
Journal of Computational Physics 350 (2017) 951–973
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Symplectic Hamiltonian HDG methods for wave propagation 

phenomena

M.A. Sánchez a,b,∗, C. Ciuca c, N.C. Nguyen d,1, J. Peraire d,1, B. Cockburn a

a School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA
b Institute for Mathematical and Computational Engineering, School of Engineering and Faculty of Mathematics, Pontificia Universidad 
Católica de Chile, Santiago, Chile
c Department of Aeronautics, Imperial College London, London SW7 2AZ, UK
d Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 28 February 2017
Received in revised form 27 July 2017
Accepted 6 September 2017
Available online 11 September 2017

Keywords:
Finite element methods
Discontinuous Galerkin methods
Hybrid/mixed methods
Acoustic wave equation
Hamiltonian systems
Symplectic time integrators
Energy conservation

We devise the first symplectic Hamiltonian hybridizable discontinuous Galerkin (HDG) 
methods for the acoustic wave equation. We discretize in space by using a Hamiltonian 
HDG scheme, that is, an HDG method which preserves the Hamiltonian structure of 
the wave equation, and in time by using symplectic, diagonally implicit and explicit 
partitioned Runge–Kutta methods. The fundamental feature of the resulting scheme is 
that the conservation of a discrete energy, which is nothing but a discrete version of 
the original Hamiltonian, is guaranteed. We present numerical experiments which indicate 
that the method achieves optimal approximations of order k + 1 in the L2-norm when 
polynomials of degree k ≥ 0 and Runge–Kutta time-marching methods of order k + 1 are 
used. In addition, by means of post-processing techniques and by increasing the order of 
the Runge–Kutta method to k +2, we obtain superconvergent approximations of order k +2
in the L2-norm for the displacement and the velocity. We also present numerical examples 
that corroborate that the methods conserve energy and that they compare favorably with 
dissipative HDG schemes, of similar accuracy properties, for long-time simulations.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we devise symplectic Hamiltonian hybridizable discontinuous Galerkin (HDG) methods for numerically 
solving the wave equation

ü(t) = div(κ∇u(t)) + f (t) in �, ∀t ≥ 0, (1a)

ακ∇u(t) · n + βu(t) = g(t) on � := ∂�, ∀t ≥ 0, (1b)

u(0) = u0, in �, t = 0, (1c)

u̇(0) = v0 in �, t = 0, (1d)
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on an open and bounded polygonal domain � ⊂ R
d with Lipschitz continuous boundary � := ∂�. We assume that the 

scalar coefficient κ = κ(x) ∈ L∞(�), satisfies κ ≥ κ0 > 0 almost everywhere, and the source term f (t) ∈ L2(�) for all 
t ≥ 0. The problem prescribes Robin boundary conditions with coefficients α, β varying on ∂�, and the source term 
g(t) ∈ H1/2(∂�), for all t ≥ 0. Initial conditions are also given, with initial data u0, v0 ∈ L2(�). We are particularly in-
terested in the case in which the wave equation system (1) is autonomous, that is, when the source terms are f ≡ 0
and g ≡ 0. Under these conditions, the energy is conserved in time which fuels the interest in the development of non-
dissipative methods numerical methods, that is, of methods which also conserve a discrete version of the energy. Since 
most, if not all, HDG methods proposed so far are actually dissipative, it was believed that non-dissipative HDG methods 
did not exist. However, here we show how to devise a large class of non-dissipative HDG methods for the wave equation 
and argue that methods with similar conservation properties can be obtained by using mixed and standard DG methods as 
well.

The semi-discrete numerical scheme presented in this paper belongs to the class of HDG methods. These methods were 
first introduced in [12] for diffusion problems, and since then they have gained notorious attention, accumulating exten-
sive theoretical and experimental results for a wide variety of partial differential equations. Their popularity is explained 
mainly by two properties, the significantly smaller number of globally-coupled unknowns compared to DG methods, and 
the enhanced convergence or superconvergence property of their approximations; see the recent reviews in [8,7].

The HDG methodology has also been applied to wave propagation problems. First, in [26] a semi-discrete HDG method 
coupled with diagonally implicit Runge–Kutta time-marching method was applied to the acoustic wave propagation and 
elastodynamics. The fully discrete method was implicit and high-order accurate with optimal rates of convergence, as their 
numerical experiments showed. The semi-discrete scheme, based on the velocity and stress variables, was later analyzed 
in [13], where the authors proved optimal L2-error estimates for the velocity and stress approximations. They also proved 
superconvergence properties and showed a local post-processing technique that gives a superconvergent approximation to 
the displacement of order k + 2. More recently, an explicit method, based on the same semi-discrete formulation, was 
introduced in [31] which displayed similar convergence properties. Unfortunately, these methods are dissipative and are not 
suitable for long-term simulations.

Many finite element methods have been applied to wave propagation problems. In particular, mixed and discontinu-
ous Galerkin (DG) methods have shown certain advantages in comparison with continuous finite element methods. Since 
the introduction of the mixed method for the velocity-stress formulation in [19], many others have considered this first 
order system for their discretization. For instance, space–time DG methods [18,25,27], staggered DG methods [4,5], local 
discontinuous Galerkin methods [32], and symmetric interior penalty methods [20]. In particular, in [20] the authors proved 
optimal rates of convergence in the L2-norm. An alternative formulation for the displacement and the stress has also been 
discretized using mixed methods in [16]. They obtained optimal L2-errors estimates of the semi-discrete scheme. For a 
complete description and comparison of these methods see [13].

In spite of the optimal convergence properties (or quasi-optimal in some cases), most of the schemes mentioned above 
might not be suitable for long-time computations, due to their energy-dissipative characteristics. Indeed, it has been ob-
served that dissipative numerical schemes suffer a loss of accuracy for long-time computations, despite their optimal error 
estimates. The exceptions in the schemes mentioned above are the energy-conserving schemes introduced in [4,5], [23] and 
[32]. The proof of the energy-conservative properties in these cases uses features of the respective methods. Alternatively, 
there are numerical methods that derive the energy conservation from the structure of the discretization. They devise a 
spatial discretization satisfying a discrete Hamiltonian structure, and prove the conservation of energy by simply applying 
the theory of finite dimensional Hamiltonian systems. Among these methods we found, the non-dissipative DGTD method 
in [28], and the mimetic finite difference methods in [17]. More recently, in [14], a semidiscrete, energy-conservative HDG 
was proposed. Since the method keeps the second-order time derivative, it was combined with a Stormer–Numerov time-
marching method. The resulting method preserves an approximation to the energy under a suitable CFL condition. In this 
paper, we keep the same semidiscrete HDG discretization, but introduce the velocity as a new unknown. This allows us 
to show that the Hamiltonian structure of the wave equation is preserved under discretization and that, as a consequence, 
when symplectic time-marching schemes are used, the discrete Hamiltonian of the semidiscrete scheme, the discrete energy 
in our case, is maintained constant in time.

Thus, the numerical methods presented in this paper have two fundamental properties. First, the L2-errors of the ap-
proximations for the displacement, velocity, and stress (or negative gradient) variables converge optimally, with an order 
of k + 1 when piecewise polynomials of degree k are used, and a superconvergence order of k + 2 is achieved for the L2

errors of the post-processed approximations for the displacement and velocity variables. Second, the discrete Hamiltonian of 
the space discretization, which is nothing but the discrete energy of the space discretization, remains constant in time. We 
focus on symplectic implicit and explicit Runge–Kutta methods of orders consistent with the superconvergence rate k + 2. 
To the best of our knowledge, these are the first symplectic Hamiltonian HDG schemes.

The paper is structured as follows. In Section 2, we introduce the Hamiltonian formulation of the wave equation and 
describe its HDG discretization. We then present the main result of the paper, the preservation of the Hamiltonian struc-
ture of the wave equation under the HDG discretization. In Section 3, we present the high-order accurate symplectic 
time-integrators that complete our fully discrete schemes. First, we introduce symplectic diagonally implicit Runge–Kutta 
methods, and then symplectic explicit partitioned Runge–Kutta methods. In both cases, we outline the resulting pseudo-
algorithms. We then define the post-processing techniques employed to obtain superconvergent approximations in Sec-
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tion 2.4. In Section 4, we present numerical evidence corroborating the expected convergence properties of the schemes 
and displaying their conservative properties. Finally, in Section 5, we discuss the extension of our ideas to mixed and DG 
methods, and briefly discuss future work.

2. The Hamiltonian HDG scheme

In this section, we introduce the semi-discrete Hamiltonian HDG method approximating solutions of the wave equation 
under consideration; we follow [14]. We then prove that this numerical scheme preserves the Hamiltonian structure of the 
continuous problem. Because of this property, which turns out to be the cornerstone in the construction of fully discrete 
energy-conservative schemes, the method is said to be a Hamiltonian method.

We begin by rewriting the second order partial differential equation (1a) into a Hamiltonian system for the displacement 
u(t) and the velocity v(t) variables

u̇(t) = v(t) in �, ∀t ≥ 0, (2a)

v̇(t) = f (t) − ∇ · q(t) in �, ∀t ≥ 0, (2b)

q(t) := −κ∇u(t) in �, ∀t ≥ 0. (2c)

These are subject to Robin boundary conditions,

αq(t) · n + βu(t) = g(t) on �, ∀t ≥ 0, (3)

and the initial conditions,

u(0) = u0, v(0) = v0 in �, t = 0. (4)

The total Hamiltonian function associated with (2) is given by

H(u, v, t) =
∫
�

(
1

2
v(t)2 + 1

2
κ−1q(t) · q(t) − f (t)u(t)

)
dx −

∫
∂�

α−1 g(t)u(t)ds. (5)

If f (t) = g(t) = 0 then it can be easily shown that the Hamiltonian function satisfies

H(u(t), v(t)) = H(u(0), v(0)) = H(u0, v0) ≥ 0, ∀ t. (6)

The quantity E(t) ≡ H(u(t), v(t)) is called the energy of the Hamiltonian system (2), which is conserved for all time.
Next, we define the Hamiltonian HDG method based on the Hamiltonian system (2). We first introduce some standard 

discontinuous Galerkin notation.

2.1. Notation

Let �h be a conforming simplicial triangulation of � ⊂ R
d , i.e., the elements of �h are segments for d = 1, triangles 

for d = 2, and tetrahedra for d = 3. We denote by Eh the set of faces (d = 3, respectively edges d = 2 or nodes d = 1) of 
the triangulation (or skeleton of the triangulation). We assume that the triangulation �h satisfies standard finite element 
assumptions, see [6] and [3].

