cohf ™ Ll 416 + C(ve + (1 + W) IBlwioe gy ) 1 Mu —ulx
+ C (vt + hi|Blyroogo )W uliy1x + I1Tp = plix,  (2.10)

where ki, ky, ko, k, € [0, k].

Remark 2.4 Let us say a few words on the approximation errors. First, as ITp is the L*-
projection, the pressure error is optimal regardless of what 7,,, 7, and B are. As we see I'g""
in the denominator for the bound of ||ITu — u|| ¢, it has an effect on the convergence proper-

X Amax_ g S _
ties. Consider k. = ky =k, = k > 0. If I'P" = O(hg) or & EPwixw _ o1y then

r[x{nin
we can only have an order of k for ||[[Tu — u| . In this case, if t, = O(hg), we can still
have an order of k + 1 for | [IL — L| ¢, otherwise we do not have optimality. Likewise, if
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A max

+hK|ﬂ|W1 00(K)

™ =0(1) and T

= O(1), then ||ITu — u|| ¢ has optimal order of conver-

gence k + 1. In this case, if 7, = O(hy 1, then we lose an order for ||[TL — L| ¢ unless we
have v < Chg|B|y1.x (k)» Otherwise, we have optimal order.

Finally, note that the above convergence results do hold as the stabilization function t,
tends to infinity. For the Stokes problem (8 = 0), the reader may refer to [17, Table 2.2].

2.4 A Priori Estimates
Let us define the projection of the approximation errors E* := I[TL — L, E* := Hu — u,,

EP:=1IIp — p, and E'=pP wu — Uy, Next we introduce the following dual problem to get
the optimal L>-error estimate for the velocity. Given @ € L?(£2), define

®-Vép=0 ing, (2.11a)
—WV.® -V (¢RB)—Vd=0 ing, (2.11b)
~V.¢$=0 ing, 2.11c)

¢=0 ondf. @.11d)

Assume that the solution to the dual problem satisfies the following regularity estimate:

vi@lhe +vidlae +¢lhe < Clflle, (2.12)

for all @ € L*(£2). In the following, we define another projection 11, (@, ¢, ¢) = ([T* P,
¢, IT*¢) € P (K) x P (K) x P, (K) associated to the above dual problem. The definition
closely follows the definition of the projection IT,,. For any K € 7,

v(IT'® —@,G), + (T —¢) ® B.G), =0, VGeP_(K), (2.13a)
("¢ — ¢,v) =0, VvePri(K), (2.13b)
(¢ —.q) =0

0

(F(IT"® — &, 116 — ¢, [T"¢ — $, Py — ), 1), =

, Vg € P (K), (2.13¢)
s Ve Pr(F), (2.13d)

for all faces F of K where

F*(@.¢.¢9.¢) :=v®n +¢n+ (¢ ® f)n — S — ).

This F* stands for the transposed flux compatible with the structure of the dual problem.
Now we state the approximation properties of I7;’. The proof is very similar to the proof of
the same results corresponding to the projection /7, and is provided in Appendix 5.1.2. Let
S,; =S — (B -n)l. We set Ama" to be the maximum eigenvalue of Sﬂ over all faces of K.

Theorem 2.5 (Well-posedness and approximation properties of I1;) Suppose that the same
assumptions on t, and T, as in Theorem 2.3 hold. Then, the problem (2.13a)-(2.13d) has a
unique solution IT; (P, ¢, ¢). Moreover, for each K € Ty, this solution satisfies

kg+1

|T*¢ — ¢, < ChE Ly .k

@ Springer



400 J Sci Comput (2013) 55:392-431

Xr;ax + hilBlwieo k)

min
Iy K

|m e o), < c( )h’;z’*‘ 1Bliy 1.k

C

min
FK

+ net v (ve +¢I)|M.

Furthermore, if tr @ =0, then

[T ® — @ || < CoiET B liy i1k + C (VT + (L4 WIBly1oe i ) [T — |

+ C(vr + Bl i ) Blig ik + |10 — 6]

where ke, kg, ko, kg € [0, k].
2.5 Postprocessing

We can obtain a better convergence result, namely an additional order for the approximate
velocity u,, by postprocessing. In addition, this new approximation is divergence free and
H(div) conforming. This postprocessing is identical to the one in [17] but for the sake of
completeness, we present it here. Its definition is motivated by the Brezzi-Douglas-Marini
(BDM) projection [4]. First we need to introduce more notation. Let Bx be a symmetric
bubble matrix first defined in [15] based on the barycentric coordinates X; of the tetrahedron
K,ie.,
3

Bg = Z)\i—3)\i—2)\i—1V)\i ® VA,
i=0
with the subindices of barycentric coordinates calculated mod 4. This matrix does not vanish
on dK but its rows have zero tangential components. Next, we introduce the necessary
spaces. We denote by Py the space of homogeneous polynomials of degree at most k. Let

Sk ::{vef’pv-x:()},
and define the Nédélec space of the first kind [20] as follows:
N (K) :=P;1(K) ® S.
Finally, we set
Si(K) :={ve Ny (K): (v, Vg)k =0, Vo € Piy1(K)}.

Now we can define the postprocessed velocity u; on K € 7;,. Let uj € Py, (K) be such
that

((wp —7y) -n,p), =0, Ve P(F),
(mx V)(uj;-n) —n x ({L]Yn), (n x V), =0, Vue P(F)F,
for all faces of K and
() —u, Vw)

=0, VYwe P(K),

(V xuj —wy, (V x0)Bg), =0, VoveSi(K),

@ Springer



J Sci Comput (2013) 55:392-431 401

where
. h ho1h hoyh h
Wy, -= (L32 — Lo, Li; — Ly Ly, — le)

approximates the vorticity of u}. Note that the first two equations for a fixed face F deter-
mine the value of u} - n € P,y (F). The last two conditions guarantee the well-posedness
of uj in a similar way to the BDM projection. The details can be found in [17, Proposi-
tion A.1]. Note that for 2-D, n x V is defined to be the tangential derivative n,9; + n;0,,
n x w corresponds to n;w, —nyw; and V X u is replaced by d,u, — d,u;. Also, the bubble
matrix reduces to the scalar bubble function by := AgAiA,, wy, reduces to wy, := Lgl — L’,’2
and we replace the last equation by (V x uj — wj,, wbg)x =0, for all w € P,_(K).

2.6 Main Theorem

Let us define a new norm for the projection of the approximation error of the numerical
trace.

1/2
o] := { > hk<v,v>ak} :
KE,TI!

Now let B, € Py(K) be a function such that
((B=By) -, 1>F =0, forall faces F of K,

for all K € 7,. Define 68 := 8 — B,. This B, exists as V - 8 = 0. Indeed, it corresponds to
the lowest order Raviart-Thomas projection of 8 and §8 satisfies [3]

I6Bllx < ChkllVBlk, VYK €T,.

The next theorem provides the main result of this paper which not only gives the conver-
gence orders of the HDG method but also of the postprocessed velocity.

Theorem 2.6 Suppose that the assumptions in Theorem 2.3 hold. Then,

IE*||, < IITL — L, (2.14)

|E?|, < ClIIL~Ljg + C2| E* (2.15)

lo-

where C; = Cmax(v, [|BollLe), I Blwico ) and Clz, := C|Blwi1. - In addition, if the
regularity estimate (2.12) holds,

u min (k,1) K
|E*||,, +|E*|, < CCovh [r(nef%(CHL)HHL—LHQ
+ Ch™™ V1B 1o o) 1 T — u o, (2.16)
where
1+v (A B | Blwroe )ik + v
ck ::l+<r,+ - h,<|/3|wl,oc(,<)>< £ Fn”fm & +hg ).
K

Finally, the postprocessed velocity uj, € H (div, §2) is divergence-free and satisfies

|uj —u|, < CH*?luly 0.0 + C(|E*|, + | E*| o + A *DIIL — Lilg), (2.17)

lo

where k, € [0, k].
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Remark 2.7 Let us elaborate on the implications of the above theorem on the convergence
properties of the numerical solution. Assume that all the constants of the above inequal-
ities are uniformly bounded. Then, for k = 0, |E*| converges with the same order as
[[ITL — L||; and the rest converge like || [IL — L||o + ||[ITu — u|| . Thus, there is no super-
convergence property that we can exploit. For k > 1, |E¥ | and || E” || converges with the
same order of ||[I[TL — L||. But this time, the rest converges with an additional order. This
enables us to come up with a u} that converges with an additional order. When g =0, we
recover the results in [17]. See Tables 2.3 and 2.4 therein. What makes a difference is the
knowledge of when the constants are uniformly bounded. If there is no uniform bound then
the convergence properties gets complicated depending on t,, 7,, v and their relation with
B through the assumption (2.5), the constants in the above equations and the ones given in
Theorem 2.3 for the projection estimates.

3 Proofs

This section provides the proofs for the results stated in the previous section. However, we
will refer the reader to [17] for the superconvergence result (2.17) of the postprocessed ve-
locity as its proof follows exactly. The order of the proofs is as follows. Initially, we assume
that the projections 1, and I1; are well-posed and satisfy the approximation properties
stated in the previous section. Then, depending on this we prove the error estimates using
an energy argument for the velocity gradient, and a duality argument for the velocity. Also,
the estimate for the velocity trace is presented and an inf-sup condition is used to obtain the
estimate for the pressure. The last section establishes the well-posedness and approximation
properties of the projection I7j,.

3.1 Error Equations

Lemma 3.1 The projection of the approximation errors E¥, E*, EP and E* satisfy

(E“.G),, + (E*.V-G), —(E",Gn),, = (TL-L,G)z,, (3.1a)
—(vW-EN ) + (V- (E"®B).v), +(VE " v).
—(F(0, E*,0, E"),v),, =0, (3.1b)
—(E",Vq), +{E"-n.q),, =0, 3.1c)
(E*. n),, =0, (3.1d)
(F(E E*E", E"), b}, 1o =0, (3.le)
(EP. 1), =0, (3.1f)
forall (G,v,q,p) € Gy, x Vi x Py x M.

