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The efficiency andaccuracy of viscous flow simulations depend crucially on the quality of the boundary-layermesh.

Too coarse meshes can result in inaccurate predictions and in some cases lead to numerical instabilities, whereas too

fine meshes produce accurate predictions at the expense of long simulation times. Constructing an optimal (or near-

optimal) boundary-layer mesh has been recognized as an important problem in computational fluid dynamics. For

few simple flows, one may be able to construct such a mesh a priori before simulation. For most viscous flow

simulations, however, it is difficult to generate such mesh in advance. In this paper, a boundary-layer adaptivity

method is developed for the efficient computation of steady viscous flows. This method turns the problem of

determining the location of the mesh nodes into a set of equations that are solved simultaneously with the flow

equations. The mesh equations are designed so that the boundary-layer mesh adapts to the viscous layers as the flow

solver marches toward the converged solution. Extensive numerical experiments are presented to demonstrate the

performance of the method.

Nomenclature

c = local speed of sound
c� = critical speed of sound
cf = friction coefficient
cp = pressure coefficient
E = total energy
G = gradient of mesh mapping
G = mapping from reference to physical domain
H = total enthalpy
h = thermodynamic enthalpy
{hi} = stack distribution of the boundary-layer mesh
~h�x� = element size approximation
kδ = safety scale for the thickness indicator
M∞ = Mach number
n̂ = extrusion direction for the boundary-layer mesh
nnorm = number of elements across the boundary-layer

mesh
nr = normal vector in the reference domain
nx = normal vector in the physical domain
P = pressure
Pr, Prt = laminar and turbulent Prandtl number
p = polynomial order
R = perfect gas constant
Re�⋅� = Reynolds number, based on �⋅�
T = temperature
v = fluid velocity
~ν = Spalart–Allmaras working variable
vG = mesh velocity
α = angle of attack
δ = normal scaling of the boundary layer
δBL = estimate of the boundary-layer thickness
ε = artificial viscosity

κ = heat conductivity
μ = dynamic viscosity
μref , Tref , C = constants for Sutherland’s law
μt = eddy viscosity
μδ = smoothing parameter of normal scaling equation
ρ = density
τδ = time constant of normal scaling equation
χ = mesh deformation measure
χe = integrated element deformation

I. Introduction

O NE of the most important tasks in computational fluid
dynamics (CFD) is the generation of suitable meshes for the

problem of interest. Herein, we focus on mesh generation for high
Reynolds number flows.Onepeculiarityof these flows is thepresenceof
very thin boundary layers in which the solution varies rapidly. The
boundary-layer thickness is a function of the Reynolds number Re and
scales roughly with Re1∕2 for laminar flows and Re4∕5 for turbulent
flows. The latter is commonly broken into three regions (viscous
sublayer, buffer layer, and log layer), each of which grows at a different
rate depending on the flow conditions. The presence of boundary layers
and the disparity of length scales require anisotropic meshes, where the
elements are oriented along the flowdirection. Indeed, the efficiency and
accuracyof viscous flowsimulations depend crucially on the quality of a
boundary-layer mesh. Too coarse meshes can result in inaccurate
predictions and in somecases lead tonumerical instabilities,whereas too
fine meshes produce accurate predictions at the expense of long
simulation times. For few simple flows, one may be able to construct
suitablemeshes apriori before performing the simulations.However, for
most viscous flow simulations of interest, it is difficult to generate
meshes in advance because it is difficult to estimate the thickness of the
boundary layers before the simulations are conducted.
It is common to solve themesh generation problemby constructing

a sequence of meshes and solutions iteratively, a procedure known as
mesh adaptation. Mesh adaptation can be divided into three classes
of techniques: h adaptivity (adapting the size of the elements), p
adaptivity (adapting the degree of the local polynomials), and r
adaptivity (relocating the mesh nodes.) Various other adaptive
strategies can be devised by combining these techniques.
In h adaptivity, starting from an initial coarse mesh, the adaptivity

module and the CFD solver are called iteratively in an alternating
fashion until an accurate solution is obtained on a final refinedmesh. In
this procedure, the critical step is the specification of the mesh size,
which is commonly based on some measure of the error. A common
choice for the latter is to use derivative reconstructions tominimize the
interpolation error, either alone [1–3] or combined with output error
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estimates [4]. Only very recently, a different approach based on output
error estimates (in particular, dual weighted residual or DWR) and
element splitting and sampling has been proposed by Yano [5] for
unstructuredmeshes or Ceze and Fidkowski [6] for structuredmeshes.
The alternating between the solver and the adaptivity module serves to
simplify the implementation and save computational cost. However, it
may face difficulty to converge to the final solution if intermediate
meshes are too coarse to capture sharp features of the solution, such as
shock waves and boundary layers. This has prompted research into
increasing the robustness of the CFD solver on meshes without
adequate resolution, such as modified turbulence models [7–10] and
advanced nonlinear solvers [11,12].
In p adaptivity, a similar adaptation procedure is carried out,

except that the approximation order inside each element can bevaried
depending on the smoothness of the solution. In general, however, p
adaptivity is seldom used alone but rather in the form of h∕p
adaptivity [13]. The h∕p adaptivity technique has been used with
discontinuous Galerkin finite element methods, where the
implementation is relatively simple. The technique requires an error
indicator to drive the change of approximation order, which can be
based on extrapolation using a sequence of meshes [13], a resolution
indicator [14], a postprocessed solution [15], or a DWR-type error
estimate [6], among others.
In r adaptivity, the adaptation procedure relocates the nodes of the

mesh without changing the mesh connectivity. This process relies on
the definition of a monitor function to yield the location of the nodes.
The particular choice of amonitor function is discussed at length in the
reviews by Budd et al. [16]. For CFD analysis, r adaptivity has been
applied to unsteady inviscid compressible flow problems, as well as
free shear flows [17,18]. As is the case with h and p adaptivity, the
update of the mesh is produced in between iterations of the flow
solution and is designed to be oblivious to the flow features. This
makes themesh adaptation reasonably general, but overly complicated
for the case of wall-bounded flows. However, there are r-apativity
methods that take advantage of the flow features, like the differential
boundary-layer solvers of Drela [19] and Allmaras [20].
In this paper,we tackle the problem of generating a boundary-layer

mesh for steady viscous flows bymeans of an r-apativity formulation
that evolves the mesh “on the fly” and is inspired by the differential
boundary-layer solvers of Drela [19] and Allmaras [20]. In our
method, the locations of the mesh nodes are determined by the
solution of a set of equations that are solved simultaneously with the
flow equations. The mesh equations are designed so that the
boundary-layer mesh adapts to the viscous layers as the flow solver
marches toward convergence. The main ingredients of our method
include 1) a surface partial differential equation (PDE) for the
boundary-layer thickness, which allows us to adapt our structured
boundary-layer mesh to the flow boundary layer, 2) the deformation
of the mesh using the procedure recently introduced by Roca et al.
[21] and Gargallo-Peiro et al. [22], and 3) a fully coupled high-order
implicit solver based on the hybridizable discontinuous Galerkin
(HDG)method [23,24] to discretize the coupled system of equations.
Our method ensures the robustness of the flow solver and the quality
of the final solution because the boundary-layer mesh is
simultaneously adapted to the viscous layers as the flow solver
marches toward the steady-state solution. We present extensive
numerical experiments to demonstrate the performance of the
method.
The paper is organized as follows. In Sec. II, we describe the main

components of the viscous flow discretization, including the
governing equations. In Sec. III, we develop the mesh adaptivity
technique to provide an efficientmesh for the computation of viscous
flows. In Sec. IV, we present a set of numerical examples for laminar
and turbulent flows to validate the proposed method. Finally, in
Sec. V, we discuss extensions and future work.

