
Optimization-based Modeling and Analysis
Techniques for Safety-Critical Software

Verification

Mardavij Roozbehani Eric Feron

Laboratory for Information and Decision Systems
Department of Aeronautics and Astronautics
Massachusetts Institute of Technology

Workshop on Critical Research Areas in Aerospace Software,
Tuesday August 9th, 2005, MIT

Outline
Introduction

Basic principles of automated software analysis
−Computer programs as dynamical systems
−Lyapunov functions as behavior certificates

System specific models of computer programs
−Mixed integer/linear systems
−Linear systems with conditional switching

Convex optimization of Lyapunov certificates

Recursive search for system invariants to improve analysis

Conclusion
1

Introduction and motivation

Safety-critical software is becoming pervasive in aerospace sys-
tems, medical technology and embedded systems in general

It is crucial to verify reliability and correctness of the embedded
software. The very least to require is that the software must
be free of run-time errors.

Reliable software properties include but are not limited to:
−Absence of overflow
−Absence of ‘array index out-of-bounds’ errors
−Termination in finite-time

The above problems are undecidable but efficient algorithms
that work reasonably well in practice can be developed.

2

Basic principles of automated software analysis

A computer program can be viewed as a rule for iterative mod-
ification of operating memory, possibly in response to real-time
inputs

Dynamical systems representation of computer programs:
• State space X with selected subsets:
• X0 ⊂ X (initial states)
• X∞ ⊂ X (terminal states)
• Set-valued function f : X → 2X is s.t. f (x) ⊆ X∞, ∀x ∈ X∞.

• A Program/dynamical system S=S (X, f,X0,X∞) is the set
of all sequences X = (x (0) , x (1) , ..., x (t) , ...) of elements of X,

satisfying x (0) ∈ X0, x (t+ 1) ∈ f (x (t)) , ∀t ∈ Z+.

3

Example
Consider the program:

program P :

x1 ≥ 50;x2 ≤ 0;
while x1 > x2,
x1 = x1 − 1;
x2 = x2 + 1;
end

=⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P=S (X, f,X0,X∞)

X = R2

X0 =
n
x|x ∈ R2,Hx ≤ b

o
where:

H =

"
−1 0
0 1

#
and b =

"
−50
0

#
X∞ =

n
x|x ∈ R2, Lx ≤ 0

o
, L =

h
1 −1

i
;

f (x) =

(
x+B, Lx > 0
x, Lx ≤ 0 , B =

"
−1
+1

#

For instance X =

Ã"
60
−10

#
,

"
59
−9

#
, ...,

"
25
25

#
,

"
25
25

#
, ...

!
∈ P

4

Basic principles of automated software analysis

Definition 1: A computer program represented by a dynamical
system S = S(X, f,X0,X∞) is said to terminate in finite time
if every solution X = x(t) of S satisfies x(t) ∈ X∞ for some
t ∈ Z+.

Definition 2: The computer program S is said to run without
variable overflow if x(t) does not belong to a certain (unsafe)
subset X− of X for every solution X = x(t) of S.

Definition 3: A Lyapunov function for system S is defined to be
a real valued function V : X → R, which will strictly monoton-
ically decrease along the trajectories of S until they reach a
terminal state, i.e.

V (x) < V (x) ∀x ∈ X, x ∈ f (x) : x /∈ X∞.

5

Lyapunov functions as behavior certificates

Termination in finite-time:
Lemma 1: If the state space X is finite and if there exists a
function V satisfying

V (x) < V (x) ∀x ∈ X, x ∈ f (x) : x /∈ X∞.

then a terminal state X∞ will be reached in a finite number
of steps.

Lemma 2: If there exists a bounded function V : X 7→ R−, and
a constant θ > 1 satisfying

V (x) < θV (x) ∀x ∈ X, x ∈ f (x) : x /∈ X∞.

then a terminal state X∞ will be reached in a finite number
of steps.

6

Lyapunov functions as behavior certificates

Absence of overflow:

Lemma 3: Consider the system S and let V denote the space
of all Lyapunov functions for this system. An unsafe subset
X− of the state space X can never be reached along all the
trajectories of S if there exists V ∈ V satisfying

inf
x∈X−

V (x) ≥ sup
x∈X0

V (x)

7

Certifying boundedness and/or finite-time termination

Proposition 1: Consider the program P = S(X, f,X0,X∞) defined
as before and assume that there exists a function V : X 7→ R s.t.

V (x) < θV (x) ∀x ∈ X, x ∈ f (x) : x /∈ X∞.

V (x) < 0 ∀x ∈ X0.

V (x) >

°°°° xM
°°°°2 − 1 ∀x ∈ X.

where θ is a positive constant. Then, every solution X = x (t)

of P remains bounded in the (safe) region defined by kxk < M.

Moreover, if θ > 1, every solution X = x (t) reaches a terminal
state X∞ in finite time.

Remark: As mentioned, proofs of absence of ‘array index out-of-
bounds’ errors are important in software verification. This property
too, can be verified by employing this Proposition.

8

System specific models

Mixed integer/linear models: This system model has state
space X = Rn, and the set of initial conditions X0 ⊂ Rn. Its state
transition function f : X 7→ 2X is defined by two matrices F and H,
according to

f(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩[Fx Fw Fv 1]

⎡⎢⎢⎢⎣
x
w
v
1

⎤⎥⎥⎥⎦ :

∃(w, v) ∈ [−1, 1]q × {−1, 1}r s.t. [Hx Hw Hv 1]

⎡⎢⎢⎢⎣
x
w
v
1

⎤⎥⎥⎥⎦ = 0
⎫⎪⎪⎪⎬⎪⎪⎪⎭

Naturally, X∞ is defined by

X∞ = {x | x ∈ Rn,
∀(w, v) ∈ [−1, 1]q × {−1, 1}r , H[x;w; v; 1] 6= 0}

9

Convex optimization of Lyapunov certificates:

Our method of automated code analysis is based on using convex
optimization in the search for the proposed Lyapunov functions.

