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Abstract

We begin by presenting a method to efficiently solve for the steady-state solution of a
nonlinear cavity, suitable for simulating a solid-state femtosecond laser. The algorithm
directly solves the periodic boundary value problem by using a preconditioned Krylov-
Newton shooting solver. The method can be applied to the design and study of mode-
locked lasers, as well as the modeling of field enhancement cavities, such as those used
in high harmonic generation. In constrast to the standard approach of dynamic sim-
ulation, which converges linearly, our algorithm converges quadratically to the stable
solution, typically converging two to three orders of magnitude faster than the standard
approach.

The second major theme is the control of dispersion in mode-locked lasers. The pre-
dominant way to design dispersion compensating optics in the past has been a consid-
eration of the integrated net group delay dispersion (GDD). We propose and implement
an alternative spectral quantity based on the energy contained in phase distortions,
which we term the Phase Distortion Ratio (PDR). Dispersion compensating mirrors opti-
mized with respect to PDR generally perform significantly better than those where GDD
is optimized. We demonstrate this in the design of a dispersion compensating mirror
pair capable of compressing single-single pulses.

In the final section, we deal with the unique challenges inherent to measuring sub-
two-cycle pulses reliably and accurately. We have recently developed a technique, Two-
Dimensional spectral Shearing Interferometry (2DSI), based on spectral shearing, which
requires no calibration and does not disperse the pulse being measured. Our method in-
tuitively encodes spectral group delay in a slowly changing fringe in a two-dimensional
interferogram. This maximizes use of spectrometer resolution, allowing for complex
phase spectra to be measured with high accuracy over extremely large bandwidths, po-
tentially exceeding an octave. We believe that 2DSI is a uniquely cost effective and ef-
ficient method for accurately and reliably measuring few- and even single-cycle pulses.
While the method is relatively recent, it is well tested and has been successfully demon-
strated on several different lasers in two different groups, including one producing 4.9 fs
pulses.

Thesis Supervisor: Franz X. Kärtner
Title: Professor
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M. A. Popović, T. Barwicz, M. Dahlem, R. J. Ram, and H. I. Smith, “Integrated Op-
tical Components in Silicon for High Speed Analog-to-Digital Conversion,” SPIE
Proceedings Photonics West, San Jose, Jan. 21-26, 2007.*

12. F. X. Kartner, A. Benedick, R. Ell, O. Mucke, J. Birge, M. Sander, ”Octave-spanning
lasers and carrier-envelope phase control,” Conference on Advanced Solid-State
Photonics (ASSP), Vancouver, CA, Jan28-31, 2007.

13. F. X. Kaertner, A. Benedick, J. Birge, and M. Sander, " Carrier-Envelope Phase Con-
trolled Ultrashort Light Pulses for Nonlinear Optics," in Nonlinear Optics: Mate-
rials, Fundamentals and Applications, OSA Technical Digest (CD) (Optical Society
of America, 2007), paper MB1.

14. J. R. Birge, R. Ell, F. X. Kärtner, “Two-dimensional spectral shearing interferometry
(2DSI) for ultrafast laser optimization,” Ultrafast Phenomena XV, Springer, 2006.

15. R. Ell, J. R. Birge, F. X. Kärtner, “Carrier-envelope phase control by a composite
glass plate,” CLEO, 2006.

16. J. R. Birge, R. Ell, F. X. Kärtner, “Two-dimensional spectral shearing interferometry
(2DSI) for ultrashort pulse characterization,” CLEO, Long Beach, 2006.

17. O. D. Mucke, R. Ell, A. Winter, J. Kim, J. R. Birge, L. Matos, F. X. Kartner, “Self-
Referenced 200 MHz Octave-Spanning Ti:Sapphire Laser With 0.10 Radian Carrier-
Envelope Phase Error,“ ESA International Workshop on Optical Clocks.

18. J. Birge, C. Jirauschek, F. Kaertner, “Efficient Analytic Computation of Group Delay
Dispersion from Optical Inteference Coatings,” Proc. OSA OIC Top. Mtg., Tucson,
2004.

19. G. Sharp, J. Chen, M. Robinson, J. Birge, “Skew Ray Compensated Retarder-Stack
Filters for LCOS Projection,” SID Symposium, Vol. 33, 2002.

8



20. G. Sharp. J. Birge, J. Chen and M. Robinson. “High Throughput Color Switch for
Sequential Color Projection,” SID Symposium, Vol. 31, 2000.

21. M. Robinson, J. Korah, G. Sharp and J. Birge. “High Contrast Color Splitting Archi-
tecture Using Color Polarization Filters,” SID Symposium, Vol. 31, 2000.

22. G. Sharp and J. Birge. “Retarder Stack Technology for Color Manipulation,” SID
Symposium, Vol. 30, 1999.

23. E. Cheever, J. Birge, D. Thomson, W. Santamore and D. George. “A Microprocessor-
Based Multi-Channel Muscle Stimulator for Skeletal Muscle Cardiac Assist,” Proc.
IEEE EMBS 17th Annual Conf. & 21st Can. Med. & Biol. Eng., Montreal, Canada,
1995.

(*Invited)

9



THIS PAGE INTENTIONALLY LEFT BLANK

10



Contents

1 Introduction 21
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.2 Overview of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.2.1 Newton-Krylov Nonlinear Cavity Solver . . . . . . . . . . . . . . . . . 22
1.2.2 Dispersion Compensation . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.2.3 Ultrashort Pulse Metrology . . . . . . . . . . . . . . . . . . . . . . . . 24

2 Physics of Ultrafast Optics 25
2.1 Nonlinear wave propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Mode-locking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.1 Soliton modelocking master equation . . . . . . . . . . . . . . . . . . 30
2.2.2 Dispersion-managed soliton mode-locking . . . . . . . . . . . . . . 31

2.3 Results from soliton perturbation theory . . . . . . . . . . . . . . . . . . . . 33

3 Newton-Krylov Cavity Solver 35
3.1 Split-step method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.1 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.1.2 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Laser cavity numerical model . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.1 Dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.2 Gain Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.3 Fast Saturable Absorber . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Titanium:sapphire test model . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4 Cavity Solver Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.5 Jacobian Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.6 Diagonal Preconditioner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.7 Krylov subspace solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.8 Theoretical Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.9 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.10 Empirical convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.11 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Phase Distortion in Ultrafast Optics 53
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Group delay dispersion background . . . . . . . . . . . . . . . . . . . . . . . 54

11



4.3 Phase Distortion Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3.1 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3.2 Practical issues of optimizing with PDR . . . . . . . . . . . . . . . . . 57

4.4 Enhancement cavity design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4.1 Cavity transmission is a function of PDR . . . . . . . . . . . . . . . . 57
4.4.2 Cavity merit function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.4.3 Example optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5 Compressor Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 Dispersion Compensation of Mode-Locked Lasers 63
5.1 Effects of intracavity phase ripple . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1.1 SPM and phase distortion . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.1.2 Resonant phase distortions in positive dispersion cavities . . . . . . 64
5.1.3 Origin of M-shaped spectra in few-cycle lasers . . . . . . . . . . . . . 66

5.2 Toward single-cycle pulses from an oscillator . . . . . . . . . . . . . . . . . 68
5.3 PDR versus GDD optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6 Thin Film Phase Response Optimization 73
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.2 Analytic Computation of Stack Phase Derivatives . . . . . . . . . . . . . . . 74

6.2.1 General Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.2.2 Constant Coupling Approximation . . . . . . . . . . . . . . . . . . . . 76
6.2.3 Accuracy of constant coupling approximation . . . . . . . . . . . . . 76

6.3 Gradients of T(k) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.4 Gradients of T′(k) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.4.1 General Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.4.2 Constant Coupling Approximation . . . . . . . . . . . . . . . . . . . . 79
6.4.3 Efficient Computation of Back Derivative Matrices . . . . . . . . . . 80

6.5 Dispersion Gradients from Matrix Gradients . . . . . . . . . . . . . . . . . . 81
6.6 Algorithm Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.7 Example Gradient Computation . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.8 MATLAB and C Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7 Robust Mirror Optimization 85
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.2 Computation of Cost Function . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.4 Implementation Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.4.1 General Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.4.2 Restricted Search Space . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.5 Robust Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

12



8 Systematic Errors in Spectral Shearing Methods for Few-Cycle Pulses 97
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
8.2 Spectral Shearing Interferometry . . . . . . . . . . . . . . . . . . . . . . . . . 99

8.2.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
8.2.2 Application to Few-cycle Pulses . . . . . . . . . . . . . . . . . . . . . 100
8.2.3 Choice of Shear Frequency . . . . . . . . . . . . . . . . . . . . . . . . 101

8.3 Spectral Shearing Delay Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . 102
8.3.1 Pulse Width Error Scaling . . . . . . . . . . . . . . . . . . . . . . . . . 102
8.3.2 Tolerance on Delay Uncertainty for Compressed Pulses . . . . . . . 104

8.4 Calibration of SPIDER in Practice . . . . . . . . . . . . . . . . . . . . . . . . . 104
8.4.1 Required Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
8.4.2 Sources of Delay Error . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
8.4.3 Avoiding Delay Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

8.5 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
8.6 Alternative Spectral Shearing Methods . . . . . . . . . . . . . . . . . . . . . 109

8.6.1 Arbitrary Shear Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 109
8.6.2 Zero-dispersion Methods . . . . . . . . . . . . . . . . . . . . . . . . . 110
8.6.3 Zero-delay Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
8.6.4 Multiple Shearing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

9 Two-Dimensional Spectral Shearing Interferometry 113
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
9.2 Background and Motivation for Delay-Free Method . . . . . . . . . . . . . . 114
9.3 Principle of 2DSI Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

9.3.1 Spectral Shearing Approach . . . . . . . . . . . . . . . . . . . . . . . . 116
9.3.2 Form of Interferogram . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

9.4 Relation to Other Spectral Shearing Methods . . . . . . . . . . . . . . . . . . 119
9.4.1 Relation to SPIDER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
9.4.2 SEA-SPIDER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
9.4.3 CAR-SPIDER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
9.4.4 Single-shot potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