II. Implicit Flow Solver

In this section, we present the implicit high-order approach that we
use to solve the compressible Navier–Stokes equations on a
deformable mesh. We begin by introducing the Navier–Stokes

equations for laminar flows and the Reynolds-averaged Navier–
Stokes (RANS) equations with the modified Spalart–Allmaras
equation [9,25] for turbulent flows. Next, we review the artificial
viscosity model used to stabilize the numerical solution of viscous
flows with shock waves [26]. Then, we employ the arbitrary
Lagrangian–Eulerian (ALE) formulation [23,27] to treat moving
domains. Finally, we give a brief overview of the HDG scheme used
to discretize these equations.

A. Navier–Stokes Equations

We consider the compressible Navier–Stokes equations for
laminar flows

∂u
∂t

� ∇ ⋅ Finv � ∇ ⋅ Fvisc (1)

where

u �

2
64

ρ

ρvi

ρE

3
75; Finv �

2
64

ρvi

ρvivj � Pδij

ρviH

3
75;

Fvisc �

2
664

0

τijP
d
j�1 τijuj � qi

3
775 (2)

τij � μ

�
∂vi
∂xj

� ∂vj
∂xi

−
2

3
δij

∂vk
∂xk

�
; qi � κ

∂T
∂xi

(3)

Here, ρ represents the density, vi is the ith component of the velocity,
E is the total specific energy, P is the pressure, andH � E� P∕ρ is
the total specific enthalpy. We assume that the flow obeys the ideal
gas law:

P � ρRT (4)

where R is the specific gas constant of air and T is the temperature.
The coefficients μ and κ are the dynamic viscosity and heat
conductivity, respectively. Here, μ � μ�T� according to Sutherland’s
law:

μ � μref
Tref � C

T � C

�
T

Tref

�
3∕2

(5)

where C � 120 K and the pair (Tref , μref) denotes a reference
temperature and viscosity that we take to be equal to the freestream
values: (T∞, μ∞). The thermal conductivity κ is related to the
viscosity through the Prandtl number, which we assume to be
constant:

Pr � cpμ

κ
� 0.72 (6)

The Navier–Stokes equations are written in nondimensional form
using the following reference states: ρref � ρ∞, ρuref � ρ∞kv∞k,
and ρEref � ρ∞kv∞k2.
To close the problem, we need to prescribe the boundary

conditions. At the viscous wall, we impose an adiabatic wall
condition, namely, zero velocity and zero heat flux. At the outer
boundary, we impose a far-field characteristic boundary condition for
steady viscous flows (see [24] for a detailed discussion about the
boundary conditions).

B. Reynolds-Averaged Navier–Stokes Modeling

The effect of turbulence on the flowfield is modeled using the
RANS equations together with Boussinesq’s analogy for the eddy
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viscosity. In this way, the only modification required to the system
described by Eqs. (1–3) is the introduction of the turbulent viscosity
and thermal conductivity, so that the stresses are given by

τij � �μ� μt�
�
∂vi
∂xj

� ∂vj
∂xi

−
2

3
δij

∂vk
∂xk

�
; qi �

�
μ

Pr
� μt

Prt

�
∂h
∂xi
(7)

Here, μt is the eddy viscosity,Prt is the turbulent Prandtl number (here
we assume Prt � 0.9), and h � H − �1∕2�v2 is the thermodynamic
enthalpy.Note that, now, thevector of unknownsu denotes the average
density, momentum, and total energy fields and we retain time-
dependent terms to facilitate convergence to steady state.
The use of Boussinesq’s analogy requires a model for the eddy

viscosity μt that appears in Eq. (7). For this, we use a version of the
Spalart–Allmaras (SA) turbulence model [28], which incorporates
modifications [9,10] that avoid stability problems when a high-order
discretization is used. The resultingmodel, as presented byChaurasia
[25], is based on the following PDE for the working variable ρ~ν:

∂ρ~ν
∂t

� ∇ ⋅ �ρv~ν� � ρ�sP − sD� �
1

σ
∇ ⋅ �ρ�ν� ψν�∇~ν�

� cb2
σ

ρ�∇~ν�2 � 1

σ
�ν� ψν�∇ρ ⋅ ∇~ν (8)

where the different terms on the right-hand side of the equation are
defined next. In particular, let

χ � ρ~ν

μ
; ψ � χ

�
arctan�bχ�

π
� 1

2

�
� c0;

c0 �
1

2
−
arctan�b�

π
(9)

Here, χ denotes a nondimensional version of the working variable
and ψ denotes a regularized version of it that approximates the
nondifferentiable operation max�0; χ�. Such regularization is
controlled by the constant b and the associated term c0�b�. In
addition, the production sP and destruction sD terms in Eq. (8) are
defined as

sP � cb1 ~Sψν; sD � cw1fw

�
ψν

d

�
2

(10)

and require the following auxiliary relationships:

S � ����������������
2ΩijΩij

p
; �S � ψν

�κd�2 fv2; fv1 �
ψ3

ψ3 � c3v1
;

fv2 � 1 −
ψ

1� ψfv1
(11)

~S�0.1S�� �S�0.9S�
�
arctan�b� �S∕S�0.9��

π
�1

2

�
�cS (12)

�r � ψν
~S�κd�2 ;

r � rlim − �rlim − �r�
�
arctan�b�rlim − �r��

π
� 1

2

�
− c (13)

fw � g

�
1� c6w3
g6 � c6w3

�
1∕6

; g � r� cw2�r6 − r� (14)

where d is the distance to the closest wall. This version of the SA
model uses the same constants as the original model [28]:
cb1 � 0.1355, cb2 � 0.622, cv1 � 7.1, σ � 2∕3, cw1 � 3.2391,
cw2 � 0.3, cw3 � 2, κ � 0.41, and rlim � 10. Note that here κ

denotes the vonKármán constant, which should not be confusedwith

the thermal conductivity. In addition, the regularization parameter b
is set to b � 100 as suggested by Chaurasia [25].
The relationship between the working variable and the eddy

viscosity that approximates the Reynolds stresses in Eq. (7) is given by

μt � μψfv1 (15)

The system of PDEs that governs the flow is obtained by appending

the modified version of the SAmodel [Eq. (8)] to the RANS equations

[Eqs. (1–3)with theReynolds stresses inEq. (7)]. The system iswritten

in nondimensional form using the same referencemagnitudes used for

the Navier–Stokes equations, plus a reference value for the working

variable given by ρ~νref � μ∞. To close the problem,weneed to specify

the correct boundary conditions. In the case of the RANS–SA

equations, these are similar to the Navier–Stokes case except for the

addition of a condition for the SAmodel. In particular, we set ρ~ν � μ∞
at the far field using a characteristic decomposition and ρ~ν � 0 at a

viscous wall. These boundary conditions are imposed weakly by the

discretization scheme.

