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Abstract 

 
Grid technology and applications become 

mainstream distributed computing research in recent 
years. The Grid Harvest Service, GHS, is one of non-
dedicated computing grid scheduling systems; it has 
been widely used in Grid research field. The 
contribution of GHS is providing appropriate 
prediction for long-term applications different from 
AppLes which is designed for short-term predictions. 
GHS maps metatasks using the Min-Min algorithm in a 
uniform log-term application. Min-Min is a highly 
efficient algorithm in an uniform workload 
environment that leads to load unbalance and low 
performance when the workload is not uniform. In 
order to solve the problem, a novel task scheduling 
algorithm is proposed in this work, which is an 
adaptive task scheduling algorithm based on Min-Min 
and Max-Min (A-MM). A-MM merges the high 
efficiency of traditional Min-Min scheduling with load 
balance of traditional Max-Min scheduling. The 
simulation and experimental result show that A-MM 
has better performance and scalability than the Min-
Min of GHS. 
 
1. Introduction 

 
Large scale of computation and high costs of 

supercomputers make it desirable to utilize 
computational resources distributed on networks to 
solve problems in science, engineering and commerce. 
Lots of efforts have been done and many projects have 
been defined, such as Condor [1], Globus [2] and 
Nimrod [3]. 

Currently, there are many distributed and grid 
systems to be researched and used, which can provide 

different kind services to users. One kind of Grid 
systems is Non-dedicated grid, which assumes that 
guarantees cannot be obtained from the system. A Grid 
task is allowed to execute when there is no local jobs 
running. If any local jobs or other jobs arrive, the Grid 
task is either suspended or terminated. For example, in 
SETI@home, Entropia, and Condor, a Grid task is 
allowed to run only when no keyboard or mouse 
activities are detected on local resources.   

Performance-prediction based task scheduling 
system has been researched in non-dedicated grid 
world [4], and there are many grid system based on 
non-dedicated grid, such as AppLes[7] and RPS[8]. In 
these systems, the CPU availability is estimated by 
Network Weather Service (NWS)[10]. However, NWS 
is designed for short-term predictions (up to 5 minutes) 
and cannot provide appropriate prediction for long-
term applications. GHS is a performance evaluation 
and task scheduling system for solving large-scale 
applications in a shared environment. 

GHS schedule long-term applications by Min-Min 
algorithm. Min-Min is a simple and highly efficient 
algorithm. However, in real Grid society, as we know, 
scheduling system always dispose tasks including 
long-term and short-term applications, whose 
workloads are not uniform. Through a plenty of 
experiments [5], we can conclude that the performance 
of Min-Min is bad in the condition where the workload 
of applications are not uniform. So how to solve the 
problem of Min-Min bad performance in the 
environment is a serious issue. 

The experimental results in [6] show that in the 
condition when there are many uneven applications 
waiting to be scheduled, the Min-Min algorithm is 
unable to balance the load well since it usually 
schedules small tasks first, on the contrary, the Max-
Min algorithm may result in a better balance for a 
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given mapping. Thus, in this paper, we try to absorb 
the merit of both Min-Min and Max-Min and propose a 
new adaptive task scheduling algorithm, namely the 
Adaptive Min-Min and Max-Min (A-MM) algorithm. 
The new algorithm not only retains the advantage of 
the Min-Min algorithm but also achieves the good load 
balance. 

This paper is organized as follows. In section 2, the 
GHS system is analyzed. In section 3, the new 
scheduling algorithm is introduced. In section 4, the 
experimental results are presented and discussed. We 
conclude this study in section 5. 

 
2. The Grid Harvest Service 
 
2.1 The architecture of GHS 

 
Figure 1. Architecture of GHS performance 

evaluation and task scheduling system. 
 
Figure 1 shows the relationship among the major 

components of the GHS system. Referring the OGSA 
criterion, GHS is divided into four layers: Fabric 
Layer, Collectivity Layer, Resource Layer, and 
Application Layer. Many components in each Layer 
cooperate together to finish Grid tasks. Major 
components are as follows:  

Application Level Predictor, which estimates the 
application performance based on the map information 
provided by the Task Allocator component and the 
system information provided by the System-level 
Predictor component. 

System Level Predictor analyzes resource usage 
patterns to provide an estimation of system 
performance in a future period. The inputs of this 
component are the preprocessed system parameters 
stored in a performance database. 

Task Allocator decides how to partition a parallel 
program or how to group subtasks of a meta-task. The 
inputs of this component are the application 
characteristics (workload, application type, 
dependency of subtasks of an application), and the 
output is a mapping of subtasks on a given set of 
computing resources. 

Task Scheduler determines a scheduling plan for a 
large-scale application to provide an optimal or near-
optimal solution for its running in a shared 
environment. 

