Distributed Energy Sharing in Energy Internet through Distributed Averaging

Yangyang Ming, Jie Yang, Junwei Cao*, and Ziqiang Zhou

Abstract: This paper proposes a distributed averaging iteration algorithm for energy sharing in microgrids of Energy Internet based on common gossip algorithms. This algorithm is completely distributed and only requires communications between neighbors. Through this algorithm, the Energy Internet not only allocates the energy effectively based on the load condition of grids, but also reasonably schedules the energy transmitted between neighboring grids. This study applies theoretical analysis, to discuss the condition in which this algorithm can finally reach supply-and-demand balance. Subsequently, the related simulation validates the performance of the algorithm under various conditions.

Key words: distributed averaging; energy sharing; gossip algorithm; Energy Internet

1 Introduction

As a modern energy-utilizing system, Energy Internet [1] effectively combines internet networking technology with highly effective usage of distributed renewable energies through advanced information and communication infrastructure and technologies [2,3]. With basic characteristics of openness and sharing [4], Energy Internet can enable energy sharing between microgrids, to improve the energy utilizing efficiency. However, the Energy Internet may be unsuitable for a central administration institution sometimes. To maintain high controlling and managing performance, large-scale Energy Internet behaves better by using distributed consensus control strategies. Thus, energy sharing in distributed consensus control has become an important research topic [5]. In this paper, we achieve energy sharing in Energy Internet based on distributed averaging technologies (mainly using gossip algorithms). Through distributed averaging iterations, our designed algorithm can allocate energy in the microgrids according to the energy supply and load demand of all users.

With the development of Energy Internet, the concept of a cyber-physical system is advanced [6] and further develops into cyber-physical integration of infrastructure in Energy Internet [7], which means that the topology of the information network and energy transmission network are isomorphic, and the related facilities of information and energy are co-located and controlled at the same time. The integration of infrastructure for energy and information not only increases the energy-utilizing efficiency but also enhances the control ability of Energy Internet, and finally, this becomes the foundation of the algorithm proposed in this paper.

In many cases, some nodes need to reach a common state in distributed means, This procedure is called consensus. The consensus algorithm can be used in a dynamically changing environment [8,9], such as time-varying topology [10,11], time-varying delays [12], limited bandwidth [13], and quantization [10,14] or non-quantization. It can reach consensus not only in linear motions [15,16] and sometimes asynchronously [17,18]. Some algebraic theories can be used in consensus algorithms such as least mean square [19]and
LaSalle’s invariance principle [20].

Distributed averaging is a special kind of consensus technology that has been used widely such as in flight or vehicle formation [21], fire hazard control, network time synchronization, and others. It is always executed in distributed means without any centralized control.

Before distributed averaging, every node will have a different initial value and aims to achieve the average value for certain reasons. Through proper communication and calculation between neighbors, all connected nodes reach consensus. The consensus value becomes the same as the average value precisely if neither quantization nor limited-to-integer value exists.

Gossips are typically distributed averaging algorithms [22] and have many types, such as random [23], broadcast [24], and geography gossip [25]. In random gossip, a node communicates with a randomly selected neighbor and they set each other’s value to be their average. In geography gossip, the selected neighbor node is not limited to one hop, so averaging of many hops’ is possible. In broadcast gossip, all neighbor nodes of the target node update their value using the broadcast value they have received. By extending the node’s selection range, geography gossip may have faster convergence rate than random gossip. Through broadcast update, broadcast gossip has the fastest convergence value, but this algorithm cannot keep the total value (or the average value) unchanged. Thus, the consensus state may deviate from the average value.

The gossip algorithm can be used to compute some character values, such as sums, averages, random samples, quantiles, and other aggregation functions [26]; this new algorithm has been used in energy sharing.

The rest of this paper is organized as follows. The selection of gossip algorithm is briefly explained in Chapter 2. In Chapter 3, the algorithm is described in detail. Related theorems on convergence are proved in Chapter 4. In Chapters 5 and 6, simulation and results, and further discussion, is provided. Finally, Chapter 7 concludes the paper.