C. Shock Capturing

The solution of compressible flows involving shocks with

high-order methods requires some form of stabilization. In this

paper, we use an artificial viscosity technique based on the

divergence of the velocity (∇ ⋅ v) as a shock indicator [26]. The

stabilization enters the governing equations through an artificial

dissipation term that is added to the right-hand side of the

conservation laws:

∂u
∂t

� ∇ ⋅ Finv � ∇ ⋅ Fvisc � ∇ ⋅ ε�u�∇uAV�u� (16)

Here, uAV�u� � fρ; ρv; ρHg and ε�u� is the artificial viscosity

given by

ε�u� �
 
kh

~h

p

! ���������������������
v ⋅ v� c2

p
f� ~s�� (17)

where

~s��u� � −
�kh ~h∕p�∇ ⋅ v

c�
; f�x� � log�1� exp�α�x − β���

α
(18)

The model is closed by setting kh � 1.5, α � 104, and

β � 0.01 [26].
The artificial viscosity model requires an approximation to the local

element size distribution across the whole domain ~h�x�. Here, we
follow the original paper [26] and compute a continuous piecewise

linear reconstruction of the minimum height of the elements of

the mesh.

D. Arbitrary Lagrangian–Eulerian Formulation

The governing equations are discretized on a mesh that evolves

with the solution until steady state is reached. This implies that we are

solving a set of PDEs on a domain that deforms in time. For this

reason, we use an ALE formulation as described by Persson

et al. [27].
We consider a mapping G from a reference domain (Ωx ∈ Rd) to

the physical domain (Ωr ∈ Rd) denoted by

x � G�r; t�; r ∈ Ωr; x ∈ Ωx (19)

which is differentiable in the arguments. In particular, let

G � ∂G
∂r

; vG � ∂G
∂t

(20)

1972 MORO ETAL.

D
ow

nl
oa

de
d 

by
 M

IT
 L

IB
R

A
R

IE
S 

on
 A

ug
us

t 1
6,

 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.J

05
49

61
 



denote the gradients of the mapping. This allows us to transform a
generic conservation law written as a first-order system in the
physical space

∂u
∂t

� ∇ ⋅A�u;Q� � s; ∀ x ∈ Ωx (21)

Q − ∇u � 0 ∀ x ∈ Ωx (22)

into an equivalent conservation statement in the reference space of the
form

∂gu
∂t

� ∇r ⋅ fgG−1�A�u;G−1Qr� − u ⊗ vG�g � gs; ∀ r ∈ Ωr

(23)

Qr − ∇ru � 0; ∀ r ∈ Ωr (24)

where g � det�G� and the divergence and gradient operators
work on the reference coordinates r. Here, the flux
A � Finv�u� − Fvisc�u;Q� includes both inviscid and viscous
contributions.
Notice that the ALE formulation leads to a modified conservation

law with some added complexity on the fluxes and sources. These
extra terms, like the velocity of the mesh vG or the cofactor of the
mapping gG−1, need to be accounted for appropriately when
computing the eigendecomposition of the inviscid portion of theALE
fluxes, which is used to impose the boundary conditions and develop
stable Riemann solvers. In this case, such eigendecomposition is
given by

∂�AALE ⋅ nr�
∂u

� kgG−1nrkK�Λ − vGnI�K−1 (25)

where vGn is the normal velocity of the mesh in the physical space
given by

vGn � vG ⋅
gG−1nr

kgG−1nrk
(26)

and K and Λ denote the eigenvector and eigenvalue matrix of the
original inviscid flux [29].
In addition, the fact that the mesh deformation is solved

simultaneously with the flow implies that the geometric entities that
enter the ALE fluxes (velocity of the mapping, Jacobian of the
mapping, etc.) and its gradients need to be defined as functions of the
degrees of freedom that represent the mesh.
In some instances, the formulation can be augmented with the use

of aGeometric ConservationLaw (GCL) to correct for possible errors
in the time integration of the geometry [27]. However, this only
makes a small difference in unsteady flows [27,30] and is irrelevant
when steady-state solutions are sought. For this reason, we did not
implement the GCL in this work.

E. Numerical Discretization of the Flowfield Equations

The ALE equations in conservative form are discretized using a
high-order hybridizable discontinuous Galerkin method
[9,23,24,31,32]. The HDG method allows the use of a high-order
approximation and the simple treatment of hybrid structured/
unstructured meshes, as required for the boundary-layer flows that
we are interested in. In addition to this, the HDG method was
designed to reduce the number of globally coupled unknowns and
produce an approximation to the gradient of the solution that
converges optimally for diffusion problems, while being stable in the
convective regime. In this work, we follow closely the HDG
discretization of the Navier–Stokes equations presented by Peraire
et al. [24] and later extended to the SA equations [9]. Finally, the
problem is discretized in time using a backward Euler scheme to
evolve to steady state.

III. Boundary-Layer Adaptivity

The equations that describe the flow are discretized on a moving

mesh whose topology is fixed but is adapted to the boundary-layer

features.

A. Measuring the Boundary-Layer Thickness

One of the advantages of adapting to the boundary layer versus

other flow features, like shock waves or wakes, is the fact that the

location of the boundary layer is known. In particular, in the case of

attached and moderately separated flows, the boundary layer is

contained in a region close to solid walls, which means that the only

variable that needs to be determined is its thickness. The boundary-

layer thickness is not uniform and can range from being very small

near the stagnation point to the order of the airfoil thickness close to

the trailing edge. Thus, the first technical challenge we need to

address is how to determine the boundary-layer thickness.
The boundary layer endswhere theviscous effects are negligible or

when a certain percentage of the external velocity is recovered. In

practice, these criteria are hard to implement because they require an

exhaustive search for the point at which the condition is met.
When it comes to implementation, especially in the context of

adaptivity, we can trade exactness for simplicity. In particular, we are

interested in approximate indicators based on an algebraic

relationship involving integral boundary-layer quantities, like the

ones routinely used in integral boundary-layer (BL) solvers. In this

work, we will use the one proposed by Drela [33], which is given by

the following equation:

δBL � θk

�
A� B

Hk − 1

�
� Cδ�k (27)

A � 3.15; B � 1.72; C � 1.0 (28)