For a domain K ∈ R
d we let (·, ·)K to be the volume integral of the inner product for functions u, v ∈ L2(K ) and q, r ∈

[L2(K )]d , i.e.,

(u, v)K :=
∫
K

uv dx, (q, r)K :=
∫
K

q · r dx. (7)

Similarly, for a domain F ⊂R
d−1 the product is denoted by 〈·, ·〉F , i.e., for μ, η ∈ L2(F ) we have

〈μ,η〉F :=
∫
F

μηds. (8)

Now, by means of the previous definitions, we introduce the following products over the triangulation and its skeleton

(u, v)�h :=
∑

K∈�h

(u, v)K , (q, r)�h :=
∑

K∈�h

(q, r)K ,

〈·, ·〉∂ K :=
∑

F∈∂ K∩Eh

〈·, ·〉F , 〈u, r · n〉∂�h :=
∑

K∈�h

〈u, r · n〉∂ K ,

〈u, v〉∂�h :=
∑

K∈�h

〈u, v〉∂ K , 〈u, v〉∂�h\� :=
∑

K∈�h

〈u, v〉∂ K\(∂ K∩�).
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Furthermore, our numerical methods seek finite element approximations to the displacement u, the velocity v , and the 
flux q in the domain, and the displacement u on the faces of the triangulation. These numerical approximations be defined 
on the following discontinuous piecewise polynomial spaces:

V h := {r ∈ [L2(�)]d : r|K ∈ V (K ),∀K ∈ �h},
Wh := {w ∈ L2(�) : w|K ∈ W (K ),∀K ∈ �h},
Mh := {μ ∈ L2(Eh) : μ|F ∈ M(F ),∀F ∈ Eh}.

For the sake of simplicity, we take the local spaces as V (K ) := [Pk(K )]d , W (K ) := Pk(K ), and M(F ) := Pk(F ), where 
Pk(D) denotes the space of polynomials of degree at most k on a domain D . In this case, the definition of the HDG 
projection is as follows. Given q ∈ [L2(�)]d and u ∈ L2(�), the HDG projection (�q, 	u) is defined locally for each simplex 
K ∈ �h , by the solution of the following system of equations:

(�q, r)K = (q, r)K ∀r ∈ Pk−1(K ),

(	u, w)K = (u, w)K ∀w ∈ Pk−1(K ), (9)

〈�q · n + τ	u,μ〉∂ K = 〈q · n + τu,μ〉∂ K ∀μ ∈ ∪F∈∂ KPk(F ),

for τ a stabilization parameter.
The above choice of elements and local spaces is convenient for its simplicity but is certainly not necessary. Other choices 

of elements and local spaces can be obtained by using the theory of M-decompositions, see [11,9,10].
Now, we are in position to introduce the Hamiltonian HDG scheme.

2.2. The semi-discrete HDG formulation

We discretize the Hamiltonian form (2) of the acoustic wave equation using HDG methods. Note that, this HDG formula-
tion is slightly different from the one introduced in [14], where the velocity variable is not approximated directly. However, 
the convergence results derived in [14] can be applied to this case. We define the semi-discrete HDG method as follows: 
find (uh(t), vh(t), qh(t), ̂uh(t)) ∈ Wh × Wh × V h × Mh , such that

(u̇h(t), w)�h = (v(t), w)�h (10a)

(v̇h(t), w)�h = (qh(t),∇w)�h − 〈̂qh(t) · n, w〉∂�h + ( f (t), w)�h (10b)

(κ−1qh(t), r)�h = (uh(t),∇ · r)�h − 〈̂uh(t), r · n〉∂�h (10c)

〈̂qh(t) · n,μ〉∂�h\� = 〈αq̂h(t) · n − βûh(t) + g(t),μ〉� (10d)

q̂h(t) · n := qh(t) · n + τ (uh(t) − ûh(t)) on Eh, (10e)

for all w ∈ Wh , v ∈ V h and μ ∈ Mh , and for all t ≥ 0. Moreover, the initial conditions of the system (uh(0), vh(0),

qh(0), ̂uh(0)) are prescribed by suitable projections to the finite element spaces of the initial data (u0, v0). Specifically, 
(uh(0), qh(0), ̂uh(0)) ∈ Wh × V h × Mh are defined as the solution of the system:

(κ−1qh(0), r)�h − (uh(0),∇ · r)�h + 〈̂uh(0), r · n〉∂�h = 0 ∀r ∈ V h (11a)

−(qh(0),∇w)�h + 〈̂qh(0) · n, w〉∂�h = (−∇ · (κ∇u0), w)�h ∀w ∈ Wh, (11b)

〈̂qh(0) · n,μ〉∂�h\� + 〈−αq̂h(0) · n + βûh(0),μ〉� = 〈g(0),μ〉� ∀μ ∈ Mh, (11c)

q̂h(0) · n = qh(0) · n + τ (uh(0) − ûh(0)) on Eh, (11d)

and vh(0) ∈ Wh is given by

((q̇)h(0), vh(0)) := (�(−κ∇v0),	(v0)), (12)

where (�q, 	u) ∈ V h × Wh is the auxiliary HDG-projection defined in (9).

Remark 2.1. The particular choice of the initial condition (11) of the HDG method is guided by the analysis in [14]. An 
interesting question is if we can replace this initial condition by other projections. For instance, by the L2-projection or by 
the HDG projections of the initial data. We explore these options in Section 4, finding evidence of loss of accuracy for the 
L2 projection.
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2.3. The Hamiltonian structure of the HDG formulation

Next, we prove that the Hamiltonian structure of the wave equation is preserved after the discretization with the HDG 
method. To state the result, we need introduce some notation. For the sake of simplicity, and without loss of generality, we 
consider an orthonormal basis {φi}i∈J of the finite element space Wh , that is, (φi, φ j)�h = δi, j , where δi, j is the Kronecker 
delta function. Then, we define the degrees of freedom of the approximations uh(t) and vh(t), respectively ui(t) and vi(t), 
for i ∈J , by

uh(t, x) =
∑
i∈J

ui(t)φi(x), vh(t, x)=
∑
i∈J

vi(t)φi(x).

We can now state our main result.

Theorem 1. Set pi := vi and qi := ui , for i ∈J , and H(p, q, t) := Hh(uh, vh, t) where

Hh(uh, vh, t) = 1

2
(vh, vh)�h + 1

2
(κ−1qh,qh)�h + 1

2
〈τ (uh − ûh), uh − ûh〉∂�h −( f (t), uh)�h −〈( 1

α
)g(t), ûh〉∂�h . (13)

Here qh and ̂uh(t) are determined by the HDG scheme in terms of uh, by means of equations (10c), (10d) and (10e). Then, the HDG 
method (10) is equivalent to the following Hamiltonian system:

ṗi = −∂

∂qi
H(p,q, t) i ∈ J ,

q̇i = ∂

∂pi
H(p,q, t) i ∈ J .

This result states that the semi-discrete HDG method (10) has a Hamiltonian structure. A consequence of this fact is that 
the discrete Hamiltonian, which in this case is also a discrete energy, remains constant in time whenever Hh(uh, vh, t) =
Hh(uh, vh), that is, whenever f and g are independent of time. Indeed, in such a case we have that

d

dt
Hh(uh, vh) = Ḣ(p,q) = ṗi

∂H
∂pi

+ q̇i
∂H
∂qi

= −∂H
∂qi

∂H
∂pi

+ ∂H
∂pi

∂H
∂qi

= 0.

Another consequence is that this spatial discretization is a proper pair for symplectic time integrators, see [30,21], as the 
resulting fully discrete method always maintain a modified Hamiltonian constant in (discrete) time. Moreover, since our 
Hamiltonian is quadratic, exact Hamiltonian conservation is achieved by means of Runge–Kutta methods that preserve 
quadratic invariants. These methods are symplectic [2].

Let us prove Theorem 1.

Proof. Let us prove the first identity. We have

ṗi = v̇ i by def. of pi ,

= (v̇h, φi)�h by def. of φi ,

= (∇φi,qh)�h − 〈φi, q̂h · n〉∂�h + (φi, f (t))�h by (10b),

= − (φi,∇ · qh)�h − 〈φi, (̂qh − qh) · n〉∂�h + (φi, f (t))�h

= − (
∂

∂ui
uh,∇ · qh)�h − 〈 ∂

∂ui
uh, (̂qh − qh) · n〉∂�h + (

∂

∂ui
uh, f (t))�h by def. of φi ,

= − (
∂

∂ui
uh,∇ · qh)�h − 〈 ∂

∂ui
(uh − ûh), (̂qh − qh) · n〉∂�h − 〈 ∂

∂ui
ûh, (̂qh − qh) · n〉∂�h

+ (
∂

∂ui
uh, f (t))�h

= − (
∂

∂ui
uh,∇ · qh)�h − 〈 ∂

∂ui
(uh − ûh), (̂qh − qh) · n〉∂�h + 〈 ∂

∂ui
ûh,

β

α
ûh − 1

α
g(t)〉�

+ 〈 ∂

∂ui
ûh,qh · n〉∂�h + (

∂

∂ui
uh, f (t))�h by (10d),

= − (
∂

∂ui
uh,∇ · qh)�h + 〈 ∂

∂ui
ûh,qh · n〉∂�h − 〈 ∂

∂ui
(uh − ûh), (̂qh − qh) · n〉∂�h

+ 〈 ∂
ûh,

β
ûh − 1

g(t)〉� + (
∂

uh, f (t))�h
∂ui α α ∂ui
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= − (
∂

∂ui
uh,∇ · qh)�h + 〈 ∂

∂ui
ûh,qh · n〉∂�h − 〈 ∂

∂ui
(uh − ûh), τ (uh − ûh)〉∂�h

+ 〈 ∂

∂ui
ûh,

β

α
ûh − 1

α
g(t)〉� + (

∂

∂ui
uh, f (t))�h by (10e),

= − (
∂

∂ui
qh,qh)�h − 〈 ∂

∂ui
(uh − ûh), τ (uh − ûh)〉∂�h

+ 〈 ∂

∂ui
ûh,

β

α
ûh − 1

α
g(t)〉� + (

∂

∂ui
uh, f (t))�h by (10c),

= − ∂

∂ui
Hh(uh, vh, t) = −∂

∂qi
H(p,q, t),

by the identity

∂

∂ui
Hh(uh, vh, t) = (κ−1 ∂

∂ui
qh,qh)�h + 〈 ∂

∂ui
(uh − ûh), τ (uh − ûh)〉∂�h

− ( f (t),
∂uh

∂ui
)�h − 〈( 1

α
)g(t),

∂ ûh

∂ui
〉∂�h ,

and the definition of H(p, q, t). This proves the first identity.
The second identity is simpler to prove. Indeed, we have

q̇i = u̇i by def. of qi ,

= vi by def. of vi ,

= (φi, vh)�h by def. of φi ,

= (
∂

∂vi
vh, vh)�h

= ∂

∂vi
Hh(uh, vh, t) = ∂

∂pi
H(p,q, t),

by the identity

∂

∂vi
Hh(uh, vh, t) = (

∂

∂vi
vh, vh)�h ,

and the definition of H(p, q, t). This completes the proof. �
2.4. Post-processing

Next, we complete the presentation of the HDG methods by describing standard post-processing techniques for the 
displacement and velocity approximations.

2.4.1. Standard local post-processing of the displacement
We first consider a standard local post-processing for the displacement with the aim of improving the accuracy of the 

numerical approximation. Given the approximations uh, qh, ̂uh for a time T , we define, on every simplex K ∈ Th , a new 
approximate displacement u∗

h|K ∈Pk+1(K ) to satisfy(∇un ∗
h ,∇w

)
K = (

qn
h,∇w

)
K , ∀ w ∈ Pk+1(K ),(

un ∗
h ,1

)
K = (

un
h,1

)
K .

