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Abstract

We present a general approach for devising high-order accurate finite element
methods for the Maxwell’s equations based on two different Hamiltonian struc-
tures of the Maxwell’s equations, namely, the standard formulation of the equa-
tions in terms of the electric and magnetic fields, and a wave-like rewriting of the
standard formulation in terms of the electric and the magnetic potential fields.
For each of these Hamiltonian structures, we introduce spatial discretizations of
the Maxwell’s equations using mixed finite element, discontinuous Galerkin, and
hybridizable discontinuous Galerkin methods to obtain a semi-discrete system of
equations which inherit the Hamiltonian structure of the Maxwell’s equations.
We discretize the resulting semi-discrete system in time by using a symplec-
tic integrator to ensure the conservation properties of the fully discrete system
of equations. We show that the methods provide time-invariant, non-drifting
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approximations of the total electric, magnetic charges, and the total energy.
There is a Symplectic DG method for the first formulation [J. Sci. Comput.
35, pp. 241–265, 2008] but all other methods are new. We show that there are
no Symplectic HDG methods for the first formulation. In contrast, we devise
Symplectic Hamiltonian mixed, DG, and HDG methods for the second formu-
lation. For the Symplectic HDG method, we present numerical experiments
which confirm its optimal orders of convergence for all variables and its con-
servation properties for the total linear and angular momenta, the electric and
magnetic charges, as well as the total energy. Finally, we discuss the extension
of our results to other boundary conditions and to numerical schemes defined
by different weak formulations.

Keywords: time-dependent Maxwell’s equations, symplectic Hamiltonian
finite element methods, mixed methods, discontinuous Gakerkin methods,
hybridizable discontinuous Galerkin methods.
2010 MSC: 65M60, 74H15, 74J05, 74S05

1. Introduction

This paper is part of a series [56, 57] devoted to the development of what
can be called the Symplectic Hamiltonian (SH) finite element methods. These
methods are developed for time-dependent partial differential equations (PDEs)
with Hamiltonian structure. To obtain the methods, we first discretize the5

governing equations in space by using a finite element method which is devised
to produce a system of ordinary differential equations (ODEs) with Hamiltonian
structure. Then, we apply a symplectic, time-marching scheme to the system
of ODEs in order to ensure that the discrete Hamiltonian (the discrete energy)
is either perfectly conserved or does not drift in time. Arbitrary high-order10

accuracy in both time and space can be achieved by these methods.
Several symplectic Hamiltonian finite element methods were introduced in

[56] for the acoustic wave equation, and in [57] for the equations of linear
elastodynamics. In particular, we devised the first hybridizable discontinuous
Galerkin (HDG) methods for the acoustic wave equation to display a constant15

or non-drifting discrete energy [56]. In [57], we obtained the first HDG meth-
ods for linear elastodynamics that conserve both the global linear and angular
momentum and display a constant or non-drifting discrete energy.

In this paper, we continue this effort and develop SH finite element methods
for the Maxwell’s equations in a polyhedral domain Ω:

ε 9E “ ∇ˆH ´ J in Ωˆ p0, T s, (1a)

µ 9H “ ´∇ˆE in Ωˆ p0, T s, (1b)

∇ ¨ pεEq “ ρ in Ωˆ p0, T s, (1c)

∇ ¨ pµHq “ 0 in Ωˆ p0, T s, (1d)
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with the following boundary and initial conditions:

nˆE “ gE on Γˆ p0, T s, Γ :“ BΩ, (1e)

E “ E0, H “H0 on Ωˆ tt “ 0u. (1f)

Here, E and H are the electric and magnetic fields, respectively; ρ and J repre-
sent the scalar charge density function and the vector current density function,20

respectively; and ε and µ, the electric permitivitty and magnetic permeability,
respectively, which we assume are positive functions independent of time. The
speed of light is c :“ 1{

?
εµ. Other electromagnetic quantities of interest are

described in Table 1.

Table 1: Glosary of electromagnetic quantities.

name symbol definition

energy E 1
2 pεE ¨E ` µH ¨Hq

energy flux, Poynting vector S E ˆH
linear momentum P εE ˆ µH

Lorentz force F ρE ` J ˆ µH
angular momentum L xˆ P

Maxwell’s stress σ ´E I ` εE bE ` µH bH

quantities associated to the Lipkin’s zilch tensor

optical chirality [62] χ 1
2 pεE ¨∇ˆE ` µH ¨∇ˆHq

optical chirality flux X 1
2 pE ˆ p∇ˆHq ` p∇ˆEq ˆHq

flux of the X χ I ´ 1
2 p

1
µ E b p∇ˆEq `

1
εH b p∇ˆHq

optical chirality flux ` p∇ˆEq b 1
µ E ` p∇ˆHq b

1
εHq

The SH finite element methods devised herein are of arbitrary order of ac-25

curacy and are able to approximate well the integral over Ω of each of the
quantities in the rich set of conservation laws of the Maxwell’s equations listed
on Table 2. As we can see in Table 2, there are conservation laws for the linear
functional of total magnetic charge and of total electric charge, as well as for
the quadratic functional of the total electromagnetic energy, the total linear30

and angular electromagnetic momenta, the total optical chirality3, its flux and
of the flux of its flux. The conservation laws for these optical chirality quantities
are related to the conservation laws found by Lipkin back in 64 [38]; see also
how optical chirality quantities are related to Lipkin’s rank-three zilch tensor,
[9, equation(8.1)]. We prove that discrete version of the magnetic and electric35

charges, and of the energy remain exactly constant or do not drift in time. To
the best knowledge of the authors, none of these properties holds for any DG

3Not to be confused with the electromagnetic helicity which was defined back in 83 [1] as
c2 times the optical chirality χ. For a modern definition of the electromagnetic helicity, see
[9] and the references therein.
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Table 2: Conservation law for the (scalar or vectorial) electromagnetic quantity η, 9η`∇ ¨fη “
Sη , deduced from the first two Maxwell’s equations. The flux of η is denoted by fη , and the
corresponding sources and sinks, by Sη .

conservation of η fη Sη

magnetic charge ∇ ¨ pµHq 0 0
electric charge ∇ ¨ pεEq J 0

energy E S ´E ¨ J
linear momentum P ´σ ´F ` 1

2 pE ¨E∇ε`H ¨H∇µq
angular momentum L ´xˆ σ xˆ SP

for ρ “ 0,J “ 0 and homogeneous media

optical chirality χ X 0
optical chirality flux X X 0

flux of the ij-th entry Xij c2 δijX 0

of the ` c2

2 p´Ei∇Hj `Hj∇Ei
optical chirality flux ´Ej∇Hi `Hi∇Ejq

[24, 47, 30, 20, 29, 13] or HDG [15] method for the time-dependent Maxwell’s
equations in three space dimensions. Moreover, our numerical results show that
the conservation laws for the linear and angular momenta are extremely well40

approximated.
The schemes developed here are certainly not the first to be able to maintain

a constant discrete total electromagnetic energy. Examples of energy-conserving
numerical schemes are the popular finite-difference Yee’s scheme, obtained back
in the mid 60’s [64], and the splitting finite-difference schemes proposed in45

[14]. However, the SH finite element methods maintain a discrete version of
the Hamiltonian structure of the original partial differential equations, which
can be exploited to systematically study the approximation of the functionals
displayed on Table 2.

The use of symplectic time-marching methods for integrating Hamiltonian50

ordinary differential equations has a long history [41, 7]. For Maxwell’s equa-
tions, SH schemes using finite-difference or finite-volume for the space discretiza-
tion have been developed, for example, in [32, 61]. However, the schemes pre-
sented here are the first SH methods to use mixed, DG or HDG methods for
the Maxwell’s equations.55

In the recent work [26], where new DG discretizations to linear, symmetric
hyperbolic systems (like the Maxwell’s equations) are introduced which con-
serve exactly the energy. These methods rely on high-order accurate energy-
conserving time-marching methods whereas our methods rely on symplectic
methods. Also, the methods in [26] have to use twice as many variables as60

our methods. On the other hand, our methods can only be applied to equations
with Hamiltonian structure, whereas the methods in [26] can be applied to any
linear, symmetric hyperbolic system.
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The SH finite element schemes are devised in two ways. Each way is asso-
ciated with a different Hamiltonian structure of the Maxwell’s equations. The65

first is associated with the original form of the equations (1), which we call
the E-H formulation. It is well known that the standard DG methods for this
formulation [21, 24, 22, 30, 47, 20, 29, 13] do not make use of the Hamilto-
nian structure of the equations. Instead, they use the fact that the equations
constitute a symmetric, hyperbolic system. This results, in a natural way, in70

dissipative methods which do not conserve the total energy. In this paper,
we show how to take advantage of the Hamiltonian structure of the original
Maxwell’s equations to obtain SH finite element methods. We show that such
methods can be obtained when a mixed method is used, or when a DG method
using alternating fluxes, as show in [63] for the 2D Maxwell’s equations and75

other Hamiltonians systems. However, it is not possible to obtain Symplectic
HDG methods for this formulation. This motivates the second way of devising
SH finite element schemes.

The second is associated to a rewriting of the E-H formulation, which we
call the E-A formulation, namely,

9A “´E in Ωˆ p0, T s, (2a)

ε 9E “ ∇ˆ p 1

µ
∇ˆAq ´ J in Ωˆ p0, T s, (2b)

∇ ¨ pεEq “ ρ in Ωˆ p0, T s, (2c)

completed with the following boundary and initial conditions:

nˆA “ gA on Γˆ p0, T s, (2d)

E “ E0, A “ A0 on Ωˆ tt “ 0u. (2e)

where A is a magnetic potential, that is, µH “ ∇ ˆA, and gAptq :“ ´
şt

0
gE .

The above system has a different Hamiltonian structure which is associated to
a wave equation for A, namely,

ε :A`∇ˆ p 1

µ
∇ˆAq “ J .