Here, δBL is an estimate for the boundary-layer thickness and δ�k , θk,
and Hk represent the kinematic displacement thickness, momentum

thickness, and shape parameter, respectively, which are defined as

δ�k �
Z

ye

0

�
1 −

u

ue

�
dy; θk �

Z
ye

0

�
1 −

u

ue

�
u

ue
dy;

Hk �
δ�k
θk

(29)

The form of Eq. (27) and the calibrated constants A,B,C are set to

give a good estimate for δBL for a very wide range of shear layer

profiles. All three terms contribute comparably in a typical laminar or

turbulent wall boundary layer. The B term dominates when Hk

approaches unity, as in wakes and strongly accelerated turbulent wall

boundary layers, whereas the C term dominates for massively

separated boundary layers where Hk ≫ 1.
The δ�k , θk integrals depend on u and ue, which denote the velocity

in the direction tangent to thewall and its asymptotic value at the edge

of the boundary layer, respectively. The integration variable is y,
which is the direction normal to thewall. Note that, becauseu quickly
asymptotes to ue, the upper limit of integration is truncated to a

distance ye of the order of the boundary-layer thickness. It is possible
to remove this ambiguity by using a velocity recovered through an

integration of vorticity [34,35], however, this requires a double

integration for δ�k and θk, which complicates the implementation

without adding capability. By using Eq. (27), we have transferred the

complexity of measuring the boundary-layer thickness into the

numerical approximation of a series of integrals across the boundary

layer. This requires us to provide a way to 1) extract the boundary-

layer profiles from the mesh and 2) define the state at the edge of the

boundary layer in an unambiguous way. Both of these conditions are

satisfied by the mesh structure that we propose next.

MORO ETAL. 1973

D
ow

nl
oa

de
d 

by
 M

IT
 L

IB
R

A
R

IE
S 

on
 A

ug
us

t 1
6,

 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.J

05
49

61
 



B. Boundary-Layer Mesh and External Mesh

We propose to solve the problem of computing δ�k and θk by
providing structure to the region near solid walls. More precisely, we
explicitly require a hybrid mesh composed of stacks of quadrilateral
elements extruded from the wall in the boundary-layer region and
triangles in the outer inviscid region. In this way, extracting the
boundary-layer profiles within each stack is a trivial task using the
appropriate data structures. Similarly, the “flow state” at the edge of
the boundary layer can be extracted from the elements at the top of the
stack. We will show later how this is not a problem if the mesh is
computed as part of the solution, even if the flow separates. In all the
results we present in this paper, the external mesh is unstructured and
composed of triangles, which allows the use of standard mesh
generation tools. The mesh is generated once and its connectivities
are kept fixed.
For illustration purposes, we include a sketch of possible

meshes in Fig. 1. In the case of a closed curve without angles (e.g.,
a cylinder or turbine blade), the boundary-layer mesh resembles an
O mesh. If the geometry has a trailing edge, the boundary-layer
mesh becomes a C mesh. In the case where the geometry is not
closed (e.g., flat plate), the boundary layer is a simple rectangular
structured mesh.
The use of a structured quadrilateral mesh on the boundary-layer

domain has advantages beyond the convenience of the associated
data structure. In particular, it appears that the combination of high-
order methods and quadrilateral meshes in the vicinity of the wall
delivers solutions of higher quality with less degrees of freedom and
less dependency on grid stretching [36,37]. However, the use of a
high-order discretization in space requires the use of a mesh that
represents the geometry with a high level of fidelity [38].
In this work, we represent the geometry using isoparametric

elements. The degrees of freedom of the mesh are the locations of the
mesh nodes that are continuous (e.g., conformal) across the element
interfaces. We denote by xbl the location of the boundary-layer mesh
node and by xext the location of the external mesh nodes. In what

follows, we present the equations that govern the evolution of the

boundary-layer mesh and the deformation of the external mesh.

C. Normal Scaling Equation

The first governing equation is associated with the so-called

normal scaling δ, which is an approximation of the thickness of the

boundary-layermesh. Ideally, δ should be a scalar field defined on the
wall that targets the value of δBL in Eq. (27). Here, we will use the

surface PDE developed by Allmaras [20] for an adaptive differential

boundary-layer code, given by

∂δ
∂t

� kδδBL − δ

τδ
� μδΔΓδ (30)

where ΔΓ represents the Laplace–Beltrami operator. This equation

contains a reaction term that drives δ toward kδδBL, a regularization
term in space by diffusion, and a time relaxation. Here, kδ > 1 is a

safety factor that ensures that the boundary-layer mesh is thicker than

the fluid boundary layer itself, τδ is a constant that controls the

response time of the mesh to changes in the flow, and μδ is a constant
that governs the smoothness of the solution along the surface. To

close the model, we need to define the constants kδ, μδ, and τδ. For all
the results in this work, we take kδ � 1.5 for laminar flows, kδ � 2
for turbulent flows, τδ � 2Δt, and μδ � 0.1Δx2∕τδ. Here, Δt
represents the time step and Δx represents an approximation of the

surface element length. This choice ensures that δh evolves fast

enough to track the growth of the boundary layer toward steady state.
The surface PDE Eq. (30) relates δ to the flow quantities through

the definition of the normal scaling indicator δBL. We discretize the

equation for δ using the surface finite element technique by Dziuk

and Elliott [39], with aminor modification to accommodate the high-

order representation of the boundary [40]. The details of the

discretization are as follows. Let Γh denote a conformal high-order

approximation to the solidwallmanifold. In it, each elementKΓ ∈ Γh

a) Mesh around a closed curve
without angles (O mesh)

c) Mesh around an open curve
(Rectangular mesh)

b) Mesh around a closed curve with
angles (C mesh)

Fig. 1 Sketch of the mesh topology for different kinds of geometries. For visualization purposes, the boundary-layer and external meshes are colored
differently.
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is defined through an isoparametric mapping (or chart) from a

reference domain in Euclidean space ξ ∈ Rn to the physical space

x�ξ� ∈ Rn�1. The union of these mappings defines an atlas of the

approximate manifold, which can, in principle, be nondifferentiable

at element boundaries. In the two-dimensional (2-D) cases treated in

this papers, this is equivalent to a piecewise polynomial

representation of the boundary of the domain. On it, we can define

the standard differential geometry tools, such as the covariant metric

tensor

�Gs�ij �
∂x
∂ξi

⋅
∂x
∂ξj

its contravariant counterpart �Gs�ij � �Gs�−1ij , and its determi-

nant gs � det��Gs�ij�.
Using this mesh as support, we construct the finite element space

for the solution Uh, consisting of piecewise linear functions on Γh:

Uh � fv ∈ C0�Γh�:vjKΓ ∈ P1�KΓ�; ∀KΓ ∈ Γhg (31)

In addition, we need to define the following inner products:

�u; v�KΓ �
Z
KΓ

uv dΩ; and hu; vi∂KΓ �
Z
∂KΓ

uv ds (32)

To derive the weak form of Eq. (30), we integrate by parts against

the test space Vh. Assuming that the test and trial spaces coincide,

Uh � Vh, the semidiscrete weak form for the evolution of δh in time

reads find δh ∈ Uh, such that

X
e

�
∂δh
∂t

; v

�
KΓ

−
X
e

�
kδδBL − δh

τδ
; v

�
KΓ

�
X
e

�μδ�Gs�ij∇iδh;∇jv�KΓ

−
X
e

hμδ�Gs�ij∇iδhni; vi∂KΓ � 0; ∀ v ∈ Vh (33)

Here, ni represents the covariant components of the normal to the

element boundary. Notice that Eq. (33) looks like a standard

discretization of a parabolic reaction–diffusion equation, except for

the term involving the integrals in the contours of the elements, which

is due to the nondifferentiability of the approximate manifold (see

Cantwell et al. [40]).