9.5 Physical Layout and Operation . . . . . . . . . . . . . . . . . . . . . . . . . . 122
9.5.1 Pulse Chirping and Splitting . . . . . . . . . . . . . . . . . . . . . . . 122
9.5.2 Upconversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

9.6 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
9.6.1 Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

9.7 Reconstruction Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
9.7.1 FFT Harmonic Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . 126
9.7.2 Finite Difference Inversion . . . . . . . . . . . . . . . . . . . . . . . . 127

9.8 Design Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
9.8.1 Shear Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
9.8.2 Chirping Dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
9.8.3 Delay Scan Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
9.8.4 Scan Sample Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

13



9.8.5 Spectrometer Resolution . . . . . . . . . . . . . . . . . . . . . . . . . 131
9.8.6 Nonlinear Crystal Thickness . . . . . . . . . . . . . . . . . . . . . . . 131

9.9 Sensitivity to Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
9.10 Experimental Demonstration . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

9.10.1 Precision Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
9.10.2 Accuracy Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

9.11 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
9.12 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

A Derivation of Worst-Case FFT Harmonic Inversion Error 137

B Newton-Krylov Solver Code 139
B.1 Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
B.2 Cavity round trip function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

B.2.1 Nonlinear propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
B.2.2 Phase normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

B.3 Preconditioner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

C PDR Gradient Code 147
C.1 Single mirror PDR Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

D Thin Film Gradient Code 149
D.1 Stack GD Gradient MEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

14



List of Figures

2-1 An example of a Kerr lens mode-locked laser (top) and a schematic of the
1D model for the cavity used as our test problem. (GVD: group velocity
dispersion; SA: saturable absorber; SPM: self-phase modulation.) . . . . . 32

2-2 Illustration of the pulseshaping mechanism of a dispersion managed soli-
ton laser over one round-trip. (Taken from [1].) . . . . . . . . . . . . . . . . 32

2-3 Schematic of the origin of Kelly sidebands [2]. Light coupled from the soli-
ton into the continuum by a periodic perturbation is resonant with the
soliton when the soliton phase shift and the linear cavity phase differ by a
multiple of 2π. (Taken from [3].) . . . . . . . . . . . . . . . . . . . . . . . . . 33

3-1 Evolution of model laser starting from noise, shown on a log scale. The
field intensity as a function of time is on the left, with the power spectral
density shown on the right. The pulse does not exactly follow our mov-
ing window because of nonlinear effects shifting the spectrum from our
assumed center frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3-2 Convergence of dynamic cavity evolution. Once the initial transients die,
the convergence of the pulse shaping mechanism is linear. . . . . . . . . . 40

3-3 Jacobian of model shooting problem (3.29) near stationary point: (a) log
magnitude, (b) phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3-4 SVD spectrum for Newton problem before (left) and after (right) precondi-
tioning. Note the different scales. . . . . . . . . . . . . . . . . . . . . . . . . . 44

3-5 Flow chart for entire Newton-Krylov solver. Dashed borders indicate iter-
ative loops. In the figure, ε is the final termination tolerance, and F is the
function which computes one cavity round trip. (Figure courtesy of Robert
R. Birge.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3-6 Left: comparison of the amplitude of the final solutions obtained by our
method (dots) and standard dynamical evolution (solid line) for our test
mode-locked laser model. Right: absolute value of difference between the
two solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3-7 Comparison of convergence between our method (dotted line) and stan-
dard dynamical evolution (solid) for our test mode-locked laser model. All
cavity evaluations are included, including those used to solve the linear
Newton subproblems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

15



3-8 Convergence map of Newton-Krylov solver for Gaussian starting iterates
of various widths and amplitudes for a ten femtosecond laser model (cho-
sen for its quick convergence). The darker colors represent fewer steps,
with the outer red region starting points that did not ever converge. The
vertical axis is the amplitude and the horizontal the width of the starting
Gaussian. The actual solution to the model is best approximated by the
dot at roughly (2500,10). This map suggests that the method will converge
for a wide range of starting guesses, but that starting with energetic short
pulses is a good strategy in the absence of any information about the true
solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3-9 The sequence of residuals produced by the direct solver as a function of
the number of round trip evaluations, log scaled. . . . . . . . . . . . . . . . 50

4-1 Enhancement cavity mirror GDD error comparison. . . . . . . . . . . . . . 59

4-2 Enhancement cavity transmission comparison. This transmission curve
represents the fraction of power transmitted for those comb lines which
matche the cavity spacing. That is, the full cavity transmission will be at-
tenuated from the shown curve by a factor equal to the ratio of the cavity
spacing to the laser mode spacing. . . . . . . . . . . . . . . . . . . . . . . . . 60

4-3 Compressor GDD comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4-4 Compressor pulse comparison on a linear (a) and log scale (b). . . . . . . . 61

5-1 Simulated spectrum of few-cycle laser operating in the high-SPM, positive
dispersion regime typical of solid state oscillators. The resonant interac-
tion of the phase distortions with the main pulse result in the "M"-shaped
power spectrum characteristic of few-cycle oscillators. . . . . . . . . . . . . 65

5-2 Comparison between two simulated laser cavities with mirror phase dis-
tortions. The two cavities differ only in thesign of net dispersion. The
negative dispersion cavity operates with a significant margin between the
soliton and the cavity, greatly attenuating the effects of the mirror’s phase
distortions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5-3 Set of simulated spectra for a DM soliton laser with varying amounts of
intracavity phase distortion. The top plot is for perfect mirrors, the last
corresponds to phase ripples typically produced by a well-matched DCM
pair. The M-shaped spectrum is due to increasingly resonant coupling be-
tween the main pulse and narrow-band peaks supported by negative local
dispersion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5-4 (top) A simulated laser with low phase distortion mirrors (0.1% waves of
phase ripple) allowing for a relatively small positive net cavity dispersion
(15 microns-worth of BaF). (bottom) The same laser with DCMs slightly
modified to push out the soliton-continuum phase crossing, leading to a
single-cycle pulse directly from the oscillator. . . . . . . . . . . . . . . . . . 69

5-5 Monte Carlo results showing the correlation between cavity bandwidth
and PDR and GDD, for a sub-10 fs laser. . . . . . . . . . . . . . . . . . . . . . 71

16



6-1 Diagram showing transfer matrix notation. . . . . . . . . . . . . . . . . . . . 75
6-2 Spectral group delay of example chirped mirror. A portion of the response

past the high reflectivity region (wavelengths greater than about 1050 nm)
is shown to demonstrate that the approximation even holds when the group
delay is rapidly varying. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6-3 Spectral group delay dispersion of chirped mirror shown in Fig. 6-2. . . . . 84

7-1 A two-dimensional illustration of the neighborhood. For a design x̂, all
possible implementation errors∆x ∈U are contained in the shaded circle.
The bold arrow d shows a possible descent direction and thin arrows ∆x∗

i
represent worst errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7-2 The robust optimization algorithm improves (left) the worst-case cost in
the neighborhood of the current design. Discoveries of new bad neighbors
cause the small peaks. (Right) The Price of Robustness is an increase in the
nominal cost. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7-3 Reflectivity and group delay for each chirped mirror in the pair: (Left)
nominally optimal design; (Right) robustly optimal configuration. . . . . . 93

7-4 Layer thicknesses of nominal optimum and robust optimum of the mirror
pair. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7-5 Comparison of worst case cost and worst case GD cost of two designs, the
nominal and robust optimum, for increasing size of possible perturbations
or errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7-6 Comparison of the nominal and robust design: mean and 95th percentile
of the cost distribution of 106 randomly sampled designs for varying per-
turbation sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8-1 Conceptual schematic of SPIDER. This model intentionally abstracts away
several practical details, such as the fact that, in practice, both pulse copies
are upconverted by slightly different optical frequencies. However, these
details are not important to an analysis of SPIDER. . . . . . . . . . . . . . . 100

8-2 The spectral power density and spectral phase for an actual sub-two-cycle
Ti:sapphire oscillator measured with 2DSI. . . . . . . . . . . . . . . . . . . . 108

8-3 Simulated pulse intensity as measured (solid) and in truth (various hashed)
for the Ti:sapphire laser whose spectra is shown in Figure 8-2, assuming
delay errors of 25 and 50 nm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

8-4 The measured pulse FWHM and RMS widths of the pulse in Fig. 8-3 for a
range of δτ values, compared with that predicted by (8.8) using the half-
width of the spectrum as ∆ω. . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

9-1 Frequency domain block diagram of 2DSI process. . . . . . . . . . . . . . . 116
9-2 Experimental schematic of 2DSI setup. . . . . . . . . . . . . . . . . . . . . . 117
9-3 Raw 2DSI traces from 5 fs laser, with (a) extracted spectral group delay

overlaid to demonstrate the interpration of fringe offset, and (b) the same
pulse with one mm of fused silica. The presence of extra dispersion is evi-
dent in the raw trace without any need for reconstruction. . . . . . . . . . . 119

17



9-4 Illustration of the different sideband schemes between 2DSI (top) and SPI-
DER (bottom), showing the two schemes for pulling the information con-
taining sidebands out of the DC term for a gaussian pulse. In SPIDER, the
sidebands are created in the frequency domain, whereas in 2DSI the same
sidebands remain stationary in spectral domain and are shifted in a sec-
ond dimension in the 2D interferogram. . . . . . . . . . . . . . . . . . . . . 120

9-5 top: 2DSI Phase matching plot for Type II sum frequency generation for
BBO cut to measure a typical few-cycle Ti:sapphire laser. The lined areas
denote the phasematched regions, with each line denoting increased effi-
ciency by 10 percent. bottom: Slices of the phase matching curves for two
upconversion wavelengths separated by 6 THz, showing the efficiency of
upconversion for the two spectrally sheared components. . . . . . . . . . . 124