2 Gossip selection

The basic theory of all nodes’ convergence to average value is based on stochastic matrices and doubly-stochastic matrices. In stochastic matrices, every element is non-negative and the sum of every row is equal to 1, that is:

$$A \ast 1 = 1$$

A is the stochastic matrix and 1 is a $n \times 1$ dimensional vector of all elements equal to one.

With connected fixed topology, this method guarantees the final value being converged. In doubly stochastic matrices, the sum of every row and column is 1, so it satisfies both

$$A \ast 1 = 1 \text{ and } 1^T \ast A = 1^T$$

and $A(i,j) \geq 0$ and $A(i,j) \leq 1$ for any i, j.

This with connected topology and some other proper constraints will not only guarantee convergence, but also ensures converging to the average value. In random and geography gossip, the transfer matrices are doubly-stochastic. However, in broadcast means, the transfer matrix only belongs to the stochastic matrix. Thus, the latter algorithm is not included in the present study.

In this paper, we first use a simple random-gossip algorithm without considering the quantization effect. In this algorithm, one node is randomly selected, and the communication node is selected as the one that has the maximum different value with the selected node. Then, the value of the nodes is averaged. This algorithm is simple and has proved to reach consensus with the average value. Although gossip is the basic algorithm used in our energy sharing algorithm, it is not the research focus of this paper; it is only considered as a basic component. So the algorithm with higher performance can be selected later.

3 Algorithm description

3.1 Scene description

Based on the forecast of load and energy changes in Energy Internet, some grids may have spare energy, while others may face an energy shortage. Then, the microgrid network can balance the energy demand and supply by using this algorithm. Based on the forecast time scale, the advanced time for calculation can be one day, one hour, or even five minutes. Then, before the time is reached, the energy transmission is scheduled by the algorithm. So far, this algorithm only regulates the total energy transmission in quantities for a period, but real detailed power transmission can also be executed by the same means in the future with the aid of other suitable algorithms, such as that used in demand response (linear regulation).

As we are using the theory of cyber-physical
integration in infrastructure for energy and information, the information-handling and energy transmission nodes are located and controlled together (energy router [27]), and the calculated energy-sharing result can be directly applied to the energy transmission. This method is the foundation of the algorithm proposed in the following section.

3.2 Algorithm description (shown in Figure 1)

1. Every node (microgrid) forecasts its energy supply and load demand for the next period. Each node can contain an energy-producing unit and/or energy-storage device, and the latter is called a combined node and treated equally with a common node. The energy upper limit is the sum of local energy-producing capacity and energy-storage quantities.

2. The load of every node is set as the required energy, and the result of energy redundancy is calculated as Equation (1). The elements in Equation (1) are both vectors.

\[\text{redundancy} = \text{energy} - \text{load} \tag{1} \]

3. The value of the nodes that have positive energy redundancy are set to 1, and the negative ones to 0. Then, the distributed averaging algorithm is executed, and the final value \(T_{avg} \) is obtained. It is equal to the ratio of positive redundancy node number to the whole node number (shown in Figure 2).

4. The range of change factor \(k \) (used in Equation (7), verified by lemma 3) is calculated as

\[0 < k < 2/T_{avg} \tag{2} \]

5. Based on the energy redundancy data, every node changes its value with its neighbors using the selected gossip algorithm to reach consensus. In the process, the energy transmitted along the transmission line during every average action is recorded and summed in every line. The related function is

\[\text{flow}_{m1}, \text{temp}_{load} = \text{distributed}_\text{avg}(\text{load}_\text{energy}, \text{link}_m), \]

where \(\text{flow}_{m1} \) represents the transferred energy along the transmission line, \(\text{temp}_{load} \) is the averaged energy redundancy, \(\text{load}_\text{energy} \) is the energy redundancy changed in the last iteration, and \(\text{link}_m \) is the topology matrix of links connecting the grid nodes.