We shall devise a new class of mixed, DG and HDG methods to provide time-
invariant non-drifting approximations of the E-A formulation.80

The remaining of the paper is organized as follows. In Section 2, we discuss
in detail the two Hamiltonian structures of the Maxwell’s equations. In Section
3, we present the spatial discretization methods and in Section 4, we prove that
they result in a set of ODEs with Hamiltonian structure. We then prove the
corresponding conservation laws. In Section 5, for an HDG method for the85

E´A formulation, we present the corresponding fully discrete SH methods. In
Section 6, we explore its convergence and conservation properties. Finally, in
Section 7, we discuss the treatment of other boundary conditions, and how to
devise methods for different weak formulations.
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2. The Hamiltonian structure of Maxwell’s equations90

In this Section, we show that the Maxwell’s equations (1) and (2) are Hamil-
tonian. A dynamical system is Hamiltonian if it can be written as

9F “ tF, Hu,

where F are the coordinate functionals, which can be identified to the space
of test functions D, H is the Hamiltonian functional both defined on the phase
affine space M, and t¨, ¨u denotes the Poisson bracket [41]. We recall that
the Poisson bracket is a bilinear anti-symmetric form which satisfies the Ja-
cobi identity. We then say that pM, t¨, ¨u,Hq defines a Hamiltonian dynamical95

system.

2.1. Notation

We begin by introducing some basic notation. The standard spaces of vector-
valued functions we are going to work with are

L2pDq :“tv : D ÝÑ R3 : }v}L2pDq ă 8u,

Hpcurl,Dq :“tv P L2pDq : ∇ˆ v P L2pDqu.

For any vector-valued function v defined in the domain Ω, we denote its trace
on Γ by v|Γ. We denote the exterior trace of v on Γ by vext. The exterior trace
is defined independently of the regularity of the function v inside Ω. Moreover,100

even v|Γ is well defined, it does not have to coincide with the exterior trace vext.
Finally, for any given space Sp˝q of functions defined in the interior of Ω

where “˝” represents, for example, “Ω” or “curl,Ω”, we set

S tracep˝; gq :“ ts P Sp˝q : nˆ strace “ g on Γu,

where “trace” indicates if the trace is the standard trace or the exterior trace.
In the first case, we drop the superscript and in the second case, we write
“ext”. We use the notion of exterior trace in order to properly establish the
Hamiltonian structure of the Maxwell’s equations. In particular, the exterior105

trace allows us to easily incorporate the boundary condition on the electric field
into the smooth manifold M.

2.2. Electric and magnetic field formulation.

We assume that ε, µ, ρ, J and gE are independent of time. We also assume
that the current J is solenoidal. Thus, we can write that

J “ ∇ˆ Jˆ.

The components of the Hamiltonian structure are:

(i) The phase manifold and the space of test functions:

M “ L2,extpΩ; gEq ˆHpcurl,Ωq, (3a)

D “ C8,extpΩ; 0q ˆ C8pΩq. (3b)
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(ii) The Poisson bracket is

tF,GuE “

ż

Ω

ˆ

1

ε

δF

δE
¨ ∇ˆ

ˆ

1

µ

δG

δH

˙

´

ˆ

1

ε

δG

δE

˙

¨∇ˆ
ˆ

1

µ

δF

δH

˙˙

(3c)

`

ż

Γ

ˆ

nˆ

ˆ

1

ε

δF

δE

˙ext

¨

ˆ

1

µ

δG

δH

˙

´ nˆ

ˆ

1

ε

δG

δE

˙ext

¨

ˆ

1

µ

δF

δH

˙˙

.

Here F “ F pE,Hq and G “ GpE,Hq are functionals on M and the
operators δ

δE ,
δ
δH are the functional derivatives, that is,

ż

Ω

δF

δE
¨ φ “

d

dε
F pE ` εφ,Hq,

ż

Ω

δF

δH
¨ψ “

d

dε
F pE,H ` εψq.

(iii) The Hamiltonian (the total electromagnetic energy):

HEpE,Hq “
1

2

ż

Ω

pεE ¨E ` µH ¨Hq ´

ż

Ω

Jˆ ¨ µH. (3d)

(iv) The coordinate functionals

FEpφq “

ż

Ω

εE ¨ φ, FHpψq “

ż

Ω

µH ¨ψ @pφ,ψq P D. (3e)

It can be shown that the weak solution of the E-A formulation (2) defines110

a Hamiltonian dynamical system for pM, t¨, ¨uw,Hwq.

2.3. Electric field and magnetic vector potential formulation.

Since µH “ ∇ ˆA, we consider H as a function of A and define it as the
element of Hpcurl,Ωq such that

ż

Ω

µH ¨ψ “

ż

Ω

A ¨ ∇ˆψ `
ż

Γ

gA ¨ψ @ ψ P Hpcurl,Ωq.

The components of the Hamiltonian structure are:

(i) The phase manifold and the space of test functions are

M “ L2pΩq ˆL2,extpΩ; gAq, (4a)

D “ C8pΩq ˆ C8,extpΩ; 0q, (4b)

(ii) The Poisson bracket

tF,Guw “

ż

Ω

1

ε

ˆ

δG

δA
¨
δF

δE
´
δF

δA
¨
δG

δE

˙

, (4c)

where F “ F pE,Aq and G “ GpE,Aq are functionals on M and the
operators δ

δE ,
δ
δA are the functional derivatives.115
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(iii) The Hamiltonian

HwpE,Aq “
1

2

ż

Ω

`

εE ¨E ` µH ¨H
˘

´

ż

Ω

A ¨ J . (4d)

(iv) The coordinate functionals

FEpφq “

ż

Ω

εE ¨ φ, FApϕq “

ż

Ω

εA ¨ϕ pφ, ψq P D. (4e)

It can be shown that if pM, t¨, ¨uE ,HEq defines a Hamiltonian dynamical
system, then it yields the weak solution of the E-A formulation (2).

2.4. Conservation laws

The Hamiltonian systems described earlier satisfy all the conservation laws
displayed in Table 2. For instance, let us prove the conservation of electric
charge, 9ρ`∇¨J “ 0, for the wave-like Hamiltonian system ppM, T q, t¨, ¨uw,Hwq.
Taking C :“ ´

ş

Ω
εE ¨∇φ, where φ P C80 pΩq, we obtain

ż

Ω

9ρ φ “ ´

ż

Ω

ε 9E ¨∇φ “ 9C “ tC,Hwuw “

ż

Ω

J ¨∇φ “ ´
ż

Ω

∇ ¨ Jφ,

which proves the conservation of the electric charge. The rest of the conservation120

laws in Table 2 can be obtained similarly by choosing different functionals C;
see Table 3.

Table 3: Conservation laws and their corresponding functional and Poisson bracket. The test
functions φ P C80 pΩq and ψ P C80 pΩ;R3q.

conservation laws functional C Poisson bracket tC,HEuE

magnetic charge ´
ş

Ω
µH ¨∇φ 0

electric charge ´
ş

Ω
εE ¨∇φ ´

ş

Ω
∇ ¨ Jφ

energy
ş

Ω
Eφ ´

ş

Ω
p∇ ¨ S `E ¨ Jqφ

linear momentum
ş

Ω
P ¨ψ

ş

Ω
p∇ ¨ σ ´ F ` 1

2 p|E|
2∇ε` |H|2∇µqq ¨ψ

angular momentum
ş

Ω
L ¨ψ

ş

Ω
p∇ ¨ pxˆ σq ` xˆ SP q ¨ψ

for ρ “ 0, J “ 0 and homogeneous media

optical chirality
ş

Ω
χφ ´

ş

Ω
∇ ¨Xφ

optical chirality flux
ş

Ω
X ¨ψ ´

ş

Ω
p∇ ¨Xq ¨ψ

flux of the ij-th entry
ş

Ω
Xijφ

´
ş

Ω
∇ ¨

`

c2δijX

of the ` c2

2 p´Ei∇Hj `Hj∇Ei
optical chirality flux ´Ej∇Hi `Hi∇Ejq

˘

φ
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3. The finite element methods for space discretization

In this section we present the mixed, DG and HDG methods for the spatial
discretization of the E-H and E-A formulations of Maxwell’s equations.125

3.1. Notation

Let Th “ tKu be a family of conforming, regular triangulations of Ω. Let hK
be the inner diameter of an element K in Th and we define by h the maximum
over the elements. We define the following sets:

BTh: the set of BK for all elements K of the triangulation Th,130

Fh: the set of all the faces of the triangulation Th,

F0
h: the set of the interior faces of the triangulation Th,

FBh : the set of faces lying on the boundary Γ,

BK: the set of all the faces of the element K

135

Similar definitions for the inner products in pd ´ 1q-dimensional domains
with codimension 1 are considered. For a vector-valued function w, we define
its tangential and normal component, wt and wn, respectively, over F P Fh
with normal vector n by

wt “ pnˆwq ˆ n, wn “ npn ¨wq.

For D Ă Rd and B Ă Rd´1, we denote by p¨, ¨qD and x¨, ¨yB the inner products
for w,v as

pw,vqD “

ż

D

w ¨ v, xw,vyD “

ż

D

w ¨ v.

Then, we define the inner products over the triangulation Th and the sets of
boundary and faces of Th

pw,vqTh
“

ÿ

KPTh

pw,vqK xw,vyBTh
“

ÿ

KPTh

xw,vyBK , xw,vyG “
ÿ

FPG
xw,vyF ,

where G denotes a collection of faces, for instance G “ BK,Fh,F0
h,FBh .

For an interior face F P F0
h, we have two elements K´ and K` such that

F “ BK` X BK´, and denoting the trace of a vector valued function w to the
boundary of K˘ by w˘. Then, we define the average and jump on F P F0

h of
w by

ttwuu :“
1

2
pw` `w´q, JwK :“ n` ˆw` ` n´ ˆw´ for F P F0

h.

We extend the definition of the jumps to F P FBh , by JwK :“ n ˆ pw ´wextq,
where wext is the exterior trace.
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140

The finite dimensional spaces we are going to use are of the form

Vh :“ tv P L2pΩq : v|K P V pKq @K P Thu,
Wh :“ tw P L2pΩq : v|K PW pKq @K P Thu,
Mh :“ tη P L2pFhq : η|F PMpF q @F P Fhu.

As indicated in Section 2.1, we incorporate the boundary condition into the
spaces by setting

V ext
h pgq :“ tv P Vh : nˆ vext “ g on Γu,

W ext
h pgq :“ tw PWh : nˆwext “ g on Γu,

Mhpgq :“ tη PMh : nˆ η “ g on Γu.