(14)

The post-processing (14), requires us to solve a linear system whose size is the dimension of the space Pk+1(K ).

2.4.2. Post-processing of the velocity
Given the velocity approximation vh for a time T , in order to obtain a post-processed approximation v∗

h , we first compute 
an approximation ph ∈Pk(K ) to the velocity gradient p ≡ ∇v , by solving the following system

(ph, r)�h − 〈̂vh, r · n〉∂�h = −(vh,∇ · r)�h ,

〈ph · n,μ〉∂�h\� + 〈τ v̂h,μ〉∂�h\� + 〈̂vh,μ〉� = 〈τ vn
h,μ〉∂�h\� + 〈ġ(T ), 〉�

(15)

for all (v, μ) ∈ V h × Mh . We then find vn ∗ ∈Pk+1(K ) such that
h
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(∇v∗
h,∇w)K = (ph,∇w)K , ∀ w ∈ Pk+1(K ),

(v∗
h,1)K = (vh,1)K .

(16)

This post-processing step is similar to (14). The post-processing of the velocity is more expensive than that of the displace-
ment because it requires the solution of the global system (15).

Note that (15) only works for the boundary condition u = g on �.

2.5. Error estimates

We end this Section by recalling some convergence properties of the semidiscrete method just introduced. To do this, we 
use the fact that the semi-discrete HDG formulation defined in (10) is equivalent to the semi-discrete formulation introduced 
in [14], with the extra velocity variable in our case. Therefore, our formulation inherits the convergence properties proved 
in [14]. We state these convergence results and refer to [14] for their proof, see Theorem 2.3 and Corollary 2.4 therein. Note 
that the theoretical results in [14] only apply to the displacement post-processing. There is not theoretical result for the 
post-processing of the velocity only, as we see in Section 4, numerical evidence.

Theorem 2. Suppose that the initial data (uh(0), vh(0)) is defined by (11) and (12). If ü(t) ∈ Hk+1(�) for all t ∈ [0, T ], then, there 
exists a constant C > 0, independent of h, such that

‖u(T ) − uh(T )‖L2(�) ≤ Chk+1,

‖q(T ) − qh(T )‖L2(�) + ‖v(T ) − vh(T )‖L2(�) ≤ Chk+1.

Moreover, consider the post-processing displacement u∗
h defined in Section 2.4 for k ≥ 1, and assume that the following regularity result 

holds: there exists a constant C > 0 such that

‖η‖H2(�) ≤ C‖∇ · (κ∇η)‖L2(�),

for all η ∈ H1
0(�) such that ∇ · (κ∇η) ∈ L2(�). Then,

‖u(T ) − u∗
h(T )‖L2(�) ≤ Chk+2,

for a constant C > 0 independent of h. Note that the constants in the errors estimates depend on T , the stabilization parameter τ , and 
the exact solution.

Observe that Theorem 2 provides optimal error estimates of order k + 1 for the semi-discrete HDG approximations of 
the displacement, velocity, and negative gradient of the displacement, as well as, a superconvergent rate of order k + 2 for 
the error of the post-processed displacement approximation. In fact, motivated by this superconvergence, we seek high-
order accurate symplectic time stepping schemes, matching the k + 2 order of the spatial discretization. With this aim, in 
the following section, we introduce fully discrete schemes based on symplectic diagonally implicit and explicit partitioned 
Runge–Kutta methods for temporal discretizations.

3. Symplectic Hamiltonian HDG methods

In this section, we exploit the Hamiltonian structure of the semi-discrete HDG scheme (10) by pairing it with symplectic 
time integrators. The main property of these methods is that they preserve the symplecticity of the flow of Hamiltonian 
systems, which implies some desirable conservation properties such as the conservation of a modified Hamiltonian. For 
thorough overviews of symplectic time integrators see [30] and [21]. In principle, there is no restriction in terms of what 
symplectic integrator we can use. As mentioned earlier, in order to achieve accuracy of hk+2, we naturally seek time stepping 
schemes with the same order (tk+2). This is one of our main criteria for choosing the symplectic Runge–Kutta formulae. 
A second criterion, is that Symplectic Runge–Kutta methods are constructed starting from methods with vanishing stability 
matrix (see (19)). Methods with this property preserve quadratic invariants (see [15]) and are proven to be symplectic [2]. In 
particular, since the discrete Hamiltonian is a quadratic first integral of the semidiscrete HDG scheme for the wave equation, 
symplectic Runge–Kutta methods applied to this problem give exact conservation of the discrete Hamiltonian.

We present implicit and explicit schemes. For an implicit approach, we implement Symplectic Diagonally Implicit Runge–
Kutta methods in Section 3.1 and denote these schemes by HDG-SDIRK. For general Hamiltonian equations, a well-known 
result is that explicit Runge–Kutta methods are not symplectic [21]. However, for cases where the Hamiltonian function is 
separable, which is the case under consideration, it is possible to derive explicit symplectic integrators using partitioned 
Runge–Kutta methods. This resulting numerical method is called HDG-ESPRK. In addition, we also provide a table of the 
CFLL2 condition of these schemes.

In the following subsections, we present these fully discrete schemes. In order to illustrate the implementation ideas, 
we present for each case a one step method. For the fully implicit scheme (HDG-SDIRK), we write down the symplectic 
midpoint rule, whilst for the fully explicit scheme (HDG-ESPRK), we show the symplectic Euler method. These two basic 
symplectic methods are widely known, and their properties has been studied and contrasted with their non-symplectic 
variants. See [21] for illustrations of these comparisons.
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3.1. Implicit schemes: HDG-SDIRK methods

As a first example of symplectic diagonally implicit Runge–Kutta methods, we consider the implicit midpoint scheme. 
Let us denote z(t) = (p(t), q(t))t and f(t, z) = (∂H(t, p, q)/∂q, −∂H(t, p, q)/∂p)t . Then, we rewrite the Hamiltonian system of 
Theorem 1 as follows

dz

dt
= f(t, z). (17)

For a given time level tn , with time step tn , the implicit midpoint scheme for (17) reads as follows

zn+1 = zn + tnf(tn + tn

2
,

zn+1 + zn

2
),

for zn = z(tn). Now we apply it to our scheme. Assume that we know the values of un
h = uh(tn), vn

h = vh(tn), qn
h = qh(tn)

and ̂un
h = ûh(tn). Then, un+1

h , vn+1
h , qn+1

h , ̂un+1
h are determined by the solution of the system

(un+1
h , w)�h − tn

2
(vn+1

h , w)�h = (un
h, w)�h + tn

2
(vn

h, w)�h ,

(vn+1
h , w)�h − tn

2

(
(qn+1

h ,∇w)�h − 〈̂qn+1
h · n, w〉∂�h

)
= (vn

h, w)�h + tn

2

(
(qn

h,∇w)�h − 〈̂qn
h · n, w〉∂�h

)
+ tn( f (tn + tn

2
), w)�h

(κ−1qn+1
h , r)�h − (un+1

h ,∇ · r)�h + 〈̂un+1
h , r · n〉∂�h = 0

〈̂qn+1
h · n,μ〉∂�h\� = 〈αq̂n+1

h · n − βûn+1
h + g(tn+1),μ〉�

q̂n+1
h · n = qn+1

h · n + τ (un+1
h − ûn+1

h ),

for w ∈ Wh , r ∈ V h , and μ ∈ Mh . The structure of the higher-order schemes described next is the same as the one above.
We now review the diagonally implicit Runge–Kutta schemes. The s-stage Diagonally Implicit Runge–Kutta (DIRK) method 

for the ODE system (17) is the following

zn+1 = zn + tn
s∑

i=1

bi f(t
n + citn, yi), (18a)

yi − tnaii f(yi) = zn + tn
i−1∑
j=1

aij f(t
n + citn, y j), 1 ≤ i ≤ s, (18b)

where the coefficients aij, bi, ci , for i, j = 1, . . . , s, are given in the form of the following Butcher tableau:

a11 0 . . . 0 c1

a21 a22

. . .
.
.
. c2

.

.

.

.

.

.
. . . 0

.

.

.

as1 as2 . . . ass cs

b1 b2 . . . bs

The properties of a DIRK scheme (simplecticity, consistency, accuracy, and stability) are completely determined by the 
parameters b j , aij . We are particularly interested in the class of symplectic DIRK schemes. A characterization of these 
schemes (see [21]) is given by the following equation for the coefficients

bib j − biai j − b jai j = 0, 1 ≤ i, j ≤ s. (19)

This formula yields, in the case of DIRK schemes, to Butcher tableaux of the form:

b1/2 0 . . . 0 b1/2

b1 b2/2
. . .

.

.

. b1 + b2/2
.
.
.

.

.

.
. . . 0

.

.

.

b1 b2 . . . bs/2
∑s−1

i=1 bi + bs/2
b1 b2 . . . bs
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Algorithm 1: HDG-SDIRK.
Input : (un

h, vn
h, qn

h, ̂un
h)

Output: (un+1
h , vn+1

h , qn+1
h , ̂un+1

h )

1 Initialize (un+1
h , vn+1

h , qn+1
h , ̂un+1

h ) ← (un
h, vn

h, qn
h, ̂un

h);
2 for i = 1 to s do

3 ũn,i
h ← dii un

h − ∑i−1
j=1 dij(un, j

h − un
h);

4 ṽn,i
h ← dii vn

h − ∑i−1
j=1 dij(vn, j

h − un
h);

5 (un,i
h , vn,i

h , qn,i
h , ̂un,i

h ) ← Solve system (21) for (ũn,i
h , ̃vn,i

h );

6 un+1
h ← un+1

h + bi
∑i

j=1 dij(un, j
h − un

h);

7 vn+1
h ← vn+1

h + bi
∑i

j=1 dij(vn, j
h − un

h);

8 qn+1
h ← qn+1

h + bi
∑i

j=1 dij(qn, j
h − qn

h);

9 ûn+1
h = ûn+1

h + bi
∑i

j=1 dij (̂un, j
h − ûn

h);

10 end

11 return (un+1
h , vn+1

h , qn+1
h , ̂un+1

h )

From the implementation viewpoint, it is convenient to rewrite the DIRK scheme (18) into the following system:

zn+1 = zn +
s∑

i=1

bi

i∑
j=1

dij(y j − zn) (20a)

diiyi − tnf(yi) = diiz
n −

i−1∑
j=1

dij(y j − zn), 1 ≤ i ≤ s. (20b)

Here dij is the inverse of the matrix aij . Concretely, system (20b) is written as follows

dii(un,i
h , w)�h − tn(vn,i

h , w)�h = (ũi
h, w)�h

dii(vn,i
h , w)�h − tn

(
(qn,i

h ,∇w)�h − 〈̂qn,i
h · n, w〉∂�h

)
= (ṽ i

h, w)�h + tn( f (tn + citn), w)�h

(κ−1qn,i
h , r)�h + 〈̂un,i

h , r · n〉∂�h − (un,i
h ,∇ · r)�h = 0 (21)

〈̂qn,i
h · n,μ〉∂�h\� = 〈αq̂n,i

h · n − βûn,i
h + g(tn + citn),μ〉�

q̂n,i
h · n = qn,i

h · n + τ (un,i
h − ûn,i

h ),

for all w ∈ Wh , r ∈ V h , μ ∈ Mh , and where

ũi
h = diiu

n
h −

i−1∑
j=1

dij(un, j
h − un

h), ṽ i
h = dii vn

h −
i−1∑
j=1

dij(vn, j
h − vn

h) (22)

for i = 1, . . . , s. Thus, the HDG-SDIRK method can be outlined as it is shown in Algorithm 1.