D. Adapting the Boundary-Layer Mesh

The geometry of the boundary-layer mesh is defined analytically

as a function of δh, with the help of the following three geometric

entities: the surface mesh Γh, the extrusion direction n̂ representing a

continuous vector field on Γh, and the stack distribution {hi} that sets
the relative thickness of the different layers in the boundary-layer

mesh. The direction in which the extrusion will happen n̂ is

decoupled from the thickness, which is measured by δh. That is, n̂ is a

continuous piecewise linear vector field on the surface triangulation:

n̂ ∈ �Uh�n�1 precomputed by averaging the normals of the

neighboring elements and setting kn̂k � 1 at the vertices.
The stack distribution {hi} is used to assign a fraction of thewhole

extrusion to each layer of the boundary-layer mesh, which controls

the growth rate of the elements away from the wall. Here, hi denotes
the relative thickness of element i � 1; 2; : : : ; nnorm in the stack,with

i � 1 being the closest to thewall and nnorm being the total number of

elements. We construct the stack using a geometric sequence of

constant ratio αh, normalized so that

X
i

hi � 1

Here, we set αh � 1.4 for laminar flows and αh � 1.6 for turbulent

flows, as recently proposed by Drosson et al. [36].

Next,we define the geometry of a given element i of the stack using
the formula

xbl�ξ; η� � xbl�ξ; 0�jKΓ �
 Xi−1

j�1

hj � ηhi

!
�δh�ξ�jKΓ �n̂�ξ�jKΓ (34)

where (ξ, η) represents the coordinate in the reference element

Kref ≡ �−1; 1� × �−1; 1�. The extrusion from the wall is given by the
second termon the right-hand side,which is the product of the normal

scaling and the extrusion direction (both of which only depend on the

coordinates at the surface) and the normalized distance away from the

wall, which is a function of the element count i across the stack and
the normal coordinate η. This procedure is sketched in Fig. 2.
The total extrusion, given by the term �δh�ξ�jKΓ �n̂�ξ�jKΓ , is the

product of a first-order scalar field and a first-order vector field,

hence, a polynomial of second degree in ξ. This implies that the

collocation of the geometry is exact, provided xbl�ξ; 0�jKΓ is a
polynomial of degree 2 or more. This requirement is automatically

satisfied for all the cases considered in this paper.
Once the boundary-layer mesh has been constructed, we can

approximate the mass and momentum defect using the formulas

δ�k ≈ δh × �n ⋅ n̂� ×
Xnnorm
i�1

hi

Z
η�1

η�0

�
1 −

u

ue

�
dη (35)

θk ≈ δh × �n ⋅ n̂� ×
Xnnorm
i�1

hi

Z
η�1

η�0

�
1 −

u

ue

�
u

ue
dη (36)

Here,n denotes the actual normal at the point in the surfacewhere the

integral is approximated and (n ⋅ n̂) takes into account a possible

mismatch with the extrusion direction. In addition, the velocity

profile u∕ue is computed by projecting the flow velocity along the

tangent to the wall as follows:

u

ue
� kv − �v ⋅ n�nk

kve − �ve ⋅ n�nk
(37)

where we assume that ve is constant across the boundary layer and
equal to the velocity at the edge of the boundary-layer domain.

E. Adapting the External Mesh

The external mesh has to conform to the evolution of the

boundary-layer geometry during the solution process. To achieve

this, we use the mesh deformation algorithm by Roca et al. [21] and

Gargallo-Peiro et al. [22]. This algorithm is based on an

optimization procedure that minimizes the distortion of the mesh
and penalizes inverted elements, hence reducing the risk of

producing invalid meshes.
Given a high-order mesh, we define the deformation mapping as

the functionϕ:x0 ↦ x that maps a reference/initial configuration to a

current deformed configuration. The algorithm proceeds by defining

a pointwise metric ζ � ζ�Dϕ� based on the gradient Dϕ, which is

Fig. 2 Reconstruction of the high-order geometry of an element in the
i-th layer of the stack.
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computed implicitly with the help of the isoparametric representation
of the reference and current configuration as follows:

ζ � kDϕk2Fr
2σ�

(38)

σ� � 1

2
�det�Dϕ� �

������������������������������������������������������������
det �Dϕ�2 � 10−2 det �Dφ0�2

q
� (39)

The metric is designed to be insensitive to rotation, translation, or
isotropic scaling of the elements, but deviates from ζ � 1 as the
element is deformed. The particular details of this can be found
in [22].
The distortion field can be collapsed into an elementwise indicator

to measure the deformation of the mesh. This is given by

ζe �
R
e0
�ζ − 1�2 dV0R

e0
dV0

(40)

and depends exclusively on the location of the high-order nodes of the
element at the current configuration xextfJ �e�g.
We can reduce the elementwise indicator ζe to a single scalar for the

whole mesh configuration by adding up the contributions over all the
elements. In this way, we can translate the problem of deforming the
mesh into that ofminimizing theoverallmeasureofdistortion, given by

min
xextj

X
e∈T h

ζe�xextfJ �e�g� (41)

subject to xextfJ boug � xblfJ boug�δh� (42)

Here, {J bou} is the subset of nodes that lie on the interface between the

externalmesh and the boundary-layermesh andxblfJ boug�δh� is given by
Eq. (34) evaluated at the nodes in{J bou}.Wenote thatxblfJ boug depends
explicitly on δh, which is the driver for the whole mesh deformation.
At optimality, the solution needs to satisfy the following

conditions:

∂
P

e∈T h
ζe

∂xextj

� 0; ∀ j ∈ fJ g \ fJ boug (43)

xextj � xblj �δh�; ∀ j ∈ fJ boug (44)

The solution of the optimization problem can be undertaken using
a variety of techniques. In particular, Gargallo-Peiro et al. propose to

use a local Gauss–Seidel method [22]. In our case, we work directly
with the optimality conditions and treat them as extra nonlinear
equations that are solved together with the flow equations. This
approach reduces the risk inherent to staggered iterations and fits well
within the Newton–Raphson scheme that we use to solve the
nonlinear system.