9-6 Simulated 2DSI spectrogram (top) measured with 64 phase steps for a sinc
pulse with second- and third-order dispersion and a satellite, measured in
the presence of additive and shot noise, such that the resulting SNR per
spectrum is 0.5. A sample reconstruction, including comparison with SPI-
DER is shown in the middle frame. The bottom frame shows the standard
deviation of the phase measurement for both SPIDER and 2DSI, showing
that the lack of delay calibration in 2DSI yields a factor of two improve-
ment in noise performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

9-7 (a) Spectrum of 5 fs laser used in test; (b) extracted group delay both with
and without glass slide; (c) Phase of glass slide as measured by 2DSI and
as predicted by known glass dispersion; (d) Net phase delay error in glass
dispersion measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

9-8 (a) Raw 2DSI data; (b) comparison of IAC and that predicted from the 2DSI
measurement; (c) Extracted spectral phase (dashed); (d) Reconstructed
pulse (solid), simulated pulse (dotted) and temporal phase (dotted). . . . . 135

18



List of Tables

3.1 Parameters for model Titanium:sapphire laser . . . . . . . . . . . . . . . . . 39

8.1 Summary of simulated Ti:sapphire measurements . . . . . . . . . . . . . . 107

19



THIS PAGE INTENTIONALLY LEFT BLANK

20



Chapter 1

Introduction

1.1 Background

The first demonstration of the laser in 1960 [4] began an era of increasingly precise con-
trol over light. In its simplest form, a laser consists of a gain medium within a low loss
optical cavity. In theory, the single resonant frequency which experiences the most net
gain is amplified in a laser to the point where the gain medium is saturated to match the
cavity loss and only that one mode can survive.1 However, even when multiple frequen-
cies lase in a continuous wave (CW) laser, the modes have randomly changing relative
phases and are spaced unevenly in the frequency domain; the only effect is to broaden
the spectrum and reduce the coherence length of the laser, typically to something on the
order of centimeters. For most purposes, therefore, conventional lasers can be consid-
ered monochromatic.

Mode-locked lasers produce light at remarkable physical extremes of both time and
intensity, enabling them to probe and manipulate matter in ways never before available
[5]. The few-cycle pulses produced by the best commercially available lasers are some
of the shortest electromagnetic events ever created—nearly at the very limit of what is
physically possible. The final frontier of laser development is the production of single-
cycle pulses directly from an oscillator. Efforts are already underway at several labora-
tories to produce such pulses. One of the conclusions of this thesis is that perhaps the
most important technological hurdle needed to overcome in this endeavor is improving
the performance of dispersion compensating mirrors.

Optical pulses lasting on the order of femtoseconds allow for the probing of physical
phenomena on a commensurate time scale, sufficient to resolve electronic relaxation
processes in molecules or bonding dynamics [6], or control molecular quantum states
to guide reactions [7]. With high energy pulses below three cycles or so, effects due to the
absolute optical phase of the pulse start to appear for the first time, and techniques have
emerged [8] to stabilize the carrier envelope phase (CEP) of such pulses relative to their
envelopes. Another application of CEP stabilized pulses is in the frequency domain,

1In practice, various nonidealities such as inhomogeneous broadening and hole-burning conspire
against true single-frequency operation, such that most lasers actually operate with a small cluster of
frequencies.
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where the stable frequency comb can be used as an optical “clock work” to convert opti-
cal frequencies to radio frequencies, allowing one to literally count optical cycles using
standard RF electronics [8].

A corollary of the short time span within which the energy is localized in a mode-
locked laser is that tremendous intensities are created. The peak focused output com-
ing directly from a mode-locked lasers is already on the order of 1012 W/cm2, which is
on the scale of the binding energy of outer electrons in molecules and crystals. As such,
the fields associated with the laser pulse are high enough to produce significant non-
linear polarization responses in most materials.2 The peak intensities of commercially
available amplified femtosecond lasers are over 1015 W/cm2, sufficient to ionize matter.
One novel application of such intense pulses involves creating a plasma in the interior
of a transparent material, using the resulting localized heat source to write waveguides
embedded in the interior [9].

Another very promising application of such precisely-controlled few-cycle light fields
is the ionization, field acceleration and recombination of the outer electron of a noble
gas atom to create UV and X-ray pulses, a process known as high harmonic generation
(HHG) [10]. Soft X-ray pulses as low as 130 attoseconds [11] have been produced with
this technique, which has the potential to create the first lab-scale source of coherent X-
rays for use in molecular imaging. In this application, the X-ray production occurs over
roughly one-cycle of the driving light field. It is therefore not surprising that the ideal
source would be a two- or single-cycle pulse that is carrier envelope stabilized.

1.2 Overview of Thesis

The contributions of this thesis are primarily in three related areas integral to the de-
sign of sub-two-cycle mode-locked lasers: the design and measurement of optical fil-
ters which control the dispersion inside the cavity; the efficient numerical simulation of
laser cavity models; and lastly, the reliable measurement of the pulses produced by such
lasers.

1.2.1 Newton-Krylov Nonlinear Cavity Solver

The effective numerical solution of the steady-state solution of a nonlinear cavity is es-
sential to the design and study of mode-locked lasers [1], as well as the modeling of field
enhancement cavities, such as those used in high harmonic generation. The standard
method for tackling such problems is to develop a numerical model of a cavity round
trip, and then use the model to explicitly simulate the dynamic operation of the cavity in
question until convergence is reached at some precision [12]. While this has the advan-
tage of demonstrating self-starting and solution stability, dynamics simulation is rather
poor when viewed as a numerical algorithm. Transients in cavities inherently decay ex-
ponentially, meaning that dynamic simulation exhibits linear numerical convergence to

2In a classical sense, the least bound electrons in the material are forced to travel far enough in their
light induced oscillations to “sense” the structure of the molecule or crystal and deviate from a linear path.
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the final solution. For example, a solid-state laser operating in the dispersion-managed
soliton regime can take many thousands of round trips to converge.

In contrast, our algorithm converges quadratically to the stable solution, typically
requiring the evaluation of less than a hundred round trips to converge to within nu-
merical precision, often two to three orders of magnitude faster than with dynamic sim-
ulation [13]. This improvement in convergence rate is achieved by directly solving the
periodic boundary value problem for the nonlinear cavity using a Newton-Raphson al-
gorithm. At each Newton step we use a matrix-implicit, preconditioned Krylov subspace
method to approximately solve the linearized problem by sending a series of trial pulses
through the cavity. The preconditioning is critical to both enabling the quadratic con-
vergence of the overall Newton iterations, as well as the efficiency of solving the lin-
earized system as each step.

While matrix-free Krylov shooting methods have been previously applied to period-
ically driven RF systems [14, 15], this is the first application of such methods to a pas-
sive nonlinear system that exhibits periodicity as a result of nonlinear self-organization.
Thus, in addition to the domain specific issue of preconditioning, this application is
unique in that our period length is unknown at the outset and must be solved for along
with the steady-state field.

As a matrix-implicit method, our approach only needs access to a function that com-
putes the action of the nonlinear cavity on an arbitrary input field. As such, the method
can be applied to existing problems with little additional effort from the user. In basic
terms, our solver operates by sending a series of “trial” perturbations through the cavity,
using the observed results to make a series of increasingly accurate estimates of the final
solution. A solution can often be obtained to machine precision with less than 100 trial
cavity evaluations, whereas the natural laser dynamics might take thousands of cavity
round trips to converge to the same level. Our method enables several new opportuni-
ties for design and analysis of mode-locked lasers, such as putting the laser model inside
an optimization loop or performing Monte Carlo statistical analyses.

1.2.2 Dispersion Compensation

Mode-locked lasers are only made possible by the engineering of anomolous dispersion
devices which compensate for the dispersion of the gain material, such that the path
length of the cavity as a whole is nearly achromatic. The most precise way to achieve
complex negative dispersion curves is through the use of double-chirped dielectric mir-
ror pairs, developed by Kärtner at MIT [16, 17].

Such mirrors are engineered by the use of computationally intensive nonlinear opti-
mization routines, which benefit from the ability to efficiently and accurately compute
the theoretical reflectivity and dispersion from a dielectric stack, as well as any associ-
ated gradients with respect to layer thickness. In the prior literature, the only method
provided for computing dispersion was the use of finite differences, which do not al-
ways provide sufficient accuracy to effectly optimize a complex mirror. To fill this void,
we have developed numerical methods to efficiently calculate dispersion from a stack
using analytic methods and simplifying approximations.

Currently, the predominant approach to designing dispersion compensating optics
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considers the group delay dispersion (GDD) as the primary optimization criterion. We
propose and implement an alternative spectral quantity based on the energy contained
in phase errors, which we term the Phase Distortion Ratio (PDR). This measure can be
shown to be more physically relevent than GDD in many applications, and mirrors opti-
mized with respect to PDR generally perform better than those where GDD is optimized
(see Chapter 4). In particular, linear applications, most notably pulse compression and
enhancement cavities, are provably optimized by the minimization of PDR.

In the context of mode-locked lasers, there has been a great deal of work on the ef-
fect of low-order dispersion (e.g. second- and third-order phases). However, little work
has been done on the effects of high-order oscillations of phase on mode-locked lasers.
Yet, these are the impairments normally dealt with in practice. We investigate these ef-
fects through the use of numerical simulation, and find that small phase ripple in the
dispersion compensating mirrors are responsible for the spectral structure in current
few-cycle lasers. In addition, we use the fast solver discussed above to address the issue
of how to best design dispersion compensating filters for mode-locked lasers.

1.2.3 Ultrashort Pulse Metrology

Spectral shearing interferometry has become one of the principal methods used to mea-
sure few-cycle pulses. As is the case for any method, however, calibration and stability
challenges arise with the standard the standard spectral shearing method (known as
SPIDER [18]) as bandwidths approach the single-cycle. We have developed a version of
spectral shearing [19] that addresses these issues and ensures that there is no possibility
for uncalibrated phase.