These spaces are used to define the DG and HDG methods. To define mixed
methods, we use spaces of the form

V curl
h :“ Vh XHpcurl; Ωq and Wcurl

h :“Wh XHpcurl; Ωq.

The spaces with the superscript “curl” are usually called the spaces of edge
elements, see [48] and [46]. Examples of the local spaces V pKq, W pKq and
MpF q can be found in Section 3.4; see also Table 5.

3.2. The weak formulations

For mixed methods of the E-H formulation, the approximation pEh,Hhq is
taken in V ext

h pgEq ˆW
curl
h and is required to satisfy the equations

pε 9Eh,vqTh
´ p∇ˆHh,vqTh

“ ´pJ , vqTh
@v P Vh, (5a)

pµ 9Hh, rqTh
` pEh,∇ˆ rqTh

` xnˆE ext
h , ryΓ “ 0 @r PW curl

h .
(5b)

For the DG and HDG methods, we take the approximation pEh,Hhq in VhˆWh

and define them as the solution of

pε 9Eh,vqTh
´ pHh,∇ˆ vqTh

´ xnˆ xHh,vyBTh
“ ´pJ , vqTh

@v P Vh, (6a)

pµ 9Hh, rqTh
` pEh,∇ˆ rqTh

` xnˆ pEh, ryBTh
“ 0 @r PWh,

(6b)

where the tangential components of the numerical traces p pEh,xHhq approximate145

the tangential components of pE|Fh
,H|Fh

q and must be suitably defined, see

Table 4. Note that on the boundary of Ω, n ˆ pEh “ n ˆ E
ext. Furthermore,

the numerical trace pEh has to satisfy the additional equation (9) to ensure the

single-valuedness of the numerical trace xHh.

10



For mixed methods of theE-A formulation, the approximation pEh,Ah,Hhq

is taken in Vh ˆ V
ext
h pgAq ˆW

curl
h and is required to satisfy the equations

p 9Ah,vqTh
` pEh,vqTh

“ 0 @v P Vh, (7a)

pε 9Eh,vqTh
´ p∇ˆHh,vqTh

“ ´pJ ,vqTh
@v P Vh, (7b)

pµHh, rqTh
´ pAh,∇ˆ rqTh

´ xnˆAext
h , ryΓ “ 0 @r PW curl

h , (7c)

For the HDG and DG methods, we take pEh,Ah,Hhq in the approximation
spaces Vh ˆ Vh ˆWh and define it as the solutions of

p 9Ah,vqTh
` pEh,vqTh

“ 0 @v P Vh, (8a)

pε 9Eh,vqTh
´ pHh,∇ˆ vqTh

´ xnˆ xHh,vyBTh
“ ´pJ ,vqTh

@v P Vh, (8b)

pµHh, rqTh
´ pAh,∇ˆ rqTh

´xnˆ pAh, ryBTh
“ 0 @r PWh, (8c)

where the tangential components of the numerical traces p pAh,xHhq approximate150

the tangential components of pA|Fh
,H|Fh

q and must be suitably defined, see

Table 4. [Furthermore, pAh satisfies an additional equation which is similar to

(9) with pAh as the element of MhpgAq.](to-be-deleted)

3.3. The numerical traces

The numerical traces for the HDG and DG methods are list in Table 4. Note155

that they incorporate the boundary conditions and that some of numerical traces
are defined in terms of PM , the L2 projection into

ś

KPTh

ś

FPBKMpF q. Note
also that only the tangential component of the numerical traces is seen by the
schemes.

Table 4: Exterior and numerical traces: Mixed (top row), HDG (middle row) and DG (bottom
row) methods.

E-H formulation E-A formulation

on FBh : nˆEexth “ gE nˆAexth “ gA

pEh PMhpgEq is a new unknown: pAh PMhpgAq is a new unknown:

on BTh : nˆ pxHh ´Hhq “ ´τpPMEh ´ pEhq nˆ pxHh ´Hhq “ τpPMAh ´ pAhq

on F0
h :

xHh “ ttHhuu ` C11JEhK`CT12JHhK xHh “ ttHhuu ´ C11JAhK` CT12JHhK
pEh “ ttEhuu `C12JEhK ´C22 JHhK pAh “ ttAhuu `C12JAhK` C22 JHhK

on FBh :
xHh “Hh` C11 nˆpEh ´ pEhq xHh “Hh´ C11 nˆpAh ´ pAhq

nˆ pEh “ gE nˆ pAh “ gA

Finally, as it is typical for the HDG methods, the new unknown can be
obtained either explicitly as a function of pEh,Hhq or as the solution of a global
system obtained by imposing the single-valuedness of the tangential component

11



n`

n´

pE`h , H
`
h , τ

`
q pE´h , H

´
h , τ

´
q

p pEh,xHhq

Figure 1: Solution, traces, and stabilization function around an interior face F P F0
h.

of the other numerical trace [15]. Specifically we define the numerical trace pEh
as the element of MhpgEq for which the tangential component of the numerical

trace xHh is single-valued, that is,

xnˆ xHh,ηyBThzΓ “ 0 @η PMh. (9)

If τ is a simple multiplication by a constant on each face, the explicit solution
of the above equation can be easily found, see Appendix A, to be the following:

pEh “
Y `pPMEhq

` ` Y ´pPMEhq
´

Y ` ` Y ´
´

JHhK
Y ` ` Y ´

where Y :“ τ,

xHh “
Z`pHhq

` ` Z´pHhq
´

Z` ` Z´
`

JPMEhK
Z` ` Z´

where Z :“ τ´1.

To enforce the stability of the space-discretization, it is enough to require that160

τ be positive. If ε and µ are piecewise constant, and we set τ :“
a

ε{µ, Z

becomes the impedance, Y the admittance, and the numerical traces pEh and
xHh become (a generalization of the case in which PM is the identity of) the
well known upwinding numerical traces.

For the classic DG methods, we consider the particular case in which C11, C22

are scalars and C12 is a matrix. Stability is achieved when C11 and C22 are
non-negative. There are three popular cases covered by this anzatz. The first
is the upwinding numerical traces, as they are obtained by taking

C11 “ 1{pZ` ` Z´q, C22 “ 1{pY ` ` Y ´q,

and defining the matrix C12 by C12v “ ´
Y `n``Y ´n´

2pY ``Y ´q ˆv “ `
Z`n``Z´n´

2pZ``Z´q ˆv;

note that C12 is skew-symmetric in this case. Another choice is obtained by
setting C11 “ C22 “ 0 and taking the matrix C12 such that, on the interior
faces, we get

pEh “ θpEt
hq
` ` p1´ θqpEt

hq
´, xHh “ θpHt

hq
´ ` p1´ θqpHt

hq
`,

for some θ P r0, 1s depending on the face. These are the so-called alternating165

traces. A third choice is C11 “ C22 “ 0 and C12 “ 0 which gives rise to the
so-called centered traces.
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3.4. Examples of finite element spaces

Here we discuss some specific choices for the local spaces V pKq, W pKq, and
MpF q, which are then used to construct the global approximation spaces Vh,170

Wh, and Mh. These choices are summarized in Table 5. Therein, P` “ P`pKq
denotes the space of vector-valued functions whose components are polynomials
of degree ` on the element K. The space Pt

` “ Pt
`pF q denotes the space of

vector-valued functions which are tangent to the face F and whose components
are polynomials of degree ` on the element F . The space rP` is the space of175

homogeneous polynomials of degree ` on each component. The space rP` is the
space of homogeneous polynomials of degree `. Finally, the symbol ∇F denotes
the tangential gradient on the face F .

Table 5: Examples of finite dimensional spaces.

K V pKq W pKq MpF q k
global
spaces

mixed methods

[43] tetrahedron Pk Pk ‘ pxˆ rPkq – ě 0 Vh ˆW
curl
h

tetrahedron Pk Pk`1 – ě 1 Vh ˆW
curl
h

HDG methods

[15] polyhedron Pk Pk Pt
k ě 0 Vh ˆWh

[12] polyhedron Pk`1 Pk Pt
k ‘∇F rPk`2 ě 1 Vh ˆWh

[23] polyhedron Pk`1 Pk Pt
k`1 ě 0 Vh ˆWh

DG methods

[30, 13] polyhedron Pk Pk - ě 0 Vh ˆWh

For mixed methods, the space of traces M is not needed since Hpcurlq-
conformity is enforced by the construction of the approximation space W curl

h .180

Mixed methods are not limited to simplicial meshes since general Hpcurlq-
conforming elements can be constructed for hexahedra, prisms, and pyramids,
see [16], by using exact sequences.

For HDG methods, relatively fewer references exist for the time-dependent
Maxwell’s equations, compared to the time-harmonic or the static case. For185

the time-dependent case, a typical choice is to use Pk for all approximations
including the numerical trace; see, for instance, [15]. For the steady-state case,
various choices of the approximation spaces exist and we refer to [23] for an
introduction where a unified analysis is established to investigate the different
convergence properties of the various choices. For DG methods, the trace space190

M becomes unnecessary since no hybrid unknown needs to be introduced. To
the best of our knowledge, all DG methods use the space of polynomials Pk for
both the approximations of Eh and Hh; see, for instance, [30, 13].

3.5. The initial conditions

We describe how to compute the initial conditions from the initial data195
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E0,H0. For the methods associated with the E-H formulation, we can sim-
ply take the initial conditions as the L2-projections of E0 and H0 into the
corresponding spaces.