F. Coupling the Flow Equations to the Mesh Equations

The adaptive solver is composed of three sets of discrete nonlinear
equations that describe the flow solution as well as the associated
mesh: 1) the equations for δh that govern the evolution of the
boundary-layer thickness [Eq. (33)], 2) the equations for xext that
govern the mesh deformation for the external domain [Eqs. (43) and
(44)], and 3) the discretization of the fluid model in ALE form using
the HDG method (Sec. II.D). The coupling between these three sets
of equations is summarized in Fig. 3.
We are interested in steady-state solutions to this system that yield

the flowfield and the supporting adapted mesh at convergence. To
achieve this, we consider the time-dependent problem, which is
discretized using a backward Euler formula. The result is an algebraic
system of nonlinear equations at each time step that we solve using a
Newton–Raphson iteration. This requires the assembly of the
residual and the Jacobian at every iteration, which we compute using
Gaussian quadrature of order 4p (where p is the polynomial order of
approximation) and store using a sparse format. For all the results
presented in this paper, we use uniformly spaced nodes inside each
element and a high-order interpolation basis on them. The Newton–
Raphson update is combined with a backtracking line-search
algorithm and a check to verify that δh remains positive at every
iteration. We end the nonlinear solver when the norm of the update
vector or the residual is converged to machine precision.
This procedure is repeated until the solution reaches steady state.

We accelerate this process by doubling the time step Δt when the
Newton–Raphson scheme converges as fast (in terms of numbers of
iterations) as the previous time step, and halve it otherwise. In some
instances, the nonlinear solver may fail to converge or throw a
numerical exception. If that is the case, we do not update the solution
and divide Δt by 10 before attempting again. This process is carried
out until Δt is greater than 20 convective times, at which point a
steady-state nonlinear solve is performed.
We start the solver from uniform freestream conditions for the flow

and a constant value of the normal scaling:

δh∕L ≈ 5
1���������
ReL

p
������������
Δtu∞
L

r

which depends on Δt for the first time step. We set the latter to
Δtu∞∕L � 10−3 for laminar flows and Δtu∞∕L � 10−5 for

Fig. 3 Flow chart of the adaptive solver showing the interdependence of different modules (boxes) as well as the variables (arrows).
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turbulent flows. This particular choice of initialization makes δ�k and
θk zero at the first iteration, which causes an indefinite value of δBL.
To avoid this numerical issue, we force ∂δh∕∂t � 0 during the first

time step.

The use of a monolithic approach for the solution of the flowfield

and the mesh has advantages and disadvantages. On the one hand,

the fact that the mesh grows as the boundary layer is forming

alleviates some of the problems associatedwith underresolution and

reduces the number of nonlinear iterations required at each time step

comparedwith running the solver on a fixedmesh. This is especially

true for turbulent cases where the nonlinearities in the model ought

to be treated with enough mesh resolution. On the other hand, the

addition of mesh unknowns makes the problem slightly more

expensive in terms of global number of degrees of freedom
(equivalent to two extra unknowns per node on themesh in 2-D) and
fill of the Jacobian. The latter is closer to a continuous Galerkin
connectivity pattern due to the relationships between the nodes of
the mesh. The limited number of unknowns associated with the
boundary-layer indicator are negligible compared with the rest and
do not affect the connectivity pattern if treated appropriately.

IV. Results

In this section, we apply our boundary-layer adaptivity technique
to a variety of laminar and turbulent flows. In all test cases, we
compare our results to existing results reported in the literature.

0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

a) Horizontal velocity profiles at Re = 5 104

0 1 2 3 4

10 -3

0

0.005

0.01

0.015

b) Vertical velocity profiles at Re = 5 104

0 1 2 3
x 10

5

10−3

10−2

10−1

c) Friction coefficient
Fig. 4 Comparison of solutions obtained on a sequence ofmesheswith equivalent resolution against the Blasius analytical solution. By properly adapting
the boundary layer, results become insensitive to the polynomial order.

0 1 2 3
0

0.01

0.02

0.03

0.04

a) Normal scaling and thickness indicator b) Mesh
Fig. 5 Meshandnormal scalingat convergence for the case of the laminar flat plate.Notice how the normal scaling follows the thickness indicator and can
avoid the leading-edge singularity thanks to the diffusive terms in the governing PDE.
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A. Laminar Flow over a Flat Plate

For this problem, we can compare our results to an analytical
solution, hence its usefulness as a validation and verification case. In
particular, we are concerned with the laminar flow over a flat plate at
zero angle of attack,M∞ � 0.1, andReL � 105. The geometry of the
computational domain consists of a semicircle of radius r � 3 with
the flat plate embedded on the lower boundary.
We are interested in comparing the accuracy of the solution for

different approximation orders. For this comparison to be fair, we
need to ensure that the resolution (i.e., number of degrees of freedom)
is roughly the same independently of the order approximation. We
can satisfy this condition by generating a sequence of meshes in
which, at each step, the current mesh is uniformly refined and the
polynomial order is divided by two. We note that this refinement is
merely topological, because the r adaptivity is rerun at each time to
adapt to the boundary layer. The coarsest case is computed using
polynomials of order p � 4 with a total of 10 elements across the
boundary layer.

Fig. 6 Friction coefficient along the flat plate comparedwith experimental
data and empirical correlations, as well as grid converged results for the
CFL3D solver.

a) Rex = 1.9071 × 105 b) Rex = 1.0643 × 106

c) Rex = 2.7034 × 106 d) Rex = 4.9981 × 106

e) Rex = 7.6206 × 106 f) Rex = 1.0274 × 107

Fig. 7 Horizontal velocity profiles measured in wall units (y� vs u�) at different stations along the flat plate. Agreement with experiments is excellent
except for the case closest to the leading edge.
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We summarized the results obtained on this sequence of meshes in

Fig. 4, which include the Blasius solution. The numerical results for

the flowfield (i.e., velocity profiles and cf) lie on top of the reference
solution for any approximation order, with the exception of the

normal velocity for p � 1, which presents jumps across element

boundaries.

As a byproduct, this procedure returns amesh that is adapted to the

boundary layer along the wall. This is plotted in Fig. 5 for the case of

p � 4.We observe how the normal scaling δ approximately follows a

square root law, as is expected from the Blasius theory.