Our technique, termed Two-Dimensional spectral Shearing Interferometry (2DSI),
requires only the non-critical calibration of the shear frequency and does not perturb
the pulse before up-conversion. Rather than encode the spectral group delay in a dense
spectral fringe characteristic of other shearing methods, 2DSI encodes phase in a sim-
ple two-dimensional fringe by directly scanning the relative phase of the two spectrally
sheared components. The lack of a spectral fringe reduces the resolution demands on
the spectrometer to that required for proper sampling of the pulse itself, allowing for
complex phase spectra to be measured with high accuracy over extremely large band-
widths, potentially exceeding an octave. We believe that 2DSI is a cost effective and ef-
ficient method for accurately and reliably measuring few- and even single-cycle pulses.
While the method is relatively recent, it is well tested and has been successfully demon-
strated on several different lasers, including one producing 4.9 fs pulses with 4.3 fs trans-
form limited bandwidth [20, 21, 22].
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Chapter 2

Physics of Ultrafast Optics

In this chapter we briefly cover some of the physics relevent to an understanding of
mode-locked lasers. In particular, we discuss nonlinear wave propagation in the context
of homogeneous media, deriving the very commonly used general nonlinear Schrödinger
equation. We conclude with a very cursory overview of mode-locking, including the
master equation model.

2.1 Nonlinear wave propagation

We begin by stating Maxwell’s equations in differential form for the case of a nonmag-
netic material that is source-free. In Gaussian units1 the curls of the electric and mag-
netic fields are related by [23]

∇×E =−1

c

∂H

∂t
(2.1a)

∇×H = 1

c

∂D

∂t
, (2.1b)

where c is the vacuum speed of light and D is the electric displacement vector. Even
though there are no free charges, the motion of paired charges in the material still mat-
ters and so we must introduce a separate vector D, which can be viewed as taking into
account the possibility of paired charge motion (hence its appearance solely in a time
derivative). Optics is fundamentally the study of how charged particles interact at a dis-
tance. All of the complexity in optics really occurs in the charge dynamics of the mate-
rial, and thus in some sense the most important equation is actually that relating D to E,
known as the constitutive relation:

D = E+4πP(E), (2.2)

1Gaussian units are defined such that the electric and magnetic fields are related in terms of the speed
of light in vacuum. This eliminates the notion of a vacuum permittivity by making E and D equivalent in
vacuum. Similarly, vacuum permeability is gone, and H = B in a nonmagnetic material.
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where P is the polarization vector, which represents the material dipole moment at a
given point in space. The polarization is driven by the electric field, and this is what al-
lows for nontrivial solutions, especially when the relation between P and E is nonlinear,
as it is in our case.

To derive a wave equation, we take the curl of (2.1a) and substitute in (2.1b) to elim-
inate the magnetic field, leaving

∇×∇×E+ 1

c2

∂2D

∂t 2
= 0. (2.3)

We can rewrite the first term of (2.3) by using the vector identity ∇×∇×E =∇(∇·E)−∇2E
to give us

∇(∇·E)−∇2E+ 1

c2

∂2D

∂t 2
= 0. (2.4)

In this thesis, we are concerned with the temporal propagation of a laser beam inside
a material. Spatial effects will either be ignored or approximated by other means. We
thus assume a transversely polarized infinite planewave propagating in the z direction
in a homogeneous medium. This allows us to ignore the divergence of E in the first
term of (2.4) and collapse the Laplacian to a spatial derivative in z. Furthermore, in the
lasers we seek to model, the polarization is invariant so we may simplify (2.4) to the
inhomogeneous scalar wave equation,

∂2

∂z2
E(z, t )− 1

c2

∂2

∂t 2
D(z, t ) = 0. (2.5)

Returning to the question of how to model the material polarizability, we can as-
sume that the vast majority of the polarization is linear with the electric field. Further-
more, given that laser materials are either glasses or centrosymmetric crystals, we can
neglect even-order nonlinearities. We thus assume the only appreciable nonlinear po-
larization is third-order with the electric field. Furthermore, we are only interested in
self-modulation, so that we consider only those third-order terms which result in the
polarization being driven at the same frequency as the electric field. In the language
of perturbation theory, this corresponds to two virtual transitions up in photon energy,
one virtual transition down. Given a local monochromatic field written in phasor form,
Ee iωt +c.c., this means that we consider the nonlinear contribution to the polarization
phasor to be given by

PNL =χ(3)E∗EE =χ(3)|E |2E . (2.6)

In treating the polarizabilityχ(3) as a constant scalar (in general, it is a fourth-rank tensor
and a function of frequency) we imply an isotropic instantaneous nonlinearity. This is
not entirely physical, of course, but it has proven in practice to be a reasonable approx-
imation that captures the salient effects of soliton mode-locking [24]. The nonlinear
polarization thus looks like the standard linear polarizability scaled by the amplitude
of the field. As such, this effect can be roughly viewed as an “intensity dependent per-
mittivity.” We will thus proceed with our derivation of the wave equation by treating D
as resulting from a linear filter operating on E plus a perturbative nonlinear term. We
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define the transform of a function G(z, t ) as

G̃(z,ω) =
∫ ∞

−∞
d t G(z, t )e−iωt . (2.7)

In the frequency domain, the displacement vector D is related to the field E by

D̃(z,ω) = [ε(ω)+∆εNL] Ẽ(z,ω), (2.8)

where we will treat the nonlinear term as a constant for the time being.

Taking the Fourier transform of (2.5) and substituting in (2.8) gives the harmonic
wave equation

∂2

∂z2
Ẽ(z,ω)+ [ε(ω)+∆εNL]

ω2

c2
Ẽ(z,ω) = 0,

where we have implicitly allowed the nonlinear term ∆εNL ∝ |E |2 to pass through the
time derivative despite it being a function of time. This is valid so long as ∂t |E | ¿ ∂t E ,
not an entirely unreasonable assumption until the envelope starts to approach a single-
cycle. The quantity in front of the second term in (2.1) has units of wavenumber, and it
is simpler to just write

∂2

∂z2
Ẽ(z,ω)+ [

k2(ω)+∆k2
NL

]
Ẽ(z,ω) = 0. (2.9)

To consider pulse propagation, we assume our electric field can be written as a slowly
varying envelope function modulating a monochromatic optical carrier at frequencyω0,

E(z, t ) = A(z, t )e i (k0z−ω0t ) +c.c.,

where k0 is the carrier wave number. The analytic (positive frequency) transform of
E(z, t ) is related to the transform of A(z, t ) by

Ẽ(z,ω) = Ã(z,ω−ω0)e i k0z + Ã∗(z,ω+ω0)e−i k0z

≈ Ã(z,ω−ω0)e i k0z ,
(2.10)

where the approximation is obtained by noting that the envelope cannot, by construc-
tion, have significant components at optical frequencies. Finally, we make one more as-
sumption, which is somewhat more subtle. We neglect any backwards traveling waves,
and presume that we will follow the forward traveling wave (2.1) in a forward moving
frame such that little change occurs in z. Thus, we may neglect all but the lowest order
derivatives in z that operate on the envelope.2 Substituting (2.10) into (2.9) and keeping

2This is often referred to as the slowly varying envelope approximation. However, were this really the
approximation we were making, we would also have ignored higher-order time derivatives, which have
been kept. In fact, it turns out that ignoring higher-order spatial derivatives, as we have done, has the sole
effect of limiting us to waves traveling in one direction, and is actually an exact wave equation otherwise.
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only the first-order spatial derivative yields

∂

∂z
Ã(z,ω)− i

(
k2(ω)+∆k2

NL −k2
o

2k0

)
Ã(z,ω) = 0. (2.11)

If we let k(ω0) = k0, then k(ω) will not deviate much from k0 over the pulse bandwidth.
We can thus write the quantity in brackets in terms of a series expansion of k(ω),(

k2(ω)+∆k2
NL −k2

o

2k0

)
≈ k(ω)+∆kNL −ko

=−i g0 +∆kNL + 1

vg (ω0)
(ω−ω0)+

∞∑
n=2

kn

n!
(ω−ω0)n .

(2.12)

We have specifically labeled a small signal gain term g0 ≡ i k0 and a group velocity vg (ω0) ≡
1/k1. It is now apparent that our approximate treatment of the nonlinearity (specifically,
neglecting any time derivatives acting on the nonlinear polarization) restricts the non-
linearity to only affecting the phase velocity. Again, this is only valid to the extent that
the pulse envelope varies much more slowly than the opical field. Rewriting (2.11) in
terms of (2.12), we have

∂Ã

∂z
= g0 Ã+ i∆kNL Ã+ i

vg
(ω−ω0)Ã+ i

∞∑
n=2

kn

n!
(ω−ω0)n Ã. (2.13)

Taking the inverse Fourier transform of (2.13) and applying the derivative theorem, the
powers of ω become temporal derivatives, and the time domain wave equation is

∂A

∂z
= g0 A+ iδ|A|2 A− i

vg

∂A

∂t
− i

∞∑
n=2

kn

n!

∂n A

∂t n
, (2.14)

where we’ve expressed the nonlinear wavenumber perturbation in terms of the intensity,
as per (2.6), and an effective parameter δ known as the nonlinear coefficient.

Given that, in practice, we are actually dealing with focused beams and not the ideal
plane waves assumed here, δ can be regarded as an empirically determined parame-
ter that includes spatial effects. The nonlinear term acts in quadrature, and simply ad-
vances the phase of the field in proportion to the local intensity. The effect due to this
term is thus termed self phase modulation (SPM).

Finally, we complete the derivation by rewriting the equation in a frame that is mov-
ing with the group velocity, by performing a change of variables into a “local” time
T ≡ t − z/vg , and writing the envelope in terms of the local field u(z,T ). The result of
this transformation is a tilting of the solution in the z-t plane, such that time derivatives
are unchanged, but spatial derivatives of A become mixed time and space derivatives in
u. Application of the chain rule shows that

∂A

∂z
= ∂u

∂z
− 1

vg

∂u

∂T
.

