The goal is threefold:

- Introduce differential operators on submanifolds.
- Discuss the maximum principle.
- Introduce the norm of the second fundamental form on submanifolds.

In all that follows, let $\Sigma^n \subset \mathbb{R}^{n+1}$ be an n-dimensional embedded submanifold of \mathbb{R}^{n+1}. For the most part we’ll work locally near some point $p \in \Sigma$, where $\Sigma \cap B_r(p)$ can be viewed as the image of an injective immersion $F : U \to \Sigma$, $p = F(0)$, and U is a bounded open subset of \mathbb{R}^n.

- First, we want to define the tangential gradient of functions along Σ.
- Recall that if f is some ambient function on some open $U \subset \mathbb{R}^{n+1}$, then ∇f is just a vector field on U. We, unsurprisingly, define its tangential gradient along Σ to be literally the projection of this gradient onto Σ. Specifically, if $\nu(p)$ denotes a normal vector to $p \in \Sigma$, then:

$$\nabla_{\Sigma} f(p) = \nabla f(p) - \langle \nabla f(p), \nu(p) \rangle \nu(p).$$

Being a tangent vector, $\nabla_{\Sigma} f(p)$ can be rewritten as a linear combination of the basis vectors for $T_p \Sigma$: $\partial_1 F(0), \ldots, \partial_n F(0)$. Namely:

$$\nabla_{\Sigma} f(p) = \sum_{i,j=1}^n g^{ij}(0) \partial_i (f \circ F)(0) \partial_j F(0).$$

Here, g^{ij} are the elements of a matrix (g^{ij}) defined as the inverse matrix of the matrix (g_{ij}) whose elements are given by

$$g_{ij} = \partial_i F \cdot \partial_j F.$$

- The formula above for $\nabla_{\Sigma} f$ is parametrization-independent: if G also parametrizes Σ near p (i.e., $G = F \circ \varphi$ for a C^1 bijection φ with C^1 inverse, with the correct domain/range in \mathbb{R}^n), then $\nabla_{\Sigma} f(p)$ is the same whether you computed using F or G.

- One can use the formula above to define $\nabla_{\Sigma} f$ for functions $f : \Sigma \to \mathbb{R}$ for arbitrary embedded submanifolds of \mathbb{R}^{n+1}, even if these functions do NOT come up as restrictions of ambient functions. Notice that even if Σ is less than n-dimensional, this definition still makes sense (as long as we replace n with the dimension of Σ).

- One defines the tangential divergence $\text{div}_{\Sigma} Z$ along Σ for vector fields Z defined on open subsets $U \subset \mathbb{R}^{n+1}$ along the same way:

$$\text{div}_{\Sigma} Z(p) = \sum_{i,j=1}^n g^{ij}(0) \partial_i (Z \circ F)(0) \cdot \partial_j F(0).$$

Like before, $\text{div}_{\Sigma} Z$ is parametrization independent. Along the same lines as above one defines $\text{div}_{\Sigma} Z$ for vector fields that are only defined along Σ. This is also the definition uses if Σ is less than n-dimensional.

- State the divergence theorem. You needn’t prove it: If $\Sigma^k \subset \mathbb{R}^{n+1}$ is a compact k-dimensional embedded submanifold, and Z is a C^1 vector field on Σ which is everywhere tangent to Σ and f is a C^1 function on Σ, then

$$\int_{\Sigma} \nabla_{\Sigma} f \cdot Z = - \int_{\Sigma} f \text{div}_{\Sigma} Z.$$
• We can now define the tangential Laplacian for functions $f: \Sigma \to \mathbb{R}$:

$$\Delta_\Sigma f = \text{div}_\Sigma \nabla_\Sigma f.$$

• State the analog of the strong maximum principle. If $\Sigma^k \subset \mathbb{R}^{n+1}$ is a compact embedded submanifold, we have the differential operator

$$Lu = \Delta_\Sigma u + b \cdot \nabla_\Sigma u + cu$$

for $c \leq 0$, and $u: \Sigma \times [0,T]$ satisfies $\frac{\partial}{\partial t} u - Lu \leq 0$ (etc.) then ...

• One can now state the ODE-PDE comparison theorem on compact Σ. This is Theorem 2.1.1 in Mantegazza. (Skip the references to u_{max}! We have gone to great lengths in the course to not have to worry about u_{max}. Simply compare to the solution h of the ODE he writes down later, which is just as good and in fact clearer.)

• Finally, let’s switch gears back to defining things. Let’s assume Σ is n-dimensional again, rather than $k \leq n$ dimensional.

• We’d like to define the ”norm” of the second fundamental form at p. Up until now, we’ve viewed the second fundamental form as an $n \times n$ matrix with entries

$$A_{ij}(0) := -\partial_i \nu(0) \cdot \partial_j \mathbf{F}(0), \ i, j = 1, \ldots, n,$$

where $\nu: \mathbb{B} \to \mathbb{R}^{n+1}$ is a normal to Σ.

• Could its (squared) norm be defined to be something like

$$\sum_{i,j=1}^n |A_{ij}(0)|^2$$

No! This quantity isn’t “geometric” – i.e., it’s not independent of parametrization. Do you see why?

• The *correct* (squared) norm is defined to be

$$|A(0)|^2 = \sum_{i,j,k,\ell} g^{ik}(0) g^{j\ell}(0) A_{ij}(0) A_{k\ell}(0).$$

This quantity *is* independent under reparametrization! Note: the direct equivalent of this for curves in \mathbb{R}^2 is the square of the length of the curvature vector, $|\kappa|^2$ (equivalently, the square of the curvature scalar, k^2).