For the methods associated with the E-A formulation, the initial condition
for the electric field can be taken as the L2-projection of E0 into the correspond-
ing space. In contrast, the definition of the initial condition for the magnetic
potential is more involved since the initial data for A is not given and εA is
divergence-free. We define the initial condition for pH,Aq as an approximation
to the solution of the system

µH ´∇ˆA “ 0 in Ω, (10a)

∇ˆH ` ε∇p “ ∇ˆH0 in Ω, (10b)

∇ ¨ εA “ 0 in Ω, (10c)

nˆA “ gA on Γ, (10d)

p “ 0 on Γ, (10e)

where p is a Lagrange multiplier introduced to enforce the divergence-free condi-
tion on εA explicitly. This auxiliary pressure turns out to be zero since ∇ˆH0200

is divergence-free.
The approximation pHh,Ah, ph, pAh, pphq is taken in the space Wh ˆ Vh ˆ

Qh ˆMhpgAq ˆM
n
h as the solution of the following system

pµHh, rqTh
´ pAh,∇ˆ rqTh

´ x pAh, r ˆ nyBTh
“ 0 (11a)

pHh,∇ˆ vqTh
` xnˆ xHh,vyBTh

´ pε ph,∇ ¨ vqTh
` xε pph,v ¨ nyBTh

(11b)

“ p∇ˆH0,vqTh

´pεAh,∇qqTh
` xAh ¨ n` τnpph ´ pphq, ε qyBTh

“ 0 (11c)

xAh ¨ n` τnpph ´ pphq, λyBThzΓ “ 0 (11d)

xnˆ xHh,ηyBThzΓ “ 0 (11e)

xpph, λyΓ “ 0 (11f)

for all pr,v, q,η, λq P Wh ˆ Vh ˆ Qh ˆMh ˆMn
h , where τn is a stabilization

parameter and the scalar spaces have the form

Qh :“ tq P L2pΩq : q|K P QpKq, @K P Thu,
Mn
h :“ tλ P L2pFhq : λ|F PM

npF q, @F P Fhu,

where QpKq and MnpF q are local scalar-valued polynomial spaces. The defini-
tion of the initial solution for the mixed and the DG methods is similar.

Remark 3.1. In our numerical experiments, we use the following choices of
the local spaces for the variant k

V pKq ˆWk ˆMpF q ˆQpKq ˆMnpF q “ Pk ˆPk ˆPt
k ˆ Pk ˆ Pk
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and for the variant B

V pKq ˆWk ˆMpF q ˆQpKq ˆMnpF q “ Pk`1 ˆPk ˆPt
k`1 ˆ Pk ˆ Pk`1

What we call the “variant k” is the standard HDG method with all variables
using piecewise polynomials of degree k, [15]. What we call “Variant B” is the205

HDG method introduced in [23] where the authors study four optimal variants
of the HDG method for the frequency domain Maxwell equations.

4. Hamiltonian structure of the semidiscrete methods

In this section, we prove the Hamiltonian structure of the semidiscrete
schemes based on the E-H and the E-A formulations. From now on, we use210

the subscript ‹ on the Poisson brackets to differentiate between the E-H for-
mulation, ‹ “ E , and the E-A formulation, ‹ “ w. When we simply write ‹,
it means that both formulations can be used. Similarly, we use the superscript ˚
to differentiate between the methods. So, for the mixed method, we use ˚ “M ,
for the DG method, ˚ “ DG, and for the HDG method, ˚ “ HDG. When we215

simply write ˚, we refer to any of the above methods.
We claim that the semidiscrete methods presented in Section 3 define a

Hamiltonian dynamical system for which

(i) the discrete phase and test space pMh,Dhq is an approximation to its
continuous counterpart pM,Dq,220

(ii) the Poisson bracket t¨, ¨u‹,h is a discrete version of t¨, ¨u‹,

(iii) the Hamiltonian H˚
‹,h is a discrete version of the Hamiltonian H˚‹ .

We divide this section into two parts. In the first part, we investigate the
E-H formulation of the mixed, DG and HDG methods. We shall show that the
mixed methods have a natural Hamiltonian structure and that the DG methods225

become Hamiltonian when the coefficients C11 and C22 defining their numerical
traces, see Table 4, are equal to zero. Consequently, the mixed and DG methods
conserve their corresponding discrete energy HM

E,h and HDG
E,h , respectively. As a

consequence, the discrete electric and the magnetic charges are also conserved.
On the other hand, the restriction on the DG methods to be Hamiltonian,230

namely, that C11 “ C22 “ 0, immediately implies, see Appendix B, that the
HDG methods do not possess a Hamiltonian structure. This is consistent with
the fact that their discrete energy always decreases in time.

In the second part, we consider the E-A formulation of the mixed, DG
and HDG methods. We shall prove that all three methods have a Hamiltonian235

structure. Consequently, their discrete Hamiltonian energy HM
w,h, HDG

w,h, and

HHDG
w,h are conserved in time evolution. In addition, we prove that, as it holds

in the continuous case, the electric and the magnetic charges are also conserved
in the discrete level. This is achieved by exploiting the discrete Hamiltonian
structure of these numerical methods.240
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4.1. The electric and magnetic field formulation

We begin by describing each of the components of the Hamiltonian structure
for the methods defined by using the E-H formulation:

(i) phase and test function spaces

mixed: MM
h :“ V ext

h pgEqˆW
curl
h and DM

h :“ V ext
h p0qˆW curl

h ,

DG: MDG
h :“ V ext

h pgEqˆWh and DDG
h :“ V ext

h p0qˆWh,

HDG: MHDG
h :“ V ext

h pgEqˆWh and DHDG
h :“ V ext

h p0qˆWh.

(ii) Poisson bracket

tF,GuE,h “
´1

ε

δF

δEh
,∇ˆ

ˆ

1

µ

δG

δHh

˙

¯

Th

´

´1

ε

δG

δEh
,∇ˆ

ˆ

1

µ

δF

δHh

˙

¯

Th

´ x
1

ε

~δF

δEh
,nˆ

ˆ

1

µ

δG

δHh

˙

yBTh
` x

1

ε

~δG

δEh
,nˆ

ˆ

1

µ

δF

δHh

˙

yBTh
,

where

qu :“

#

ttuuu `C12JuK F P F0
h,

uext F P FBh ,

(iii) Hamiltonian

HE,h “
1

2
ppεEh, EhqTh

` pµHh, HhqTh
q ´ pJˆ, µHhq,

(iv) and coordinate functionals

FEh
“ pεEh,vqTh

and FHh
“ pµHh, rqTh

@ pv, rq P D˚h .

We can now state and prove the main result of this subsection.

Theorem 4.1 (Hamiltonian structure of the E-H formulation). We have245

that

(i) The mixed method (5) defines a Hamiltonian dynamical system with

pMM
h , t¨, ¨uE,h,HE,hq.

(ii) The DG method (6), with numerical fluxes defined by Table 4, defines a
Hamiltonian dynamical system with

pMDG
h , t¨, ¨uE,h,HE,hq,

if and only if C11 “ C22 “ 0.
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(iii) The HDG method (6), with numerical fluxes defined by Table 4, is such
that

pMHDG
h , t¨, ¨uE,h,HE,hq,

is never a Hamiltonian dynamical system.

This result is similar to [63] for DG methods. We include the proof in
Appendix B for completeness.250

A straightforward corollary of this result are the following conservation laws.
The proof is included in Appendix C

Corollary 4.1 (discrete conservation). The mixed method (5) and the DG
method (6) with numerical traces defined by Table 4 satisfy the following con-
servation laws.

(electric charge) pε 9Eh,∇vqTh
“ 0,

(magnetic charge) pµ 9Hh,∇wqTh
“ 0,

(energy) 9HE,h “ 0,

for all test functions v, w P H1
0 pΩq satisfying p∇v,∇wq P D˚h where ˚ “ M for

the mixed method, and ˚ “ DG for the DG method.

4.2. The electric and magnetic vector potential formulation255

Let us describe now the components of the Hamiltonian structure for the
methods defined by using the E-A formulation. In what follows, the superscript
˚ stands for M , DG and HDG. We have:

(i) phase and test function spaces:

M˚
h :“ Vh ˆ V

ext
h pgAq and D˚h :“ Vh ˆ V

ext
h p0q. (12a)

(ii) Poisson bracket

tF,Guw,h “

´1

ε

δF

δEh
,
δG

δAh

¯

Th

´

´1

ε

δG

δEh
,
δF

δAh

¯

Th

, (12b)

(iii) Hamiltonian

H˚w,h “
1

2

´

pεEh,EhqTh
` pµHh,HhqTh

` xnˆ pxH˚
h ´Hhq,Ah ´ pA˚hyBTh

¯

(12c)

´ pAh,JqTh
,

(iv) and coordinate functionals given by

FEh
“ pεEh,vqTh

and FAh
“ pεAh,vqTh

@ pv,wq P D˚h . (12d)
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The third term of the Hamiltonian, called the stabilization term, reduces to
different forms for different discretization methods, as we see in the following260

result proven in Appendix E.

Proposition 4.1 (The form of the stabilization term). Set

S˚h pAh,Hhq :“ xnˆ pxH˚
h ´Hhq,Ah ´ pA˚hyBTh

.

Then

SMh pAh,Hhq “ 0

SDGh pAh,Hhq “ xC11 JAhK, JAhKyFh
` xC22 JHhK, JHhKyF0

h
,

SHDGh pAh,Hhq “ xτpPMAh ´ pAhq ˆ n, pPMAh ´ pAhq ˆ nyBTh
,

We are ready to state and prove our main result.

Theorem 4.2 (Hamiltonian structure of the E-A formulation). We have
that

(i) The mixed method (7) defines a Hamiltonian dynamical system with

pMM
h , t¨, ¨uω,h,HM

ω,hq.

(ii) The DG method (8), with numerical fluxes defined by Table 4, defines a
Hamiltonian dynamical system with

pMDG
h , t¨, ¨uω,h,HDG

ω,h q.

(iii) The HDG method (8), with numerical fluxes defined by Table 4, defines a
Hamiltonian dynamical system with

pMHDG
h , t¨, ¨uω,h,HHDG

ω,h q.

To prove this result, we use the following auxiliary result proven in the Appendix265

F.

Lemma 4.1. We have

xnˆ pδxH˚
h ´ δHhq,Ah ´ pA˚hyBTh

“ xnˆ pxH˚
h ´Hhq, δAh ´ δ pA

˚
hyBTh

.