28



Using a moving frame thus eliminates the group delay delay term, and so the final prop-
agation equation is

∂u

∂z
= g0u + iδ|u|2u − i

∞∑
n=2

kn

n!

∂nu

∂T n
. (2.15)

All series coefficients kn are assumed to be complex to account for a spectrally arbi-
trary gain (or loss) mechanism. This equation is known as the generalized nonlinear
Schrödinger equation (GNLSE).

2.2 Mode-locking

In a laser consisting of only linear elements, theory states that the longitudinal cavity
mode which experiences the strongest gain saturates the amplifying medium [25], leav-
ing it as the only surviving mode.3 However, adding a strong enough nonlinear filter
to the cavity can couple the cavity modes, causing multiple frequencies to not only si-
multaneously lase, but to “line up” on a regular frequency grid and lock in phase so that
they form a uniform comb of frequencies, producing a train of short pulses. This mode
of pulsed laser operation is termed mode-locking, and is a prime example of nonlinear
self-organization [26]. Given that carrier frequencies of light are on the order of PHz,
locking of optical modes allows for the creation of pulses far shorter than those attain-
able with electronics with negligible relative bandwidth.

The most basic nonlinear mechanism that can be used to promote mode-locking is
so-called saturable absorption, whereby a material is placed in the cavity that attenuates
light at a rate inverse to the light intensity [27]. In 1966, DeMaria [28] used a saturable
absorber dye placed in the cavity of a Nd:glass laser to produce pulses on the order of 10
ps, the first pulses to be produced that were shorter than could be resolved by electronic
methods. Thus began the field of ultrafast optics, and a path of rapid progress towards
shorter optical pulses.

An important step along the way was the fortuitious discovery of Kerr-lens mode-
locking [29]. Self-focusing in the gain medium causes high intensity components to
increase their spatial overlap with the pump laser, thus preferentially amplifying pulses
over the continuum. This has the net effect of acting as a very fast saturable absorber
[30], supporting pulses on the order of tens of femtoseconds even without the help of
additional nonlinear broadening.

Researchers later realized that the shortest pulses will be produced by cavities which
exhibit a soliton-like shaping mechanism [31], whereby negative dispersion and self-
phase modulation will interact to generate extra bandwidth and stabilize the resulting
pulse. If the gain filtering, lumped dispersion and nonlinearity in the cavity perturb the
pulse little during a round trip, the effects can be considered effectively distributed and
the resulting pulse very closely resembles a soliton solution to the GNLSE (2.15). The
nonlinear pulse shaping in a soliton laser dominates the saturable absorption shaping,

3In practice, this is not strictly true, as spatial hole burning and other nonidealities can cause a narrow
band of modes to lase, but this occurs in such a narrow band that most lasers can be well approximated
as monochromatic.
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leading to pulses that can be much shorter than the SA recovery time, enabling sub-
picosecond pulses even from slow saturable absorbers [32]. In soliton lasers, the SA
mechanism is needed simply to ensure the stability of the laser against noise, and for
self-starting.

The evolution of mode-locking culminated in the 1990s with the development of a
variant of the soliton laser, the so-called “dispersion managed soliton” laser [33], ex-
plained further in Section 2.2.2. Such lasers are capable of producing pulses below 5
femtoseconds, so short that they contain less than two cycles of the optical field and
have bandwidths spanning hundreds of THz [34, 21].

2.2.1 Soliton modelocking master equation

The analytic theory of mode-locking is largely due to the efforts of Hermann Haus, while
at Bell Labs and MIT, who formulated a master equation of mode-locking by considering
the pulse shaping mechanisms of the laser as a distributed system. To deal with the soli-
tonic regime, the master equation of fast saturable absorber mode-locking was modified
by Martinez to include SPM and dispersion [35],

1

TR

∂

∂T
u = (

g0 −`
)

u + (Dg − i D2)
∂2

∂t 2
u + (γ+ iδ)|u|2u. (2.16)

This equation is very similar to the GNLSE (2.15) derived in Section 2.1. We use much
the same notation, save that now t is the local time in the moving frame, γ is the SA coef-
ficient, and T is the longer-scale time representing the propagation through the cavity,
analogously to z in the GNLSE (2.15). The cavity round trip time is TR . The cavity is
assumed to have only second-order dispersion, given by D2, and quadratic gain filter-
ing, represented by Dg = g0/Ω2

g , where Ωg is the gain bandwidth. This equation has an
analytic steady-state solution [36, 35],

u(t ) = A0 sech

(
t

τ

)1+iβ

, (2.17)

where β is a chirping parameter and τ the pulse width.
Insertion of the ansatz (2.17) into the master equation (2.16) reveals several interest-

ing relationships between the pulse and the cavity parameters. Of chief relevence to this
thesis are the pulse width and the chirp. The latter is given by

β=
3−3Dnδn ±

√
9−2Dnδn +8δ2

n +D2
n(8+9δ2

n)

2(Dn +δn)
, (2.18)

with the normalized quantities Dn = D2/Dg and δn = δ/γ. The pulse width is a function
of the chirp (and therefore the nonlinearities) and the dispersions,

τ= τ0

2

(
2−β2 −3βDn

)
, (2.19)

with τ0 the width of the solely saturable absorber mode-locked laser, which is a function
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of the dispersion, saturable absorption, and the pulse energy: τ0 = 4D2/(γW ). Plugging
(2.18) into (2.19) yields a rather dense expression. However, to gain some insight, we can
take a series expansion of (2.19) to second order in Dn and δn about zero, applicable for
small dispersions and nonlinearities,

τ= τ0

(
1+ 15

27
Dnδn − 6

27
δ2

n + 21

27
D2

n + 1

27
D2

nδ
2
n

)
+O[D3

n +δ3
n]. (2.20)

From this we learn that the pulse width decreases with increasing SPM, so long as the
dispersion is not allowed to grow too large. Solving for the extremum of (2.20) shows
that the shortest pulses will be found at slightly negative dispersions,

D∗
n =− 15δn

2
(
21+δ2

n
) . (2.21)

From the above, we see that when the SPM is set to zero (SA only) the shortest pulses are
found with zero dispersion. For finite SPM, which is always positive, slightly negative
dispersion yields the shortest pulses.

2.2.2 Dispersion-managed soliton mode-locking

A dispersion-managed soliton (DMS) laser consists of three primary sections: two neg-
ative (anomalous) dispersion regions surrounding a central amplifying region with pos-
itive dispersion and self-phase modulation [33], Fig. 2-1. Briefly, the effect of the alter-
nating dispersion is to create a negatively dispersed field as the pulse enters the gain
material. When the negatively chirped pulse experiences the SPM of the gain medium,
it causes the spectral bandwidth to compress during its travel through the first half of
the crystal. This has the effect of squeezing the spectrum to fit the gain bandwidth, thus
allowing the laser to support a greater bandwidth than its gain bandwidth would oth-
erwise allow. The discovery of this mechanism was the key breakthrough that allowed
femtosecond lasers to operate well below ten femtoseconds.

The dispersion of the whole cavity is balanced such that the dispersion is exactly
reversed in sign by the gain material. In a modern laser, negative dispersion is typically
achieved by dispersion compensating mirrors which are engineered to take longer to
reflect “red” light than “blue” light, discussed further in later chapters. The second half
of the crystal expands the spectrum and reverses the sign of the chirp. This phenomenon
is illustrated in Fig. 2-2.

In addition, the cavity also must contain a fast saturable absorber of some sort,
which supports the initiation of mode-locking and stabilizes the pulses. The shortest
pulses are created by lasers which utilize a saturable absorption mechanism which acts
instantaneously, with no appreciable recovery time. In practice, fast saturable absorp-
tion is achieved through an effect known as Kerr lensing, whereby the spatial self fo-
cusing of the beam causes temporal regions with greater intensities to focus themselves
into the highly pumped region of the gain material, thereby experiencing greater gain.
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Figure 2-1: An example of a Kerr lens mode-locked laser (top) and a schematic of the
1D model for the cavity used as our test problem. (GVD: group velocity dispersion; SA:
saturable absorber; SPM: self-phase modulation.)

Figure 2-2: Illustration of the pulseshaping mechanism of a dispersion managed soliton
laser over one round-trip. (Taken from [1].)
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Figure 2-3: Schematic of the origin of Kelly sidebands [2]. Light coupled from the soliton
into the continuum by a periodic perturbation is resonant with the soliton when the
soliton phase shift and the linear cavity phase differ by a multiple of 2π. (Taken from
[3].)

2.3 Results from soliton perturbation theory

Soliton perturbation theory, largely due to the efforts of Haus, was primarily developed
to study the effects of noise in solitons [37]. Such issues are beyond the scope of this
thesis. However, one of the applications of soliton perturbation theory is a fundamental
understanding of the origin of resonant spectral sidebands, which sometimes appear
in periodically perturbed soliton systems. A DMS laser, having discrete positive and
negative dispersion elements, is susceptible to such resonant purturbative effects. In
fact, as discussed later in Chapter 5, such effects explain several unique properties of
DMS lasers operating in the positive dispersion regime. Below, we briefly summarize a
few relevent results of soliton perturbation theory.

The central idea of soliton perturbation theory is that any change to either the soli-
ton or the system manifests as either perturbations to the soliton degrees of freedom
(phase, timing, frequency and amplitude) or as energy transferred to the continuum. A
dispersion managed soliton cavity is, of course, a lumped approximation to the NLSE
and thus constitutes a series of periodic perturbations to the steady-state “soliton”. The
amount of energy transferred to the continuum is small at each round trip. However, if
the soliton phase differs from the round trip cavity phase by a multiple of 2π, then power
can be resonantly pulled from the soliton, leading to a significant buildup of power in
a narrow spectral range. This phenomenon is referred to as Kelly sidebands, after the
person who first explained their mechanism [2].

