
Enhanced Adaptive Scheduling for the Grid Harvest Service

Wushou Sliamu and Yong Hou
College of Information Science and Engineering

Xinjiang University, China, 830046
{wushour, houyong}@xju.edu.cn

Junwei Cao

Research Institute of Information Technology
Tsinghua National Laboratory for Information Science and Technology

Tsinghua University, Beijing 100084, China
jcao@tsinghua.edu.cn

Abstract

Grid technology and applications become

mainstream distributed computing research in recent
years. The Grid Harvest Service, GHS, is one of non-
dedicated computing grid scheduling systems; it has
been widely used in Grid research field. The
contribution of GHS is providing appropriate
prediction for long-term applications different from
AppLes which is designed for short-term predictions.
GHS maps metatasks using the Min-Min algorithm in a
uniform log-term application. Min-Min is a highly
efficient algorithm in an uniform workload
environment that leads to load unbalance and low
performance when the workload is not uniform. In
order to solve the problem, a novel task scheduling
algorithm is proposed in this work, which is an
adaptive task scheduling algorithm based on Min-Min
and Max-Min (A-MM). A-MM merges the high
efficiency of traditional Min-Min scheduling with load
balance of traditional Max-Min scheduling. The
simulation and experimental result show that A-MM
has better performance and scalability than the Min-
Min of GHS.

1. Introduction

Large scale of computation and high costs of

supercomputers make it desirable to utilize
computational resources distributed on networks to
solve problems in science, engineering and commerce.
Lots of efforts have been done and many projects have
been defined, such as Condor [1], Globus [2] and
Nimrod [3].

Currently, there are many distributed and grid
systems to be researched and used, which can provide

different kind services to users. One kind of Grid
systems is Non-dedicated grid, which assumes that
guarantees cannot be obtained from the system. A Grid
task is allowed to execute when there is no local jobs
running. If any local jobs or other jobs arrive, the Grid
task is either suspended or terminated. For example, in
SETI@home, Entropia, and Condor, a Grid task is
allowed to run only when no keyboard or mouse
activities are detected on local resources.

Performance-prediction based task scheduling
system has been researched in non-dedicated grid
world [4], and there are many grid system based on
non-dedicated grid, such as AppLes[7] and RPS[8]. In
these systems, the CPU availability is estimated by
Network Weather Service (NWS)[10]. However, NWS
is designed for short-term predictions (up to 5 minutes)
and cannot provide appropriate prediction for long-
term applications. GHS is a performance evaluation
and task scheduling system for solving large-scale
applications in a shared environment.

GHS schedule long-term applications by Min-Min
algorithm. Min-Min is a simple and highly efficient
algorithm. However, in real Grid society, as we know,
scheduling system always dispose tasks including
long-term and short-term applications, whose
workloads are not uniform. Through a plenty of
experiments [5], we can conclude that the performance
of Min-Min is bad in the condition where the workload
of applications are not uniform. So how to solve the
problem of Min-Min bad performance in the
environment is a serious issue.

The experimental results in [6] show that in the
condition when there are many uneven applications
waiting to be scheduled, the Min-Min algorithm is
unable to balance the load well since it usually
schedules small tasks first, on the contrary, the Max-
Min algorithm may result in a better balance for a

World Congress on Software Engineering

978-0-7695-3570-8/09 $25.00 © 2009 IEEE

DOI 10.1109/WCSE.2009.308

35

World Congress on Software Engineering

978-0-7695-3570-8/09 $25.00 © 2009 IEEE

DOI 10.1109/WCSE.2009.308

35

World Congress on Software Engineering

978-0-7695-3570-8/09 $25.00 © 2009 IEEE

DOI 10.1109/WCSE.2009.308

35

World Congress on Software Engineering

978-0-7695-3570-8/09 $25.00 © 2009 IEEE

DOI 10.1109/WCSE.2009.308

35

Authorized licensed use limited to: MIT Libraries. Downloaded on December 6, 2009 at 06:41 from IEEE Xplore. Restrictions apply.

given mapping. Thus, in this paper, we try to absorb
the merit of both Min-Min and Max-Min and propose a
new adaptive task scheduling algorithm, namely the
Adaptive Min-Min and Max-Min (A-MM) algorithm.
The new algorithm not only retains the advantage of
the Min-Min algorithm but also achieves the good load
balance.

This paper is organized as follows. In section 2, the
GHS system is analyzed. In section 3, the new
scheduling algorithm is introduced. In section 4, the
experimental results are presented and discussed. We
conclude this study in section 5.

2. The Grid Harvest Service

2.1 The architecture of GHS

Figure 1. Architecture of GHS performance

evaluation and task scheduling system.