3.2. Explicit scheme: HDG-ESPRK methods

We now consider fully explicit schemes based on partitioned Runge–Kutta methods. Similarly to the previous section, 
we illustrate the schemes with a one-stage partitioned Runge–Kutta method, the symplectic Euler method. For a given time 
level tn , with time step tn , assume that we know the values of un

h = uh(tn), vn
h = vh(tn), qn

h = qh(tn) and ̂un
h = ûh(tn). Then, 

un+1
h , vn+1

h , qn+1
h , ̂un+1

h are determined by the solution of the system

(vn+1
h , w)�h = (vn

h, w)�h + tn (
(qn

h,∇w)�h + 〈̂qn
h · n, w〉∂�h

) − tn( f (tn), w)�h

(un+1
h , w)�h = (un

h, w)�h + tn(vn+1
h , w)�h

(κ−1qn+1
h , r)�h + 〈̂un+1

h , r · n〉∂�h = (un+1
h ,∇ · r)�h

〈̂qn+1
h · n,μ〉∂�h\� = 〈αq̂n+1

h · n − βûn+1
h g(tn + tn),μ〉�

We now consider s-stages partitioned Runge–Kutta methods applied to the Hamiltonian system of Theorem 1. These 
methods have the following form:
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pn+1 = pn +
∑

i

biki, qn+1 = qn +
∑

i

b̃ik̃i

ki = − ∂

∂q
H(tn + citn,pn,i,qn,i), k̃i = ∂

∂p
H(tn + c̃itn,pn,i,qn,i), i = 1, . . . . , s, (23)

pn,i = pn + t
s∑

j=1

aijk j, qn,i = qn + tn
s∑
j

ãi jk̃ j, i = 1, . . . . , s,

where the coefficients on the left, aij , b j , and the coefficients on the right, ãi j, ̃b j , determine two distinct Runge–Kutta 
methods. In addition, under the assumption of separability of the Hamiltonian, the partitioned Runge–Kutta method (23) is 
symplectic if the coefficients satisfy

biãi j + b̃ jai j − b jb̃ j = 0, i, j = 1, . . . , s. (24)

We observe that, although symplectic Euler can be written as a partitioned Runge–Kutta method, it does not satisfy condi-
tion (24). More precisely, symplectic Euler does not preserve quadratic invariants. Now, using the structure of the partitioned 
Runge–Kutta method (23), it is possible to devise fully explicit schemes with combinations of, for example, diagonally 
implicit and explicit Runge–Kutta methods. Specifically, let us consider a diagonally implicit Runge–Kutta scheme with co-
efficients aij, b j , and an explicit Runge–Kutta scheme with coefficients ãi j, ̃b j , i.e., these coefficients satisfy

aij = 0, i < j, and ãi j = 0, i ≤ j, j = 1, . . . , s. (25)

For this case, the symplecticity condition (24) becomes

aij = b j, i ≥ j, and ãi j = b̃ j, i > j, j = 1, . . . , s. (26)

Thus, the Butcher tableaux associated with these schemes have the following structure

b1 0 . . . 0 b1/2

b1 b2

. . .
.
.
. b1 + b2

.

.

.

.

.

.
. . . 0

.

.

.

b1 b2 . . . bs
∑s

i=1 bi

b1 b2 . . . bs

0 0 . . . 0 0

b̃1 0
. . .

.

.

. b̃1

b̃2 b̃2

. . . b̃1 + b̃2

.

.

.

.

.

.
. . . 0 0

.

.

.

b̃1 b̃2 . . . b̃s−1 0
∑s−1

i=1 b̃i

b̃1 b̃2 . . . b̃s−1 b̃s

We now discuss in more detail the implementation of these methods to the HDG semi-discrete scheme (10). Observe 
that, considering the symplecticity condition (26) (equivalently the structure of the coefficients given in the table above), 
the symplectic partitioned Runge–Kutta scheme reads as follows:

pn,i = pn + t
i∑

j=1

bijk j, qn,i = qn + tn
i−1∑

j

b̃i jk̃ j,

ki = − ∂

∂q
H(tn + citn,qn,i), k̃i = ∂

∂p
H(tn + citn,pn,i),

for i = 1, . . . , s, and hence obtaining pn+1 = pn,s and qn+1 = qn,s . The scheme then is fully explicit, and in terms of our HDG 
method is formulated as follows:

(vn,i
h , w)�h = (vn,i−1

h , w)�h + bitn
(
(qn,i−1

h ,∇w)�h + 〈̂qn,i−1
h · n, w〉∂�h

)
− tnbi( f (tn + citn), w)�h (27)

(un,i
h , w)�h = (un,i−1

h , w)�h + b̃itn(vn,i
h , w)�h (28)

Observe that, although the scheme is explicit for vn,i
h and un,i

h , we still need to solve for qn,i
h and ûn,i

h in terms of un,i
h , in 

order to compute the next stage. In fact, this dependence is given by equations (10c), (10d) and (10e). Therefore, in order 
to implement the HDG-ESPRK we need to solve for a given uh the following system for qh and ̂un,i

h

(κ−1qn,i
h , r)�h + 〈̂un,i

h , r · n〉∂�h = (un,i
h ,∇ · r)�h

〈qn,i
h · n − τ ûn,i

h ,μ〉∂�h\� − 〈α(qn,i
h · n − τ ûn,i

h ) − βûn,i
h ,μ〉� = 〈ατun,i

h + g(tn + c̃itn),μ〉�
(29)

for all r ∈ V h and μ ∈ Mh . Only once qn,i
h and ̂un,i

h are computed, we can proceed to the next stage. Observe that this systems 
is time independent (left-hand side), therefore it can be solved faster than the implicit scheme, using LU decomposition for 
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Algorithm 2: HDG-ESPRK.
Input : (un

h, vn
h, qn

h, ̂un
h)

Output: (un+1
h , vn+1

h , qn+1
h , ̂un+1

h )

1 Initialize (un,1
h , vn,0

h , qn,1
h , ̂un,1

h ) ← (un
h, vn

h, qn
h, ̂un

h);
2 for i = 1 to s do
3 vn,i

h ← Solve (27) given (vn,i−1
h , qn,i

h , ̂un,i
h , bi);

4 un,i+1
h ← un,i

h + tnb̃i+1 vn,i
h ;

5 (qn,i+1
h , ̂un,i+1

h ) ← Solve system (29) given (un,i
h );

6 end

7 return (un,s+1
h , vn,s

h , qn,s+1
h , ̂un,s+1

h )

Table 1
CFLL2 numbers for methods HDG-ESPRK, using polynomials of order k in the HDG 
discretization and the ESPRK schemes of order ν detailed in Appendix A.2.

ν\k 0 1 2 3 4
1 0.5764 0.2577 0.1531 0.1025
3 0.7217 0.2131 0.1919 0.1284
4 0.8404 0.3758 0.2232 0.1493
5 0.8838 0.3949 0.2345 0.1569
6 1.7709 0.7921 0.4705 0.3101

example. An alternative to avoid this difficulty would be to use a local space discretization such as a Local DG method. We 
see below in Section 5.1, that this method indeed is a suitable candidate since it also preserves the Hamiltonian structure 
of the wave equation. We outline the implementation of the HDG-ESPRK fully discrete scheme in Algorithm 2.

Furthermore, we present in Table 1 with CFLL2 numbers for the explicit family of methods HDG-ESPRK.

4. Numerical experiments

In this section, we show numerical experiments illustrating the convergence properties of the implicit and explicit Hamil-
tonian HDG schemes, HDG-SDIRK and HDG-ESPRK, respectively. We specify in our methods the polynomial order k of the 
HDG scheme and the order ν of the Runge–Kutta method, by means of the notation HDG(k)-SDIRK(ν) and HDG(k)-ESPRK(ν). 
The coefficients of the respective Runge–Kutta methods used in our computations are presented in the appendix. As men-
tioned earlier, in order to observe the superconvergence properties of the post-processed approximations we need ν ≥ k +2. 
We report error tables for the approximations uh , vh , qh , u∗

h and v∗
h , in which we compute the errors as the maximum over 

the time steps tn of the L2 errors of the numerical approximations, and their estimated orders of convergence (e.o.c). For 
instance, for the displacement approximation, we compute

errorh = max
tn

‖u(tn) − un
h‖L2(�).

In our computations, we use a mesh size h = 2−l , and we report the value of l in the error tables.
We present two sets of experiments. In the first, we verify the convergence properties of the numerical schemes, whilst, 

in the second, we test the energy conservative properties of our scheme HDG-SDIRK comparing it with the dissipative 
HDG method, also based on DIRK formulae, presented in [26]; this dissipative HDG method is based on the velocity-stress 
formulation of the wave equation. We also illustrate the importance of using symplectic methods which preserve quadratic 
invariants by comparing the energies obtained by the symplectic Euler scheme, which does not preserve quadratic invariants, 
and the implicit midpoint scheme, which does.

4.1. Verification of the convergence properties

We present two numerical examples, in the one- and two-dimensional cases, verifying the expected convergence prop-
erties of the numerical schemes HDG-SDIRK and HDG-ESPRK.

Example 4.1. We consider the following exact solution of the acoustic wave equation (1) in one dimension,

u(t, x) = 1

π
sin(π(x − ε)) cos(πt), x ∈ (0,1), t ∈ (0, T f ], (30)

with parameters κ = 1, α = 0 and β = 1, i.e., with Dirichlet boundary conditions. We study the following cases:

a) Exact solution with ε = 0. We test the convergence properties of the schemes HDG(k)-SDIRK(k + 2) and HDG(k)-
ESPRK(k + 2). We report in Tables 2 and 3, respectively, the L2-errors and their estimated orders of convergence (e.o.c.) 
for the numerical approximations up to the final time T f = 1.0. Here we use the initial condition given by (11). We 
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Table 2
Example 4.1: History of convergence of the numerical approximations of the wave equation with exact solution u(t, x) = (1/π) sin(πx) cos(πt) by the 
schemes HDG(k)-SDIRK(k + 2). Computations were performed up to a final time T f = 1.0 and with a time step t = h.

k l uh vh qh u∗
h v∗

h

error e.o.c. error e.o.c. error e.o.c. error e.o.c. error e.o.c.