Figure 2-3 illustrates Kelly sidebands in a soliton system with pure negative second-
order dispersion, though it can happen with any dispersion profile that supports a sta-
ble pulse, including one with positive dispersion. A similar phenomenon happens for
dispersion managed solitons in the positive dispersion regime, as shown in Chapter 5,
where the net phase difference can actually go to zero.
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Chapter 3

Newton-Krylov Cavity Solver

The standard method of dynamic simulation converges linearly, requiring thousands
of propagations through the cavity (demonstrated in Section 3.3). In fact, some lasers
require 50,000 or more round trips to converge to significant precision. It is generally
the rule that mode-locked lasers perform optimally in regions of marginal stability (i.e.
eigenvalues close to zero), further limiting the efficacy of dynamic simulation as a solu-
tion method as transients decay slowly.

By treating the solution of the stationary cavity mode as a nonlinear problem to be
solved using Newton’s method, we hope to converge directly to the solution quadrati-
cally.1 We have no way to efficiently compute the Jacobian of the cavity, however, and
so we use a matrix-free shooting method [14], tuned to the specifics of our problem.
In many cases, Newton-based shooting methods do not require preconditioning [15],
though we find that in our case, the shooting problem is poorly conditioned and does
not converge efficiently (or at all) without preconditioning. We derive a diagonal pre-
conditioner that improves the problem conditioning by orders of magnitude. Numer-
ical experiments show that our method converges an order of magnitude faster than
dynamic simulation for the kinds of highly nonlinear dispersion-managed soliton cav-
ities employed in few-cycle lasers, and up to four orders of magnitude faster for lasers
with less round trip perturbation.

3.1 Split-step method

The GNLSE can be numerically integrated efficiently by a pseudospectral method known
as the split-step method [12]. This is the method we use to propagate the pulse through
bulk media. In addition, the mathematics behind the split-step method offer some in-
sight into the preconditioning scheme we use in the Krylov solver. It is thus useful to be-
gin with a brief discussion of the split-step method before introducing the cavity solver.

1In the context of this chapter, we define computational complexity in terms of round-trip evaluations
(i.e. calls to the cavity simulation function).
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3.1.1 Derivation

To begin with, we express (2.15) in terms of two operators,

∂

∂z
u(z,T ) = (

D̂ + N̂
)

u(z,T ), (3.1)

where D̂ represents all the linear terms (i.e. the gain/loss and dispersion) and N̂ is the
SPM operator,

D̂ = g0 − i
∞∑

n=2

kn

n!

∂n

∂T n
, (3.2)

N̂ = iδ|u|2. (3.3)

The key to the split-step method is the recognition that the dispersion operator is a diag-
onal matrix in the Fourier domain, and the SPM operator is diagonal (and purely imag-
inary) in the time domain. Thus, each can be propagated exactly in their respective
domains with a single exponential. We can efficiently compute an approximate propa-
gation over a distance h by first handling the dispersion alone, and then transforming to
the time domain and having the nonlinearity act,

u(z +h,T ) ≈ exp(hN̂ )exp(hD̂)u(z,T ). (3.4)

This single step requires only two Fast Fourier Transform (FFT) operations, as the expo-
nential of a diagonal matrix is a a vector operation. As will be proven in the following
section, the accuracy of the iteration can be improved by symmetrizing it to yield the
following iteration

u(z +h,T ) ≈ exp

(
h

2
D̂

)
exp(hN̂ )exp

(
h

2
D̂

)
u(z,T ). (3.5)

Other than requiring a single extra dispersion propagation at the end of a computation,
this requires no more computation than (3.4), and is thus the scheme used in practice
(see Appendix B.2.1).

3.1.2 Convergence

To ascertain the convergence of the symmetric iteration in (3.4), we first consider the
exact solution to (3.1) in terms of the operator exponential,

u(z +h,T ) = exp
[
h(D̂ + N̂ )

]
u(z,T ), (3.6)

where N̂ is assumed to be invariant in z. The fact that N̂ is nonlinear and does not
commute with D̂ implies that it will, in fact, vary with space. However, for small nonlin-
earities this will be a negligible effect compared to the error caused by the fact that the
split-step method treats everything as commuting operators, and it is this error we are
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analyzing.2

We can rewrite the product of the exponentials in the split-step iteration (3.5) by
breaking the center time-domain step in to two equal pieces and applying the Baker-
Hausdorff lemma [38] to each pair to yield

exp

(
h

2
D̂

)
exp(hN̂ )exp

(
h

2
D̂

)
=

exp

(
h

2
D̂ + h

2
N̂ + 1

2

h2

4
[D̂ , N̂ ]+O[h3]

)
×exp

(
h

2
N̂ + h

2
D̂ + 1

2

h2

4
[N̂ ,D̂]+O[h3]

)
. (3.7)

The above shows that the error in each half step is O[h2] due to the fact that the two
operators do not commute. Applying the lemma a second time to the right hand side of
the above allows the commutators to cancel, since [a,b]+ [b, a] = 0, leaving us with only
third-order terms3 in excess of the exact solution,

exp

(
h

2
D̂

)
exp(hN̂ )exp

(
h

2
D̂

)
= exp

(
hD̂ +hN̂ +O[h3]

)
(3.8)

= exp
(
hD̂ +hN̂

)+O[h3]. (3.9)

Comparing the above with (3.6), we can see that the symmetric split-step method con-
verges as O[h3].

Another advantage of the split-step approach is that it allows us to handle each effect
in the most natural basis. As such, dispersion and gain are not, in actuality, expressed
in terms of series coefficients as in (2.15), but are instead simply represented in spectral
form as the complex elements of the diagonal matrix representation of D̂ .

3.2 Laser cavity numerical model

In this thesis, we’ll consider a dispersion-managed soliton laser as a test case, consid-
ering only the time domain and neglecting any spatial effects (such as self-focusing or
diffraction). Thus, we consider only a complex analytic pulse envelope u(z,T ), as dis-
cussed in Section 2.1. The cavity model we will use is that shown in Figure 2-1.

3.2.1 Dispersion

In our model, the net cavity dispersion is expressed in terms of second- and third-order
series coefficients inω, written as D2 and D3, respectively. Where there are no nonlinear
elements, dispersive elements (e.g. air, mirrors) may be treated trivially in lumped form.

2When actually performing the split-step method, of course, we allow N̂ to vary at each step.
3The third order terms not explicitly shown in (3.7) involve commutators of commutators, and thus

the switching of the order of operators which allowed the second-order terms to cancel does not cause
the third-order terms to cancel.
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In the Fourier domain this operation is written as

U ′(ω) = exp
[−i

(
D2ω

2 +D3ω
3)]U (ω), (3.10)

where U is the field before and U ′ after the dispersive element. It would be trivial to han-
dle arbitrary spectral dispersion profiles in the simulation, but for the sake of simplicity
in this test model, we limit ourselves to two series terms.

3.2.2 Gain Material

We model the gain material via the GNLSE (2.15), handling propagation using the afore-
mentioned split step. For the levels of nonlinearity typically encountered in a mode-
locked laser, a discretization of 30 steps is generally sufficient. The gain is presumed to
saturate as a function of the total intracavity power P , given by

P = 1

TR

∫
dT |u|2, (3.11)

with TR the round trip time. The effect of the gain over a spatial step ∆z is handled in
the Fourier domain by

U (z +∆z,ω) = exp

(
g0

1+P/Psat

∆ω

ω+∆ω
∆z

`

)
U (z,ω), (3.12)

with g0 the small signal gain, and ∆ω the gain bandwidth, Psat the saturation power.

Given the focusing that is occurring in the gain medium, the nonlinear parameter γ
is technically a function of z. However, to simplify things we specify the nonlinearity in
terms of an empirically determined net nonlinear phase per unit of intensity per pass,
known as the SPM coefficient δ. Nonetheless, we still consider the SPM in distributed
form, acting throughout the gain crystal. The effect of self phase modulation on the
envelope is then given by

u(z +∆z,T ) = exp

[
iδ|u(z,T )|2∆z

`

]
u(z,T ). (3.13)

The split-step method is thus implemented by alternating between (3.12) and (3.13).

3.2.3 Fast Saturable Absorber

The full spatio-temporal Kerr lensing mechanism is a prohibitively complex process to
model (especially given the standard simulation methods which this thesis aims to im-
prove upon) and thus saturable absorption is not modeled physically, but phenomeno-
logically, using a simple lumped model given by

u′(T ) = exp

( −q

1+|u(t )|2/Isat

)
u(T ), (3.14)
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Table 3.1: Parameters for model Titanium:sapphire laser

Parameter Value
TR 1/100 MHz−1

D (2)
net 0.25 fs2

g0 0.1
D (2)

gain 232 fs2

D (3)
gain 160 fs3

∆ω 60 THz
Psat 1 W
δ 20 rad/GW−1

q −0.02
Isat 0.3 MW
lOC 0.02

where q is the unsaturated absorption and Isat is the saturation intensity. Both parame-
ters are determined empirically by comparing model results with actual lasers.

3.3 Titanium:sapphire test model

To test our model and solver, we implement a simulation of a typical Titanium:sapphire
mode-locked laser. The model parameters we use as a baseline are presented in Ta-
ble 3.1. For sake of convenience, dispersion is specified in terms of gain material dis-
persion and the net dispersion of an entire round-trip. We discretize the field as a 256
element vector representing a window of 200 femtoseconds, evaluated at a z slice right
before the output coupler (to simulate the pulse as exiting the laser cavity).

In Fig. 3-1, we show the evolution of the cavity over 2000 round-trips, starting from
random noise (representing spontaneous emission). The resulting pulse is slightly asym-
metric and has a duration (as measured by its full width half maximum) of 8.56 fs. The
evolution of the residual, as defined by the “energy” of the difference between the input
and output of the cavity relative to the energy of the pulse, is shown in Fig. 3-2. After
a period of oscillation as transients die down, the simulation converges linearly overall
toward the steady state solution, as expected.