Figure 1 shows the relationship among the major

components of the GHS system. Referring the OGSA
criterion, GHS is divided into four layers: Fabric
Layer, Collectivity Layer, Resource Layer, and
Application Layer. Many components in each Layer
cooperate together to finish Grid tasks. Major
components are as follows:

Application Level Predictor, which estimates the
application performance based on the map information
provided by the Task Allocator component and the
system information provided by the System-level
Predictor component.

System Level Predictor analyzes resource usage
patterns to provide an estimation of system
performance in a future period. The inputs of this
component are the preprocessed system parameters
stored in a performance database.

Task Allocator decides how to partition a parallel
program or how to group subtasks of a meta-task. The
inputs of this component are the application
characteristics (workload, application type,
dependency of subtasks of an application), and the
output is a mapping of subtasks on a given set of
computing resources.

Task Scheduler determines a scheduling plan for a
large-scale application to provide an optimal or near-
optimal solution for its running in a shared
environment.

Performance Data Management (PDM) implements
data filtering and reduction techniques for
extrapolating system and application performance
information on each resource.

Reschedule Trigger System (RTS) analyzes the
collected application and the performance data of
resource to detect whether resources present abnormal
performance from their historical records. If an
abnormal resource behavior is identified, application
will be rescheduled to prevent potential performance
loss.

Grid-enabled Programming System (GEPS) and
Problem Solving Environment (PSE) are served by the
Prediction component.

Performance Communication Manager (PCM)
component is used to collect performance data, which
could be exchanged through the GridFTP services
protocol based on the communication infrastructure
provided by the GSI service in the Connectivity layer.
The GridFTP service protocol can be used to handle
the transfer of applications and their data files and the
GRAM can be used to dispatch subtasks of
applications on resources.

2.2 The scheduling of GHS

Resources

User

Application
Level Predictor

System level
Predictor

Map tab

Estimation

Resource
Information

Service

Sensor

Sensor

Sensor

Task Manager Task Execution Service

Scheduler

Allocator

Resources tasks

Resources lists

Map tab

Query

Application characteristics

Figure 2. A framework of GHS scheduling

system.

Figure 2 shows the process of GHS scheduling

system. GHS has five orders to finish a scheduling of a
task: the resource measurement order (smeas), system-

36363636

Authorized licensed use limited to: MIT Libraries. Downloaded on December 6, 2009 at 06:41 from IEEE Xplore. Restrictions apply.

level predictor order (syspred), application-level
predictor order (apppred), meta-task scheduler order
(mtsc) and parallel program scheduler order (pgsc). It
works as following: firstly, collecting resource
utilization, job arrival rate, job service time, job service
time standard deviation of resources during 1000
hours, and sending them into dynamic array of
ghsmeasrue.log, the smeas order calculates the average
of data stored in ghsmeasrue.log during each hour and
send them into the parameter of date, meanUtil,
meanLambda, meanServ and meanStd of
ghsmeasrue.log. The syspred order will collects all of
the parameter from ghsmeasure.log, and gets the even
value of job arrival rate in each hour, named
valueHour, from predictable in a given period, and get
the even value of job arrival rate in every day, named
valueDay, in a given period.

The result of prediction in a given period is Alpha *
valueHour +Beta * valueDay. Alpha and Beta could be
obtained from experience. apppred order estimates the
job service time and job service time standard
deviation. the cumulative distribution function of the
application completion time on a machine
is

1
(1) { () | 0}, ,

{ }

0 ,
r kk k k k k

q w
r k k k k

k
w P U S t W S t W

T t

otherwise
P

e e
λ τ λ τ

τ
− −

=
+ − ≤ − > ≥

≤ =
⎧
⎪
⎨
⎪⎩
∏

where Pr{T≤t} calculates the cumulative distribution
function of the application completion time (T) and Tk
is the subtask completion time on machine k, name Mk.
The arrival of local jobs in machine k follows a
Poisson distribution with λk. wk is the workload of the
remote task on Mk. Sk is the number of interruptions
encountered on Mk. tk is task completion time on Mk
and τk is the capability of computing on Mk . U(Sk) is
the completime of the grid task on the condition of Sk.
The mtsc order is a program which generates a
scheduling plan for a given resource set and a given
meta-task. We will discuss the meta-task scheduling in
this paper. The pgsc order is a program which
generates a parallel scheduling plan.

3. Enhanced adaptive scheduling

In this section, we will introduce A-MM algorithm

and its implementation into GHS in details.
As mentioned in [5], the grid resources set is

R={r1,r2,…,rn }, where there are n resources, r1,r2,…,rn,
which could be used by the scheduler. The grid tasks
set is J={ j1,,j2,… ,jm }, and there are m tasks, j1,,j2,…
,jm, which demand the resource. Expected time to
compute (ETC) matrix is a model of the given service
grid system, where the ETCij is the expected execution
time of task i on machine j without any load.