Proof If we insert (2.1g) in (2.1a)~(2.1e) and apply integration by parts, we get

Ly, G)7, + (wp, V- G)g, — (@y. Gn)yg, =0, (3.22)
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— (V- Ly, v)g, + (V- (u, ®B). v)Th + (Y pu, v)7,

—(FO.,u,0.%), ), = (f. )7, (3.2b)
—y, V)7, + Wy -1, q)y7, =0, (3.2¢)
Wh, m)oo = (g, M)og, (3.2d)

(F(Ly, up, pu, ), ”)affh\a.o =0, (3.2e)
(pn, De =0, (3.2)

for all (G,v,q,pn) €G, x V) X P, x My,.
Observe that the exact solution satisfies

(L,G)g, + [TTu,V -G)g, — (Pyu,Gn)yz =0, (3.3)

(WIIL, Vo), —(Tu ® B, Vv)z, — (IIp, V - v) 7,

—(FUIL, Hu,Hp,PMu),v>aTh =(f,v)1, (3.4)
—(Mu,Vq)g, + (Pyu-n,q)7 =0, 3.5)
(Pyu, Yo = (&, M)aa, (3.6)

(FUIL, Mu, [p, Pyu), p)y, 0 =0, (3.7
(p. D=0 (3.8)

using the projection defined by (2.7a)—(2.7d) and the fact that (S(P yu — u), p)s7, = 0 for
all w € M, (as 7, and 7, and hence S is assumed to be constant on each d K). Integration by
parts in the second equation yields

— (V- -IL,v)5, —(ITu® B, Vv)g, + (VIIp,v)g,

—(F(0,u,0, Pyu), v)m =(f,v)7,. (3.9)
Then, we subtract the equations defined by (3.2a)—(3.2f) from (3.3), (3.5)—(3.9). Observe
that in the above equations we cannot replace (L, G) 4, with (ITL, G) 7, as G ¢ P,_(K). So
we write the difference of (L, G), and (L, G) g, as (EL, G)g, — (IIL - L, G) 7, . Similarly

we write (p, e — (pn, e = (Ip — pu, Do — TIp — p, D)o = (IIp — pj, 1 e by (2.7¢).
This completes the proof. O

3.2 Estimates
Lemma 3.2 (An identity for the velocity gradient)

v|EY[% +(Ss(E* — E7), E* — E¥), = (L —L,vE"), .
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Proof Let G=VvEL, v=E" g=FE” and p = E" in (3.1a)—(3.1c). Adding the resulting
equations, cancelling and rearranging terms, we obtain
UHELH; — <Eﬁ, vE'n — Epn>87h + (V . (E" ®ﬁ), E”)Th

—(F(0, E*,0,E"), E"), = (ITL—L,vE"),. .

Now let u = E%in (3.1d) and (3.1e). This yields

(F(E". E",E’, Eg), E"),, =0
which implies
—(vE'n — E"n, E¥), =(F(0, E",0, Ez), E*), .

Using these in the previous equation gives
2 _
v[E"; — (E"® B, VE"), +(F(0,E",0, Ez), E" — E*), = (ITL—L,vE") .
Observe that for all #, v, w,
@®v,Vw)=—Vu, w®v)— - -w,V-v)+(u, (v -n)w).

This means for V- v =0, (V- (w ® v), w), = %(w, (v-n)w)yg,. Thus,

1 -
(E",(B-mE"),, —(F(0,E".0, Eg), E" — E"), = (ITL—L,vE"), .

e, -

Using ((v ® B)n, u)y7, = ((B - n)v, u)y7, and rearranging terms, it is easy to show that

((B-n)E" E") (F(0. E*.0, Ea). E" — E),

1
-5 0z,

1 o 1 _ _
= _§<(ﬁ -mE", E*), + <<s -8 .n)I) (E" — E"), E" — Eu>a¢,
=<<S - %(ﬁ -n)I) (E" - E"), E" — Eﬁ> ,

e

where in the second equality we used the facts 8 € H(div, §2), E¥ is single valued and
vanishes on 02. Therefore,

UHELHZTh +<<s — %(ﬁ : n)l) (E* — E"), E" — Eﬁ>aT = (AL —L,vE"), .
h
O

Define the following seminorm on 37, based on a semi-positive definite matrix M and o
such that

1/2
[Dlom = { > a<Mv,v>aK} :

KeT,

where @ > 0 is a constant. An immediate consequence of the previous lemma is the next
corollary.
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Corollary 3.3 (An estimate for the velocity gradient)

[, + B — BR[;, , < ITL - LI3,. (3.10)

In the proof of next lemma we use a duality argument.
Lemma 3.4 (An identity for the velocity)
(E".6), =TL+Tj,
where Tg and Ty, are defined as
T :=(L—L,,vI[T*® — v<D)Th — (WL —vIIL, V(¢, — ¢))Th and
Tg:=((u—Mu)®8B.Ve,)., .
Proof Recall the dual problem defined by (2.11a)—(2.11d). In particular by (2.11b), we have
(E".0), =—(E".vV @), —(E".V-(¢®B), — (E". V), .
Using integration by parts and the properties (2.13a) and (2.13c¢) of the projection 7},
(E*.6), = (VE" v@ +¢®B), +(V-E".¢), —(E". F (P, ¢.4,0)),,
= (VE" vIT*® + (MT"¢$) ® ﬂ)Th +(V-E", 17*¢)Th —(E*, F*(®, 9.6, 0)>37,,-
Applying integration by parts once again yields
(E*.0), =—(E".V-(v[I"® + (II"$) ® B)) . — (E*. VII*¢),.
—(E" F (o —IT"®, ¢ —IT" ¢, p — IT"9, 0)>6Th.
Now apply (3.1a) with G=vIT*®,
(E*.0), = (L—Ly,vIT*®), —(E",vIT*®n),.
— (B, V-((IT"¢) ® B)),, — (E*.VIT"9),

—(E“,F*(@—H*¢,¢—H*¢,¢—H*¢,O))Hh. 3.11)

T

Let us work with the first four right hand side terms in (3.11). Pick an arbitrary ¢, € V.
We add and subtract (L — L, v®), and v(L — ITIL, V(¢, — ¢))7, and obtain

(L-LiviT*®), —(E* viI*®n), — (E*.V-((T*$) ®B)), — (E*.VII*$),
=T+ (L —Ly,v®)7, +v(L—TTL, V(¢ — ), — (E™, vIT*®n),

—(E". V- ((IT"¢) ® B)) . — (E*.VII*¢). . (3.12)

Observe at this point that by the virtue of (2.11a) (applied twice) we can rewrite the second
and third terms on the right hand side of (3.12) as

@ Springer



406 J Sci Comput (2013) 55:392-431

(L - th v¢)'f], + U(L - HL, V(¢h - ¢)),Th
= —(Ly, v®)g, + v(L — [TL, V)7, + v(ITL, V)7,
= —(Ly,vVé)7, + v(L — [TL, V)7, + v(ITL, Vo)1,
= (E" V), +v(L— 1L, Ve, 7.
Thus,
(E“.68), =T+ (E",vV¢), +v(L—IIL,V$,)s, — (E*, vIT*®n)
— (E". V- ((IT"¢) ® B)) 5, — (E".VIT"¢) .
—(E". F*(@ —T*®, ¢ —I*p,p — IT*9,0))

Tj

aT

Recall that we defined 68 := B — B, where B, is the lowest order Raviart-Thomas projec-
tion of B. Also, observe from (2.7b) that

((IMu —u) ® By, G)Th =ITu—u,GBy)7, =0, YGeP;_((K)

as B is constant on each K. Hence by (2.7a), we can replace v(L — ITL, V¢,)7, with
Tg :=((u —Iu) ® 88, V¢,)7,. Therefore,

(E",a),[h =T.+Tg+ R,
where
R:=(E",vV¢), —(E"vT*®n), . — (E“.V-((T"$) ® B)), — (E*,VIT*¢),.
—(E". F (o —IT"®, ¢ — ", ¢ — IT*, o))m.
In (3.1b), taking v = IT*¢ we can rewrite the third term in the definition of R as
(5.7 (') 2 6),,

=—(vV-E" [I*¢), + (VE', I*¢), —(F (0, E*,0, E"), "¢},
= (vE, vII*¢), — (E",V-I"¢), —(F(E" E*,E",E"), "¢}, .