3.4 Cavity Solver Problem Statement

We regard the cavity as a nonlinear operator g(u) acting on a vector representing the
Fourier coefficients of the field in our temporal window. We operate in the basis of the
Fourier modes because they are eigenvectors of dispersion and gain, and thus we can
trivially invert those operators of the cavity.
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Figure 3-2: Convergence of dynamic cavity evolution. Once the initial transients die, the
convergence of the pulse shaping mechanism is linear.
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It’s important to note that u need only be sufficient to represent the solution. We
can project this vector in and out of a higher dimensional space to perform the actual
computation. In fact, given the “breathing” nature of dispersion-managed soliton lasers,
for example, it may be necessary to propagate using a much larger temporal window
than is necessary to describe the solution.

To solve the problem, we seek an an eigenvector u to a nonlinear operator represent-
ing the change in the pulse over a round trip,

φ(u)g(u) ≡ f(u) = u, (3.15)

where φ(u) is a function that takes care of normalizing out a constant and linear phase,

φi (u) = exp
[−i (∆φ(u)−∆vg (u)ωi )

]
. (3.16)

Due to the presence of nonlinearity, we cannot predict ahead of time what the actual
periodicity of the cavity will be, and need to account for a potential perturbation ∆vg to
the group delay already assumed in Section 2.1. We also normalize the overall phase of
our solution by such that the DC component of the field experiences no phase change.
More details can be found in Appendix B.2.2. The core of our method is the repeated
solution of Newton-Raphson linearized subproblems given by

[Jf(uk)− I] (uk+1 −uk ) =− [f(uk )+uk ] , (3.17)

with the cavity Jacobian Jf defined by

(Jf)i j ≡
∂ fi (u)

∂u j
. (3.18)

With the phase normalization described above, (3.17) becomes singular and so we must
use an iterative method to solve it. The bulk of the work in the remainder of this chapter
deals with the efficient solution of this problem.

3.5 Jacobian Properties

It turns out that the Jacobian of the full problem J = Jf − I is poorly conditioned and has
a full eigenspectrum. Thus, a naive application of Newton’s method to (3.15)—using fi-
nite differences to compute a full Jacobian—fails due to numerical truncation error in
approximating the Jacobian of the cavity. Furthermore, even when a standard appli-
cation of Newton’s method succeeds, the computation of the full Jacobian involves the
evaluation of hundreds of round trips, negating much of the computational savings.

In Fig. 3-3 we show the Jacobian of our test problem at a stationary point. The Ja-
cobian has the following salient properties, which will be relevant to a solution of the
associated system:

1. Complex. This will affect our choice of solver.
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Figure 3-3: Jacobian of model shooting problem (3.29) near stationary point: (a) log
magnitude, (b) phase.

2. Nearly diagonal. (Note that the plot in Fig. 3-3 is on a logarithmic scale). This
suggests we can effectively precondition the system using a diagonal matrix.

3. Non-Hermitian. We will have to use a generalized solver.

3.6 Diagonal Preconditioner

To derive a diagonal left preconditioner, we begin by approximating the cavity as com-
posed off all Fourier diagonal elements followed by all time diagonal elements, tanta-
mount to approximating the cavity with a single nonsymmetric split-step propagation,

f(u) ≈ N(u)D(u)u. (3.19)

As discussed in Chapter 2, everything in the cavity is diagonal in the Fourier domain
except for the saturable absorber and SPM, which form the full matrix N. However, we
can actually compute the diagonal of N rather efficiently, and use this to approximate
the contribution of SPM and saturable absorption to the diagonal of the Fourier domain
Jacobian. The matrix representation of the time diagonal components can be written as

N = F†λNF, (3.20)

where F is the discrete Fourier transform matrix and λN is the diagonal matrix of the
nonlinear operator in the time domain. A diagonal matrix in the time domain is banded
in the Fourier domain, and therefore the diagonal of (3.20) is constant. Since the trace
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of a matrix is equal to its spectral trace, the diagonal must therefore be

Ni i = Tr{N}

n
(3.21)

= Tr{λN}

n
(3.22)

≡∑
k

exp(nk )/n (3.23)

≈ exp[
∑
k

nk /n], (3.24)

where n is the dimension of our system, and nk are the diagonal elements of the nonlin-
ear operator, expressed in “small signal” form for simplicity and to match how the com-
putations are done in practice. The whole cavity function can thus be approximated by
a diagonal operator

fi (u) ≈ Ni i Di i (3.25)

≈ exp

[∑
k

nk (u)+di (u)

]
ui , (3.26)

with di the small signal elements of the Fourier domain operators (i.e. dispersion and
gain). If all of the operators are approximately linearly, in the sense that d ′(u) << 1 and
therefore

d

du
ed(u)u ≈ ed(u),

then the cavity Jacobian Jf can be approximated by the diagonal matrix

B = diag

{
exp

[∑
k

nk (u)+d(u)

]}
. (3.27)

In the specific case of our model (Section 3.2) the preconditioner elements will be

Bi i = exp

[∑
k

q

1+|ũk |2/Isat
+ iδ∆z/`||u||22

− i (D2ω
2
i +D3ω

3
i )+ g0

1+||u||22/TR Psat

∆ω

ωi +∆ω
∆z/`

]
. (3.28)

Ideally, we’d use a preconditioner than includes more than the diagonal, but this is
sufficient for most regimes (with nonlinear phase shifts much less than π) as the Jaco-
bian is itself highly diagonal. With the preconditioner, the linear Newton subproblem
(3.17) becomes

[B(uk )− I]−1 [Jf(uk )− I] (uk+1 −uk ) =− [B(uk )− I]−1 [f(uk )−uk ] . (3.29)

The inversion of the preconditioner B− I is trivial for a diagonal B.

Our simple preconditioner (3.27) results in significant reduction in the spectrum of
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Figure 3-4: SVD spectrum for Newton problem before (left) and after (right) precondi-
tioning. Note the different scales.

the linear subproblem. Fig. 3-4 shows the singular value spectrum for the Newton prob-
lem for our soliton laser at its stationary point, both before and after preconditioning.
The conditioning improves by roughly a factor of 100 with most of the spectrum collaps-
ing to unity, demonstrating that our simple diagonal preconditioner nearly inverts the
system.

3.7 Krylov subspace solver

The fact that we do not have direct access to the analytic Jacobian of our problem—as
well as the fact that our problem is amenable to preconditioning—suggests we solve
(3.29) using a matrix-implicit Krylov subspace iterative solver. Given a problem Ax =
b, such methods search for a solution within the space spanned by the set of vectors
produced by repeated multiplication of the system matrix A with the residual. Assuming
a null initial iterate, this gives

Km(A) = span
{

b,Ab,A2b, . . . ,Am−1b
}

. (3.30)

Put another way, the Krylov subspace is the space of all vectors that can be written as
x = p{A}b, where p is a polynomial of degree less than or equal to m −1. Essentially, we
seek to invert a matrix with a polynomial of the same matrix. The power of the Krylov
subspace comes from three facets: (a) it turns out to be a very efficient space in which
to search given clustered eigenvalues; (b) such a space arises naturally when iteratively
solving a matrix by projection methods; and (c) the solution can be found by computing
the operation of a series of vectors through the system, obviating the need to know the
full Jacobian.

Among Krylov methods, the most promising for our problem are of the class called
optimal Krylov solvers, which find solutions x given by

arg min
x∈Km

||b−Ax||2. (3.31)

Given the properties of the Jacobian enumerated in Section 3.5, our two main options
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are GMRES [39] or GCR [40]. Both methods involve finding orthogonal basis sets over
which to solve (3.31). Given the generality of the system, both involve storing up to m
vectors. The advantage of GMRES is that it often exhibits superior stability, and requires
less space [41]. However, space is not a concern for the size of our problem, and our
method will only be worthwhile if we are able to precondition well enough such that
only tens of iterations will be needed to solve each linear system. We thus chose GCR
for its ability to efficiently compute the residual and updated solution at each iteration.
This allows us to minimize the number of round-trip function calls needed.

GCR is a variational method that involves incrementally generating an A†A-orthogonal
basis using a Gram-Schmidt orthogonalization. The GCR algorithm, slightly modified
for complex systems, follows.

Algorithm 1 Complex Generalized Conjugate Residual (GCR)

1. Compute r0 = b. Set the initial search vector p0 = r0 and x0 = 0.

2. For j = 0,1, . . . until ||r j ||2 < ε, Do

3. α j =
ℜ(r†

j Ap j )

||Ap j ||22
4. x j+1 = x j +α j p j

5. r j+1 = r j −α j Ap j

6. Compute βi j =
ℜ[

(
Ar j+1

)† Api ]

||Api ||22
for i = 0,1, . . . , j

7. p j+1 = r j+1 −
j∑

i=0
βi j pi

8. End Do

When implementing GCR for nearly symmetric systems, we can cheat on the or-
thogonalization somewhat (line 6) by only orthogonalizing the current search direction
relative to the last s directions. This method, known as ORTHOMIN(s) [42], turns out
to work well for our problem for s = 15, and improves both speed and convergence by
limiting round-off errors.

When solving for the Newton step using ORTHOMIN(s), we are essentially sending a
series of trial perturbations through our cavity, and using the information gleaned from
the perturbed output to make an optimal guess as to the best direction in which to move
towards a stationary point. Since we only ever need to know the action of the system
(3.29) on a single trial vector, we can avoid having to compute the full cavity Jacobian
by approximating all the matrix-vector products in the ORTHOMIN(s) program by the
forward difference

(B− I)−1(Jf − I)p ≈ (B− I)−1
(

f(u+dp)− f(u)

d
−p

)
, (3.32)
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where u is the point around which the finite difference is computed (the current solution
guess), p is a trial vector, and d ≡ a/||p||2 with a the difference scale, chosen to balance
truncation error with rounding error in the finite difference. The entire algorithm is
summarized in a flow chart, Figure 3-5.

3.8 Theoretical Convergence

If we are close enough to a solution, the outer loop should converge quadratically. This
is not guaranteed, of course, even if the function is well behaved, as we are using an ap-
proximate solver solver. However, the number of outer steps will be small in any event,
assuming convergence occurs. The greater concern is how many cavity evaluations will
be required to solve each Newton step; that is, how many GCR steps will be required in
each inner loop.