1 1 3.4e–02 – 1.7e–01 – 1.7e–01 – 3.0e–02 – 1.6e–01 –
2 7.1e–03 2.27 2.2e–02 2.99 5.0e–02 1.75 6.3e–03 2.27 2.2e–02 2.90
3 1.5e–03 2.28 4.3e–03 2.32 1.5e–02 1.79 6.0e–04 3.38 1.2e–03 4.21
4 3.5e–04 2.05 1.1e–03 2.00 3.9e–03 1.88 7.6e–05 2.99 1.6e–04 2.85
5 8.7e–05 2.02 2.7e–04 2.00 1.0e–03 1.94 9.9e–06 2.94 2.8e–05 2.55
6 2.2e–05 2.00 6.9e–05 1.98 2.6e–04 1.97 1.3e–06 2.97 4.3e–06 2.69
7 5.4e–06 2.00 1.7e–05 2.00 6.6e–05 1.98 1.6e–07 2.98 6.0e–07 2.86
8 1.4e–06 2.00 4.3e–06 2.00 1.7e–05 1.99 2.0e–08 2.99 7.8e–08 2.93

2 1 3.7e–02 – 2.3e–01 – 1.2e–01 – 3.7e–02 – 2.3e–01 –
2 6.1e–03 2.60 3.6e–02 2.70 1.9e–02 2.59 6.1e–03 2.60 3.6e–02 2.70
3 5.7e–04 3.44 3.1e–03 3.53 1.8e–03 3.44 5.7e–04 3.44 3.1e–03 3.53
4 3.9e–05 3.86 2.1e–04 3.87 1.3e–04 3.83 3.9e–05 3.87 2.1e–04 3.87
5 2.5e–06 3.95 1.4e–05 3.96 9.1e–06 3.78 2.5e–06 3.96 1.4e–05 3.96
6 1.6e–07 3.95 8.5e–07 3.99 1.0e–06 3.17 1.6e–07 3.99 8.5e–07 3.99
7 1.2e–08 3.75 5.3e–08 4.00 1.3e–07 2.99 9.8e–09 4.00 5.3e–08 4.00
8 1.4e–09 3.11 4.4e–09 3.60 1.6e–08 3.00 6.1e–10 4.01 3.3e–09 4.00

3 1 7.1e–03 – 4.5e–02 – 2.2e–02 – 7.1e–03 – 4.5e–02 –
2 4.6e–04 3.93 2.7e–03 4.02 1.5e–03 3.93 4.6e–04 3.93 2.7e–03 4.02
3 1.4e–05 5.08 7.5e–05 5.20 4.3e–05 5.08 1.4e–05 5.08 7.5e–05 5.20
4 2.5e–07 5.75 1.4e–06 5.76 9.0e–07 5.58 2.5e–07 5.76 1.4e–06 5.76
5 4.9e–09 5.69 2.2e–08 5.94 4.8e–08 4.24 4.1e–09 5.93 2.2e–08 5.94
6 2.8e–10 4.16 8.6e–10 4.70 3.0e–09 3.99 6.5e–11 5.98 3.5e–10 5.98
7 1.7e–11 4.00 5.4e–11 4.00 1.9e–10 3.99 1.6e–12 5.32 5.6e–12 5.98

4 1 2.8e–03 – 1.8e–02 – 8.9e–03 – 2.8e–03 – 1.8e–02 –
2 1.2e–04 4.61 6.9e–04 4.70 3.7e–04 4.61 1.2e–04 4.61 6.9e–04 4.70
3 2.7e–06 5.45 1.5e–05 5.57 8.4e–06 5.45 2.7e–06 5.45 1.5e–05 5.57
4 4.5e–08 5.88 2.5e–07 5.88 1.4e–07 5.88 4.5e–08 5.88 2.5e–07 5.88
5 7.2e–10 5.97 3.9e–09 5.97 2.3e–09 5.97 7.2e–10 5.97 3.9e–09 5.97
6 1.1e–11 6.00 6.1e–11 6.00 3.6e–11 5.99 1.1e–11 6.06 6.1e–11 6.00
7 1.1e–13 6.67 1.6e–12 5.22 2.3e–12 3.94 4.8e–12 1.17 1.5e–11 2.00

Table 3
Example 4.1: History of convergence of numerical approximations of the wave equation with exact solution u(t, x) = (1/π) sin(πx) cos(πt) by the schemes 
HDG(k)-ESPRK(k + 2). Computations were performed up to a final time T f = 1.0.

k l uh vh qh u∗
h v∗

h

error e.o.c. error e.o.c. error e.o.c. error e.o.c. error e.o.c.

1 1 3.0e–02 – 8.5e–02 – 1.6e–01 – 2.5e–02 – 8.5e–02 –
2 6.4e–03 2.23 1.9e–02 2.20 5.0e–02 1.66 3.9e–03 2.67 1.5e–02 2.53
3 1.5e–03 2.13 4.5e–03 2.04 1.5e–02 1.79 5.6e–04 2.79 2.2e–03 2.74
4 3.5e–04 2.05 1.1e–03 2.04 3.9e–03 1.88 7.6e–05 2.88 3.1e–04 2.85
5 8.7e–05 2.02 2.8e–04 2.00 1.0e–03 1.94 9.9e–06 2.94 4.0e–05 2.93
6 2.2e–05 2.00 6.9e–05 2.00 2.6e–04 1.97 1.3e–06 2.97 5.1e–06 2.97
7 5.5e–06 2.00 1.7e–05 2.00 6.6e–05 1.98 1.6e–07 2.98 6.5e–07 2.98
8 1.4e–06 2.00 4.3e–06 2.00 1.7e–05 1.99 2.0e–08 2.99 8.2e–08 2.99

2 1 3.1e–03 – 1.1e–02 – 2.3e–02 – 1.7e–03 – 6.1e–03 –
2 3.7e–04 3.04 1.2e–03 3.20 3.5e–03 2.74 1.3e–04 3.73 4.2e–04 3.88
3 4.6e–05 3.02 1.4e–04 3.00 4.7e–04 2.87 9.0e–06 3.87 2.9e–05 3.83
4 5.7e–06 3.01 1.8e–05 3.00 6.2e–05 2.93 5.9e–07 3.93 1.9e–06 3.95
5 7.1e–07 3.00 2.2e–06 3.00 8.0e–06 2.96 3.8e–08 3.96 1.2e–07 3.97
6 8.9e–08 3.00 2.8e–07 3.00 1.0e–06 2.98 2.4e–09 3.98 7.6e–09 3.99
7 1.1e–08 3.00 3.5e–08 2.99 1.3e–07 2.99 1.5e–10 3.99 4.8e–10 4.00
8 1.4e–09 3.00 4.4e–09 3.00 1.6e–08 3.00 1.3e–11 3.58 3.9e–11 3.61

3 1 2.9e–04 – 9.4e–04 – 2.4e–03 – 1.3e–04 – 4.5e–04 –
2 1.8e–05 4.01 5.7e–05 4.04 1.7e–04 3.81 4.5e–06 4.80 1.4e–05 4.97
3 1.1e–06 4.00 3.5e–06 4.01 1.2e–05 3.90 1.5e–07 4.91 4.8e–07 4.92
4 7.0e–08 4.00 2.2e–07 3.99 7.5e–07 3.95 4.9e–09 4.95 1.6e–08 4.94
5 4.4e–09 4.00 1.4e–08 4.01 4.8e–08 3.97 1.6e–10 4.97 4.9e–10 4.98
6 2.8e–10 4.00 8.7e–10 3.99 3.0e–09 3.99 4.9e–12 4.98 1.6e–11 4.98
7 1.7e–11 4.00 5.4e–11 4.00 1.9e–10 3.99 1.6e–12 1.59 5.2e–12 1.59

4 1 2.3e–05 – 7.1e–05 – 2.0e–04 – 8.0e–06 – 2.7e–05 –
2 7.1e–07 5.00 2.2e–06 5.00 6.9e–06 4.86 1.4e–07 5.88 4.7e–07 5.86
3 2.2e–08 5.00 7.0e–08 4.99 2.3e–07 4.92 2.3e–09 5.91 7.2e–09 6.01
4 6.9e–10 5.00 2.2e–09 5.01 7.3e–09 4.96 3.6e–11 5.96 1.2e–10 5.97
5 2.2e–11 5.00 6.8e–11 4.99 2.3e–10 4.98 6.3e–13 5.85 2.0e–12 5.83
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Table 4
Example 4.1: History of convergence of the numerical approximations of the wave equation with exact solution u(t, x) = (1/π) sin(πx) cos(πt) by the 
scheme HDG(1)-SDIRK(3), initializing with the L2 projections and HDG-projections of the initial data. Computations were performed up to a final time 
T f = 1.0 and with a time step t = h/2.

l uh vh qh u∗
h v∗

h

error e.o.c. error e.o.c. error e.o.c. error e.o.c. error e.o.c.

HDG(1)-DIRK(3), initial condition L2 projection
1 3.1e–02 – 2.4e–01 – 2.5e–01 – 2.8e–02 – 1.3e–01 –
2 6.4e–03 2.27 4.7e–02 2.33 8.3e–02 1.60 4.7e–03 2.59 2.5e–02 2.42
3 1.4e–03 2.22 1.1e–02 2.15 2.6e–02 1.65 4.5e–04 3.40 2.2e–03 3.52
4 3.9e–04 1.83 4.2e–03 1.34 7.6e–03 1.80 6.2e–05 2.85 3.0e–04 2.85
5 1.0e–04 1.93 1.4e–03 1.57 2.0e–03 1.94 8.1e–06 2.95 5.6e–05 2.44
6 2.5e–05 2.00 5.3e–04 1.43 5.1e–04 1.96 1.1e–06 2.82 1.0e–05 2.46
7 6.4e–06 1.99 1.8e–04 1.51 1.3e–04 1.98 1.5e–07 2.91 1.8e–06 2.50

HDG(1)-DIRK(3), initial condition HDG-projection
1 3.0e–02 – 2.2e–01 – 2.7e–01 – 3.1e–02 – 1.4e–01 –
2 5.6e–03 2.43 2.7e–02 3.01 6.9e–02 1.97 4.7e–03 2.74 2.3e–02 2.62
3 1.4e–03 2.03 4.4e–03 2.62 1.7e–02 2.00 2.9e–04 4.00 1.2e–03 4.31
4 3.5e–04 1.97 1.1e–03 1.96 4.3e–03 2.00 3.5e–05 3.05 1.4e–04 3.07
5 8.7e–05 2.01 2.8e–04 2.05 1.1e–03 2.00 5.5e–06 2.70 2.6e–05 2.42
6 2.2e–05 2.00 6.9e–05 1.99 2.7e–04 2.00 8.3e–07 2.71 4.3e–06 2.61
7 5.4e–06 2.00 1.7e–05 2.01 6.7e–05 2.00 1.1e–07 2.86 5.9e–07 2.84

Table 5
Example 4.1: History of convergence of the numerical approximations of the wave equation with exact solution u(t, x) = (1/π) sin(πx) cos(πt) by the 
scheme HDG(1)-ESPRK(3), initializing with the L2 projections and HDG-projections of the initial data. Computations were performed up to a final time 
T f = 1.0 and with a time step t = h/2.

l uh vh qh u∗
h v∗

h

error e.o.c. error e.o.c. error e.o.c. error e.o.c. error e.o.c.