Proof (Proof of Theorem 4.2). By definition of the coordinate function-
als FEh

and FAh
, we have that

1

ε

δFEh

δEh
“ v,

δFEh

δAh
“ 0,

δFAh

δEh
“ 0,

1

ε

δFAh

δAh
“ v,

and we get, by definition of the Poisson bracket, that

tFAh
, H˚w,huω,h “ ´p

δH˚w,h
δEh

,vqTh
and tFEh

, H˚w,huω,h “ p
δH˚w,h
δAh

,vqTh
.
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So, to show that

pε 9Ah,vqTh
“ 9FAh

“ tFAh
, H˚w,huω,h “ ´pεEh,vqTh

,

pε 9Eh,vqTh
“ 9FEh

“ tFEh
, H˚w,huω,h “ pHh,∇ˆ vqTh

` xnˆ xH˚
h ,vyBTh

´ pv,JqTh
,

we must show that the expressions

ΘAh
:“p

δH˚w,h
δEh

,vqTh
´ pεEh,vqTh

,

ΘEh
:“´ p

δH˚w,h
δAh

,vqTh
` pHh,∇ˆ vqTh

` xnˆ xH˚
h ,vyBTh

´ pv,JqTh
,

are both equal to zero.

Now, since
δHDG

w,h

δEh
“ εEh, we immediately get that ΘAh

“ 0. The proof that

ΘEh
“ 0 is more difficult because obtaining

δHDG
w,h

δAh
is more involved. We do this

next. By the definition of the Hamiltonian HDG
w,h, its variation with respect to

Ah is

p
δHDG

w,h

δAh
, δAhqTh “pµ δHh,HhqTh `

1

2
δxnˆ pxH˚

h ´Hhq,Ah ´ pA˚hyBTh
´ pδAh,JqTh

“pµ δHh,HhqTh ` xnˆ p
xH˚
h ´Hhq, δAh ´ δ pA

˚
hyBTh

´ pδAh,JqTh ,

by Lemma 4.1. Taking the variation on the third equation defining the method,
and then setting r :“Hh, we obtain

pµ δHh,HhqTh
“pδAh,∇ˆHhqTh

` xnˆ δ pA˚h,HhyBTh

“pHh,∇ˆ δAhqTh
` xδAh ´ δ pA

˚
h,nˆHhyBTh

“pHh,∇ˆ δAhqTh
` xnˆ xH˚

h , δAhyBTh

` xδAh ´ δ pA
˚
h,nˆHhyBTh

´ xnˆ xH˚
h , δAhyBTh

“pHh,∇ˆ δAhqTh
` xnˆ xH˚

h , δAhyBTh

` xδAh ´ δ pA
˚
h,nˆ pHh ´ xH˚

h qyBTh
,

because

xδ pA˚h,nˆ
xH˚
h yBTh

“ xδ pA˚h,nˆ
xH˚
h yΓ “ xδPM pgA ˆ nq,nˆ xH˚

h yΓ “ 0.

This implies that

p
δH˚w,h
δAh

, δAhqTh
“ pHh,∇ˆ δAhqTh

` xnˆ xH˚
h , δAhyBTh

´ pδAh,JqTh
, (13)

and so, for any test function v for the magnetic potentials, we can set δAh :“ v
and get that ΘEh

“ 0, as desired. This completes the proof.

A straightforward corollary of this result are the following conservation laws.270
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Corollary 4.2 (discrete conservation). The mixed method (7) and the DG
and HDG method (8) with numerical traces define by Table 4 satisfy the follow-
ing conservation laws:

(electric charge) pε 9Eh,∇vqTh
“ p∇ ¨ J , vqTh

, (14a)

(magnetic charge) pµ 9Hh,∇wqTh
“ 0, (14b)

(energy) 9Hw,h “ 0, (14c)

for any test functions v, w P H1
0 pΩq satisfying p∇v,∇wq P D˚h .

Proof. We will only present the proof for DG method since the proofs for
mixed and HDG methods are similar. To obtain the conservation of the electric
charge, we define Fec “ pεEh,∇vqTh

and obtain that

9Fec “ tFec,HDG
w,huw,h “ p

δHDG
w,h

δAh
,∇vqTh

“ pHh,∇ˆ∇vqTh
` xnˆ xHh,∇vyBTh

´ pJ ,∇vqTh
,

by equation (13). By the single-valuedness of p∇vqt (again by [49, Lemma 3])
on F0

h, and since v “ 0 on Γ, we obtain

9Fec “ p∇ ¨ J , vqTh
.

The conservation of the magnetic charge can be obtained directly from the
equation giving Hh in terms of Ah, (8c). Indeed, taking r :“ ∇w, we get

pµHh,∇wqTh
“ xnˆ pAt

h,∇wyBTh
` pAh,∇ˆ∇wqTh

“ 0

by single-valuedness of p∇wqt and pAt
h, and since and w “ 0 on Γ. Clearly,

property (14b) follows naturally.
Finally, the energy conservation is obtained immediately by the antisymme-

try property of the Poisson bracket t¨, ¨uw,h. This completes the proof.275

5. Fully discrete HDG schemes

In this section, we present the time-marching Runge-Kutta, symplectic in-
tegrators with which we complete the definition of the fully discrete schemes.

5.1. Symplectic diagonally implicit Runge-Kutta methods

We discretize in time the HDG scheme using symplectic diagonally implicit
Runge-Kutta (DIRK) methods. To introduce the DIRK scheme we consider
the ODE 9yptq “ fpt, yptqq. A DIRK scheme computes the approximate solution
ypn`1q “ yptn`1q assuming that ypnq is known by

yn`1 “ yn `∆t
s
ÿ

i“1

biki,
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where ki “ fptn,i, yn,iq, tn,i “ tn ` ci∆t, and yn,i “ yn `∆t
ři
j“1 aijkj . The

Runge-Kutta coefficient matrix aij and the coefficient vectors bi and ci, for
i, j “ 2, .., n, are usually summarized in a Butcher tableau. For DIRK schemes
we note that aij “ 0, for j ą i. Furthermore, these schemes have the symplectic
property under the following condition on the coefficients (see [58]):

biaij ` bjaji ´ bibj “ 0, 1 ď i, j ď s.

Note that we can reduce the semidiscrete HDG scheme of the E-H formulation
to the following ODE system

M 9y ` Ty “ Fptq, (15)

where y contains the degrees of freedom of pEh,Hh, pEhq. Then, to solve the280

system we apply an s-stages DIRK scheme. The method is shown in Algorithm
1. It is possible to perform static condensation to locally eliminate the degrees
of freedom of pEh,Hhq to obtain a smaller linear system in terms of the degrees

of freedom of pEh.

Algorithm 1: DIRK-HDG

Data: yn

Result: yn`1

for iÐ 1 to s do

ri “
yn

aii∆t
`

i´1
ÿ

j“1

aij
aii

ˆ

yn,i

aii∆t
´ rj

˙

;

Solve for yn,i: Tyn,i “Mri ` Fptn ` ci∆tq;

ki “
yn,i ´ yn

aii∆t
´

i´1
ÿ

j“1

aij
aii

kj ;

end

yn`1 “ yn `∆t
s
ÿ

i“1

biki;

285

5.2. Symplectic explicit partitioned Runge-Kutta methods

In this section we discretize in time the HDG scheme using explicit par-
titioned Runge-Kutta (EPRK) methods. To introduce the EPRK scheme we
consider the Hamiltonian system

9p “ ´
BH
Bq
pp, q, tq, 9q “

BH
Bp
pp, q, tq.

An EPRK scheme computes the approximate solution

pppn`1q, qpn`1qq :“ ppptn`1q, qptn`1q,

assuming that ppptnq, qptnq is known, by using an s-stage DIRK scheme with
coefficients paij , bi, ciq for the first ODE and explicit RK scheme with coefficients
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pãij , b̃i, c̃iq, for i, j “ 1, . . . , s for the second equations. The global scheme
is explicit if the Hamiltonian function is separable. Moreover, the scheme is
symplectic if the coefficients satisfy (see [58])

biãij ` b̃jaji ´ bib̃j “ 0, 1 ď i, j ď s.

In our case we reduce the HDG semidiscrete scheme to the following structure:

M1 9p “ ´T1q, M2 9q “ T2p` Fptq (16)

These equation will be solved using Algorithm 2.

Algorithm 2: EPRK-HDG

Data: pppnq, qpnqq
Result: pppn`1q, qpn`1qq

pp0, q0q Ð pppnq, qpnqq;
for iÐ 1 to s do

Solve for pi: M1pi “M1pi´1 ´∆t bi T1qi´1;

Solve for qi: M2qi “M2qi´1 ´∆tb̃i pT2pi ` Fpt` c̃iqq;
end

pppn`1q, qpn`1qq Ð pps, qsq;

5.3. Fully discrete HDG schemes for the electric and magnetic vector potential
formulation.290

We rewrite the HDG scheme (8)-(9) as: Find pAh,Eh,Hh, pA
t
hq P VhˆVhˆ

Wh ˆM
t
h

pε 9Ah,vhqTh
`pεE,vhqTh

“ 0

pε 9Eh,vhqTh
´p∇ˆHh,vhqTh

´ xτtpPMAh ´ pAhq ˆ n,vh ˆ nyBTh
“pJ ,vhqTh

pµHh,whqTh
´ xnˆ pAt

h,whyBTh
´ pAh,∇ˆwhqTh

“ 0

xnˆ pHt
h ` τPM pAh ´ pAhqq,ηhyBTh

“ 0

xnˆ pAt
h,ηhyΓ “xgA,ηyΓ

for all pvh,vh,wh,ηhq P Vh ˆ Vh ˆWh ˆM
t
h.

To obtain the fully discrete implicit scheme using symplectic DIRK methods,
we note that the HDG scheme has the structure (15) with y being the degrees

of freedom of pAh,Eh,Hh, pA
t
hq. Furthermore, the matrix M is block diagonal,

and since there is no time derivative for Hh and pAt
h then the corresponding295

blocks to these unknowns are zero.
To obtain the fully discrete explicit scheme using symplectic EPRK time

integrators, we write the HDG scheme in the form (16). The variables p and q
correspond to the coefficients of the approximations of Ah and Eh. We observe
that in the second equation of the HDG scheme we need to write the variables
Hh and pAt

h in terms of the variable Ah. For this purpose we use the third and
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fourth equations and obtain the system for a givenAh, find pHh, pA
t
hq PWhˆM

t
h

such that

pµHh, rhqTh
´ xnˆ pAt

h, rhyBTh
“ ´pAh,∇ˆ rhqTh

xHt
h ´ τ

pAh ˆ n,ηh ˆ nyBTh
“ xτPMAh ˆ n,ηh ˆ nyBTh

xnˆ pAt
h,ηhyΓ “ xgA,ηhyΓ

for all pwh,ηhq PWh ˆM
t
h.