Definition 1. The judgment array of A-MM,
Min_Time. We can find the minimum ETCij from each
task ETC of task i, named Min_Time(i)= ETCij, on
every resources, and all of the ETCij compose a set of
number, named Min_Time.
Definition 2. Relative Standard Deviation, RSD.

RSD
s
x

= ,

where

2

1

()

1

n

i
i

x x
s

n
=

−
=

−

∑
.

s is the standard deviation of the sample, which
represents the degree of the dispersion of it. x is the
mean value of the sample. RSD could well indicate the
degree of dispersion of a set of values.

Start

J is null

Get the ETC matrix

application
predictor

system
predictor Get the Min_Time

Get the
by adaptive method

 'ξ

The RSD of Min_Time
more than the thresold

 'ξ

Max-MinMin-Min

Map the tasks and
Retrun to Start

YES

NO

END

YES

NO

Figure 3. The flowchart of A-MM scheduling

Figure 3 gives the description of A-MM algorithm:

Firstly we obtain the ETC matrix through the
application predictor and the system predictor.
Secondly, we get the value of ETC and compose the
Min_Time. Thirdly, we get the value of RSD of the
Min_Time, and denoted as ξ . A-MM algorithm will
use the property of the RSD, which could well indicate
the degree of dispersion of a set of value, to judge the
degree of the dispersion of the Min_Time. If ξ is

37373737

Authorized licensed use limited to: MIT Libraries. Downloaded on December 6, 2009 at 06:41 from IEEE Xplore. Restrictions apply.

smaller than the critical value of RSD of Min_Time,
which is named 'ξ and could be obtained by means of
experiences, we regard the degree of dispersion of
Min_Time is lower, and it is believed the ETC values
of tasks are uniform, so the scheduler will select the
Min-Min algorithm that has better performance in the
uniform environment. Otherwise, the dispersion degree
of Min_Time is higher, for the ETC values of tasks are
not uniform, consequently, and the scheduler will
select the Max-Min algorithm to assign tasks. As a
result, A-MM algorithm can obtain much better
performance than that of either Min-Min or Max-Min
algorithm through the selecting mechanism described
above.

The description in detail of A-MM algorithm in
GHS is proposed in Figure 4.
Assumption: a meta-task composed of a number of
independent subtasks, Sr={t1,t2, …,tp} and a list of
machines {m1,m2,…,mq}. Each subtask is indivisible.
Objective: find a task group mk(1≤ k ≤q) for
machine Gk={tk1,tk2,…,tkn}
--
Begin
 /*Ck denotes the current estimated completion time of
the assigned subtasks on machine mk */

0, , (1); 1;k kC G k q iφ= = ≤ ≤ =
While

rS φ≠
For

i rt S∈ Do
1;j =

While j q<
,() /[*(1)];i j i j jE T w τ ρ= −

/*E(Ti,j)is the execution time of ti on machine mj*/
1;j j= +

End While
Find machine k where Ck+E(Ti,j) is minimal;
End For
Compose all of Ck+E(Ti,k) into a one metric [Ck+E(Ti,k)]
，named Min_Time;
Canculate the RSD value of [Ck+E(Ti,k)], ξ;
While, get 'ξ , the critical value of RSD of Min_Time,
by means of daptive method：

'ξ take the value between 0.1 and 1 each 0.05 in each
process of choosing, select the optimal value of

'ξ from all of them as the judgment key of A-MM;
If(ξ > 'ξ)
Find a map of (tu, mv) where Cv+E(Tu,v) is maximal;
Else Find a map of (tu, mv) where Cv+E(Tu,v) is
minimal;

,{ }; ();v u u k k u vG G T C C E T= ∪ = +
{ }; 1;r r uS S T i i= − = +

End While

Return (1);kG k q≤ ≤
End

Figure 4. A-MM scheduling algorithm in GHS

wk is the workload of the remote task on Mk, and it is

a static value. τj, ρj will be obtained from performance
prediction component, Tu , mv and Gv stand for task u,
machine v and task group on machine v respectively.

4. Simulation results and performance

evaluation

In this section, we evaluate the performance of A-

MM through implementing it into GHS and compare
the performance of A-MM with Min-Min in different
scenarios. All the experiments run in Solaris. In this
paper, we will set a scenario with 5 resources and 4
groups tasks, including 5, 15, 30, 45 tasks respectively.
The result can be seen in Figure5.