HDG(1)-ESPRK(3), initial condition L2 projection
1 3.9e–02 – 3.0e–01 – 1.9e–01 – 3.7e–02 – 2.9e–01 –
2 1.1e–02 1.81 4.8e–02 2.63 5.2e–02 1.85 1.1e–02 1.75 4.5e–02 2.67
3 2.9e–03 1.95 1.4e–02 1.76 1.5e–02 1.83 2.8e–03 1.98 1.0e–02 2.14
4 7.1e–04 2.03 4.5e–03 1.65 4.0e–03 1.85 7.0e–04 2.01 2.5e–03 2.01
5 1.7e–04 2.02 1.5e–03 1.56 1.0e–03 1.95 1.7e–04 2.03 6.0e–04 2.10
6 4.3e–05 2.01 5.3e–04 1.55 2.6e–04 1.98 4.2e–05 2.02 1.4e–04 2.06
7 1.1e–05 2.01 1.9e–04 1.50 6.7e–05 1.99 1.1e–05 2.01 3.5e–05 2.04

HDG(1)-ESPRK(3), initial condition HDG projection
1 7.0e–02 – 7.8e–01 – 3.0e–01 – 3.6e–02 – 5.0e–01 –
2 6.0e–03 3.55 2.5e–02 4.99 6.9e–02 2.12 2.3e–03 3.99 1.3e–02 5.28
3 1.4e–03 2.11 5.2e–03 2.24 1.7e–02 2.00 3.6e–04 2.66 2.1e–03 2.62
4 3.5e–04 1.98 1.1e–03 2.19 4.3e–03 2.00 5.2e–05 2.81 3.0e–04 2.78
5 8.7e–05 2.00 2.8e–04 2.04 1.1e–03 2.00 6.9e–06 2.90 4.0e–05 2.94
6 2.2e–05 2.00 6.9e–05 2.01 2.7e–04 2.00 8.9e–07 2.95 5.1e–06 2.95
7 5.4e–06 2.00 1.7e–05 2.01 6.7e–05 2.00 1.1e–07 2.97 6.5e–07 2.98

observe optimal rates of convergence k + 1 for the approximations of the displacement uh , velocity vh and negative 
gradient qh , and a rate of convergence k + 2 for the post-processed approximations of the displacement u∗

h and velocity 
v∗

h .
b) Exact solution with ε = 0. We study the effect of other initial conditions on our numerical schemes. We first consider 

the L2-projection of the initial data and then the HDG-projection of the initial data. We compute the errors of the 
approximations of the schemes HDG(1)-SDIRK(3) and HDG(1)-ESPRK(3). These results are reported in Tables 4 and 5, 
respectively. We observe that when the L2-projection is used the HDG(1)-SDIRK(3) scheme exhibits suboptimal conver-
gence of order 1.5 and 2.5 for the velocity and the post-processed velocity, whereas when the HDG-projection is used 
the results are optimal. For the scheme HDG(1)-ESPRK(3) with the L2-projection of the initial data we observe not only 
the same suboptimal rate of 1.5 of the velocity approximation, but also sub-optimal rate of 2 for the post-processed 
displacement and velocity. The HDG projection gives optimal approximations for this scheme as well.

c) Exact solution ε = 0.5. We study the effect of time-dependent boundary conditions (non-autonomous dynamics). Con-
sidering piecewise linear approximations, we compute the errors by the schemes HDG(1)-DIRK(3) and HDG(1)-ESPRK(3), 
and report them in Tables 6 and 7, first using the time step t = h and then t = h3/2. For both schemes we observe 
suboptimal results (particularly on the velocity approximation) when t = h is used. For the second case, t = h3/2, 
the convergence is recovered, showing the convergence properties of the semi-discrete scheme.
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Table 6
Example 4.1: History of convergence of the numerical approximations of the wave equation with exact solution u(t, x) = (1/π) sin(π(x + 1/2)) cos(πt) by 
the scheme HDG(1)-SDIRK(3). Computations were performed up to a final time T f = 1.0 and with a time steps t = h and t = h3/2.

l uh vh qh u∗
h v∗

h

error e.o.c. error e.o.c. error e.o.c. error e.o.c. error e.o.c.

HDG(1)-DIRK(3), t = h
1 1.9e–01 – 6.8e–01 – 9.3e–01 – 2.0e–01 – 6.4e–01 –
2 5.1e–02 1.90 4.2e–01 0.70 6.1e–01 0.60 5.0e–02 1.96 3.7e–01 0.77
3 1.1e–02 2.25 1.6e–01 1.42 2.1e–01 1.57 1.1e–02 2.25 1.5e–01 1.29
4 1.8e–03 2.57 5.2e–02 1.60 8.2e–02 1.34 1.9e–03 2.44 5.4e–02 1.49
5 3.3e–04 2.47 1.7e–02 1.59 3.0e–02 1.46 3.3e–04 2.55 1.9e–02 1.53
6 6.1e–05 2.43 5.9e–03 1.55 1.1e–02 1.49 6.0e–05 2.46 6.6e–03 1.53
7 1.1e–05 2.42 2.0e–03 1.52 3.7e–03 1.50 1.1e–05 2.49 2.3e–03 1.52

HDG(1)-DIRK(3), t = h3/2

1 1.0e–01 – 7.2e–01 – 7.2e–01 – 9.5e–02 – 6.1e–01 –
2 1.2e–02 3.16 1.4e–01 2.32 1.6e–01 2.20 1.0e–02 3.23 1.4e–01 2.12
3 1.5e–03 2.96 1.7e–02 3.07 3.7e–02 2.09 1.0e–03 3.31 1.7e–02 3.07
4 3.6e–04 2.06 2.5e–03 2.79 7.8e–03 2.24 1.3e–04 3.03 2.6e–03 2.67
5 8.8e–05 2.03 3.2e–04 2.94 1.6e–03 2.29 1.6e–05 3.02 3.6e–04 2.87
6 2.2e–05 2.01 7.1e–05 2.18 3.4e–04 2.22 1.9e–06 3.04 4.7e–05 2.91
7 5.5e–06 2.00 1.7e–05 2.04 7.7e–05 2.15 2.3e–07 3.02 6.1e–06 2.97

Table 7
Example 4.1: History of convergence of the numerical approximations of the wave equation with exact solution u(t, x) = (1/π) sin(π(x + 1/2)) cos(πt) by 
the scheme HDG(1)-ESPRK(3). Computations were performed up to a final time T f = 1.0 and with a time steps t = h and t = h3/2.

l uh vh qh u∗
h v∗

h

error e.o.c. error e.o.c. error e.o.c. error e.o.c. error e.o.c.

HDG(1)-ESPRK(3), t = h
1 3.0e–02 – 1.0e–01 – 1.6e–01 – 2.3e–02 – 9.9e–02 –
2 6.9e–03 2.14 2.3e–02 2.15 5.1e–02 1.63 4.7e–03 2.31 2.0e–02 2.33
3 1.5e–03 2.17 5.2e–03 2.13 1.5e–02 1.80 7.3e–04 2.69 3.4e–03 2.55
4 3.6e–04 2.09 1.3e–03 2.02 3.9e–03 1.88 1.0e–04 2.85 1.2e–03 1.55
5 8.8e–05 2.03 3.5e–04 1.88 1.0e–03 1.93 1.4e–05 2.90 3.5e–04 1.70
6 2.2e–05 2.01 1.1e–04 1.65 2.8e–04 1.87 1.8e–06 2.91 1.2e–04 1.52
7 5.5e–06 2.00 3.9e–05 1.51 7.9e–05 1.84 2.4e–07 2.90 4.3e–05 1.51

HDG(1)-ESPRK(3), t = h3/2

1 2.9e–02 – 1.1e–01 – 1.6e–01 – 2.4e–02 – 1.0e–01 –
2 7.1e–03 2.04 2.2e–02 2.34 5.3e–02 1.57 5.1e–03 2.24 1.7e–02 2.58
3 1.5e–03 2.20 4.8e–03 2.17 1.5e–02 1.84 7.7e–04 2.72 2.4e–03 2.81
4 3.6e–04 2.10 1.1e–03 2.09 4.0e–03 1.91 1.1e–04 2.86 3.3e–04 2.87
5 8.8e–05 2.03 2.8e–04 2.03 1.0e–03 1.95 1.4e–05 2.93 4.3e–05 2.92
6 2.2e–05 2.01 6.9e–05 2.01 2.6e–04 1.97 1.8e–06 2.97 5.5e–06 2.97
7 5.5e–06 2.00 1.7e–05 2.00 6.6e–05 1.98 2.2e–07 2.98 7.0e–07 2.98

Example 4.2. We consider the following exact solution of the two dimensional acoustic wave equation:

u(t, x, y) = 1√
2π

sin(πx) sin(π y) cos(
√

2πt), x, y ∈ (0,1)2, t ∈ (0, T f ], (31)

with parameters κ = 1, α = 0 and β = 1, i.e., with Dirichlet boundary conditions. We report in Table 8 and 9 the errors 
and estimated orders of convergence of the approximations by the schemes HDG(k)-SDIRK(k + 2) and HDG(k)-ESPRK(k + 2), 
respectively, for k = 1, 2, 3, 4. We observe optimal convergence as in the one dimensional case.

4.2. Comparison with dissipative HDG methods and verification of energy conservation properties

The purpose of the following experiments is to compare the energy-conservative schemes presented in this paper with 
the dissipative HDG schemes introduced in [26]. Notice that these schemes have also optimal convergence properties and 
utilize DIRK formulae for time integration. Thus, in the examples below, we use the same SDIRK method for both schemes. 
We consider three examples of traveling wave solutions on periodic domains, two one dimensional and one two dimen-
sional. In the first example, we set the exact solution to be a sinusoidal signal, first with low frequency and then with a 
higher frequency. In the second example, we consider an impulse solution to observe the long time behavior of the approx-
imations. Finally, in the third example we consider two impulse solutions traveling in perpendicular directions. In order to 
diminish the dispersive effects in the numerical approximations, we use Runge–Kutta schemes of order 5.
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Table 8
Example 4.2: History of convergence of the numerical approximations of the wave equation with exact solution u(t, x, y) =
(1/(

√
2π)) sin(πx) sin(π y) cos(

√
2πt) by the schemes HDG(k)-SDIRK(k + 2). Computations were performed up to a final time T f = 1.0 and with a 

time step t = h.

k l uh vh qh u∗
h v∗

h

error e.o.c. error e.o.c. error e.o.c. error e.o.c. error e.o.c.