6. Numerical experiments

In this section, we test the properties of our numerical schemes, specifically
the EPRK(k ` 2)-HDGk(B) (variant B, third HDG method in Table 5, see300

also Remark 3.1) and DIRK(k ` 1)-HDGk (variant k, first HDG method in
Table 5, see also Remark 3.1) numerical schemes. We use an EPRK method of
order pk ` 2q when we use the HDG method with variant B, i.e. matching the
expected rate of convergence of the error of the electric field and the magnetic
vector potential. We use a DIRK method of order pk`1q when we use the HDG305

method with variant k with polynomial order k, again matching the expected
rate of convergence of the error of the variables. For all numerical experiments
we use the open source finite element library NETGEN [59] and NGSolve [60].

In Section 6.1, we provide numerical evidence of the approximation proper-
ties of the EPRK(k ` 2)-HDGk(B) method obtaining the optimal convergence310

of order k ` 2 for the L2-errors of the electric field and the magnetic vector
potential variables and of order k` 1 for the L2-errors of the magnetic field. In
Section 6.2, we present a numerical example illustrating the energy-conserving
property of our methods, in particular we use DIRK(k ` 1)-HDGk (variant k),
with k “ 1. Note that the symplectic Runge-Kutta schemes integrates exactly315

quadratic forms. This is observed in our experiment.

6.1. Convergence tests

In the following numerical experiment, we provide evidence of the optimal
approximation properties of the numerical scheme EPRK(k`2)-HDGk (variant
B). See Appendix G for the EPRK schemes used in our computations. For
each of the approximations Eh, Ah, andHh, we compute the maximum over the
time steps tn of the L2-errors of the corresponding error, and then estimate their
orders of convergence (e.o.c.). For instance, for the electric field approximation
we compute

errorphq “ max
tn
}Eptnq ´En

h }L2pΩq3 , e.o.cphq “
logperrorh{errorh1q

logph{h1q
,

where h1 correspond to the previous mesh size parameter used in the compu-
tations. The experiment is carried on the unit cubic domain Ω “ p0, 1q3 using
uniform triangulations with mesh-size parameter h “ 2´l. As exact solution of
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the initial, boundary-value problem (1), consider the example from [15] given
by

Epx, y, zq “

¨

˝

´ cospπxq sinpπyq sinpπzq cospωtq
0

sinpπxq sinpπyq cospπzq cospωtq

˛

‚,

Hpx, y, zq “

¨

˝

´π
ω sinpπxq cospπyq cospπzq sinpωtq

2π
ω cospπxq sinpπyq cospπzq sinpωtq
´π
ω cospπxq cospπyq sinpπzq sinpωtq

˛

‚

with angular frequency ω “
?

3π and with permittivity and permeability ε “ 1
and µ “ 1.

We show in Table 6 the errors and orders of convergence for the EPRK(k`2)-320

HDGk(B) method. We observe the optimal convergence in L2 norm of order
k` 2 for the L2-errors of for the electric field and the magnetic vector potential
variables, and of order k ` 1 for the magnetic field.

Table 6: History of convergence of the numerical approximations of Maxwell’s equations (2)
by semidiscrete HDG scheme (8) variant B with ESPRK(k ` 2).

Eh Ah Hh

k h error e.o.c. error e.o.c. error e.o.c.

0

7.9370e-01 2.9675e-01 ´ 6.8615e-02 ´ 4.1701e-01 ´

3.9685e-01 1.1164e-01 1.41 2.1249e-02 1.69 2.5653e-01 0.70
1.9843e-01 2.6226e-02 2.08 5.1184e-03 2.05 1.2883e-01 0.99
9.9213e-02 7.4169e-03 1.82 1.3227e-03 1.95 6.4956e-02 0.98
4.9606e-02 1.9690e-03 1.91 3.3288e-04 1.99 3.2532e-02 0.99

1

7.9370e-01 6.4480e-02 ´ 9.7970e-03 ´ 1.4015e-01 ´

3.9685e-01 1.6202e-02 1.99 2.7083e-03 1.85 5.8194e-02 1.26
1.9843e-01 2.5722e-03 2.65 3.4638e-04 2.96 1.7300e-02 1.75
9.9213e-02 3.4336e-04 2.90 4.4523e-05 2.95 4.4140e-03 1.97

2

7.9370e-01 3.5762e-02 ´ 6.5098e-03 ´ 4.0838e-02 ´

3.9685e-01 3.2224e-03 3.47 5.7848e-04 3.49 7.9169e-03 2.36
1.9843e-01 2.1460e-04 3.90 3.4372e-05 4.07 9.2374e-04 3.09
9.9213e-02 1.4210e-05 3.91 2.1960e-06 3.96 1.1636e-04 2.98

3

7.9370e-01 3.0788e-03 ´ 5.4199e-04 ´ 1.2561e-02 ´

3.9685e-01 3.8432e-04 3.00 6.6832e-05 3.01 1.8175e-03 2.78
1.9843e-01 1.9462e-05 4.30 2.9721e-06 4.49 1.5816e-04 3.52
9.9213e-02 6.4882e-07 4.90 9.5185e-08 4.96 1.0231e-05 3.95

6.2. Conservation properties

To test the conservation properties of our schemes under consideration, we
consider a monochromatic (single frequency) plane wave traveling in the vac-
uum, in which case J “ 0, ρ “ 0, and the electric and magnetic permeability
are constant. The plane wave solution has the following general form:

E “ E0e
ipk¨x´ωtq, H “H0e

ipk¨x´ωtq,

where E0 and H0 are constant amplitudes which can take complex values, and

the angular frequency ω and the wavenumber k satisfy ε0µ0 “
|k|2

ω2 . The plane
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wave is a solution of the Maxwell’s equations if and only if

´ωε0E0 “ k ˆH0, ωµ0H0 “ k ˆE0, k ¨H0 “ 0, k ¨E0 “ 0.

For k “ pκ, 0, 0q, H0 “ p0, H0, 0q and x :“ px, y, zq, we have a plane wave
solution traveling along the x-axis:

k “ pκ, 0, 0qJ, E “ p0, 0,
´κH0

ωε0
qJ sinpκx´ ωtq, H “ p0, H0, 0q

J sinpκx´ ωtq.

In our computations, we consider a cubic domain p0, 2q ˆ p0, 1q ˆ p0, 1q with325

periodic boundary conditions, and κ “ ω “ 2. We compute using the scheme
HDG1, i.e., polynomial spaces of degree k “ 1 for all the variables, and as a
symplectic numerical integrator we use the implicit-midpoint or DIRK(2).

In Fig. 2, we plot the approximate energy, optical chirality, the first compo-
nent of the linear momentum, the second component of the angular momentum,330

the electric charge and the magnetic charge, for a sequence of three triangula-
tions with mesh-size parameters given by h, h{2, h{4, starting with h “ 0.25. We
observe the exact conservation of the energy for the three meshes and the fast
convergence to the exact energy. We also observe that the electric and magnetic
charges oscillate around zero and that the oscillations are extremely small and335

less than 10´13.
As for the quadratic functionals of optical chirality, linear and angular elec-

tromagnetic momenta, we see that they remain remarkably no-drifting and with
oscillations which decrease in amplitude as the mesh is refined. Theoretical com-
putations for the total electromagnetic linear momentum, not reported here,340

show that, when the continuous version is supposed to remain constant, its dis-
crete version varies in time as a quadratic function of the jumps of the approx-
imate solution. This might explain that its order of convergence is at least 2k.
We expect a similar behavior for the remaining quadratic functionals on Table
2, but more work needs to be done to understand their convergence properties.345

7. Extensions

In this Section, we describe the modifications that have to be made when
working with other boundary conditions, and with other weak formulations of
the Maxwell’s equations.

7.1. Other boundary conditions350

Here, we sketch how to extend our results when the boundary condition is

nˆH “ gH on Γ.

We consider the case of the E-A formulation, as it is particularly simple and
illustrative.
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Figure 2: Electromagnetic energy (top, left), optical chirality (top, right), first component of
the electromagnetic linear momentum (middle, left), second component of the electromagnetic
angular momentum (middle, left) electric charge (bottom, left), and magnetic charge (bottom,
right).
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First, as it is standard for the mixed method, we incorporate the boundary
condition for H into the corresponding space. So, we take H as the element of
Hpcurl,Ω; gHq such that

ż

Ω

µH ¨ψ “

ż

Ω

A ¨ ∇ˆψ @ ψ P Hpcurl,Ω; 0q.

Since there are no boundary conditions on A, the smooth manifold M and test
functions space T are now

M “ L2pΩq ˆL2pΩq,

D “ C8pΩq ˆ C8pΩq.

Finally, a term capturing the new boundary conditions needs to be added to
the Hamiltonian. In this case, the Hamiltonian is

HwpE,Aq “
1

2

ż

Ω

`

εE ¨E ` µH ¨H
˘

´

ż

Ω

A ¨ J ´

ż

Γ

A ¨ gH .

The Poisson bracket and the coordinate functionals remain unchanged. With
these modifications, it can be easily shown that pM, t¨, ¨uw,Hwq is a Hamiltonian
dynamical system defined by the E-A formulation.355

Now, let us describe the changes we need to make to the numerical schemes.
First, we describe the changes to be made to the definition of the schemes. For
the mixed method, we take pEh,Ah,Hhq in the space Vh ˆ Vh ˆW

curl
h pgHq

and take the corresponding test functions in VhˆVhˆW
curl
h p0q. In particular,

note that the equation defining Hh in terms of Ah now reads:

pµHh, rqTh
` pAh,∇ˆ rqTh

` xnˆ pAh, ryBTh
“ 0 @r PW curl

h p0q. (17)

For the HDG and DG methods, there are no changes to their weak formula-
tions. Only their numerical traces have to change to capture the new boundary
conditions, see Table 7.