1. Let the certificate function V (.) : X → R take an appropriate
form, e.g. V can be a linear, piecewise linear, quadratic, piecewise
quadratic, or polynomial function of x ∈ X.

2. Various versions of the convex relaxation methods, including
sums of squares in positivity verification, S-procedure and semi-
definite relaxations of combinatorial problems can be used to for-
mulate a convex optimization problem.

10

3. The resulting convex optimization problem is an LP, MILP or
an LMI problem.

4. The appropriate choice of V (.) , and the optimization method
are influenced by:

−Availability of efficient relaxation techniques
−Compatibility with a particular numerical engine for convex optimization
−Computational costs and complexity growth with the size of the problem

11

Numerical Example
Consider the following program:

x (0) = x0; c (0) = c0;
While x < 500

if x ≤ 480 and c = 1
x = x+ a;
c = 1;

else if x > −450
x = x+ b;
c = −1;

end
if x ≤ −450

c = 1;
end

end;

where a ∈ [25, 45] and b ∈ [−15,−2] , are uncertain input parameters, x0 ∈
[−450, 480] and c0 ∈ {−1, 1} are uncertain initial conditions. Bounded-ness
and finite-time termination of this program are not trivial.

12

The mixed integer/linear model of this program is defined with
matrices F, and H, given by:

F =

"
1 01×7

a
2 01×3

b
2 0 0 a+b

2
01×6

1
2 01×3

1
2 0 −12 01×2

1
2

#

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −um 01×2 um 01×7 0 0 −u
1 01×2 lm 01×2 −lm 01×6 0 0 −l
1 01×3 rm 01×6 0 0 0 0 rm
0 1 01×5 −1 01×4 0 0 0 0
01×5 1 −1 01×4 0 0 0 −1 −1
01×5

−1
2 0 −1

2 1 1
2 01×4 0 1

2
01×6

1
2 0 −1

2 0 1 1
2 01×3

1
2

01×6
1
2 0 1

2 01×3 1 1
2 0 1

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where um = u+M

2 , lm = l−M
2 , rm = R+M

2 , rm = R−M
2 , R = 500,

u = 480, l = −450.
13

The quadratic Lyapunov certificate

V (x, c) =
³
10−3

´
×

⎡⎢⎣
x
M
c
M
1

⎤⎥⎦
T ⎡⎢⎣ 0.126 1.502 −1.455

1.502 7660.045 −1.061
−1.455 −1.061 −2.119

⎤⎥⎦
⎡⎢⎣

x
M
c
M
1

⎤⎥⎦
is the certificate for finite-time termination and bounded-ness of
x, for M = 750, i.e. |x| ≤ 750.

14

Recursive Invariant Search for Software Systems
Consider the following program:

x1 (0) = 1;x2 (0) = 3;x3 (0) = 0; y(0) = x1 (0) ;

While x3 < x1
y = x1;
x1 = 2.5 ∗ x1 + x2;
x2 = −0.5 ∗ y + x2;
x3 = 8 ∗ x3 + 1;

end

Assume that the overflow bound is M = 1000.
Finite-time termination and boundedness are not trivial for this example
The initial attempt to prove the desired properties via Lyapunov-like func-
tions that were introduced comes unsuccessful!
System invariants that prove neither finite-time termination nor bound-
edness but give additional information about the system behavior can be
extracted.

15

Affine functions are good (computationally very cheap) candidates for such
assisting invariants.

For instance, consider Lyapunov-like functions:

V : X → R, V (x) = Lx

V (x (k + 1)) ≤ θV (x (k)) + α

Finding such linear invariants is a mixed integer linear program.

For the previous example, V (x) = −x3 is found. which provides the
invariant:

x3 (k) ≥ 0

This additional information, is used via convex relaxation methods to find
the appropriate Lyapunov function.

16

The quadratic function

V (x (k)) = 10−6×⎡⎢⎢⎢⎣
x1 (k)
x2 (k)
x3 (k)
1

⎤⎥⎥⎥⎦
T ⎡⎢⎢⎢⎣

2610 4569 0.2045 −12904
4569 31559 0.8954 −97174
0.2045 0.8954 82 −34904
−12904 −97174 −34904 0.2948

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
x1 (k)
x2 (k)
x3 (k)
1

⎤⎥⎥⎥⎦
Proves boundedness and finite-time termination, with overflow boundM =

1000.

Additional linear invariants could be found to assist the analysis, for in-
stance

x1 + x2 − 8x3 ≤ 4

x1 + 2x2 − 10x3 ≤ 7

are other such linear invariants.
With this additional information, reachability analysis can be improved
even more. In this case, boundedness with overflow bound M = 450 is
proven!

17

Conclusions

An approach towards safety analysis of software was intro-
duced.

The novelty of this approach is in the transfer of fundamental
concepts (Lyapunov invariants) and associated computational
techniques from the control systems analysis arena to software
engineering

It was shown that software, as a rule for iterative modification
of computer memory, can be modeled as a dynamical system.

Specific models carrying this task were also suggested. These
include mixed integer/linear models and linear systems with
conditional switching.

18

System invariants, found by Lagrangian relaxations and con-
vex optimization of certain Lyapunov-like functions prove the
desired properties of the dynamical system/software.

The properties include bounded-ness of all variables within
acceptable ranges and finite time termination of the program
in most cases.

Scalability of the technique needs to be improved for applica-
tions to large computer programs with thousands of lines of
code.

19

mardavij@mit.edu

feron@mit.edu

20