B. Turbulent Flow over a Flat Plate

Next, we test our method in the turbulent regime by applying it to

the same geometry, atM∞ � 0.2 andReL � 5 ⋅ 106. In this case, the
goal is to compare the solutions obtained with different orders of

approximation to experimental results. We use a sequence of meshes
given by �p; nnorm� � f�2; 20�; �3; 13�; �4; 10�g, which ensures
approximately 40 degrees of freedom across the boundary layer. This
is twice as much resolution as in the laminar case and responds to the
need to capture the complexity of the turbulent velocity profiles,
especially close to the wall.
The skin friction coefficient computed in these runs is plotted in

Fig. 6 together with experimental results [41] and the Schultz-
Grunow correlation. For comparison purposes, we also include the
grid-converged results obtained with the CFL3D solver, which are
available for download at NASA’s Turbulence Modeling Resource
database [42]. The agreement among the numerical solutions is
excellent and very close to the experimental data, except around the
leading edge. This seems to be an effect of the turbulence model
rather than the numerics as other results on the Turbulence
Modeling Resource database indicate.
A similar plot is drawn in Fig. 7 for the velocity profiles at

different stations along the flat plate, compared with the
experimental results by Wieghart [41]. These plots show a very
strong agreement between the different runs and also with the
experimental data, except for the first station atRex � 1.9071 × 105

(Fig. 7a). The discrepancies found there are also present in other
validation studies (e.g., the NPARC alliance database [43]) and can
be partly attributed to the errors in cf around the aforementioned
leading edge.
One of the advantages of adapting to the boundary-layer thickness

is the possibility to control the location of the first degree of freedom
off the wall. This quantity of interest, denoted by y�1 in wall units,
dictates the resolution in the viscous sublayer of the turbulent
boundary layer and hence the accuracy of the computed friction
coefficient. In the proposed r-apativity scheme, the value of y�1 is
partially controlled by δ, hence it is interesting to verify that this is
effectively the case. Notice that, in general, these two quantities do
not necessarily grow at the same rate, which can be problematic for
higher Reynolds numbers in the presence of pressure gradients. The
plots in Fig. 8 show that adapting to the boundary-layer thickness is
enough to keep y�1 under control, at least for the case of a zero
pressure gradient flow. Furthermore, the fact that all results virtually
coincide seems to indicate that a high-order discretization is not as
sensitive to the value of y�1 , as previously suggested by other studies
[36].Nevertheless, ensuring y�1 ≈ 1 is considered a best practice, thus
further development is required if this methodology is to be adopted
in other solvers.

C. Turbulent Flow Around a NACA 0012 Airfoil

In this section, we show results obtained with the adaptive solver
for the case of the turbulent flow around a NACA 0012 airfoil.
The parameters for this case areM∞ � 0.15 andRec � 6 ⋅ 106. This
configuration was chosen due to the availability of experimental and
numerical data [42] for a variety of angles of attack in the
range α ∈ �0; 15� deg.
In the following, we compare runs at different angles of attack

using the same polynomial order p � 4 and the same topological
mesh composed of nsurf × nnorm � 49 × 10 elements in the
boundary-layer domain. Figure 9 contains the flowfield and mesh
returned by the solver for the case of α � 15 deg. We proceed to
validate the solver by comparing the pressure and friction coefficients
at three angles of attack (α � f0; 10; 15g deg) to experimental data
(available only for cp), as well as grid-converged results computed
with CFL3D and Xfoil [44]. These are summarized in Fig. 10 and
showan excellent agreement between the numerical solutions and the
experiments.
A similar behavior is found for the integrated forces, such as lift or

drag, as depicted in Fig. 11. Here, the r-apativity solver is run at
intervals of 1 deg (α � 0; 1; 2; : : : ; deg) and an compared against
experimental data [42], the results from CFL3D [42] for
α � f0; 10; 15g deg, and a polar computed with Xfoil.
According to Rumsey [42], the CFL3D simulations were run

using a structuredCmesh of 897 × 257 nodes (≈230;000 vertices). In
comparison, themesh used in the r-apativity solver was composed of

Fig. 8 Evolution of y�1 along the flat plate. Results indicate that the
stretched grid in the normal direction and the adaptivity in the boundary-
layer thickness are enough to control the growth of y�1 .

a) Mach number

b) Eddy viscosity

c) Mesh

Fig. 9 Flowfield andmesh returnedby the adaptive solver for the case of
a NACA 0012 atM∞ � 0.15, Rec � 6 ⋅ 106, and α � 15 deg. The mesh
adapts successfully to the thickness of the boundary layer.
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38,500 high-order nodes. This represents significant savings in
computational cost and serves to justify the use of a high-order
approximation combined with r adaptivity.

The effect of r adaptivity is clearly visible on the meshes obtained
as part of the solution (see Fig. 9c), but can be quantified by
comparing δ and y�1 side-by-side as plotted in Fig. 12. First, we

a) cp at α = 0 deg

c) cp at α = 10 deg

e) cp at α = 15 deg

b) cf  at α = 0 deg

d) cf  at α = 10 deg

f) cf  at α = 15 deg

Fig. 10 Comparison of pressure and friction coefficients computed using the r-apativity solver vs experimental data [42], CFL3D, andXfoil. Agreement
with experiments is excellent for all angles of attack.

a) Lift versus angle of attack b) Lift versus drag

Fig. 11 Plots of lift anddrag over aNACA0012 atM∞ � 0.15 andRec � 6 ⋅ 106 for a range of angles of attack, compared against experimental data [42],
CFL3D, and Xfoil.
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observe that the r-apativity scheme produces meshes, in which the

thickness of the boundary-layer domain grows up to three orders of

magnitude from the stagnation point (where it is minimal) to the

trailing edge. This adaptivity happens automatically as part of the

solution process and is oblivious to the existence of a stagnation point

in the flow. Second, we note that this aggressive growth in the normal

scaling δ is enough to maintain y�1 � O�1� along the surface.

All in all, these results for the airfoil showcase the generality and

efficiency of this scheme and serve as validation for low Mach

number flows. Furthermore, the mesh generation is totally

independent of the parameters of the problem such as Reynolds

number,Mach number, or angle of attack, which allow us to reuse the

mesh topology between runs.

D. Viscous High-Speed Flow over a Cylinder

The previous test cases have served to showcase the benefits of r
adaptivity for low Mach number flows, both in the laminar and

turbulent regimes.We now extend our study to laminar compressible

flows with the help of the shock-capturing model introduced in

Sec. II.C.

We consider the simulation of the flow around the bow of a

cylinder in a supersonic stream atM∞ � 5 with a Reynolds number

of ReR � 4 ⋅ 104. In this configuration, the flow exhibits a detached

shock wave and a thin boundary layer. Although the r-apativity
scheme can take care of the boundary layer, it is not designed to adapt

around the shock. For this, we propose to use the bidimensional

anisotropic mesh generator (BAMG) a posteriori anisotropic

adaptivity framework [45] in an outer loop,with the r-apativity solver
inside it. The mesh returned by the process is adapted to both the

boundary layer and the shock wave, as shown in Fig. 13.