Table 7: Numerical traces.

method E-A formulation

HDG
on FBh : nˆ xHh “ gH

pAh PMh is a new unknown:

on BTh : nˆ pxHh ´Hhq “ τpPMAh ´ pAhq

DG

on F0
h :

xHh “ ttHhuu ´ C11JAhK` CT
12JHhK

pAh “ ttAhuu `C12JAhK` C22 JHhK

on FBh :
nˆ xHh “ gH

pAh “ Ah` C22 nˆpHh ´ xHhq
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Next, we consider the changes to be made to the components of the Hamilto-
nian structure. Again, since there are no boundary conditions on A, the smooth
manifold M and test functions space T are

M “ Vh ˆ Vh,

D “ Vh ˆ Vh.

As in the continuous case, a term capturing the new boundary conditions needs
to be added to the Hamiltonian which becomes

H˚w,h “
1

2

´

pεEh,EhqTh
` pµHh,HhqTh

` xnˆ pxH˚
h ´Hhq,Ah ´ pA˚hyBTh

¯

´ pAh,JqTh
´ x pA˚h, gHyΓ,

where the numerical trace pA˚h needs to be defined on Γ for the mixed method.
We take it as the element of

tnˆw|Γ : w PW curl
h u

which solves

x pAM
h ,nˆ ryBTh

“ ´pµHh, rqTh
` pAh,∇ˆ rqTh

@r PW curl
h .

The auxiliary numerical trace pAM
h is well defined thanks to the weak formulation

(17) defining Hh as a function of Ah.360

Finally, the Poisson bracket and the coordinate functionals remain unchanged.
With these modifications, it can be easily shown that Theorem 4.2 and Corollary
4.2 do hold.

7.2. Other weak formulations

Since the roles of the electric and the magnetic field in the Maxwell’s equa-365

tions can be considered to be fairly symmetric, one could easily argue that it is
natural to switch them. Here, we show how to do that for the E-H formulation.
We are going to switch the spaces, but are going to keep the boundary condition
unchanged.

So, in this case, the phase manifold and the space of test functions are

M “ Hpcurl,Ω; gEq ˆL
2pΩq,

D “ C8pΩ; 0q ˆ C8pΩq,

and the Poisson bracket is

tF,GuE “

ż

Ω

ˆ

∇ˆ
ˆ

1

ε

δF

δE

˙

¨

ˆ

1

µ

δG

δH

˙

´ ∇ˆ
ˆ

1

ε

δG

δE

˙

¨

ˆ

1

µ

δF

δH

˙˙

.

The Hamiltonian and coordinate functionals remain unchanged. A simple com-370

putation shows that pM, t¨, ¨uw,Hwq is a Hamiltonian dynamical system defined
by the E-H formulation.
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Indeed, if we take the following coordinate functionals

FEpφq “

ż

Ω

εE ¨ φ, FHpψq “

ż

Ω

µH ¨ψ,

we have that

1

ε

δFE

δE
“ φ,

1

µ

δFE

δH
“ 0,

1

ε

δFH

δE
“ 0,

1

µ

δFH

δH
“ ψ,

and since
1

ε

δHE

δE
“ E,

1

µ

δHE

δH
“H ´ Jˆ,

we get

ż

Ω

ε 9E ¨ φ “ 9FE “ tFE ,HEuE “

ż

Ω

∇ˆ φ ¨ pH ´ Jˆq “

ż

Ω

p∇ˆH ´ Jq ¨ φ,

ż

Ω

µ 9H ¨ψ “ 9FH “ tFH ,HEuE “ ´

ż

Ω

∇ˆE ¨ ψ,

for all pφ,ψq test functions in D. Thus, we get a weak formulation of the first
two and the fifth of equations (1). This proves our claim. Note that the weak
formulation we get is different from the one obtained originally.375

Let us now describe how to modify the numerical schemes. For the mixed
method, there are a few changes. First, we have to use the real trace instead
of the exterior trace. Then, we have to take the approximation pEh,Hhq in
V curl
h pgEq ˆWh and is required to satisfy the equations

pε 9Eh,vqTh
´ pHh,∇ˆ vqTh

“ ´pJ , vqTh
@v P V curl

h p0q,

pµ 9Hh, rqTh
` p∇ˆEh, rqTh

“ 0 @r PWh.

In Table 8, we show two examples of mixed methods of the type just described.
The superscript “div” indicates that the space is a subspace of Hpdiv,Ωq. This
is not necessary, as the weak formulation only requires Wh to be a subspace of
L2pΩq.

For the DG and HDG methods, no changes need to be carried out. To end,

Table 8: Examples finite dimensional spaces for mixed methods.

K V pKq W pKq k
global
spaces

[40, 48] tetrahedron Pk ‘ pxˆ rPkq Pk ‘ x rPk ě 0 V curl
h ˆW div

h

[49] tetrahedron Pk`1 Pk ě 1 V curl
h ˆW div

h

let us describe the changes to the components of the Hamiltonian structure
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of the numerical methods. In fact, the only thing that changes are the space
associate with the mixed methods. They are

MM
h :“ V curlpgEq ˆWh and DM

h :“ V curlp0q ˆWh.

It is not difficult to verify that Theorem 4.1 and Corollary Appendix C do hold380

for these new methods.
We end by noting that the introduction of SH finite element methods for

nonlinear Hamiltonian systems modeling physical phenomena of practical inter-
est constitutes the subject of ongoing work.

Appendix A. Numerical traces of HDG methods385

Here we show how to write the numerical traces of HDG methods in a
classic DG format. Consider the case that pEh is the hybrid unknown. Then
nˆ xHh :“ nˆHh ´ τPM pEh ´ pEhq. If we let F P E0

h be an interior face and
denote the restriction from the two sides of this face by the superscripts `{´,
see Fig. 1, then, on the face F , we can write that

n` ˆ xHh “ n
` ˆH`

h ´ τ
`pPME

`
h ´

pEhq,

n´ ˆ xHh “ n
´ ˆH´

h ´ τ
´pPME

´
h ´

pEhq.

Adding these equations, we obtain

pEh “
τ`

τ` ` τ´
PME

`
h `

τ´

τ` ` τ´
PME

´
h ´

1

τ` ` τ´
JHhK,

and inserting this expression into any of the the above expressions for xHh, we
get

xHh “

1
τ`

p 1
τ` `

1
τ´ q

pH`
h q

t `

1
τ´

p 1
τ` `

1
τ´ q

pH´
h q

t `
1

p 1
τ` `

1
τ´ q

JPMEhK

“
τ´

τ` ` τ´
pH`

h q
t `

τ`

τ` ` τ´
pH´

h q
t `

τ`τ´

τ` ` τ´
JPMEhK.

Appendix B. Proof of Theorem

To prove this theorem, we are going to use the following auxiliary result. Its
proof can be found in Appendix D.

Lemma Appendix B.1. For any vector-valued functions a and b in L2pBThq,
we have

xnˆ a, byBTh
“ xJaK, ttbuuyF0

h
´ xttauu, JbKyF0

h
` xnˆ a, byΓ.

We are now ready to prove Theorem 4.1.
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Proof. We prove the result for the DG method. The proof for the mixed and
HDG methods is similar. By definition of the coordinate functionals FEh

and
FHh

, we have that

1

ε

δFEh

δEh
“ v,

1

µ

δFEh

δHh
“ 0,

1

ε

δFHh

δEh
“ 0,

1

µ

δFHh

δHh
“ r,

and, by definition of the Hamiltonian HE,h, we have that

1

ε

δHE,h

δEh
“ Eh,

1

µ

δHE,h

δHh
“Hh ´ Jˆ.

Therefore,

pε 9Eh,vqTh
“ 9FEh

“ tFEh
,HE,huE,h “ ΘEh

,

pµ 9Hh, rqTh
“ 9FHh

“ tFHh
,HE,huE,h “ ΘHh

,

where

ΘEh
:“ pv,∇ˆ pHh ´ JˆqqTh

` xnˆ qv,Hh ´ JˆyBTh
,

ΘHh
:“´ pEh,∇ˆ rqTh

´ xnˆ qEh, ryBTh
.

So, since

ΘEh
“ pHh,∇ˆ vqTh

` xnˆHh,vyBTh
´ pJ , vqTh

` xnˆ qv,Hh ´ JˆyBTh

“ pHh,∇ˆ vqTh
` xnˆ xHDG

h ,vyBTh
´ pJ , vqTh

` xnˆ pHh ´ xHDG
h q,vyBTh

` xnˆ qv,Hh ´ JˆyBTh

“ pHh,∇ˆ vqTh
` xnˆ xHDG

h ,vyBTh
´ pJ , vqTh

` θ1
Eh
` θ2

Eh
,

ΘHh
“´ pEh,∇ˆ rqTh

´ xnˆ pEDG
h , ryBTh

` θHh
,

where

θ1
Eh

:“ xnˆ pHh ´ xHDG
h q,v ´ qvyBTh

,

θ2
Eh

:“ xnˆ qv,xHDG
h ´ JˆyBTh

,

θHh
:“´ xnˆ p qEh ´ pEDG

h q, ryBTh
,

if these quantities are equal to zero, then the DG method is a Hamiltonian390

dynamical system.
But, by Lemma Appendix B.1 with a :“ Hh ´ xHDG

h and b :“ v ´ qv, we
get that

θ1
Eh
“xJHhK, ttvuu ´ qvyF0

h
´ xttHhuu ´ xHDG

h , JvKyF0
h
` xnˆ pHh ´ xHDG

h q,v ´ qvyΓ

“xJHhK,´C12JvKyF0
h
´ x´C11JEhK´CT

12JHhK, JvKyF0
h

` xnˆ p´C11 nˆ pEh ´E
ext
h qq,v ´ vextyΓ,
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by the definition of the numerical traces qv, xHDG
h and pEDG

h . Using the definition
of J¨K, we finally get that

θ1
Eh
“xC11 JEhK, JvKyFh

.

So, θ1
Eh
“ 0 when C11 “ 0. If we now apply Lemma Appendix B.1 with a :“ qv

and b :“ xHh ´ Jˆ, we get that

θ2
Eh
“ xnˆ qv,xHh ´ JˆyΓ “ 0,

since, by definition of qv, nˆ qv “ nˆ vext “ 0 on Γ. Finally, applying Lemma
Appendix B.1 with a :“ ´ qEh ` pEh and b :“ r, we get that

θHh
“´ x´ qEh ` pEh, JrKyF0

h
` xnˆ p´ qEh ` pEhq, ryΓ “ xC22 JHhK, JrKyF0

h
,

by definition of qEh and pEh. So, θHh
is equal to zero when C22 “ 0. This

completes the proof.