In this function, the variables are changed as:

\[\text{flow}_{m}(m,j1) = \text{flow}_{m}(m,j1) + (\text{temp}_{energy}(1,m) - \text{temp}_{energy}(1,j1))/2; \]
\[\text{temp}_{energy}(1,m)=\text{temp}_{energy}(1,m)+\text{temp}_{energy}(1,j1))/2; \]
\[\text{temp}_{energy}(1,j1)=\text{temp}_{energy}(1,m); \]

where \(\text{flow}_m \) is the calculated flow in the average proceeding between node \(m \) to \(j \), \(\text{temp}_{energy}(1,m) \) and \(\text{temp}_{energy}(1,j1) \) is set to the average value between node \(j \) to \(m \).

6. If the first iteration, and the calculated distributed averaging result is less than zero (which means that total \(\text{energy} \) is less than total \(\text{load} \)), then we have to import external energy (mainly from the backbone grid) to ensure non-negative energy redundancy. The related initial values are changed accordingly and the algorithm is re-performed.

7. In other situations, we modify the energy and energy redundancy according to the distributed averaging result for energy redundancy and the change factor \(k \). If the average result is equal to zero, then the supply and demand is balanced, so the iteration is terminated. If the average result is positive, then we reduce the energy and energy redundancy on selected nodes; otherwise, if the average is negative, then we increase the energy and energy redundancy on selected nodes. The selected nodes are only limited to nodes with \(\text{energy}>\text{load} \) and satisfies other constraints, thereby ensuring the convergence of the algorithm. The related code is

\[\text{if temp}_{load}(1,i)>0 \&\& \text{load}_{energy}(1,i)>0 \&\& \text{energy}_m(1,i)>0 \]
\[\text{energy}_m(1,i) = \text{max}((\text{energy}_m(1,i) - \text{temp}_{load}(1,i)*k),0); \]
\[\text{temp}_{load}(1,i) = \text{temp}_{load}(1,i) - (\text{energy}_m(1,i) - \text{energy}_m(1,i)); \]
\[\text{else if temp}_{load}(1,i)<0 \&\& \text{load}_{energy}(1,i)>0 \&\& \text{energy}_m(1,i)<\text{load}_{m}(1,i) \]
\[\text{energy}_m(1,i) = \text{min}(\text{energy}_m(1,i) + \text{temp}_{load}(1,i)*k), \text{load}_{m}(1,i)); \]
\[\text{temp}_{load}(1,i) = \text{temp}_{load}(1,i) + \text{energy}_m(1,i) - \text{energy}_m(1,i); \]

end.

In the preceding code, \(\text{temp}_{load} \) is the average energy redundancy result, \(\text{load}_{energy} \) is the initial energy redundancy, \(\text{energy}_m \) is the energy allocation result in the last iteration, and \(\text{load}_m \) is the initial load in every node.

In the preceding code, when energy redundancy is larger than zero (with other proper constraints), if \(\text{energy}_m \) minus \(\text{temp}_{load} \) is more than zero, then set
energy_m to be equal to the minus result; otherwise, set energy_m to zero, and subtract the changed energy (energy1-energy_m(i,i)) from temp_load. Similarly, when energy redundancy is less than zero (with other proper constraints), and if energy_m plus temp_load is no more than load_m, then set energy_m to be equal to the result of addition; otherwise, set energy_m to load_m and add the changed energy (energy_m(i,i)-energy1) to temp_load.

8. Based on modified energy redundancy, the distributed averaging algorithm is executed for the next round. The iteration is stopped when distributed averaging result reaches very close to zero, and the balance is reached.

9. When the algorithm terminates, the recorded flow in every iteration and every transmission line is summed, and the energy supply of every grid is also calculated using the following code:

\[
\text{flow}_m = \text{flow}_m + \text{flow}_{m1};
\]

\[
\text{energy}_m = \text{energy}_m - \text{load}_m;
\]

where flow_m1 is the changed energy flow in the last iteration, and energy_m is the final energy provided by every node.