Performance Data Management (PDM) implements 
data filtering and reduction techniques for 
extrapolating system and application performance 
information on each resource. 

Reschedule Trigger System (RTS) analyzes the 
collected application and the performance data of 
resource to detect whether resources present abnormal 
performance from their historical records. If an 
abnormal resource behavior is identified, application 
will be rescheduled to prevent potential performance 
loss. 

Grid-enabled Programming System (GEPS) and 
Problem Solving Environment (PSE) are served by the 
Prediction component. 

Performance Communication Manager (PCM) 
component is used to collect performance data, which 
could be exchanged through the GridFTP services 
protocol based on the communication infrastructure 
provided by the GSI service in the Connectivity layer. 
The GridFTP service protocol can be used to handle 
the transfer of applications and their data files and the 
GRAM can be used to dispatch subtasks of 
applications on resources. 
 
2.2 The scheduling of GHS 
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Figure 2. A framework of GHS scheduling 

system. 
 
Figure 2 shows the process of GHS scheduling 

system. GHS has five orders to finish a scheduling of a 
task: the resource measurement order (smeas), system-
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level predictor order (syspred), application-level 
predictor order (apppred), meta-task scheduler order 
(mtsc) and parallel program scheduler order (pgsc). It 
works as following: firstly, collecting resource 
utilization, job arrival rate, job service time, job service 
time standard deviation of resources during 1000 
hours, and sending them into dynamic array of 
ghsmeasrue.log, the smeas order calculates the average 
of data stored in ghsmeasrue.log during each hour and 
send them into the parameter of date, meanUtil, 
meanLambda, meanServ and meanStd of 
ghsmeasrue.log. The syspred order will collects all of 
the parameter from ghsmeasure.log, and gets the even 
value of job arrival rate in each hour, named  
valueHour, from predictable in a given period, and get 
the even value of job arrival rate in every day, named 
valueDay,  in a given period. 

The result of prediction in a given period is Alpha * 
valueHour +Beta * valueDay. Alpha and Beta could be 
obtained from experience. apppred order estimates the 
job service time and job service time standard 
deviation.   the cumulative distribution function of the 
application completion time on a machine 
is

1
(1 ) { ( ) | 0}, ,

{ }

0                                                                           ,
r kk k k k k

q w
r k k k k

k
w P U S t W S t W

T t

otherwise
P

e e
λ τ λ τ

τ
− −

=
+ − ≤ − > ≥

≤ =
⎧
⎪
⎨
⎪⎩
∏

where Pr{T≤t} calculates the cumulative distribution 
function of the application completion time (T) and Tk 
is the subtask completion time on machine k, name Mk. 
The arrival of local jobs in machine k follows a 
Poisson distribution with λk. wk is the workload of the 
remote task on Mk. Sk is the number of interruptions 
encountered on Mk. tk is task completion time on Mk 
and τk is the capability of computing on Mk . U(Sk) is 
the completime of the grid task on the condition of Sk. 
The mtsc order is a program which generates a 
scheduling plan for a given resource set and a given 
meta-task. We will discuss the meta-task scheduling in 
this paper. The pgsc order is a program which 
generates a parallel scheduling plan. 
 
3. Enhanced adaptive scheduling 

 
In this section, we will introduce A-MM algorithm 

and its implementation into GHS in details. 
As mentioned in [5], the grid resources set is 

R={r1,r2,…,rn }, where there are n resources, r1,r2,…,rn, 
which could be used by the scheduler. The grid tasks 
set is J={ j1,,j2,… ,jm }, and there are m tasks, j1,,j2,… 
,jm, which demand the resource. Expected time to 
compute (ETC) matrix is a model of the given service 
grid system, where the ETCij is the expected execution 
time of task i on machine j without any load.  

Definition 1. The judgment array of A-MM, 
Min_Time. We can find the minimum ETCij from each 
task ETC of task i, named Min_Time(i)= ETCij, on 
every resources, and all of the ETCij compose a set of 
number, named Min_Time. 
Definition 2. Relative Standard Deviation, RSD. 