Using (2.11c) and rearranging terms yield

R=(VE". V(¢ —1I"¢)), —(E*.viT*®n),
+(F(EY, E, E?, E"), I°¢),, + (E",V - (T"$ - ¢)),.
—(E".VIT*¢), —(E". F*(® — 10, ¢ —IT"$, ¢ — [T°¢,0)), .
Integrating by parts once more, using (2.13b), (3.1e) with u = P ¢ and recalling (2.11d)
imply

R =(vE'n,¢ — H*¢)m — (E", vH*q)n)aTh +(F(E“, E*,E", E"),IT"¢ — PM¢)BTh
+(E?, (IT*¢ — ¢)n)aTh - (E", VI'[*(;S)Th

—(E" F*(&0 —T"0.¢ — T"$, ¢ — IT"$,0)), .
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Rearranging terms and adding and subtracting (E”, v®n),g;, we get

R=(vE'n,¢ — Py, —(E",v(IT*® — @)n), . —(E",von)

+<F*(O, Eu’ Ep,Eﬁ),H*(b— PM¢>37,X
+<Ep’ (H*d’ - ¢)")oTh - (Eu’ VH*¢)T,,
—(E". F*(@ —T"®,¢ —I*$. ¢ — [T"¢,0))

AT

The first term vanishes by the definition of P ,,. Thus, the above equation can be rewritten
as

R=—(E"—E" v(® - n*cb)n>m —(E", U(bn>aTh —(E*, (B -n)(IT*¢ — PM¢)>a,_,h
- (E"» B ”)((1’ - H*(b))aTh - <S(Eu - Eﬁ)’ me— PM¢>8Th
+ (EP, (Pud— ¢)")37h —(E", VH*¢)T,, - <Eu’ (¢ - H*¢)">aTh'

Note in the above we used ((u ® B)n, v)7, = ((B-n)u, v)7,. Now we observeAthat the sixth
term drops because of the definition of P . Then, adding and subtracting (E", (8 - n)¢),
yield

R=—(E"—E",v(® —T"®)n),, —(E" — E*,(B-n)(¢p — IT"$)),.
—(S(E" - E*), "¢ — Pu¢),,
— (E*,VIT*9), —(E". (¢ — T"¢)n),, —(E*,v@n+ (B-n)($ — Pud)),, -
Combining terms further
R=—(E"—E", F*(¢ —IT"®,¢ —"$,0,0)),
—(E",von+ (B -n)(¢ — Pud)),, —(E". T"¢n),, —(E* (p—T*¢)n),, .

where we used (3.1c) to replace (E", VII*¢)7, by (Eﬁ, IT*¢n)y7,. Consider the second
term on the right hand side. We have

—(E*, von+ (B -n)(¢ — Pug),, = —(E",von + (B -n)(¢p — Pud)),, =0.

where the first equality holds as E"is single valued on é‘,? and v@n+ (B-n)(¢p — Pyo)is
continuous on 51? , and the second equality follows by the error equation (3.1d). Furthermore,
we can add (E", ¢n),7, by (3.1d) and the facts that E* is single valued on 8,(1) and ¢n is
continuous. Finally,

R=—(E"—E", F* (0 —T"®, ¢ — 11", ¢ — I1°¢,0)), . =0
by (2.13d) with the choice 4 = E* — E*. In other words,
(E".8), =T.+Tp. 0

Next we use this identity to bound || E*||;. Let ¢, € P;(K) be such that
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(i) (V($, — ). Vw)x =0, Yw € P;(K), and
(ii) (¢, —¢, Dk =0.

Note that (i) implies
IV,llx <IVlix. (3.13)

Theorem 3.5 (Estimate for the velocity)
|E*|, <2HLIIL —L|7, + Hg|Mu — u|| 7, (3.14)

where Hy, and Hg are defined by

e — @ Vb —
Hy = vmax{ sup —” I, , su 7” @ — D)l }
0eL?(2)\(0) 191 0cL2(2)\(0) 191

IVl
Hg = [8BllL>@) sup Th
0eL2(2)\{0} 1012

Proof Recall that

(E*,0)7,
= sup —.
scr2iono 1912

Based on the identity of the previous lemma, it suffices to bound the terms 7; and Tg.
Therefore, the result is just a simple consequence of (3.10), (3.5) and the definitions of Hj,
and Hpg. a

Now, we need to estimate Hy, and Hp.
Proposition 3.6 Assume that trL = 0. Then, there holds
K \ 7, min (k,1)
H, <CC,v Irglea%z(CHL)h .

where

1+v (A 4 g | Blwiooe) ik + v
CI{I(L =14+ <7-'t + . hK|ﬂ|Wl,DC(K)>< K F:;Vin " +hg ).
K

Proof We will bound the first term using the approximation property of the projection /T
and the regularity assumption (2.12). Let k, = k¢ = kg =0 and kg = min (k, 1) in Theo-
rem 2.5. Then,

v|[T*® — @, < Chgv|®|ix +CCov | T — |,
+ CCE" Vg lmin sk + [0 —

/TI;ZLX + hK|ﬁ|Wl.oc(K>

min
I K

< Chgv|®@|1x + ng( )hr;in(k’l)ﬂV|¢|min(k,1)+1,1<

Uez
+C x|V - (v® + D)
FK
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~  min(k,1)+1
+CC1h$m( ) V@l mink,1y+1,5 + Childli g,

where C, :=1, + LhglBlwicoy < T + hi|Bly. o) = : C,. Now using the regularity
estimate (2.12), as min (k, 1) < 1, hx < A%" D and C, < C,,

v|me —o|, <cck c.ng™V 0|,
For the second term, observe that by the regularity estimate,
V@, — )| < Chxldlox <CCrhxlfllx, (3.15)
for k > 1. The result follows from (3.13), (3.15) and hx < A"V < pmint.D O
Proposition 3.7 There holds
Hg < C,h|Blyi~(q)-

1V,

o V117 the same way as we bound the

Proof We bound Hg = [|§B] 1=(g) SUPger2(2)\(0)
second term in the definition of Hy. From (3.13),

IVé,llxk < IVl = Crllf]-

So the result follows. d
Proposition 3.8 (Estimate for the velocity trace)
|E®|, < Cc(hITL—Lilg + | E*|,)- (3.16)

Proof The proof is exactly the same as in [17]. In summary, it uses the error equation (3.1a)
and a scaling argument. O

In the proof of the pressure result we need the following space and its orthogonal decom-
position. Define

Ri(0K):={8 € L*(3K) : 8| € P (F), F € £(K)}.
Lemma 3.9 The following decomposition is orthogonal in L*(dK):
Re(@K) ={v-nlyx :v e P(K)"} @ {qlok 1 q € P(K)*'}.
Proof [9, Lemma 4.5] O

At this point let us recall the well-known inf-sup condition [18] that we use to prove the
estimate on the pressure.

\Y
Kk < inf sup w (3.17)

qELO(Q)weH (2)\{0} llgllellwl, e

where k > 0 is independent of g and w. Here L(z)(.Q) is a subspace of L%(£2) such that
L3(2) = {q e L*(£2): / q :0}.
2
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We also introduce a projection P : H'(7;) — V, satisfying

(Pw—w,v)g =0, Vve P;_(K), (3.18)
(Pw—w)-n,p-n), =0, VYupeP (K", (3.19)

forall K € 7,.

Lemma 3.10 (Estimate for the pressure) The following estimate holds

1
14 - 1 _ 2 u
|E o < -(HIL~Lig + HY | E*] ).
where
I Pwl, | Pwl|

# =Cmax<v’ IBollzeey  sup  ———", hiBlying sup  ——" ),

weH{($2)\(0) lwll.e weHY(2)\(0) lwlie
H;:cww.m(mmax(h wp  IVPwln n nfh>

werhnor 1Wlie  weni@no 1Wlhe

Proof Observe from (3.1f), g := E? € L%(.Q). Hence by the inf-sup condition (3.17),

1 EP V.
|27, <2 sup ERVWe (3.20)
K weH(l)(Q)\{o} ”w”l,Q

Let us rewrite the numerator. First integrate by parts and use the projection P.
(E".V-w),=—(VE”, Pw), +(E'n,w),_ .
Then, using (3.1b) with v = Pw,
(E".V -w), =—(V-E" Pw), —(E"®B,VPw)
+{(E" ® B)n +S(E" — E"), Pw),. +(E"n, w),_.
Integrating by parts again and using the definitions of P and P,
(E?.V-w), = (vE", Vw), —(vE'n — E’n, Pyw),  — (E"® B, VPw)
+((E" ® B)n, Pw),, +(S(E" - E), Pw),_ .
Finally, by (3.1e) with g = P yw and as w =0 on 952,
(EP,V-w), = (vE", Vw) . — (E"®B,VPw), +((E"®B)n, Pw),.
+(S(E* - E), Pw — Pyw), .

Observe that (S(E" — Eﬁ), Pw — Py w)y7; =0. Indeed, (3.19) and the orthogonal decom-
position given in Lemma 3.9 guarantees the existence of g € P (K)* such that

(Pw— Pyw)-n=qly.
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Then,
(S(E* — E*) -n, (Pw— Pyw)-n),, =7,((E" — E*) -n, (Pw— Pyw)-n),,
= uf(E* ~ E7) -n.q),,

=5(V-E".q), =0,

where we used (3.1c) and the fact that ¢ € P,(K)* in the last equality. Before bounding the
right hand side of this equation let us first rewrite the third term. We have,

(E" @ B)n, Pw),, =(E", (Pw® pn),,.
= (E", (Pw® Bo)n),;. +(E", (Pw®8B)n),, .
Then, picking G = Pw ® B, in (3.1a),
(E*®B)n, Pw), . = (L —Ly, Pw® By, + (E*, By- VPw), +(E*, (Pw@3B)n),, .
Hence,
(E?.V-w), = (VE", Vw), — (E"®8B,VPw),
+ (L -Ly, Pw® By)7, +(E*, (Pw® 3B)n),, -

Let us consider the term (E*, (Pw ® & B)n)y, first. By the Cauchy-Schwarz inequality and
the trace inequality,

(E", (Pw @ 8B)n),, < |E"|, hi " IPwlxhk| By,
= h B[, 1wl Blyro k-
Therefore summing up over all K € 7,
(E", (Pw@8B)n),, <|E"|, IPwllz,|Blyi ).
Hence, again by the Cauchy-Schwarz inequality,
(E?.V - w) o[ < v[E] IV@ll7, + hiBlyi o) | E*| 1, IV Pwlim,
+llBollz=ce) (IMTL = Lliz + [E*| . ) I Pwll,
+ [ E] I Pwlz, 1 Blyi o)
Then, from Corollary 3.3 and Proposition 3.8,
(E7. V- w) | = (H,ITL = Lilg, + Hy | E*| ) 1wl
and by (3.20),
|£°] = = (L~ i, + B2 | E*],). 0
Now let us bound the terms H ]1 and H 13 that show up in the estimate for the pressure.

We will need the following projection, the approximation properties of which can be found
in [13, Proposition 2.1], for the proof:
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For any z € H'(K) and for any given face F of K, define Prz € Pi(K) by

(Prz,w)g = (z,w), Yw e P_1(K),
(Prz, u)r = {2, 0)r, Y € P(F).