Proof If the total energy is more than the total load, positive energy redundancy nodes with number n always exist, and \(0 < n \leq \text{total nodenumber}\). Then, if \(k = 1\) and through step 7, the energy redundancy in every iteration remains non-negative (below the energy redundancy result calculated in the \(k_{th}\) iteration is noted as \(\text{result}[k]\)). At the same time, we can easily prove that \(\text{result}[k] > \text{result}[k + 1] > 0\) if \(\text{result}[k]! = 0\).

Thus, based on the limit theory, the algorithm finally converges to zero.

Lemma 2 If the total energy is more than the total load initially, then when \(k < 2\), the algorithm finally converges to zero.

Proof We can obtain that the first calculated energy redundancy \(\text{result}[1] > 0\) and then the proof can be divided into two cases:

Case 1: If \(\text{result}[i] \geq 0\) for all \(i\), as in Lemma 1, we can obtain \(\text{result}[k] > \text{result}[k+1]\) if \(\text{result}[k] > 0\), and finally the algorithm converges to zero.

Case 2: Otherwise, \(\text{result}[i] < 0\) exist for some \(i\). As the first calculated energy redundancy

![Fig. 1](image1.png)

Fig. 1 the proceeding of this algorithm

4 **Proof of related theories**

Some theories on the algorithm’s convergence characteristics are listed and proven as follows.

Lemma 1 If the total energy is more than total load initially, and \(k = 1\), then the algorithm finally converges to zero.

![Fig. 2](image2.png)

Fig. 2 coefficient k calculation
result[1] > 0, there will always be result[i + k] ≥ 0 (k ≥ 1), after result[i] < 0 for any i.

When k < 2, we can easily prove that:
1. If result[i] < 0 and result[i + 1] < 0 for any possible iteration, then |result[i]| > |result[i + 1]|.
2. If result[i] > 0 and result[i + 1] < 0 for any possible iteration, then |result[i]| > |result[i + 1]|.
3. If result[i] < 0 and result[i + 1] > 0 for any possible iteration, then |result[i]| > |result[i + 1]|.
4. If result[i] > 0 and result[i + 1] > 0 for any possible iteration, then |result[i]| > |result[i + 1]|.

Based on this foundation, result[i] > |result[i + 1]| ≥ 0 can be obtained for all conditions, so this algorithm will converge to zero.

From lemma 2, this algorithm works for any initial conditions with k < 2.

Lemma 3 If the total energy is more than the total load initially, then a possible range of k for which the iteration converges, is (0, 2/Tavg).

Proof When |result[i]| > |result[i + 1]|, the calculated energy redundancy converges to 0. We set |result[i + 1]| = |result[i]| + |delta[i + 1]|.

When |result[i]| > 0, then delta[i + 1] < 0, and if |result[i]| > 0.5 * |delta[i + 1]|, we can obtain |result[i]| > |result[i + 1]|.

Similarly, when result[i] < 0, then delta[i + 1] > 0, and if |result[i]| > 0.5 * |delta[i + 1]|, we also get |result[i]| > |result[i + 1]|. Thus, a sufficient condition for convergence is

|result[i]| > 0.5 * |delta[i + 1]| (3)

Proposed that the initial positive redundancy result node number is equal to Tavg * N (N is total node number) Through Equation (3), we have the sufficient condition (summed together)

|N * result[i]| > 0.5 * sum |delta[i + 1]| (4)

because

|Tavg * N * K * result[i]| ≥ \sum |delta[i + 1]| (5)

We can set a more strict condition, which is

|N * result[i]| > 0.5 * |Tavg * N * K * result[i]| (6)

As the number of nodes to be processed (changing redundancy) in every iteration is always no more than Tavg * N , above Equation becomes a sufficient condition for the convergency of the algorithm.

Then we can prove if

Tavg > 0 & K < 2/Tavg

the energy redundancy converges to 0.

As Tavg is always ≤ 1, lemma 2 is a special case of lemma 3.