1 1 1.2e–01 – 8.8e–01 – 5.2e–01 – 1.2e–01 – 8.8e–01 –
2 6.9e–02 0.78 3.0e–01 1.56 3.1e–01 0.77 6.9e–02 0.78 3.0e–01 1.56
3 1.5e–02 2.24 5.1e–02 2.54 6.5e–02 2.24 1.5e–02 2.24 5.1e–02 2.54
4 1.4e–03 3.42 4.7e–03 3.46 6.1e–03 3.42 1.4e–03 3.42 4.7e–03 3.46
5 9.4e–05 3.86 3.3e–04 3.84 4.3e–04 3.82 9.3e–05 3.87 3.2e–04 3.86

2 1 1.0e–03 – 4.8e–03 – 9.8e–03 – 4.3e–04 – 2.2e–03 –
2 1.3e–04 3.02 5.7e–04 3.09 1.4e–03 2.81 3.2e–05 3.75 1.4e–04 3.95
3 1.6e–05 3.01 6.9e–05 3.05 1.9e–04 2.92 2.1e–06 3.90 9.3e–06 3.97
4 2.0e–06 3.01 8.5e–06 3.01 2.4e–05 2.96 1.4e–07 3.95 5.8e–07 4.00
5 2.5e–07 3.00 1.1e–06 2.99 3.0e–06 2.98 8.8e–09 3.98 3.8e–08 3.93

3 1 1.1e–04 – 4.8e–04 – 1.1e–03 – 3.8e–05 – 1.8e–04 –
2 6.8e–06 4.00 2.9e–05 4.05 8.0e–05 3.85 1.3e–06 4.85 5.4e–06 5.09
3 4.2e–07 4.00 1.8e–06 4.00 5.2e–06 3.93 4.3e–08 4.93 1.8e–07 4.89
4 2.6e–08 4.00 1.1e–07 3.99 3.4e–07 3.97 1.4e–09 4.97 6.0e–09 4.93
5 1.7e–09 4.00 7.1e–09 4.00 2.1e–08 3.98 4.3e–11 4.98 1.9e–10 5.00

4 1 8.0e–06 – 3.5e–05 – 8.7e–05 – 1.9e–06 – 8.9e–06 –
2 2.5e–07 4.98 1.1e–06 5.02 3.0e–06 4.87 3.3e–08 5.82 1.4e–07 5.99
3 7.9e–09 4.99 3.4e–08 4.99 9.7e–08 4.94 5.4e–10 5.94 2.4e–09 5.89
4 2.5e–10 5.00 1.1e–09 5.00 3.1e–09 4.98 8.7e–12 5.97 3.7e–11 6.01
5 7.8e–12 5.00 3.4e–11 4.98 9.7e–11 4.99 6.5e–13 3.74 6.4e–12 2.52

Table 9
Example 4.2: History of convergence of the numerical approximations of the wave equation with exact solution u(t, x, y) =
(1/(

√
2π)) sin(πx) sin(π y) cos(

√
2πt) by the schemes HDG(k)-ESPRK(k + 2). Computations were performed up to a final time T f = 1.0.

k l uh vh qh u∗
h v∗

h

error e.o.c. error e.o.c. error e.o.c. error e.o.c. error e.o.c.

1 1 1.2e–02 – 4.6e–02 – 7.7e–02 – 1.2e–02 – 3.7e–02 –
2 2.3e–03 2.38 9.2e–03 2.30 2.3e–02 1.75 2.1e–03 2.53 2.4e–03 3.98
3 5.5e–04 2.10 2.3e–03 2.03 6.3e–03 1.87 3.0e–04 2.81 3.8e–04 2.63
4 1.3e–04 2.04 5.6e–04 2.01 1.7e–03 1.93 4.0e–05 2.91 5.0e–05 2.93
5 3.3e–05 2.01 1.4e–04 1.99 4.2e–04 1.97 5.1e–06 2.95 6.5e–06 2.95

2 1 1.0e–03 – 4.8e–03 – 9.8e–03 – 4.3e–04 – 2.2e–03 –
2 1.3e–04 3.02 5.7e–04 3.09 1.4e–03 2.81 3.2e–05 3.75 1.4e–04 3.95
3 1.6e–05 3.01 6.9e–05 3.05 1.9e–04 2.92 2.1e–06 3.90 9.3e–06 3.97
4 2.0e–06 3.01 8.5e–06 3.01 2.4e–05 2.96 1.4e–07 3.95 5.8e–07 4.00
5 2.5e–07 3.00 1.1e–06 2.99 3.0e–06 2.98 8.8e–09 3.98 3.8e–08 3.93

3 1 1.1e–04 – 4.8e–04 – 1.1e–03 – 3.8e–05 – 1.8e–04 –
2 6.8e–06 4.00 2.9e–05 4.05 8.0e–05 3.85 1.3e–06 4.85 5.4e–06 5.09
3 4.2e–07 4.00 1.8e–06 4.00 5.2e–06 3.93 4.3e–08 4.93 1.8e–07 4.89
4 2.6e–08 4.00 1.1e–07 3.99 3.4e–07 3.97 1.4e–09 4.97 6.0e–09 4.93
5 1.7e–09 4.00 7.1e–09 4.00 2.1e–08 3.98 4.3e–11 4.98 1.9e–10 5.00

4 1 8.0e–06 – 3.5e–05 – 8.7e–05 – 1.9e–06 – 8.9e–06 –
2 2.5e–07 4.98 1.1e–06 5.02 3.0e–06 4.87 3.3e–08 5.82 1.4e–07 5.99
3 7.9e–09 4.99 3.4e–08 4.99 9.7e–08 4.94 5.4e–10 5.94 2.4e–09 5.89
4 2.5e–10 5.00 1.1e–09 5.00 3.1e–09 4.98 8.7e–12 5.97 3.7e–11 6.01
5 7.8e–12 5.00 3.4e–11 4.98 9.7e–11 4.99 6.5e–13 3.74 6.4e–12 2.52

Example 4.3. Consider the following one dimensional traveling wave, solution of (1) with periodic boundary conditions

u(t, x) = sin(2nπ(x − t)), x ∈ (0,1), t ∈ (0, T f ], (32)

with parameter κ = 1. Firstly, we test the dissipation properties of the HDG schemes with low frequency, n = 1. For a 
fixed triangulation, we compute the numerical approximations by the dissipative scheme [26] until its amplitude decays 
to a 80% of the amplitude of the exact solution, registering the time at which this occurs. Next, for the same final time 
and triangulation we compute the numerical approximations by the implicit symplectic scheme HDG-SDIRK. We display the 
graph of the exact solutions and numerical approximations in Fig. 1. We observe that whilst the approximations by the 
dissipative scheme decay in amplitude, the approximations by the symplectic scheme maintains it.
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Fig. 1. Example 4.3. Plot of exact solution and numerical approximations by the dissipative implicit scheme (left) and Hamiltonian implicit scheme (right). 
We use a symplectic time integrator DIRK of order 6 with time step t = h for both cases. Top row: mesh size h = 2−8, polynomial degree k = 0, and final 
time T f = 0.65. Middle row: mesh size h = 2−6, polynomial degree k = 1, and final time T f = 551.70. Bottom row: mesh size h = 2−4, polynomial degree 
k = 2, and final time T f = 5944.16.

Secondly, we consider the exact solution (32) with a higher frequency, n = 6. For a given mesh parameter, we compute 
the dissipative and symplectic implicit approximations until a given (reasonably small) final time T f = 20. Fig. 2 shows 
the exact solution and approximations at the final time. We observe the same behavior than in the low frequency case, 
this time magnified by the higher frequency. In addition, we compute the energy associated to the schemes, and display in 
Fig. 3 their relative errors in time. To study the effect on the energy of the terms over the skeleton of the triangulation, we 
compute the following modified energy for the symplectic scheme

H̃h(uh, vh) = 1

2
(vh, vh)�h + 1

2
(κ−1qh,qh)�h . (33)

As seen Fig. 3, although H̃h has similar error as Hh , it is not constant in time. The plots of the numerical approximations 
and the energies show the outstanding dissipative properties of our scheme in comparison with the dissipative scheme.

Example 4.4. Consider an initial pulse of the form

φb,δ(x) = ψ(
x − b

δ
), ψ(x) =

{
(2x − 1)10(2x + 1)10, if |x| < 0.5

0, otherwise.
(34)
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Fig. 2. Example 4.3. Plot of exact solution (n = 6) and numerical approximations by the dissipative implicit scheme (left) and symplectic implicit scheme 
(right). We use a symplectic time integrator of order 6 with time step t = h for both cases.

Fig. 3. Example 4.3. Semi-log plot of the relative errors of the discrete energies vs. time. We plot the relative error of the discrete energy, E H = |H − Hh |/H , 
where H is the exact energy and where the discrete energies Hh , defined in (13), are provided by the dissipative and conservative schemes. We also plot 
the relative error of the energy H̃h , defined in (33), E H̃ = |H − H̃h |/H , computed by the conservative scheme. We use a symplectic time integrator of order 
6 with time step t = h = 2−6, and τ = 10.

Fig. 4. Example 4.4. Plot of the exact solution and numerical approximations by the implicit dissipative (left) and Hamiltonian schemes (right) for k = 1. 
We use a triangulation with mesh size h = 2−6, and a time integrator DIRK of order 6 with time step t = h, up to the final time T f = 1000.

We consider the following exact solution of the wave equation (1) with periodic boundary conditions:

u(t, x) = φb,δ(x − t),

with b = 1/2, and δ = 1 in (34). We test the long time behavior of the numerical approximations. We compute the piecewise 
linear approximations by the dissipative scheme and HDG-SDIRK scheme using a DIRK formula of order 6, up to the final 
time T f = 1000, for a fixed mesh parameter h = 2−6 and time step t = h. We plot the approximate and exact solutions in 
Fig. 4. We observe that, in the long time term, the symplectic scheme has superior dissipation properties, and it captures 
the shape of the solution more accurately than the dissipative scheme. We plot the relative error of the discrete energies in 
Fig. 5. We observe that the energy for our scheme is constant in time, and the energy of dissipative scheme diminishes in 
time. Although H̃h oscillates in time, its average is approximately constant.
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Fig. 5. Example 4.4. Semi-log plot of the relative errors of the discrete energies vs. time. We plot the relative error of the discrete energy, E H = |H − Hh |/H , 
where H is the exact energy and where the discrete energies Hh , defined in (13), are provided by the dissipative and conservative schemes. We also plot 
the relative error of the energy H̃h , defined in (33), E H̃ = |H − H̃h |/H , computed by the conservative scheme. We use a symplectic time integrator of order 
6 with time step t = h = 2−6, and τ = 10.

Example 4.5. Consider the exact solution to the wave equation (1) in two dimensions with periodic boundary conditions,

u(t, x, y) = φb,δ(x − t),+φb,δ(y − t), x, y ∈ (0,1)2,

with parameters b = 1/2, and δ = 1 in the impulse function defined in (34). We proceed as in the previous example. We 
compute the piecewise linear approximations by the dissipative scheme and HDG-SDIRK scheme using a DIRK formula of 
order 5, up to the final time T f = 50, for a fixed mesh parameter h = 2−5 and time step t = .25h. We plot the approximate 
and exact solutions in Fig. 6. We observe that the symplectic scheme has superior dissipation properties in comparison with 
the dissipative scheme, even for this example where the final time is moderate. Thus, the approximation by the symplectic 
scheme becomes quickly more accurate.

Example 4.6. We consider exact solution u(t, x) = sin(2π(t + x)), on a periodic domain (0, 1), and compare the energies 
obtained by the HDG symplectic Euler and HDG implicit midpoint methods. We compute with polynomials of order k = 0
and k = 1 until the final time T f = 10. We plot the relative energies in Fig. 7, observing oscillations in the case of the 
symplectic Euler whilst the energy in the case of the implicit midpoint remains constant. The exact conservation of the 
Hamiltonian is due to the fact that the implicit midpoint scheme preserves quadratic invariants, which is the case of our 
discrete Hamiltonian. We observe that the other Runge–Kutta methods (implicit and partitioned explicit) used in this paper 
show the same invariant behavior. Similar results are also obtained with higher-order polynomials.