We can also define vector valued and matrix valued projections Py and Pr by considering
Pr applied to each component separately.

Proposition 3.11
H) < Cmax (v, |Bol, hIBlyieg)): (321

H, < C|Blyixg): (3.22)

Proof We will basically show that H ; and H 5 are O(1). Observe that from an inverse in-
equality,

IVPw|g =|V(Pw— C)”Th <h '|Pw—c|5 <Cl|Vwlg < Cllwl,q.
where c is a piecewise constant. Therefore,

IVPwlz _

weH\(2)\(0) lwll e
Lastly, as a consequence of the approximation properties of the projection P,
[Pwlz, < Clwlie
which yields (3.21). The bound (3.21) follows trivially from this. O
Equation (2.15) is a trivial consequence of Lemma 3.10 and Proposition 3.11.
3.3 Characterization and Approximation Properties of 17,
Next we prove Theorem 2.3. In order to do that we need auxiliary results that we state next.

We omit the proofs and refer the reader to [17, Lemma A.1], [16, Lemma 4.8, Proposi-
tion 4.9]. The first lemma is necessary to prove (2.9).

Lemma 3.12 Forall v € Pi(K)* and for any face F of K , we have

1/2
ol < ChIv]lF.

The next two results will be used in the proofs of (2.10) and (2.8).
Lemma 3.13 The set B:={1,}U{t @nr : F is aface of K, t € Br} is a basis of the space

of n x n matrices where B is an orthogonal basis of the vectors orthogonal to nr for each
face F of K. Here 1,, denotes the n x n identity matrix.
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The dual basis of B is of the form

1
B = l_I}U{WF't : Fisaface of K, t € Br}. (3.23)
n

Note that W, is uniformly bounded with respect to F and ¢ and the bound depends only
on the shape regularity parameter of the mesh. As a consequence we have the following
representation for a square matrix.

Lemma 3.14 Let A be an n x n matrix. Then,

A
A= Z Z (A:(t@np)Wr, + trTI,,, (3.24)

F teBf

where the first sum is over all faces F of K .

In order to have a simpler analysis for the a priori error estimation, we find suitable
characterizations for the projection IT,,. To prove (2.9) we characterize ITu independent of
ITL and ITp in the next theorem.

Proof of the well-posedness of IT;, We want to show that there exists a unique (ITL, ITu, I1p)
which is the solution to the problem defined by (2.7a)—(2.7d). It is sufficient to show unique-
ness because the number of unknowns exactly matches the number of equations of the
problem. Indeed, the number of equations is computed by

from (2.7a) from (2.7v) from (2.7¢) from (2.7d)

#p = d*dimP_, (K) +ddimP_; (K) +dim P, (K) +d(d + 1)dim P, (F),

=(d2+d)(dimp,_; (K)+dim P, (F))+dim P, (k)

whereas the number of unknows is simply

for mL for mu for r1p
—_——

——
#y = d*dim Py (K) +ddim Py (K) + dim P (K) .

=(d?+d)dimp, (K)+dim P, (K)

Therefore, #; — #; = 0. To show uniqueness, we set L =0, u =0 and p = 0. We need to
prove that JTL =0, ITu =0, I1p = 0. But this is trivial once we prove the approximation
results (2.8)—(2.10) for IT;,. Hence, the rest of the proof is postponed to the part where we
obtain the approximation results. O

Theorem 3.15 (Characterization of ITu) For any K € 7y,

(ITu —u,v)xk =0, Yve P (K), (3.25a)

(SUTu —wu),v), — (Tu—u)®B.Vv),
=—(V-L—-pD,v), —((Pyu—u)®8B)n.v), . VYveP(K)". (3.25b)
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Proof The first equation (3.25a) is exactly the same as (2.7b). To obtain (3.25b),let u = v €
P (K)* in (2.7d). Integration by parts yields

(SUTu—u),v), =(vUTL—L)n — (ITp — p)n — ((Pyu —u) @ B)n,v),
=(V-v(IL-L),v), +v(IL—L, Vo)
—(YUIp—p).v), —UIp—p,V-v)k —((Pyu—u) @ p)n,v),
=(V-vUTL-L),v), + (Tu—u)® B, Vv), — (VUIp - p),v),
—((Pyu—uw)®B)n, v), .,

by using (2.7a) and (2.7c¢) for the second equality. Note that we can replace (((Pyu —u) ®
Bn, v)yx by ((Pyu —u) ® 8B)n, v)yk. Therefore as v € Pr(K)*,

(SUTu—u),v), =—(V-vL—pL ) +(Tu—u)@B, Vv), — ((Pyu—u)Q38B)n, v)sx.

Hence, (3.25b) follows. O
Now using this characterization we can prove the estimate for ITu — u.

Proof of (2.9) Let 8" := Iu — u,, where u;, is the L>-projection of u into P;(K). Then,
we split up the error by the triangle inequality as follows:

1w —ullx <|8"| , + llu —ulx.

It is enough to estimate the first term as the second term can be easily estimated using the
properties of the L2-projection. Observe that we can replace u in (3.25a) by u;. This implies
that 8 € P, (K)*. Also, from (3.25b),

(ss, v)aK — (8" ® 388, Vv)K
=(S@ —mw),v),, — (w—w)®38B,Vv), —(V- (WL —pl),v),
=:bu(v) =:bs (v)
—((PMu —u)®4P)n, v)ak,

=:bp(v)

forall v € Py (K)*’. Let v = §" above.
(S8".8"), — (8 ® 8B, V"), =bu(8") + by (8") + b, (8).
Recall that we can write (8 ® 88, V&*)x = %((ﬂ -n)8", 8") k. Therefore,
(Sp8".8"), . =bu(8") + by (8") + b, (8").

As we have the assumption (2.6) and Sy is positive definite, using Lemma 3.12 with v = §",

(858" 8")yy = TR Y D |8 n [, = Crmng! 8 |-

F i=1
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Therefore,

|8 (Sp8",8"), ¢ bull + 1160 | + 115, 1) || 8

h
me ( ” K’

” K — F Ir{mn
which implies

8] = me(||b I+ 1B Il + 116, 1).

The last step is to estimate the norms on the right hand side of the above inequality. Let us
begin with the norm of b,. By a scaling argument and the trace inequality,

|bu(0)] < AR N — wellag 1vllak + lu — well ¢ 188l Lok [V vll ¢
< CAYhy (llu —ull + hg [ V@ —up|| ) vk
+ Cllu — upll  |Blwroc iy 0] k-

Then, from the approximation properties of the L2-projection,

bull < C(AF™ + hg |ﬂ|w1-°0(1<))h1;? [, +1.k -

For the norm of b,, noting that v € P (K)*, we rewrite b, (v) as follows:
bs(v) =—(V - (WL — pI),v), =—(V- (WL —pD) — (V- (WL — pD), |, v),.

where (-)¢_; denotes the L2-projection into P;_;(K) such that (V - (vVL — pI));_; = 0 for
k = 0. Then, this implies

ool < |V - WL = ph) = V- (WL = pDyiy ||, < CRZ|V- L —pD)]|, ., 0=k, <k,

by the approximation property of the L-projection. Lastly, by a scaling argument, the trace
inequality and the approximation properties of P,

b, ()| < I1Pyu —ullox 1881 ~ox) 0]k
< C(IPyu—ulx +hg|V(Pyu—w)| ) IBlwrwllvlx
< CHE 1Blwroo iy kg1 x 0] -

Therefore,

Kut1
16,1l < Chig ™ | Blwiioo iy [t lky 1.5 -

Combining these,

Amax+h .
o] = € (S Y s+
K

e h];?H |V ~(vL - p1)|k,,,K'

This and the approximation of the L2-projection yield (2.9). O

We need additional projections for the proof of (2.10) and (2.8). Given a L € H'(K), we
define a projection P! as follows: P'L e P,(K) such that
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(P'L.G), = L. Gk, VGeP(K),
(P'Lng,G), = (Lnp, w)r, Vu e Pi(F),

for all faces F' of the simplex K except for an arbitrarily chosen one.
To take care of the convection term, we introduce another projection P2. P’L € P(K) is
defined such that

(VP’L,G) = (WL, G)x + (ITu —u) ® 38.G), VG e P (K),
(vP’Lng, ), = (WLng, p)p + ((Pyu —u) @ 8B)nr, 1), Vi€ Pr(F),

for all faces of the simplex K except for an arbitrary one. The reader may refer to [8, 17] for
the well-posedness of these projections.

Theorem 3.16 (Characterization of vIIL — I1pl) For any K € 7,

(v(IL—L) — (ITp — p)L.G), = ((ITu —u)  §8.G),. VG eP_(K), (3.26a)
(vaTL —Lynp — (Tp — p)np. ), = (((Pyu —u) @ 8B)np. p),
+(SUTu —u), p),, Vue Pr(F), (3.26b)

for all faces F of K.

Proof The first equation follows from (2.7a) and (2.7c) as (2.7b) implies
(¢~ M) 2 B). G), = (((« — M) ©.38).G) .

For the second equation pick an arbitrary face F of K and let u € P (F). Then, there exists
we P,f(K) such that w = u on F. This implies that

(vITL —Lynp — (ITp — p)np, w),
=(v(ITL—L)n — (ITp — p)n, w), . — (v(ITL —L)n — (ITp — p)n, w)aK\F.
Equation (2.7d) with u = w gives,
(vUTL—Lyn — (Tp — p)n, w), . . =Pyt — ) @ 8B)n, w), ., +(SUTu —u), w), . .
Therefore,
(vITL —Lyn — (Tp — p)n, p), = ((Pyu —u) @ 38)n, w), + (SUTu —u), w), + T,

where T := (v(IIL — L)n — (ITp — p)n, w)yjx — (Pyu —u) @ §f)n, w)x — (S(Mu —
u), w)yg. From (3.25b),

T =(vUIL—L)n — (lp — p)n, w),, — (Mu—u) @ B, Vw) , + (V- (WL — pD), w) .
Integrating by parts and cancelling terms,
T=(V-(vITL-L)—{Tp—p]l),w), + (vUIL-L) — (IIp — p)I, Vw) .