5 Simulation and result

5.1 Topology set up

We randomly create a cluster of microgrids on Energy Internet with 7 nodes (microgrids). The simplified topology is shown in Figure 3 (G = (V, E)). The circle nodes (∈ V) represent microgrids, the square nodes (∈ V) represent extra energy storage units (forming the combined node with the circle nodes), and the lines (∈ E) represent the energy transmission lines between the nodes. These lines can be bidirectional in energy transmission. To run the energy-sharing algorithm, we set up the corresponding connection topology matrix (link_m) for this cluster. The nodes are notated from 1 to n, and the size of the connection matrix is 7×7.

If a transmission line connects nodes i and j, then set linem[i, j] = link_m[i, j] = 1.

Otherwise, the other elements are set to 0. The link_m of Figure 3 is

\[
\begin{pmatrix}
0,1,1,0,0,0,1 \\
1,0,0,1,1,1,0 \\
1,0,0,1,0,0,0 \\
0,1,1,0,1,1,0 \\
0,1,0,1,0,0,0 \\
0,1,0,1,0,0,1 \\
1,0,0,0,0,1,0 \\
\end{pmatrix}
\]

To record the energy flow between the connected nodes, we define the positive direction of the flow as from a node with a small number to that with a large number, and a negative value represents the opposite direction.

Before simulation, we have to assign the energy supply and load demand to every node (as shown in Figure 4). In the process, we can add a priority level to every microgrid. If important devices are in the microgrid, the priority becomes high, and the grid can set energy redundancy in the initial value set if any energy storage device exists.

Otherwise, the priority may be low and without
energy redundancy. At the same time, the needs of demand response or demand side management can be considered accordingly by modifying the initial energy and load value.

To simplify the algorithm, we set the initial total energy supply to be more than the initial total load demand, which does not change the substance of the algorithm.

The initial energy vector is [5,5,7,3,4,2,1] and the load vector is [1,1,6,4,3,4,4], where the i_{th} value of the two vectors correspond to the value of node i.

5.2 Gossip algorithm test

We have to test the convergence performance of the gossip algorithm first. We set the load demand as $\text{rand}(1, 7) \times 100$ and energy supply as $\text{rand}(1, 7) \times 100 + \text{rand}(1, 7) \times k1$. The coefficient $k1$ is set as 0,20,50,100,200 individually. Then, we calculate the distributed averaging value of energy supply minus load demand.

We also calculate the averaged abs error in every iteration as

$$n = |\text{initial value}|_0$$

$$\text{avg value} = \text{sum(\text{initial value})}/n$$

$$\text{abs error} = \text{sum(\text{abs(value - avg value)})}/n$$

(8)

Where $|\text{initial value}|_0$ represents the number of vector initial value and vector value represents the averaging result of initial value in every iteration.

When abs_error < k, the iteration terminates. We can determine if k remains unchanged; although $k1$ changes significantly, the ranges of results are similar, there by easing the simulation. If we set $k = 0.1$, all the simulation examples converge to the average value before approximately 48th iterations. If we set $k = 0.01$, the iteration round number is approximately 70th. If we set $k = 0.001$, then the value is approximately 95th. Figure 5-8 shows some results of statistic histogram for every 100 iterations. The horizontal axis represents iteration turns and the vertical axis represents the corresponding count numbers.

5.3 Simulation and result

First, we calculate the T_{avg} in Step3 using the gossip algorithm (input vector: [1,1,1,0,1,0,0]). We can obtain the result vector [0.5714, 0.5714, 0.5714, 0.5714, 0.5714, 0.5714, 0.5714] for 100 rounds, which are equal to the ratio of the initial number of positive energy redundancy nodes to the whole node number (4/7) in the above topology, thereby validating the step 3.

Before running the algorithm, we first set the change factor k as $T_{avg} = 4/7$. According to lemma 3, we can determine if k is less than 3.5, and the correct result is derived. (However, this is not a necessary condition.) Thus, we set the k vectors as [1,1,2,1.5,1.6,1.8,2.3,3.4] and run them in turn (k less than 1 is unnecessary; it only reduces the convergence rate).

We run the energy-sharing algorithm on the designed topology, and on that with one node deleted or one edge deleted. All scenes show the desired results (Figures 9 to 13).