0
20
40
60
80

100
120
140
160
180
200

5 15 30 45
Tasks

m
ak

es
pa

n
A-MM
Min-Min

Figure 5. Makespan of A-MM and algorithm in
GHS

As show in Figure 5, for all the four scenarios, the

A-MM outperforms the Min-Min. Through exploiting
the merit of the Min-Min and Max-Min, A-MM could
exert the potential of the efficiency of Min-Min and the
load balance of Max-Min, obtaining the better
performance than others by choosing the optimal value
of 'ξ , A-MM algorithm could get much better
performance in most situations than Min-Min.

Figures 6 and 7 show the comparison of the
scalability of tasks between A-MM and Min-Min of
GHS, which include 5 resources and 5～50 tasks in
Figure 6 and 10～50 service resources and 20 tasks in
Figure 7.

38383838

Authorized licensed use limited to: MIT Libraries. Downloaded on December 6, 2009 at 06:41 from IEEE Xplore. Restrictions apply.

Figure 6 . The scalability of resources

Figure 7. The scalability of tasks

As can be seen, the line of A-MM is more close to
linearity than Min-Min algorithm, and therefore, A-
MM has much better scalability of tasks and resources
than that of Min-Min and Max-Min [9].

5. Conclusions

In this paper, we thoroughly analyze GHS and

propose a new algorithm, A-MM, to solve the problem
of unbalanced load scheduling algorithm of GHS. A-
MM merges the efficiency of Min-Min and the load
balance of Max-Min and show the better performance
than original Min-Min. Meanwhile, A-MM is robust in
the scalabilities of the tasks and the resources.

As for future work, we plan to expand the scale of
simulations, and multi-dimensional QoS should be
embedded into the task scheduling.

Acknowledgment

This research is supported by the priming scientific
research foundation for the junior teachers in XinJiang
University (grants No.070309), sponsored by Ministry
of Science and Technology of China under the national
863 high-tech R&D program (grants No.
2006AA10Z237, No. 2007AA01Z179 and No.
2008AA01Z118), and National Science Foundation of
China (grant No. 60803017).

 References

[1] R. Raman, M. Livny, and M. Solomon,
“Matchmaking: Distributed Resource Management for
High Throughput Computing”, Proceedings of the 7th
IEEE International Symposium on High Performance
Distributed Computing, Chicago, IL, July 1998, pp.140-
146.

[2] I. Foster, “Globus Toolkit Version 4: Software for
Service-Oriented Systems,” IFIP International
Conference on Network and Parallel Computing,
Springer-Verlag LNCS 3779, 2005, pp. 2-13.

[3] D. Abramson, R. Sosic, J. Giddy, B. Hall, Nimrod: a
tool for performing parametised simulations using
distributed workstations, in: Proceedings of the 4th IEEE
Symposium on High Performance Distributed Computing,
Virginia, August 1995, pp.112-121.

[4] X.-H. Sun, M. Wu, “Grid Harvest Service: A system
for long-term, application-level task scheduling”, in:
Proceedings of 2003 IEEE International Parallel and
Distributed Processing Symposium, Nice, France, April
2003.

[5] Yong Hou, Jiong Yu and Turgun, NDA-MM: A New
Adaptive Task Scheduling Algorithm Based on the Non-
dedicated Constraint Grid, Sixth International Conference
on Grid and Cooperative Computing, 2007.8, pp.275-281.

[6] T. D. Braun, H. J. Siegel, N. Beck, L. L.Bölöni, M.
Maheswaran, A. I.Reuther, J. P.Roberstson, M. D.Theys,
Y. Bin, D. Hensgen, R. F.Freund, “A Comparison of
Eleven Static Heuristics for Mapping a Class of
Independent Tasks onto Heterogeneous Distributed
Computing Systems”, Parallel and Distributed
Computing, 2001.61(6), pp.810-837.

[7] H. Casanova, G. Obertelli, F. Berman, Rich Wolski,
“The AppLeS parameter sweep template: user-level
middleware for the Grid”, in: Proceedings of Super
Computer 2000, Dallas, TX, November 2000, pp.60-79.

[8] P. Dinda, D. O’Hallaron, Host load prediction using
linear models, Cluster Computing, 3 (2000) 265–280.

[9] Sun Xian He, DT Rover. NLR Center, VA Hampton.,
“Scalability of parallel algorithm-machine combinations”,
Parallel and Distributed Systems, 1994.5(6), pp.599-613.

[10] Richard Wolski, Neil T.Spring,and Jim Hayes, “The
network weather service: a distributed resource
performance forecasting service for metacomputing”,
Future Generation Computing Systems, Oct.1999, pp.757-
768.

39393939

Authorized licensed use limited to: MIT Libraries. Downloaded on December 6, 2009 at 06:41 from IEEE Xplore. Restrictions apply.