—(Mu—u)®B.Vw), + (V- (WL —p), w),
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=(V-MAL—-1pD, w), + (v([IL—L) — (ITp — p)L, Vw) .
—((Mu—u)® B, Vw),.

The first term vanishes as w € PkL(K ) and the sum of the second and third terms vanishes
by (3.26a). Since F was arbitrary the result follows. O

The rest of the proof of Theorem 2.3 comes next.

Proof of (2.10) From the above result and Theorem 3.16, we will first represent /7L — L in
terms of the dual basis * that we defined in (3.23). If we take A = v(J/IL — L) in (3.24) and
use the fact that M : (¢t @ np) = (Mnp) - t for any matrix M, we get

aL-L
VUITL—L) =" " (vUTL = Lyns - t)Wr, +v¥1n. (3.27)

F teBp

Thus, our aim is to find estimates for ||[v(/IL — L)nf - t||¢ for each face F of K and
v =B || ¢ Let us begin with [[v(JTL—L)ng - £| x and rewrite v(ITL —L)n  as follows:

v(ITL —L)np = v([IL — P*L)np + v(P’L —P'L)ns + v(P'L — L)np. (3.28)

The identities in Theorem 3.16 together with the fact that S is constant on each face F of K
imply that
v(IL — P’L)np = (Ip — Ppp)np + S|p(ITu — Ppu), (3.29)

for any K. To prove this let § := v(J/TL — P’L)ny — (ITp — Prp)ng — S|p(ITu — P pu). It
is enough to show by Lemma 3.12 that § € P;"(K) and § =0 on F. This is equivalent to
proving

(@ B, w)x =0,Ywe P;_(K),
(®) (8, 1)r =0,V € Pr(F).

To prove (a), let w € P;_(K). As S|y is symmetric and constant, by the definition of P?
and P,

@ wyx = (v(ITL—P°L) — (Tp — Pep)Lw @np) — (Mu — Pru, S|rw)g

= (v(IL—L) — (Tp — plw®ng), — (Mu —u) @8, w @ nr),
— (ITu —u,S|rw)g.

Thus, by (3.26a) and the property of 7},
(5, W)K =0.

To prove (b), let w € P, (F). Then, similar to before, by the properties of P> and Py and
(3.26b),

(8, m)r = (v(MIL —P’L) — (Tp — Prp)L k@ ), — (Sl (Mu — P ru), u),
={vUTL-L) = (Tp — pLp®@np), — (Pyu —u) @ 8)nr, u),
—(SIrUTu —u), p), =0.
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Therefore (3.29) holds. With (3.28), (3.29) and the fact that ny 1 ¢,
v(ITL —L)np -t = (vr,(ITu — Pru) +v(P’L—P'L)np + v(P'L —L)ng) - t.
Observe that by the definition of P! and P2, §* := (P’L — P'L) satisfy
(8“.G) = (Mu —u)®8B,G),. VYGeP_(K),
(8" np, 1), = ((Pyu—u)®@8B)np, )., Ve Pu(F),
for all faces of K except for an arbitrary one. Thus, the second term is bounded by
|(P°L = P'L)nr |, < ClBlwicyhx |1 Hu —ulk.
We bound the first term by the approximation property of Py and the triangle inequality,
IMu — Prullx < |Mu—ullx +llu— Prulx < [Mu—ullx + Chig™ ulg, k.
The last term is bounded again by the approximation property of P! as
[(P'L—L)nr| < CHE Ll sk

Now as Wp, can be bounded uniformly with constants that depends only on the shape
regularity of the mesh, we have

> (vUIL—Lyng - t)Wr,

F teBrp K
< ol Ll 1.k
+Cv(t + [Blwioo g e ) M — ul  + Corhi  uli k. (3.30)

Now let us now bound ||v@ln lx = v||tr(ITL — L)|| ¢ . First observe that if we take
G=gql, g € P,_1(K) in (2.7a), we obtain

(ve(ITL—L).q), = (((Mu —u)®8B).q),. Yq € P_1(K). (3.31)
Now using (3.27) in (3.26b) and picking u = wnyk, w € PkL(K) yields
(vor(ITL — L), w), . = (¢, w)ax, Yw € PH(K), (3.32)

where

= —((Z > (vUTL —Lyng - t)WF.,>n3K> -y + (IIp — p)

F teBp

+ (Pyu —u) @ 8B)nyk - nyx +vr,(Mu —u) - ny.
Observe that we can write the last term as

(vo,(Tu —u) - nyx, w),, =vr,((V- ITu —u), w), + Tu—u, Vw)g).
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In this equation the first term vanishes as w € PkL (K) and the fact that u is divergence free.
The second term also vanishes by (2.7b). Hence,

¢ = —((Z > (vUIL—Lyng - t)wp,,>nak) -k + (ITp — p)

F teBf
+ ((Pyu—u) @ 8B)nyk - ny.
Assuming trL = 0 and by (3.31) and (3.32) we have

[vtr(TL = L)|| = | Prote(TL = L) ||, < || Prte((Tu — ) ® 8B) ||, + Chi* 11 Prc |l
| Prtr((IMu — u) ® 8B) | . + Cll Prelix

< |t Pe((Tu — w) ® 3B) |, + Cli¢ &

=<

We bound the second term by using the first part of the proof and the property of the L>-
projection as follows:

Ik < CoRE Ll 41k + Cv(t + 1Blwiooyhi ) 1 Tu —u| g
+ C (v, + hglBlyroo)) AR k1.5 + I1TTp = pllx. (3.33)

Finally, as the trace operator is continuous on finite dimensional spaces,

[tr Pr((ITu — u) ® 8B) |

¢ =ClPe(@u - ©8)], <C|Tu—w 58]
< Chg|Blwioo ) 1HTu — ul| k.
Therefore, combining everything we obtain
1L~ Lilx < Cvhig " [Llgsik +C(0n + (14 )| Blwiw hx) 1w — ullx

+ C(vr + h|Blyioo )i Ml +1.x + 1Tp — plik. (3.34)

d

4 Numerical Experiments
In this section, we carry out numerical experiments to verify the theoretical orders of conver-
gence of the approximations provided by the HDG method and of the postprocessed velocity
given by Theorem 2.6.

As a test problem, we consider the analytical solution of the incompressible Navier-
Stokes equations obtained by Kovasznay [19], that is,

uy(xy, x2) =1 —exp(Ax;)cos(2mwx,),

A
ur(x1,x) = 7 exp(Ax;) sin(2mx,),

1
p(xy, x2) = -3 exp(2ix;) + C,
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where A = 2]—]) -/ 41% + 472, Note that the Reynolds number is inversely proportional to
the viscosity v. The constant C in the definition of the exact solution p is chosen so that the
normalization condition (1.1e) is satisfied. Note that the Kovasznay flow is also a solution
of the Oseen problem with § = u. We take the Dirichlet boundary condition (1.1d) for the
velocity as the restriction of the exact solution to the domain boundary. Here the computa-
tional domain is £2 = (0, 2) x (—0.5, 1.5). The viscosity v is allowed to take two values; 0.1
and 0.001. These choices are made to see the effect of the stabilization parameters t, and t;
on the accuracy of our scheme.

In our experiments, we consider meshes that are refinements of a uniform mesh of 32
triangles. Each refinement is obtained by subdividing each triangle into four triangles. We
say that the mesh has level £ (h := 2/2¢*?) if it is obtained from the original mesh by £ of
these refinements. On these meshes, we consider polynomials of degree k to represent all
the approximate variables.

The results, in terms of the L2-norm, for several choices of 7, and 7, and several choices
for the polynomial degree k are listed for v = 0.1 in Tables 1, 2, 3 and 4. For v = 0.001, Table
5 provides the results for different polynomial degrees for specifically chosen 7, and ;. The
numerical results seem to agree with the theoretical analysis summarized in Theorem 2.6.
We observe that in the first case when v = 0.1 (small Reynolds number), the HDG method
suffers from poor convergence and accuracy for t, = t, = & since our stabilization parame-
ters 7, = T, are significantly smaller than the magnitude of the convective velocity which re-
sults eventually in the violation of assumption (2.5). One observation is that if 7, = %, the or-
ders of convergence of the errors in the velocity gradient and the postprocessed velocity are
reduced by one. Indeed, we can only obtain an order of k for E- unless v < Chg|B [wi.ok)s
i.e., unless we have locally high Reynolds number. This is because ||E"| behaves like
IITL — L||, which loses an order when 7, = % See (2.10). Consequently, our postpro-
cessed velocity can only get an order of k + 1. Remarkably enough, the pressure seems to
converge with the optimal order of k + 1, unless 7, = 1/ k. An explanation for this might be
the Reynolds number through the constant C 11,. Whenever we have v, [By| < Chi|Bly1. ks
even if we lose an order for || /TL —L||, we can still have an order of k£ + 1. Motivated by the
accuracy issues related to the violation of the assumption (2.5), as the next test parameters,
we pick our 7, and 7, as follows:

tn:t,ziirgh(ﬂ(x)-n+l. “4.1)
Note that this choice guarantees (2.5). Table 4 demonstrates this particular choice of stabi-
lization parameters which yield optimal (order k + 1) errors in the velocity, the pressure,
the velocity gradient, for kK > 1, and superconvergence (order k + 2) of the postprocessed
velocity. For k = 0, the errors in the approximation of all these variables converge with order
one.

Finally, let us emphasize that the postprocessed velocity is H (div)-conforming and ex-
actly divergence-free. Indeed, it is numerically verified that the divergence of the postpro-
cessed velocity is zero within machine precision and that its normal component is continuous
across interior faces.