RSD
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s is the standard deviation of the sample, which 
represents the degree of the dispersion of it. x is the 
mean value of the sample. RSD could well indicate the 
degree of dispersion of a set of values. 
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Figure 3. The flowchart of A-MM scheduling 
 
Figure 3 gives the description of A-MM algorithm: 

Firstly we obtain the ETC matrix through the 
application predictor and the system predictor. 
Secondly, we get the value of ETC and compose the 
Min_Time. Thirdly, we get the value of RSD of the 
Min_Time, and denoted as ξ . A-MM algorithm will 
use the property of the RSD, which could well indicate 
the degree of dispersion of a set of value, to judge the 
degree of the dispersion of the Min_Time. If ξ  is 
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smaller than the critical value of RSD of Min_Time, 
which is named 'ξ and could be obtained by means of 
experiences, we regard the degree of dispersion of 
Min_Time is lower, and it is believed the ETC values 
of tasks are uniform, so the scheduler will select the 
Min-Min algorithm that has better performance in the 
uniform environment. Otherwise, the dispersion degree 
of Min_Time is higher, for the ETC values of tasks are 
not uniform, consequently, and the scheduler will 
select the Max-Min algorithm to assign tasks. As a 
result, A-MM algorithm can obtain much better 
performance than that of either Min-Min or Max-Min 
algorithm through the selecting mechanism described 
above. 

The description in detail of A-MM algorithm in 
GHS is proposed in Figure 4. 
Assumption: a meta-task composed of a number of 
independent subtasks, Sr={t1,t2, …,tp}  and a list of 
machines {m1,m2,…,mq}. Each subtask is indivisible. 
Objective: find a task group mk(1≤ k ≤q) for 
machine Gk={tk1,tk2,…,tkn} 
---------------------------------------------------------------- 
Begin 
 /*Ck denotes the current estimated completion time of  
the assigned subtasks on machine mk */ 

0, , (1 ); 1;k kC G k q iφ= = ≤ ≤ =  
While 

rS φ≠  
For 

i rt S∈  Do 
1;j =  

While j q<  
,( ) /[ *(1 )];i j i j jE T w τ ρ= −  

/*E(Ti,j)is the execution time of ti on machine mj*/ 
1;j j= +  

End While 
Find machine k where Ck+E(Ti,j) is minimal; 
End For 
Compose all of Ck+E(Ti,k) into a one metric [Ck+E(Ti,k)]
，named Min_Time; 
Canculate the RSD value of [Ck+E(Ti,k)], ξ; 
While, get 'ξ , the critical value of RSD of Min_Time, 
by means of daptive method： 

'ξ take the value between 0.1 and 1 each 0.05 in each 
process of choosing, select the optimal value of 

'ξ from all of them as the judgment key of A-MM; 
If( ξ > 'ξ ) 
Find a map of (tu, mv) where Cv+E(Tu,v) is maximal; 
Else Find a map of (tu, mv) where Cv+E(Tu,v) is 
minimal; 

,{ }; ( );v u u k k u vG G T C C E T= ∪ = +  
{ }; 1;r r uS S T i i= − = +  

End While 

Return (1 );kG k q≤ ≤  
End

Figure 4. A-MM scheduling algorithm in GHS 
 
wk is the workload of the remote task on Mk, and it is 

a static value. τj, ρj will be obtained from performance 
prediction component, Tu , mv and Gv stand for task u, 
machine v and task group on machine v respectively. 
 
4. Simulation results and performance 

evaluation 
 
In this section, we evaluate the performance of A-

MM through implementing it into GHS and compare 
the performance of A-MM with Min-Min in different 
scenarios. All the experiments run in Solaris. In this 
paper, we will set a scenario with 5 resources and 4 
groups tasks, including 5, 15, 30, 45 tasks respectively. 
The result can be seen in Figure5. 
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Figure 5. Makespan of A-MM and algorithm in 
GHS 

 
As show in Figure 5, for all the four scenarios, the 

A-MM outperforms the Min-Min. Through exploiting 
the merit of the Min-Min and Max-Min, A-MM could 
exert the potential of the efficiency of Min-Min and the 
load balance of Max-Min, obtaining the better 
performance than others by choosing the optimal value 
of 'ξ , A-MM algorithm could get much better 
performance in most situations than Min-Min.  

Figures 6 and 7 show the comparison of the 
scalability of tasks between A-MM and Min-Min of 
GHS, which include 5 resources and 5～50 tasks in 
Figure 6 and 10～50 service resources and 20 tasks in 
Figure 7.  
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Figure 6 . The scalability of resources 

 
Figure 7. The scalability of tasks 

As can be seen, the line of A-MM is more close to 
linearity than Min-Min algorithm, and therefore, A-
MM has much better scalability of tasks and resources 
than that of Min-Min and Max-Min [9]. 
 
5. Conclusions 

 
In this paper, we thoroughly analyze GHS and 

propose a new algorithm, A-MM, to solve the problem 
of unbalanced load scheduling algorithm of GHS.  A-
MM merges the efficiency of Min-Min and the load 
balance of Max-Min and show the better performance 
than original Min-Min. Meanwhile, A-MM is robust in 
the scalabilities of the tasks and the resources.  

As for future work, we plan to expand the scale of 
simulations, and multi-dimensional QoS should be 
embedded into the task scheduling. 
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