5. Extensions and concluding remarks

In this Section, we extend our semi-discrete scheme to other finite element methods, in particular Discontinuous Galerkin 
methods. We prove that the resulting scheme also preserves the Hamiltonian structure of the wave equation, and hence, it 
is energy-conservative. We then mention possible applications of our ideas to other Hamiltonian equations.

5.1. Hamiltonian Discontinuous Galerkin methods

For the sake of simplicity, we consider in this section the wave equation with periodic boundary conditions. We first 
introduce standard Discontinuous Galerkin (DG) notation for the averages and jumps on faces of the triangulation

{{u}} := 1

2
(u+ + u−), {{q}} := 1

2
(q+ + q−),

�u� := u+n+ + u−n−, �q� := q+ · n+ + q− · n−.

We also introduce the dot product over the set of faces of the triangulation

〈·, ·〉Eh :=
∑
F∈Eh

〈·, ·〉F . (35)

By means of the previous definitions for averages and jumps we have the following relation

〈μ,η〉∂�h = 〈{{μ}}�η� + {{η}}�μ�,1〉Eh , (36)
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Fig. 6. Example 4.4. Contour plots at T f = 10 (first row), T f = 30 (second row), and T f = 50 (third row): exact solution (left), numerical approximation 
by the dissipative scheme in [26] (center), and numerical approximation by the HDG-symplectic (right). Parameters: k = 1, h = 2−5, and t = h/4. Time 
integrator symplectic DIRK(6, 5).

for μ, η ∈ L2(Eh). Now, we introduce the semi-discrete DG scheme: find (uh(t), vh(t), qh(t)) ∈ Wh × Wh × V h , such that

(u̇h(t), w)�h = (v(t), w)�h (37a)

(v̇h(t), w)�h = (qh(t),∇w)�h − 〈̂qh(t) · n, w〉∂�h + ( f (t), w)�h (37b)

(κ−1qh(t), r)�h = (uh(t),∇ · r)�h − 〈̂uh(t), r · n〉∂�h (37c)

where the numerical fluxes are explicitly defined on the faces F ∈Fh\∂� by:

q̂h := {{qh}} + C11 �uh � − C 12 �qh �, ûh := {{uh}} + C 12 · �uh � + C22 �qh �,

with auxiliary parameters C11, C 12 and C22, that might depend on x. These parameters define different DG methods. For 
example, for C22 ≡ 0 we obtain the LDG method.
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Fig. 7. Relative energies vs. time. We plot the relative energies Hh/H , where H is the exact energy and Hh , defined in (13), are computed by the conservative 
HDG scheme with two time integrators, the symplectic Euler and the implicit midpoint method. Left figure: polynomial degree k = 0, t = h = 2−8 and 
τ = 10. Right figure: polynomial degree k = 1, t = .5h = 2−7 and τ = 10.

The discrete (total) Hamiltonian function is defined by:

Hh(uh, vh, t) = 1

2
(vh, vh)�h + 1

2
(κ−1qh,qh)�h + 1

2
C11〈�uh �, �uh �〉Eh + 1

2
C22〈�qh �, �qh �〉Eh − ( f (t), uh)�h . (38)

Thus, we prove that formulation (37) has a Hamiltonian structure.

Theorem 3. Set pi := vi and qi := ui , for i ∈ J , and H(p, q, t) := Hh(uh, vh, t). Then, the DG method (37) is equivalent to the 
following Hamiltonian system:

ṗi = −∂

∂qi
H(p,q, t) i ∈ J , (39a)

q̇i = ∂

∂pi
H(p,q, t) i ∈ J . (39b)

For the sake of completeness, we provide the proof in the Appendix.
Theorem 3 implies that if we pair the DG semi-discrete scheme (37) with a symplectic time integrator we obtain a fully 

discrete energy conservative DG method. These methods certainly have attractive properties. For instance, the locality of the 
LDG method together with explicit time integrators (for example, ESPRK) gives fast fully discrete scheme with conservation 
properties. On the other hand, the superconvergence properties of the HDG have the edge in terms of accuracy.

5.2. Concluding remarks

In this paper, we devised Hamiltonian HDG methods for approximating solutions of the wave equation. The semi-discrete 
HDG methods are said to be Hamiltonian since they satisfy a finite dimensional Hamiltonian system, for a discrete Hamil-
tonian functional approximating the infinite dimensional Hamiltonian functional of the equation. Then, the Hamiltonian 
structure of the method implies that the discrete energy is conserved in time. As is shown in [14], the L2 errors of the 
semi-discrete method converge optimally with an order of k + 1, when piecewise polynomial spaces of degree k are used. 
The method also has superconvergence properties that allow constructing a post-processed displacement approximation, 
which converges with order k + 2. Similarly, we presented a post-processed approximation for the velocity which super 
converges with order k + 2.

We take advantage of the Hamiltonian structure of the semi-discrete HDG scheme using symplectic time integrators 
for the discretization in time. In particular, we considered symplectic diagonally implicit Runge–Kutta methods and explicit 
symplectic partitioned Runge–Kutta methods. These time-stepping schemes were chosen, in order to match the high-order 
accuracy properties of our spatial discretizations, and hence, achieving high-order accurate approximations, and because they 
are known to preserve quadratic invariants. We corroborated the optimal convergence and superconvergence properties of 
the fully discrete schemes with numerical examples, and compared our energy-conservative schemes with the dissipative 
scheme introduced in [26], evidencing the superior conservative and dissipative properties of our fully discrete schemes.

We concluded our analysis observing that the keystone of our numerical methods, the Hamiltonian structure, is not an 
exclusive feature of the HDG discretization. We commented that discontinuous Galerkin and Mixed methods also have this 
property. In particular, we presented a proof of the Hamiltonian structure of a general discretization using discontinuous 
Galerkin methods.
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Table A.1
Coefficients of schemes of the SDRIK(q, p) schemes. From left to right: SDIRK(3, 3), SDIRK(3, 4), SDIRK(6, 5), and SDIRK(7, 6). For the 
first two schemes a = 1.351207191959658.

i bi

1 a
2 a
3 1 − 2a

i bi

1 a
2 1 − 2a
3 a

i bi

1 0.5080048194000274
2 1.360107162294827
3 2.0192933591817224
4 0.5685658926458251
5 −1.4598520495864393
6 −1.9961191839359627

i bi

1 7.8451361047755652e-01
2 2.3557321335935860e-01
3 −1.1776799841788705
4 1.3151863206839107
5 −1.1776799841788705
6 2.3557321335935860e-01
7 7.8451361047755652e-01

Table A.2
Coefficients of the schemes ESPRK(q, p) schemes. Top, from the left to right: ESPRK(3, 3) (Ruth’s method) [29], ESPRK(6, 4) [22], and 
ESPRK(6, 5) [24]. Bottom: ESPRK(11, 6) [1].

i bi b̃i

1 7/24 2/3
2 3/4 −2/3
3 −1/24 1

i bi b̃i

1 7/48 1/3
2 3/8 −1/3
3 −1/48 1
4 −1/48 −1/3
5 3/8 1/3
6 7/48 0

i bi b̃i

1 0.1193900292875672758 0.339839625839110000
2 0.6989273703824752308 −0.088601336903027329
3 −0.1713123582716007754 0.5858564768259621188
4 0.4012695022513534480 −0.6030393565364911888
5 0.0107050818482359840 0.3235807965546976394
6 −0.0589796254980311632 0.4423637942197494587

i bi b̃i

1 0.0502627644003922 0.148816447901042
2 0.413514300428344 −0.132385865767784
3 0.0450798897943977 0.067307604692185
4 −0.188054853819569 0.432666402578175
5 0.541960678450780 −0.016404589403618
6 −0.725525558508690 −0.016404589403618
7 0.541960678450780 0.432666402578175
8 −0.188054853819569 0.067307604692185
9 0.0450798897943977 −0.132385865767784
10 0.413514300428344 0.148816447901042
11 0.0502627644003922 0

Finally, regarding our future research directions, we reiterate that the fundamental idea behind our energy-conservative 
methods is the discrete preservation of the Hamiltonian structure of the problem. Although we have only dealt with a linear 
wave equation, all we have done here carries over to non-linear systems of equations with a Hamiltonian structure. We plan 
to extend our approach to other linear and nonlinear Hamiltonian systems including the elastodynamics (small and large 
deformation) equations, Maxwell equations, and shallow water equations.
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Appendix A. Runge–Kutta coefficients

A.1. Symplectic DIRK schemes

In Table A.1, we display the coefficients of the Symplectic Diagonally Implicit Runge–Kutta schemes, of q-stages and 
p-order, SDIRK(q, p), that are used in our computations.

A.2. Symplectic EPRK schemes

In Table A.2, we display the coefficients of the Explicit Symplectic Partitioned Runge–Kutta schemes, of q-stages and 
p-order, ESPRK(q, p), that are used in our computations.

Appendix B. Proof of Theorem 3

Let us prove the first identity. We have
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ṗi = v̇ i by def. of pi ,

= (v̇h, φi)�h by def. of φi ,

= (∇φi,qh)�h − 〈φi, q̂h · n〉∂�h + (φi, f (t))�h by (37),

= − (φi,∇ · qh)�h − 〈φi, (̂qh − qh) · n〉∂�h + (φi, f (t))�h

= − (
∂

∂ui
uh,∇ · qh)�h − 〈 ∂

∂ui
uh, (̂qh − qh) · n〉∂�h + (

∂

∂ui
uh, f (t))�h by def. of φi ,

= − (
∂

∂ui
uh,∇ · qh)�h + 〈 ∂

∂ui
ûh,qh · n〉∂�h − 〈 ∂

∂ui
(uh − ûh), (̂qh − qh) · n〉∂�h

+ (
∂

∂ui
uh, f (t))�h

= − (
∂

∂ui
uh,∇ · qh)�h + 〈 ∂

∂ui
ûh,qh · n〉∂�h + (

∂

∂ui
uh, f (t))�h

− 〈 ∂

∂ui
({{uh − ûh}}) �̂qh − qh � + ∂

∂ui

(
�uh − ûh �

) {{̂qh − qh}},1〉Eh

= − (
∂

∂ui
qh,qh)�h + (

∂

∂ui
uh, f (t))�h

− 〈− ∂

∂ui
({{uh − ûh}}) �qh � + ∂

∂ui

(
�uh �

) {{̂qh − qh}},1〉Eh

= − (
∂

∂ui
qh,qh)�h + (

∂

∂ui
uh, f (t))�h

− 〈 ∂

∂ui

(
C 12 �uh � + C22 �qh �

)
�qh � + ∂

∂ui

(
�uh �

) (
C11 �uh � − C 12 �qh �

)
,1〉Eh

= − (
∂

∂ui
qh,qh)�h + (

∂

∂ui
uh, f (t))�h

− C22
∂

∂ui
〈�qh � �qh �,1〉Eh − C11

∂

∂ui
〈�uh � �uh �,1〉Eh

= − ∂

∂ui
Hh(uh, vh, t) by (38),

= − ∂

∂qi
H(p,q, t),

by definition of H(p, q, t).
The proof of the second identity follows in a similar manner. This completes the proof. �
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