For our second test case v = 0.001, a much higher Reynolds number, we again use the
special t,, t; defined in (4.1). In this case, we lose superconvergence, that is, the velocity
gradient converges only with order k, thus the postprocessed velocity converges only with
order k + 1. This may be because of the convection-dominated effect. Indeed, there are
constants in Theorem 2.3 and Theorem 2.6 which depend on 4, v, 7,, 7, and B8 on each
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Table 1 History of convergence of the HDG method for 7, = h for v =0.1

degree  mesh  flu—uylg, lp —pulg, IL —Lallg, lu —uj 7,
k 2n~! error order error order error order error order
wr=h
1 3.32e—0 — 1.91e—0 - 1.19e-9 - 1.1le—0 —
8 2.86e—0 0.21  9.13e—1 1.07 532-0 1.16 2.6le—1 2.09
16 3.10e—0 —0.11  5.79e—1 0.66  3.50e—0  0.61 1.47e—1 0.83
32 3.60e—0 —0.22  4.37e—1 041  2.50e—0 0.49 1.10e—1 0.42
64 6.83e—0 —0.93  3.49e—1 0.32  233e-0 0.10 4.86e—2 1.18
2 4 7.98¢e—1 - 6.75¢e—1 - 3.65e—0 - 2.56e—1 -
8 1.35e—0 —0.76  3.36e—1 1.01 3.28e—0 0.16 1.57e—1 0.70
16 1.11e—0 0.28  1.62e—1 1.05 2.0le-0 0.71 5.74e-2 1.45
32 3.70e—1 1.59  2.38e—2 277  1.76e—1  3.51 1.65e—3 5.12
64 2.68e—2 379  1.06e—3 449 1352 3.70 8.39e—5 4.30
3 2.8%—1 — 1.96e—1 - 1.03e-0 - 6.22e—2 -
8 4.88¢e—1 —0.76  1.58e—1 0.31 1.09e—0  —0.07 5.42¢-2 0.20
16 2.06e—2 4.57  2.57e-3 594  290e—2 5.23 4.08e—4 7.05
32 4.03e—3 235  2.62e—4 330 2.77e-3  3.39 1.84e—5 4.47
64 2.94e—2 —287 1.05e-3 —-2.00 1.09e—2 —1.97 327e-5 —0.83
=1
1 2.02e—0 — 1.42e—0 - 1.02e-9 - 9.04e—1 —
5.86e—1 1.79  5.16e—1 146 3.54e—0 1.53 1.67e—1 2.44
16 1.74e—1 1.75 1.28e—1 2.01 1.31e—0 144 3.03e—2 2.46
32 4.90e—2 1.83  2.99¢-2 2.10 4.3%-—1 1.57 5.06e—3 2.58
64 1.28e—2 1.93  7.21e-3 2.05 1.26e—1 1.80 7.32e—4 2.79
2 4.24e—1 — 5.48e—1 - 3.0le-0 - 1.75e—1 -
8 9.6le—2 2.14  5.92e-2 321 7.14e—1  2.07 2.25e-2 2.96
16 1.13e—2 3.09 6.12¢e—3 327  1.00e—1 2.83 1.49¢—3 3.92
32 1.34e—-3 3.07 6.72¢e—4 319  1.33e-2 291 9.25¢e—5 4.01
64 1.67e—4 3.00 79le-5 3.09 1.74e—3 294 5.88¢—6 3.98
3 1.19e—1 - 1.04e—1 - 8.43e—1 - 4.6le—2 —
1.23e-2 327  7.59-3 3.77  9.36e-2  3.17 2.59e—-3 4.15
16 5.43e—4 450  3.04e—4 4.64 547e-3  4.10 7.28e—5 5.15
32 3.15e-5 4.11 1.68e—5 4.17 3.5le—4 3.96 2.33e—6 4.96
64 1.96e—6 4.01 1.02e—6 4.05 2255 396 7.46e—8 4.97
u=1/h
1 1.46e—0 — 1.26e—0 - 9.39e—0 - 8.08e—1 -
8 3.20e—1 2.19  552e-1 1.19  3.72¢e—0 1.33 1.74e—1 2.22
16 7.77e-2 2.04  1.33e—1 2.05 1.59-0 1.22 3.57e-2 2.28
32 1.75e-2 2.15  323e-2 2.05 5.92e-1 1.43 6.71e—3 241
64 4.10e—3 2.09 8.09¢e—3 2.00 2.29—1 1.37 1.49¢—3 2.17
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Table 1 (Continued)

degree  mesh lu —uplg, lp —pullz, IL — Lyl 7, lw —uj T,
k 2n~1 error order  error order  error order  error order
2 4 3.24e—1 — 5.23e—1 — 3.02e—0 - 1.49¢—1 —
8 4.48e—2 2.86 491e-2 3.41 7.10e—1 2.09 1.89¢—2 2.97
16 4.75¢—-3 3.24 5.75¢—3 3.09 1.18e—1 2.59 1.63e—3 3.54
32 5.53e—4 3.10 7.58¢—4 2.92 2.08e—2 2.50 1.49¢—4 3.44
64 6.75e—5 3.03 1.18¢—4 2.69 4.33e—3 2.26 1.58e—5 3.24
3 4 7.90e—2 — 8.23e—2 — 8.33e—1 — 4.26e—2 —
8 4.18¢—3 4.24 4.99¢—3 4.04 7.90e—2 3.40 1.99¢—3 4.42
16 2.37e—4 4.14 3.06e—4 4.03 6.38¢—3 3.63 7.70e—5 4.69
32 1.43e—5 4.05 2.11e—5 3.86 5.72e—4 3.48 3.20e—6 4.59
64 8.84e—7 4.02 1.68e—6 3.65 6.12e—5 3.23 1.60e—7 4.32

element. These constants affect the convergence behavior of the velocity gradient. Hence in
order to see superconvergence results for high Reynolds number, we need to use very fine
grids dictated by these constants.

5 Conclusion

In this paper, we have analyzed an HDG method to solve the Oseen problem. For the numer-
ical trace, we have used a special type of stabilization tensor S which allows us to control
the normal and tangential components of the interelement jumps of the approximate ve-
locity by means of two parameters 7, and t,. We proved that these parameters and 8 - n
has an effect on the convergence properties. Indeed, the assumption (2.5) gives us a way to
choose the stabilization parameters so that we always have optimal results for any Reynolds
number. Our numerical experiments further validate our theoretical results. In summary, for
low Reynolds numbers, we have optimal results in all variables. In addition, after a postpro-
cessing we obtain a new velocity which superconverges. For high Reynolds numbers, we
still have the optimality but we lose superconvergence for the postprocessed velocity due to
convection dominated effects.

5.1 Extensions

One can consider a general stabilization tensor S and the analysis can also be adapted to gen-
eral nonconforming meshes and variable degree approximations as has been done in [7, 17].
A couple of nontrivial extensions are discussed next.

5.1.1 Divergence-Conforming HDG Methods for Oseen Flow

Note that our error estimates do not contain 7, in the numerator. This allows us to let 7, go
to oo in the solution of (2.1a)—(2.1f) which yields nothing but the following method.
Find (L;, uy,, ph,iih,éh) eG, x Vyx P, x M, x M;;) such that
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Table 2 History of convergence of the HDG method for 7, = 1 for v = 0.1

degree  mesh lu —upllg, lp—prul, IL —Lalig, lu —uj 7,
k 2n~! error order error order error order error order
wr=h
1 4 1.39e-0 - 1.03e-0 - 7.48¢e—0 - 6.83e—1 -
8 5.90e—1 1.24 4.47e—1 1.21 3.44e—0 1.12 1.71e—1 2.00
16 1.75e—1 1.75 1.10e—1 2.02 1.07e—0 1.69 2.49e—-2 2.8
32 4.60e—2 1.93 2.69e—2  2.03 3.06e—1 1.81 3.55e-3 2.81
64 1.18e—2 1.96 6.68¢e—3 2.01 8.20e—2 1.90 4.83e—4  2.88
2 4 4.24e—1 - 4.65e—1 - 2.66e—0 - 1.78e—1 -
8 643e—-2 272 4.64e—2 3.33 3.65¢e—1 2.87 1.29e—2  3.78
16 9.05e—3 2.83 5.89e—3 2.98 542e-2 275 1.09¢e—3 3.57
32 1.18e—3 2.94 7.04e—4 3.07 7.56e—3 2.84 8.30e—5 3.71
64 1.5le—4  2.96 8.63e—5 3.03 1.02e—3 2.90 58le—6  3.84
3 4 9.27e-2 - 7.8le—2 - 6.20e—1 - 332e-2 -
8 9.89¢—3 3.23 5.52e-3 3.82 590e—2  3.39 1.72e—3  4.28
16 544e—4 418 2.73e—4 434 3253 4.18 5.34e—5 5.01
32 3.18e—5 4.10 1.58e—5  4.11 2.03e—4  4.00 1.82e—6  4.87
64 1.96e—6  4.02 9.6de—7  4.04 1.29¢—5 3.98 5.99—-8  4.93
=1
1 4 1.15e-0 - 1.03e—-0 - 7.1le—0 - 6.38¢—1 -
8 3.4le—1 1.75 4.53e—1 1.18 3.0le—0 1.24 1.46e—1 2.13
16 8.67e—2 1.98 1.16e—1 1.97 9.55e—1 1.66 2.18e—2  2.74
32 2.20e—2 1.98 2.80e—2  2.05 2.79e—1 1.77 3.14e—3 2.80
64 5.50e—3 2.00 6.87e—3 2.03 7.53e-2 1.89 421le—4 290
2 4 3.04e—1 - 4.62e—1 - 2.55e-0 - 1.36e—1 -
8 4.08e—2 290 4.60e—2 3.33 4.30e—1 2.57 1.30e—2  3.39
16 4.99¢—3 3.03 5.81le—3 2.99 6.24e—2 279 9.7le—4  3.74
32 6.13e—4  3.02 7.03e—4 3.05 8.48e—3 2.88 6.73e—5 3.85
64 7.61le—5 3.01 8.59¢—5 3.03 1.11e—3 2.94 443e—6 392
3 4 7.02e-2 - 6.63e—2 - 6.38¢—1 - 327e-2 -
8 4.44e-3 3.98 4.50e—3 3.88 53% -2 357 1.42e—-3 452
16 2.56e—4  4.11 2.67e—4  4.08 3.68e—3 3.87 5.10e—5  4.80
32 1.56e—5 4.04 1.65e—5  4.02 245¢e—4 391 1.73e—6  4.88
64 9.59e—7  4.02 1.02e—6  4.01 1.58e—5 3.95 5.60e—8  4.95
u=1/h
1 9.77e—1 - 1.06e—0 - 6.83e—0 - 5.97e—1 -
2.56e—1 1.93 5.20e—1 1.02 3.28¢—0 1.06 1.55e—1 1.95
16 6.15e—2  2.06 1.33e—1 1.96 1.38¢e—0 1.25 3.02e—2 235
32 1.50e—2  2.04 33le—2  2.01 5.5%—1 1.31 5.94e—3 2.35
64 3.76e—-3 2.00 8.42e-3 1.97 2.31le—1 1.27 1.34e—3 2.15
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Table 2 (Continued)