A sample of the flow solution obtained after five iterations of

anisotropic refinement is contained in Fig. 14. For all these runs,

p � 3 and nnorm � 7. As we expected, the use of adaptivity on the

external domain yields sharper shocks and also removes the

oscillations in the flow behind the shock, which are a direct cause for

inaccuracies in the boundary layer. This is clearly visible in Fig. 15

where the pressure coefficient is compared with the friction

a) Normal scaling b) Distance of first node off the wall
Fig. 12 Chordwise evolutionof the normal scalingδ anddistance to the first degree of freedomoff thewall (y�1 ) formeshes returnedby the adaptive solver
around a NACA 0012 airfoil atM∞ � 0.15, Rec � 6 ⋅ 106, and three different angles of attack.

a) Initial mesh

b) After 5 iterations of anisotropic refinement on the external mesh

Fig. 13 Meshes used to compute high-speed flow around a cylinder. The
combination of anisotropic refinement and r adaptivity yields meshes
that are adapted to the boundary layer and shock wave using different
mechanisms.

a) Mach number

b) Pressure

c) Density

d) Shock indicator
Fig. 14 Sample of the flowfield around a cylinder at M∞ � 5 and
ReR � 4 ⋅ 104. Results shown here correspond to five iterations of
anisotropic refinement.
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coefficient as the refinement evolves. We note that the viscous

quantities (e.g., cf) benefit from the refinementmore than the inviscid

quantities (e.g., cp), which can be accurately computed on a coarser

discretization.
Therefore, we conclude that the success of the r-apativity

methodology in the case of high Mach number flows is constrained

by the shock-capturing capabilities of the scheme, in addition to the

proper adaptation mechanisms around the shock waves.

E. Shock Wave/Boundary-Layer Interaction

The last test case deals with a strong shock wave/boundary-layer

interaction that happens when a shock hits the boundary layer and

causes separation. When this happens, the shock does not reflect off

the wall as it would in the inviscid case (or if the boundary layer does

not separate), but rather turns into an expansion fan at the same time

that other flow features develop. Our goal is to assess the behavior of

the r adaptivity approach when the boundary layer separates.
For this, we will use the test case by Degrez et al. [46], whose

geometry is composed of a flat plate and a shock generator inside a

stream at M∞ � 2.15 and ReL � 105. In our computations, we

choose to round the leading edge of the flat plate to the dimensions

measured by Degrez et al. [46] to avoid the singularity. The

simulations use polynomials of order p � 3 and nnorm � 7 elements

across the boundary layer.
The solver is run iteratively with BAMG in the outer loop and r

adaptivity between iterations. This yieldsmeshes like the ones shown

in Fig. 16. A rendering of the flowfield obtained at the highest level of

refinement is included in Fig. 17, along with plots of the boundary-

layer profiles at different stations over the flat plate in Fig. 18. We

notice how these show the presence of a laminar separation bubble,

which is well handled by the r adaptivity.
The importance of adaptivity can be assessed by looking at the

evolution of the stresses at the wall with each iteration of BAMG, as

plotted in Fig. 19. In principle, these seem insensitive to the

refinement of the external mesh except at the region immediately

adjacent to the pointwhere the shock hits thewall (see right columnof

Fig. 19). This behavior is expected of a shock-induced separation

bubble.
In qualitative terms, the computed results compare well with the

experimental curve by Degrez et al. [46] for the pressure coefficient,

but strongly disagree with the numerical simulations presented in the

same paper. This was blamed on experimental errors, however, we

believe they might also be attributed to the numerics of the scheme

used to simulate the experiment.
All in all, this case has served to verify that r adaptivity alsoworks

in the case of moderately separated flows, this being a flow regime

present in many problems of interest in aerodynamics. In addition,

this serves to prove that the method can deal with shock/boundary-

layer interactions in a robust way.

−100 −50 0 50 100
−0.5

0

0.5

1

1.5

2

a) Pressure coefficient

−100 −50 0 50 100
−5

0

5

10

15 x 10
−3

b) Friction coefficient
Fig. 15 Evolution of the pressure and friction coefficient around the cylinder with the adaptation cycle. Results highlight the importance of shock
capturing and adaptivity in obtaining clean friction coefficients (1st ref., 1st mesh refinement).

a) Initial mesh

b) Final mesh after 9 iterations of anisotropic refinemen
     on the external mesh
Fig. 16 Evolution of themesh around the separationbubble in the shock
wave/boundary-layer interaction case.

a) Mach number

b) Pressure

Fig. 17 Mach number and pressure field around the flat plate.
Separation and reattachment of the boundary layer due to the shock is
visible as compression waves in the pressure field.
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V. Conclusions

A novel methodology has been presented to simulate viscous

compressible flows based on a combination of adaptivity and a high-

order discretization. The unique feature of this r-apativity method is

the way in which the position of the nodes of the mesh is solved

together with the flowfield. In this way, the mesh can be adapted to

follow the boundary layer, which results in improved solution quality

and robustness. The only requirement to apply this methodology is

the availability of a structured mesh close to solid walls, which is a

common practice in several commercial and research solvers. This

allows one to extract boundary-layer profiles and determine the

thickness of the viscous layer that drives the mesh deformation

algorithm. This novel way of treating the mesh as part of the solution

enables the accurate simulation of separation bubbles as well as high

Reynolds number flows on highly anisotropic meshes.
Results have been produced for a variety of 2-D flows to evaluate

the performance of the scheme in terms of accuracy per degree of
freedom or grid control close to the wall. The results indicate that the
use of r adaptivity can produce grid convergence independently of
the order of approximation, with a moderate amount of degrees of
freedom across the boundary layer. Also, the results compare
favorably to general anisotropic strategies in the case of high Mach
number flows, and without loss of generality, can be combined with
them to produce meshes that are adapted to the boundary layer, as
well as other features like shock waves.
It is believed that the method could be extended in a variety of ways,

for example, by including more than one boundary-layer mesh in the

a) Hodograph of the velocity

b) Density profiles

Fig. 18 Velocity and density profiles around the laminar separation bubble extracted from the boundary-layer domain. The dashed line denotes the edge
of the boundary-layer domain.

0 0.5 1 1.5
−2

0

2

4

6

8 x 10
−3

a) Friction coefficient

0.7 0.75 0.8 0.85
−10

−8

−6

−4

−2 x 10
−4

b) Detail of the friction coefficient

0 0.5 1 1.5
0

0.05

0.1

0.15

0.2

c) Pressure coefficient

0.7 0.75 0.8 0.85

0.08

0.09

0.1

0.11

0.12

d) Detail of the pressure coefficient

Fig. 19 Evolution of stresses at the wall with the externalmesh adaptation cycle. The effect of sharper shock profiles can only be seen in the vicinity of the
region where the shock impinges (right column).
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domain (e.g., multi-element airfoils). The treatment of thin gaps in that
case would require the extension of the mesh deformation algorithm to
include the boundary-layer domain and the addition of a penalty term to
drive the edgeof theboundary layer,whilepreventingelement inversion.
In addition, the equations that govern the boundary-layer thickness
should be extended to include explicit control over the viscous scale y�1 .
This would effectively treat the two relevant scales of the problem
independently and prevent underresolution in more general cases.
Similarly, an additional indicator couldbe introduced to approximate the
thickness of the thermal boundary layer, which can bemisgauged by the
current definition of δBL in cases where the heat transfer dominates
(Pr < 1). The extension of thismethodology to three-dimensional flows
would only require a reassessment of the thickness indicator when
crossflow is present. Together with the application to three-dimensional
flows, the singlemost important extensionwouldbe to include transition
to turbulence, either in the form of a classical stability analysis for which
the boundary-layer profiles are readily available or a combination with
large-eddy simulation, which could yield significant savings in terms of
computational cost.
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