From the preceding results, we can observe that the total energy assigned for every node is the algebraic sum of the self-providing energy and energy transmitted from neighbor nodes (added), and energy transmitting to neighbor nodes (subtracted), which is equal to the load of every node.

As shown, if the total initial energy is larger than the total initial load, the final energy value is always less...
Fig. 5 $k=0.001, k_1=0$

Fig. 6 $k=0.001, k_1=20$

Fig. 7 $k=0.001, k_1=50$

Fig. 8 $k=0.001, k_1=200$

Fig. 9 normal state simulation $k=1.2$

Fig. 10 normal state simulation $k=1$

Fig. 11 normal state simulation $k=2$

Fig. 12 node failure state simulation $k=2$
than the maximum energy, which can be provided by every node; in other words, spare energy exists in every node. This is a special advantage for energy sharing in microgrid networks because this energy redundancy can be used to face an emergency situation or charge the energy storage unit, thereby improving the stability of the entire network and improving the robustness of the microgrid network.

The simulation also shows the convergence phenomenon for various change factors \(k \) in Figure 14. We can observe that when the change factor is small, the energy redundancy monotonically decreases. As the change factor increases, the value of the first iteration decreases and some fluctuations occurs around the zero axis when \(k > 1.6 \), which coincides with our theoretical analysis. That is, if \(k \geq 1/T_{\text{avg}} \), then a negative result with high probability will emerge. All iterations end before seven turns. The instance with negative results often converges faster than only positive ones except \(k = 1 \).

Through in-depth observation and deduction, we can find that if the initial condition (demand and supply) and the change factor in two simulations are the same, then the final energy allocation in every grid will also be the same, but the energy transmitted between the grids will be different. At the same time, if the initial energy and load are equal in a pair of nodes (such as nodes 1 and 2), then the final energy load of this pair will be equal, as proven by theoretical analysis.

These two cases can be observed for all \(k > 1 \). The only exception is in \(k = 1 \), which may be due to the effect of averaging residue of gossip in the positive node selection scheme, thereby influencing subsequent handling results. However, the algorithm still converges and the result is reasonable. Thus, we can analyse the performance of the algorithm in every instance by only one example.

Excluding exception \(k = 1 \) (although it has the same trend listed below), the final result is reported in Table 1.

The (+) sign indicate that the initial supply is more than the initial demand in this node, and the (-) sign indicates the opposite condition.

From the table combined with the result of Fig. 11, we can observe that if \(k < 1.8 \) (energy redundancy is monotonically decreasing), with the factor \(k \) increasing, the energy provided by nodes with (+) sign monotonically decreases, while those with (-) sign monotonically increases (equally, the variance of vector energy-load for all nodes decreases with \(k \). Otherwise, if \(k \geq 1.8 \) (with energy redundancy fluctuation) and the factor \(k \) changes, the energy allocation remains almost unchanged. This result can lead us to properly select the change factor \(k \) to satisfy the extra energy demand.

6 Further discussion

6.1 Executing gossip in parallel

Our gossip algorithm can be executed in parallel, when two neighbor nodes agree to average, and it can be executed in parallel with other node executions. When two nodes select the same neighbor node, a simple “OK” or “reject” would be enough because the process mainly uses wired communication.

6.2 Communication and bandwidth constraint

As the communication media between microgrids mainly use fiber optics, the topological change becomes slow or constant, and the communication power and bandwidth constraint is not as tight as the wireless channel. Thus, no quantization is needed. Furthermore, the necessary characteristics of the topology can be very simple (i.e., only a proper
6.3 Gossip algorithm termination condition

When the gossip algorithm is executed in distributed means, every node should know when to terminate the iteration. Here, every node can broadcast its value to its one-hop neighbors if it changes. When the node finds that its value and its neighbors’ value remain unchanged for a limited period, then it can terminate the iteration locally.

6.4 Distributed calculating and central processing

Although the energy-sharing algorithm uses distributed computing technologies, it can also be used in central processing. If central processing units exist, they can gather every grid’s energy and load forecast data and use the iteration algorithm to calculate the energy allocation and obtain the energy transmitted along every lines. The central processing needs only one iteration by setting the total supply as equal to the total demand.