degree ~ mesh lu —uplg, lp— prllz, IL — Lyl 7, llw —uj g,

k 2h~1 error order  error order  error order  error order

2 4 2.60e—1 - 4.75e—1 - 2.76e—0 - 1.26e—1 -
8 3.38e—2 2.94 5.04e—-2 3.24 5.73e—1 2.27 1.61e—2 2.97
16 4.00e—3 3.08 6.56e—3 2.94 1.10e—1 2.39 1.56e—3 3.36
32 4.96e—4 3.01 8.82e—4 2.89 2.13e—2 2.36 1.53e—4 3.35
64 6.34e—5 2.97 1.34e—4 2.72 4.51e—3 2.24 1.64e—5 3.23

3 4 5.85e—2 — 6.42e—2 — 6.85e—1 — 3.32e—2 —
8 3.37e-3 4.12 5.04e—3 3.67 6.89¢e—2 3.31 1.64e—3 4.34
16 2.04e—4 4.05 3.57e—4 3.82 6.23e—3 3.47 7.04e—5 4.54
32 1.30e—5 3.97 2.59¢e—5 3.78 5.97e—4 3.38 3.12e—6 4.50
64 8.35e—7 3.96 2.02e—6 3.68 6.38¢—5 3.23 1.58e—7 4.30
Ly, G, + wn, V-G)g, — (W, Gn)yg, =0, (5.1a)

(=V- L)+ V- (u, ® B)+ Vs, ),
+ <UTZ (uh - ﬁh)t + v8hn7 v>3'T/, = (fs v) ho (Slb)
(V-un,q)g, =0, (5.1¢)
1 —

(800" )y, = (5.1d)
(Wh, Yoo = (8. Moo, (5.1e)
<VLh'l — pun — (U, @ P)n — vy, (uy — Uy); — véu0, ,'l’>37—/l\ag =0, (5.1f)
((uy —uh)'n,n>37h =0 (5.1g)
(pn, Do =0, (5.1h)

for all (G, v,q,q", p,n) € G, x V), x P~ x Pi* x M}, x M. For the above we define the
additional approximation space

My = {n e L’ 0T, : ulix € Re(3K), YK € T,

where R;(0K) is defined in Lemma 3.9. The test spaces for the method employs the follow-

ing orthogonal decomposition of the pressure space Pj:

where

P,=P '@ P,

Py =g € LX(Ty) 1 qlx € P (K), YK € Ty,

P i={q € L*(T) : qlx € P(K)*, VK € T, }.

Also, (u;, —uy), denotes the tangential component of u;, — . This problem has been ana-

lyzed for the Stokes problem in [9].
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Table 3 History of convergence of the HDG method for 7, = 1/4 for v =0.1

degree  mesh lu —upllg, lp—prul, IL —Lalig, lu —uj 7,
k 2n~! error order error order error order error order
wr=h
1 4 1.03e-0 - 1.09e—0 - 72le—0 - 6.56e—1 -
8 3.30e—1 1.64 4.09e—1 1.41 3.41e—0 1.08 1.78e—1 1.88
16 7.29¢—2 218 1.08e—1 1.92 1.11e—0 1.62 2.63e—2 276
32 1.66e—2  2.14 2.70e—2  2.00 3.23e—1 1.78 3.79¢—3 2.79
64 3.97e-3 2.06 6.72e—3 2.01 8.54e—2 1.92 5.0le—4 292
2 4 3.16e—1 - 4.10e—1 - 24le—0 - 1.46e—1 -
8 3.65e—2 3.11 4.51e—2 3.18 34le—1 2.82 1.21e—2  3.58
16 4.52e-3 3.02 5.87e—3 2.94 573e-2 257 1.20e—3 3.33
32 5.55—4  3.02 7.03e—4 3.06 8.16e—3 2.81 9.17e—5 3.71
64 6.89¢e—5 3.01 8.63e—5 3.03 1.07e—3 2.93 6.2le—6  3.88
3 4 6.4e—2 - 5.58e—-2 - 5.57e—1 - 2.85%—-2 -
8 3.88¢—3 4.04 4.11e-3 3.76 4.25¢—2 371 1.18e—3  4.60
16 2.36e—4  4.04 2.52e—4  4.03 2.87e—3 3.89 4.83e—5  4.60
32 1.46e—5 4.01 1.56e—5  4.01 1.97e—4  3.87 1.80e—6  4.75
64 9.10e—7  4.01 9.65¢—7  4.02 1.28e—5 3.94 6.04e—8  4.89
=1
1 4 9.14e—1 - 1.1le-0 - 6.79e—0 - 6.23e—1 -
8 2.66e—1 1.78 4.28e—1 1.37 3.04e—0 1.16 1.56e—1 2.00
16 6.13e—2  2.12 1.20e—1 1.84 9.83e—1 1.63 2.19e—2  2.83
32 1.52e—2  2.02 3.15e—2 1.93 2.95e—1 1.74 3.27e—3 2.75
64 3.81le—3 1.99 8.13e—3 1.95 8.32e—2 1.83 4.69e—4  2.80
2 4 2.6le—1 - 4.21e—1 - 244e—0 - 1.23e—1 -
8 3.15¢e-2  3.05 5.08e—2 3.05 3.76e—1 2.70 1.24e—2 331
16 4.02e—3 2.97 6.95¢e—3 2.87 6.02e—2  2.64 1.10e—3 3.50
32 5.16e—4 296 890e—4  2.97 8.99¢—3 2.74 8.69¢—5 3.66
64 6.6le—5 2.96 1.13e—4 297 1.26e—3 2.83 63le—6  3.78
3 4 5.62e-2 - 5.69—-2 - 5.87e—1 - 2.82e-2 -
8 3.35e-3 4.07 4.73e—3 3.59 4.67e—2  3.65 1.18e—3  4.58
16 2.1le—4 399 3.25¢e—4 3.87 3.38¢—3 3.79 4.64e—5  4.66
32 1.36e—5 3.95 2.15e—5 3.92 242e—4  3.81 1.78¢e—6  4.71
64 8.74e—17 3.96 1.38e—6 3.96 1.66e—5 3.87 6.35e—8  4.81
u=1/h
1 8.24e—1 - 1.18¢e—-0 - 6.46e—0  — 5.86e—1 -
2.33e—1 1.82 5.83e—1 1.02 3.49¢e—0  0.89 1.65e—1 1.83
16 5.32e-2 213 2.34e—1 1.32 1.66e—0 1.07 332e-2 231
32 1.32e—2 2.0l 1.07e—1 1.12 8.13e—1 1.03 8.10e—3 2.04
64 3.30e—-3 2.00 5.24e-2 1.04 4.03e—1 1.01 2.04e—3 1.99
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Table 3 (Continued)

degree ~ mesh lu —uplg, lp— prllz, IL — Lyl 7, llw —uj g,
k 2h~1 error order  error order  error order  error order
2 4 2.36e—1 - 4.47e—1 - 2.74e—0 - 1.22e—1 -
8 3.06e—2 2.95 7.21e—2 2.63 5.76e—1 2.25 1.84e—2 2.73
16 3.89¢—3 2.98 1.47e-2 2.30 1.40e—1 2.04 2.41e-3 2.93
32 4.85¢—4 3.00 3.26e—3 2.17 3.52¢e-2 1.99 3.02¢e—4 3.00
64 6.03e—5 3.01 7.71e—4 2.08 8.86e—3 1.99 3.75e—5 3.01
3 4 5.15e-2 — 6.23e—2 — 6.54e—1 — 2.94e—-2 —
8 3.10e—3 4.06 7.25¢e—3 3.10 7.08e—2 3.21 1.62e—3 4.18
16 191e—4 4.02 8.40e—4 3.11 8.33e—3 3.09 9.29¢e—5 4.12
32 1.19¢—5 4.00 9.96e—5 3.08 1.03e—3 3.01 5.74e—6 4.02
64 7.49¢—17 4.00 1.20e—5 3.05 1.29¢e—4 3.00 3.6le—7 3.99