Appendix C. Proof of Corollary

Proof. Here we only consider the proof for DG method since the proof for the395

mixed method is similar and simpler.
To prove the conservation of the electric charge, we define the functional

Fec :“ pεEh,∇vqTh
and proceed as follows. We have that

9Fec “ tFec,HE,huE,h “p∇v,∇ˆ pHh ´ JˆqqTh
` xHh ´ Jˆ,nˆ |∇vyBTh

“p∇v,∇ˆ pHh ´ JˆqqTh
` xHh ´ Jˆ,nˆ∇vyBTh

,

since |∇v “ ∇v because ∇v lies in Hpcurl,Ωq, see [49, Lemma 3]). Integrating
by parts, we get

9Fec “p∇ˆ∇v,Hh ´ JˆqTh
“ 0,

which is what we wanted to prove.
Similarly, for prove the conservation of the magnetic charge, we define Fmc :“

pµHh,∇wqTh
, and get that

9Fmc “ tFmc,HE,huE,h “ ´pEh,∇ˆ p∇wqqTh
´ x∇w,nˆ qEhyBTh

.

The first term is obviously zero. To deal with the second term, we apply Lemma
Appendix B.1 with a :“ qEh and b :“ ∇w to get that

9Fmc “´ xnˆ qEh,∇wyBTh

“´ xJ qEhK, tt∇wuuyF0
h
` xtt qEhuu, J∇wKyF0

h
´ xnˆ qEh,∇wyΓ.

The first term vanishes by the single-valuedness of qEh on F0
h. The second

term vanishes by the single-valuedness of p∇wqt on F0
h, which holds since ∇w P

Hpcurl; Ωq and ∇w is a piecewise smooth field (again by [49, Lemma 3]). Finally,400

since w “ 0 on Γ, we have nˆ∇w “ 0 on Γ. So the third term vanishes as well.
Finally, the energy conservation is a natural consequence of the anti-symmetry

of the Poisson bracket. This completes the proof.
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Appendix D. Proof of Lemma Appendix B.1

Let the face F P F0
h be the intersection of K` and K´, and denote by f`

and f´ as the restriction of f on F from K` and K´, respectively. Then

xnˆ a, byBThzΓ “x1,n
` ˆ a` ¨ b` ` n´ ˆ a´ ¨ b´yF0

h

“xJaK, ttbuuyF0
h
´ xJbK, ttauuyF0

h
.

Indeed,

n` ˆ a` ¨ b` ` n´ ˆ a´ ¨ b´

“ n` ˆ a` ¨

ˆ

ttbuu `
b` ´ b´

2

˙

` n´ ˆ a´ ¨

ˆ

ttbuu `
b´ ´ b`

2

˙

“ JaK ¨ ttbuu ` n` ˆ a` ¨
b` ´ b´

2
` n´ ˆ a´ ¨

b´ ´ b`

2

“ JaK ¨ ttbuu ` pb` ˆ n` ` b´ ˆ n´q ¨
ˆ

a`

2
`
a´

2

˙

“ JaK ¨ ttbuu ´ JbK ¨ ttauu.

This completes the proof.405

Appendix E. Proof of Proposition 4.1

Let us prove Proposition 4.1. For the mixed method, we can take xHh “Hh

since Hh P Hpcurl,Ωq. As a consequence, SMh pAh,Hhq “ 0.
For the HDG method, we obtain the result by simply using the expression of

the numerical trace xHh in Table 4, and then recalling that PM is the L2pBThq-410

projection into Mh.
For the DG method, we proceed as follows. By Lemma Appendix B.1 with

a :“ xHh ´Hh and b :“ Ah ´ pAh, we have that

SDGh pAh,Hhq “ ´ xJHhK, ttAhuu ´ pAhyF0
h
´xxHh ´ ttHhuu, JAhKyF0

h

` xnˆ pxHh ´Hhq,Ah ´ pAhyΓ

“` xJHhK,C12JAhK` C22JHhKyF0
h

`xC11JAhK´CJ12JHhK, JAhKyF0
h

` xnˆ p´C11 nˆ pAh ´ pAhq,Ah ´ pAhyΓ

“ xC11 JAhK, JAhKyFh
` xC22 JHhK, JHhKyF0

h
,

by definition of the numerical trace xHh, the definition of J¨K, and that of the
exterior trace of Ah. This completes the proof of Proposition 4.1.

Appendix F. Proof of Lemma 4.1

We want to prove that

xnˆ pδxH˚
h ´ δHhq,Ah ´ pA˚hyBTh

“ xnˆ pxH˚
h ´Hhq, δAh ´ δ pA

˚
hyBTh

.
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For the mixed method, we simply take xHh :“ Hh (since Hh P Hpcurl,Ωq)415

to see that the above equality is trivially satisfied.
For the HDG method, a glance to the definition of the numerical traces pAh

and xHh on Table 4, is enough to convince us that the identity is true for this
method.

For the DG method, we proceed as follows. By Lemma Appendix B.1 with
a :“ δxHh ´ δHh and b :“ Ah ´ pAh, we have that

Φh :“ xnˆ pδxH˚
h ´ δHhq,Ah ´ pA˚hyBTh

“´ xJδHhK, ttAhuu ´ pA˚hyBTh
´ xδxH˚

h ´ ttδHhuu, JAhKyBTh

` xnˆ pδxH˚
h ´ δHhq,Ah ´ pA˚hyΓ

“ xJδHhK,C12JAhK` C22JHhKyF0
h
` xC11JδAhK´CJ12JδHhK, JAhKyF0

h

` xnˆ p´C11 nˆ pδAh ´ δ pA
˚
hq,Ah ´ pA˚hyΓ

“ xC11 JδAhK, JAhKyFh
` xC22 JδHhK, JHhKyF0

h
,

by definition of the numerical traces pAh and xHh, the definition of J¨K, and that420

of the exterior trace of δAh.
On the other hand, By Lemma Appendix B.1 with a :“ xHh ´Hh and

b :“ δAh ´ δ pAh, we have that

Ψh :“ xnˆ pxH˚
h ´Hhq, δAh ´ δ pA

˚
hyBTh

“´ xJHhK, ttδAhuu ´ δ pA
˚
hyBTh

´ xxH˚
h ´ ttHhuu, JδAhKyBTh

` xnˆ pxH˚
h ´Hhq, δAh ´ δ pA

˚
hyΓ

“ xJHhK,C12JδAhK` C22JδHhKyF0
h
` xC11JAhK´CJ12JHhK, JδAhKyF0

h

` xnˆ p´C11 nˆ pAh ´ pA˚hq, δAh ´ δ pA
˚
hyΓ

“ xC11 JAhK, JδAhKyFh
` xC22 JHhK, JδHhKyF0

h
,

by definition of the numerical trace pAh and xHh, the definition of J¨K, and that
of the exterior trace of Ah.

This implies that Φh “ Ψh and completes the proof of Lemma 4.1.

Appendix G. Symplectic integrators425

Appendix G.1. Explicit Partitioned Runge-Kutta methods

In Table G.10, we display the coefficients of the Explicit Symplectic Parti-
tioned Runge-Kutta schemes, of s-stages and p-order, ESPRK(s, p), used in our
computations. In the section of numerical experiments, we refer to them simply
by ESPRK(p).430
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b1 0 . . . 0 b1

b1 b2
. . .

... b1 ` b2
...

...
. . . 0

...

b1 b2 . . . bs

s
ÿ

i“1

bi

b1 b2 . . . bs

0 0 . . . 0 0

b̃1 0
. . .

... b̃1

b̃1 b̃2
. . . b̃1 ` b̃2

...
...

. . . 0 0
...

b̃1 b̃2 . . . b̃s´1 0
s´1
ÿ

i“1

b̃i

b̃1 b̃2 . . . b̃s´1 b̃s

Table G.9: Butcher tableaux of s-stages partitioned Runge-Kutta methods

i bi b̃i
1 7{24 2{3
2 3{4 ´2{3
3 ´1{24 1

i bi b̃i
1 7{48 1{3
2 3{8 ´1{3
3 ´1{48 1
4 ´1{48 ´1{3
5 3{8 1{3
6 7{48 0

i bi b̃i
1 0.1193900292875672758 0.339839625839110000
2 0.6989273703824752308 -0.088601336903027329
3 -0.1713123582716007754 0.5858564768259621188
4 0.4012695022513534480 -0.6030393565364911888
5 0.0107050818482359840 0.3235807965546976394
6 -0.0589796254980311632 0.4423637942197494587

Table G.10: Coefficients of the schemes ESPRK(q, p) schemes. From left to right: ESPRK(3,3)
[55], ESPRK(6,4) [28], and ESPRK(6,5) [42].
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Nédélec edge elements for time-harmonic Maxwell’s equations. J. Comput.605

Math., 27(5):563–572, 2009.

40


	Introduction
	The Hamiltonian structure of Maxwell's equations
	Notation
	Electric and magnetic field formulation.
	Electric field and magnetic vector potential formulation.
	Conservation laws

	The finite element methods for space discretization
	Notation
	The weak formulations
	The numerical traces
	Examples of finite element spaces
	The initial conditions

	Hamiltonian structure of the semidiscrete methods
	The electric and magnetic field formulation
	The electric and magnetic vector potential formulation

	Fully discrete HDG schemes
	Symplectic diagonally implicit Runge-Kutta methods
	Symplectic explicit partitioned Runge-Kutta methods
	Fully discrete HDG schemes for the electric and magnetic vector potential formulation.

	Numerical experiments
	Convergence tests
	Conservation properties

	Extensions
	Other boundary conditions
	Other weak formulations

	Numerical traces of HDG methods
	Proof of Theorem 
	Proof of Corollary 
	Proof of Lemma Appendix  B.1
	Proof of Proposition 4.1
	Proof of Lemma 4.1
	Symplectic integrators
	Explicit Partitioned Runge-Kutta methods