6.5 State renewing

As the energy sharing is linear, when the energy and load changes, we can use either enhanced learning or an update calculation to recalculate the network energy-sharing result. The two means are the same in substance, and the enhanced learning should also satisfy the energy constraint.

7 Conclusions

In this paper, a completely distributed iteration algorithm is designed for energy sharing in a typical Energy Internet situation. Through a properly designed algorithm process and change factor selection, the allocated energy and load requirement are finally balanced and the proof validates the performance of the algorithm. The algorithm is tested in different conditions and reasonable results are observed. Future research will consider the real constraints on energy transmission (such as capacity constraint on the transmission line) or on satisfying special transmission demands by grid owners (such as demand-side management). Furthermore, the real performance between different gossip algorithms will be evaluated and compared.

Acknowledgment

This study was partly supported by the National Natural Science Foundation of China (Grant No. 61472200), Beijing Municipal Science and Technology Commission (Grant No. Z16110000416004), and the project of Blockchain Application Research on Energy Internet (Grant No. 52110417000G).

References

<table>
<thead>
<tr>
<th>k/node</th>
<th>1(+)</th>
<th>2(+)</th>
<th>3(+)</th>
<th>4(-)</th>
<th>5(+)</th>
<th>6(-)</th>
<th>7(-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
<td>4.1916</td>
<td>4.1916</td>
<td>6.1916</td>
<td>2.7445</td>
<td>3.1916</td>
<td>1.7445</td>
<td>0.7445</td>
</tr>
<tr>
<td>1.5</td>
<td>4.0976</td>
<td>4.0976</td>
<td>6.0976</td>
<td>2.8698</td>
<td>3.0976</td>
<td>1.8698</td>
<td>0.8698</td>
</tr>
<tr>
<td>1.6</td>
<td>4.0703</td>
<td>4.0703</td>
<td>6.0703</td>
<td>2.9062</td>
<td>3.0703</td>
<td>1.9062</td>
<td>0.9062</td>
</tr>
<tr>
<td>1.8</td>
<td>4.4286</td>
<td>4.4286</td>
<td>6.4286</td>
<td>2.4286</td>
<td>3.4286</td>
<td>1.4286</td>
<td>0.4286</td>
</tr>
<tr>
<td>2</td>
<td>4.4285</td>
<td>4.4285</td>
<td>6.4285</td>
<td>2.4286</td>
<td>3.4285</td>
<td>1.4286</td>
<td>0.4286</td>
</tr>
<tr>
<td>3</td>
<td>4.4286</td>
<td>4.4286</td>
<td>6.4286</td>
<td>2.4286</td>
<td>3.4286</td>
<td>1.4286</td>
<td>0.4286</td>
</tr>
<tr>
<td>3.4</td>
<td>4.4286</td>
<td>4.4286</td>
<td>6.4286</td>
<td>2.4286</td>
<td>3.4286</td>
<td>1.4286</td>
<td>0.4286</td>
</tr>
</tbody>
</table>
Yanyang Ming received a bachelor’s degree from Nanjing University of Posts and Telecommunications in 2004, a master’s degree from Chongqing University of Posts and Telecommunications in 2007, and a PhD degree from Beijing University of Posts and Telecommunications in 2012. Ming is a Postdoctoral Researcher at Tsinghua University till now.

Jie Yang obtained her bachelor’s degree from Jinan University in 2007, master’s degree from Beijing Institute of Technology in 2010 and PhD from the same university in 2015. Since 2016, she serves in Tsinghua University as a Postdoctoral Researcher.

Junwei Cao obtained his bachelor’s degree from Tsinghua University in 1996, master’s degree from the same university in 1998, and PhD from University of Warwick in 2001. From 2002 to 2006, he worked at the NEC European Laboratory in Germany and the MIT/LIGO laboratory in the United States. Cao has been working at Tsinghua University since 2006 as Professor and Vice Dean of the Research Institute of Information Technology. He has published more than 200 academic papers and 8 books.