Table 4 History of convergence of the HDG method for v, =7t = 2% maxye7;, B(x)-n+1forv=0.1

degree ~ mesh lu —uplz, lp— prllz, IL =Ll llu —uj 7,
k 2h~! error order error order error order error order
1 4 1.07e—0 - 6.37e—0 - 8.88¢—0 - 9.71e—1 -
2.76e—1 1.95 1.41e—0 2.17 4.87e—0 0.87 2.4e—1 2.02
16 5.93e—-2 2.22 3.23e—1 2.13 1.98e—0 1.3 4.48e—2 242
32 1.33e—2 2.16 7.75e—2 2.06 7.23e—1 145 7.89e—3 2.5
64 3.08e—3 2.11 1.89e—2 2.04 2.39e—1 1.59 1.3e—3 2.6
2 4 3.64e—1 - 1.2e—0 - 479¢e—-0 - 3.35e—1 -
8 4.47e-2 3.03 1.87e—1 2.67 9.99¢e—1 2.26 3.97e—2 3.07
16 441e-3 3.34 2.29¢e—2 3.03 1.75e—1 2.51 3.29¢e—3 3.59
32 4.6le—4 3.26 2.79¢e—3 3.04 291e—2 2.59 2.49¢e—4 3.72
64 5.27e-5 3.13 3.46e—4 3.01 4.46e—3 2.71 1.8e—5 3.79
3 4 6.69e—2 - 2.37e—1 - 1.32e—0 - 5.68e—2 -
3.93e-3 4.09 2.17e—-2 345 1.28e—1 3.36 3.1e-3 4.2
16 2.04e—4 4.27 1.33e—3 4.03 1.09e—2 3.56 1.23e—4 4.65
32 1.16e—5 4.14 8.17e—5 4.02 8.62e—4 3.66 4.79¢—6 4.69
64 6.86e—7 4.07 5.09e—6 4 6.3e—5 3.78 1.75e—7 4.78

5.1.2 HDG Method for Incompressible Navier-Stokes Equations

As suggested in the introduction, the main extension of this paper is to the incompressible
Navier-Stokes equations where we have a nonlinear velocity rather than the known convec-
tive velocity 8.

3L—Vu=0 in,
—W.-L+@-V)Yu+Vp=f ing,
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Table 5 History of convergence of the HDG method for 7, = 7; = % maxye7;, B(x)-n+ 1 forv=0.001

degree  mesh llu —upllg, lp—prul, IL —Lyllg, llu —uj T,
k 2h~! error order error order error order error order
1 4 2.09e—1 — 323¢e-9 - 4.19¢e—0 — 2.59e—1 —
8 2.8le—1 —0.43 9.4e—0 1.78 43%9%—-0 —0.07 28le—1 —0.11
16 5.02e—2 248  5.46e—1 4.11 2.03e—0 1.11 5.02e—2 2.48
32 9.87¢—3 2.35 4.66e—2  3.55 9.95¢—1 1.03 9.86e—3 2.35
64 2.33e—3 2.09  7.53e-3 2.63 4.93e—1 1.01 2.32e—3 2.09
2 4 2.11e—1 - 1.57e—9 - 4.27¢—0 - 2.09e—1 -
8 6.35e—2 1.73 6.06e—1 4.7 1.3e—0 1.72  6.35¢-2 1.72
16 6.67e—3 3.25 4.65e—2 3.71 2.75e—1 224  6.67e-3 3.25
32 7.59¢—4 3.13 4.14e—3 3.49 5.82e—2 224 7.59—4 3.13
64 7.99e—5 3.25 3.74e—4 347 1.32e—2 2.14  7.98e—5 3.25
3 4 1.9e—2 — 4.03e—1 - 3.7e—1 — 1.89e—2 —
8 3.48e—3 2.45 4.09e—-2 3.3 1.31e—1 1.49 3.48e—3 2.45
16 1.68e—4 437 T.1le—4 585 1.38e—2 3.25 1.68e—4 4.37
32 1.07e—5 3.97 1.66e—5 542 1.67e—3 3.05 1.07e—5 3.97
64 6.73e—17 399  6.76e—7 4.62 2.06e—4 3.02 6.7e—17 3.99

V-u=0 1in$2,

u=g onads2,

=
2

where u is the velocity, p is the pressure, v is the kinematic viscosity and f € L?(2)" is
the external body force. As before we assume

/ g-n=0.
EYe)

The above set of equations can be solved iteratively by a Picard iteration. This means that
we solve an Oseen problem where the convective velocity comes as an input from the last
iteration. The application of this approach to the devising of LDG methods for the Navier-
Stokes was carried out in [12]. Its application to HDG methods constitutes the subject of
ongoing research.

Appendix: Approximation Properties of the Auxiliary Projection IT;

The proofs in this appendix are quite similar to the proofs for the approximation properties
of the projection [T, given in Sect. 3.3. We only need to recall that Sg := S — (8 - n)I and
that AR™ is defined to be the maximum eigenvalue of Sg over all faces of K.
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A.1 Approximation Properties of IT*¢
Proposition A.1 (Characterization of IT*¢)

("¢ —¢.v) =0, Vve P (K), (A.la)

(Sp(1T¢ — @), 1), + (M6 — ) @B, Vi), = —(V- (v@ + D), 1) ..
Vi e Py (K)* . (A.1b)

Proof First equation follows from the definition of I7;;. The second follows from (2.13d).
Indeed if we take g € P,(K)* and using integration by parts,

(S(T*¢ — ¢). 1), — (IM'$ — $) @ B)n. whox =((VIT*® — P)n + (IT°¢ — p)n. ) .
Then, using integration by parts on the right hand side,
(Sp(IT°¢ —¢). )y = (VW - (TP = @), ) + (W(IT*® — @), Vi)
+(V(T'¢ = ¢).m) + (TP =6,V - 1),
=—(V- 0o +¢D,n), — (M —¢) 2B, VR),,
where the last equality holds by (2.13a) and (2.13c) and as w € Py O

Let 8% = IT* ¢ — ¢, where ¢, is the L-projection onto P (K). Then, from (A.1a), §% €
P (K)*. Then, from the second characterization,

((Sp8%. m), + (8* ®8B. Vi) . = (Sp(d — b). 1), + (@ — ) ® B. V),
by (1)
—(V-(v@ +¢D. ), .

be (1)

Now let = 8% Then, as (8% ® 88, V8%)x = 1((B - n)8?, §%)yx., we have,
(8567, 8%), =by(8%) + bo (87).
From Lemma 3.12,

18 1.5 = CHE 8% -

Then, as Sg is positive definite, for any face F of K,

d
(555%.8%),, = 3 3 553%.89),, = Cg ¥
F i=1
Therefore,
hk

min
I K

18%] < €= (Ilbgll + 150 1)
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bl is bounded exactly as in Sect. 3.3, with one difference in the outcome. Rather than
AR™, we have AR™ and ||bo || is also bounded the same way except that we have |V - (v® +
@) |, rather than |V - (V@ — @Dy, -

A.2 Approximation Properties of vII1*® + IT*¢1

As in Sect. 3.3, we need two additional projections. We introduce a projection P! similar
to P! as defined in Sect. 3.3 and we define P? to suit to the form of the projection I7;. Let
P!® e P,(K) be such that

(P'®,G), = (@,G)x, VG ePr(K),
(P'onp, u), = (Pnp, p)r, Vue Pu(F),

for all faces F of the simplex K except for an arbitrary one and let P2® € Py(K) be such
that

(P’0.G), = (®.G)x — ((IT"¢ — ¢) ®3B.G), VG e P, (K),
(Ponr, u), = (®np,p)r, Ve Pu(F),
for all faces F' of the simplex K except for an arbitrary one.
Proposition A.2 (Characterization of vIT*® + IT*¢1)

(v(IT*® — @)+ (IT*¢ — $)1,G)

=—((MT"¢ —¢)®B.G),. VGeP(K), (A.2a)
(w(T*® — @)np + (IT*¢ — ¢)np. p),
=(Sp(IT"¢ — ¢). 1), Ve Py(F), (A.2b)

for all faces F of K.

Proof The first equation follows directly from (2.13a)—(2.13c¢). For the second pick an ar-
bitrary face F of K and let w € P,(F). Then, there exists u € P;(K)* such that g = w
on F. Therefore, in a similar fashion to the proof of the result for (/IL — L) — (IIp — p)I,
splitting the integral over K to F and 0 K\ F and using (2.13d) with this u,

(w(T*® — D)np + (IT*¢ — ¢)np. 1),
= ('@ — @) ® pynr. ), +(S(M6 9. k), + T
=(Sp(m¢— ). 1)+
where
T:=(w(IT*® — ®)np + (IT*¢ — dp)np. u), +((T°® — D) @ Binp., 1),
—(S(I"¢ — ). )
= (10 = @)np+ (10 = $)nr, )y, = (Sp (TS = 9). ] -

@ Springer



430 J Sci Comput (2013) 55:392-431

But by (A.1b) and integration by parts,
T=(V(T'®-@),n), +(v(T*® - @), V), + (VT —¢). 1),
F(T'0 6.V 0) + (16~ 9) ©B. V) + (V- (0@ + 6D, 1),

The first, third and the last terms vanish by cancellation and from the fact that w € P (K)*.
The second, fourth and fifth terms vanish by (A.2a). O

The proof of the estimate for v(/7*® — @) is very similar to the one for v(ITL — L).
In short, from the representation of v(I7*® — @) using (3.24), it boils down to bounding
v(IT*® — ®@)ny - t for all faces F of K and for all ¢ € By. Using the projections we write
(IT*® — P)np = (IT*® — P2®)ny + (P2 — P'®)np + (P'® — ®)ny. It is easy to show
from the properties of P2, Py and (A.2b) that

v(IT'® —P*®)np = —(I1*¢ — P'¢)nr +S|r (1% — P'9).
Therefore,
[v(T*® = @)nr -t =< [va (¢ —P')|,  + | (P*® —P'@)nr,
+] (ﬁl(b - CD)nF)HO,K'

The terms on the right hand side are bounded exactly the same way with the only difference
being the equations defining §% := (P’® — P'®)nr. Now they are given by

(8%.G), =—((IT"¢ —¢) ®88.G).. VG ePi_i(K),

(8% )y

0, Ve P (F),

for all faces F of K except for an arbitrarily chosen one.
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