The convergence of optimal Krylov methods is a function of the distribution of the
eigenvalues. The norm of the residual rn = Axn −b after n iterations is given by [43]

||rn || ≤ inf
p∈Pn

||pn(A)|| ≤ κ2(V) inf
p∈Pn

max
λ∈σ(A)

|p(λ)|, (3.33)

where Pn is the set of polynomials of degree n with the normalization restriction that
p(0) = 1, V is the eigenvector matrix of A, σ(A) is the spectrum of A, and κ2 is the condi-
tion number. Given that the Krylov subspace for the problem Ax = b is the space of all
vectors expressible as a polynomial of A operating on b, it makes sense that the norm
of the nth residual is the norm of the best matrix polynomial one can construct out of
the Krylov space (the first inequality). The second inequality in (3.33) is not obvious,
however. It means that the convergence will be better with lower condition numbers,
and with eigenvalues clustered away from zero [41]. In the specific case of A having
only m distinct eigenvalues, (3.33) states that the algorithm will converge in at most m
iterations.

Given how close our model system is to symmetric, the distribution of eigenvalues
can be approximated by the singular values. As we’ve already shown in Figure 3-4, the
preconditioning greatly improves both the conditioning and spectral distribution of the
system. Based on the fact that roughly 90% of the singular values are clustered very close
to one, we’d expect that the subproblems should converge roughly an order of magni-
tude faster than would be required for a full matrix. For our model problem, (3.33) im-
plies that each inner loop should only require on the order of ten round trip evaluations.
Assuming the Newton steps converge in less than ten iterations, we should thus expect
to solve the cavity using on the order of 100 round trip evaluations.

Whether or not this is much of an improvement over naive simulation depends, of
course, on the convergence of the natural system. As a rule of thumb, the more disper-
sion in the system, the slower it naturally converges. On the other hand, the more non-
linear the cavity, the faster it will converge. The utility of this algorithm them, hinges on
the granularity of the cavity relative to the pulse shaping mechanisms. On one extreme,
weakly nonlinear solid-state lasers can take 50,000 round trips to converge, whereas our
algorithm will only require around 30 round trips. At the other end of the spectrum, fiber
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Figure 3-5: Flow chart for entire Newton-Krylov solver. Dashed borders indicate iterative
loops. In the figure, ε is the final termination tolerance, and F is the function which
computes one cavity round trip. (Figure courtesy of Robert R. Birge.)
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Figure 3-6: Left: comparison of the amplitude of the final solutions obtained by our
method (dots) and standard dynamical evolution (solid line) for our test mode-locked
laser model. Right: absolute value of difference between the two solutions.

lasers are capable of significant pulse shaping over one pass, and they tend to converge
within hundreds of round trips, offering little opportunity for improvement given the
expected slow convergence of our inner loop problems in the presence of high nonlin-
earity.

3.9 Accuracy

Given that the convergence test of the algorithm is the same convergence test for the
standard method (i.e. that the cavity reproduces the solution to within the some level of
precision) and given that our method uses the same cavity model, the accuracy of our
method is not really an issue and is limited by the cavity model. However, it is techni-
cally possible that our method could converge to a quasi-stable cavity mode that would
not be found by a dynamic simulation. In Fig. 3-6 we compare the final solution found
by our method with that found by dynamic simulation. As expected, they are roughly
similar to within the convergence criteria of 10−8.

3.10 Empirical convergence

As with all Newton solvers, the convergence of the outer loop is dependent on the start-
ing point. As such, our solver is best used to refine an initial rough guess to high pre-
cision. However, the guess can be off by a significant amount (as illustrated in Fig. 3-8)
and in some cases can converge starting from noise. Nonetheless, the better the guess
the more reliable the convergence. However, this is not inconsistent with the two main
intended uses of this algorithm: (a) to compute the results of many different cavity pa-
rameters, where the output of one simulation may be used as a seed to the next; and (b)
in an optimization loop, where the parameters evaluated will be highly correlated with
those from preceding computations. If a solution starting from zero is desired, the best
approach is to run the dynamic simulation for a hundred round trips or so, and then let
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Figure 3-7: Comparison of convergence between our method (dotted line) and standard
dynamical evolution (solid) for our test mode-locked laser model. All cavity evaluations
are included, including those used to solve the linear Newton subproblems.

the algorithm take over once the pulse has evolved sufficiently.
This was the approach we took to test the algorithm’s convergence relative to dy-

namic simulation. In Fig. 3-7, we compare the convergence of our algorithm to that
obtained with standard simulation. Both the Newton-Krylov solver and the cavity dy-
namic simulation were seeded with a very rough starting pulse obtained from iterating
the cavity 200 times on a starting impulse. Continuing with the dynamic simulation re-
quired over 2500 round trips to converge to within 10−9. Our method was more than
34 times faster, and was able to converge to 10−10 while requiring only 76 cavity round-
trip evaluations. The quadratic convergence of the outer Newton process is apparent in
Fig. 3-7.

To provide a visualization of the kind of paths taken by the Newton-Krylov solver, we
plot the exact sequence of trial pulses sent through the cavity solver in terms of the log
of their residuals, Fig. 3-9. Note that initially the rough pulse shape is found and further
refinement simply involves small perturbations and scaling. It thus makes sense that
searching along paths in the direction of the residual would work well. The observed
fact that the solution tends to overshoot during early steps suggests that convergence
could be improved markedly were care taken in determining the Newton step length.

3.11 Future Work

The method appears to work quite well up to roughly π radians of nonlinear phase per
round trip. This is good enough to deal with most few-cycle lasers, but the algorithm
becomes less effective for lasers with extreme amounts of nonlinearity per round-trip,
converging at roughly the same rate as dynamic simulation when the cavity nonlinear
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phase approaches one cycle. There are several avenues of improvement that could be
pursued to enhance the applicability and convergence of the algorithm, however. In
addition, there is potential for this algorithm to be applied to more general cavity models
incorporating spatial effects.

Better preconditioning for high SPM. The reason for the failure at high levels of
nonlinearity is most likely the fact that we are using a diagonal preconditioner in the
Fourier domain, which ignores all but a constant factor contribution from the nonlin-
earity. Given that the computational cost of the algorithm is almost completely dom-
inated by the costly propagation through the gain medium, especially given the small
vectors needed to represent our solutions, it might be worthwhile to do a more involved
preconditioning. We could easily compute several stripes of the banded matrix repre-
senting the lumped nonlinearity, and its inversion would likely be negligible compared
to the cavity round trip evaluations.

Reduced basis sets. There is no reason why we must compute a round trip in the
same basis that we represent our search. However, we have not yet taken advantage
of the potentially significant performance improvements via this route. In general, the
representation that is optimal for accurately computing a round trip will be of signif-
icantly higher dimension than that needed to sufficiently represent the solution. Not
only do we waste effort operating on wider temporal windows than we need (which end
up filled with zeros) but we also hurt our convergence with the resulting poorly condi-
tioned system. This could provide significant improvement in convergence, and is the
most promising next direction to take.

Alternative linear solvers. So far we’ve only tried GCR and ORTHOMIN. Given that
we experienced improvement by moving to ORTHOMIN it’s likely we are, in fact, run-
ning into numerical stability problems. Despite our hope otherwise given the small
number of iterations, the numerical stability issues suggest we may have chosen the
wrong solver. It may be productive to investigate other Krylov solvers, such as OR-
THODIR and GMRES.

Better line search implementation. It’s possible that our region of convergence
could be greatly improved by improving the Newton steps. The result shown in Fig. 3-9
and discussed in Section 3.10 suggest that a line search could significantly improve the
rate of convergence.

Phase normalization handling. Our solution to the problem of having no a priori
knowledge of the cavity phase or group velocity (see the discussion in Section 3.4) was
the addition of an ad hoc normalization function (3.15). Undoubtedly, this affects the
convergence of our Krylov method to some extent as it significantly breaks the symmetry
of the system. There may be better ways to handle this novel facet of our problem, such
as solving for the ideal normalizing phases in a separate step, and then taken them as
fixed during the solution of the Newton subproblems.

Parallelization. The approach we’ve taken here has a potentially significant unreal-
ized benefit over dynamic simulation: the ability to be parallelized. Dynamic simulation
is inherently a serial process, whereas the solution to our linear subproblems can take
advantage of parallel linear numerical techniques. At the extreme where we have at least
as many processors as dimensions in our field, we can solve each linear problem in the
time it takes to compute two round trips. This would allow another order of magnitude
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advantage in computational time over standard simulation.
Extension to full spatio-temporal model. An unfortunate truth is that while we

can phenomenologically model Kerr lens mode-locked lasers sufficiently well to cap-
ture their salient features, we cannot simulate them well enough to use simulation as
a primary design tool. Designers of these lasers thus currently have to include signifi-
cant margins in the laser as built, and getting the laser to mode lock is largely a matter
of trial-and-error, adjusting cavity parameters such as dispersion and gain. A significant
aspect of this is our lack of quantitative understanding of Kerr lensing, driven by our lack
of ability to effectively model it in a cavity.

The method presented in this thesis could be applied in a straightforward way to
the simulation of a spatio-temporal cavity model. Preconditioning would work simi-
larly, with the Jacobian for the linear cavity elements being diagonal and computable
analytically if we operate in a basis composed of temporal and spatial frequency modes.
Were an extension of this method to work with similar effectiveness on a spatial model,
it might allow us to refine a quantitative model of Kerr lens mode locking by match-
ing the output of the simulation with spatial measurements from actual lasers. Such an
“optimization” would require a fast cavity solver.

The ability to fully model a nonlinear cavity would provide a significant benefit to
the field of ultrafast optics, as it would allow for the precise engineering of mode-locked
lasers without need for the trial-and-error tweaking involved today in the development
of a laser. An even more auspicious goal would be the development of a model suffi-
ciently accurate to act as a testbed for new laser development and research. Laser devel-
opment is currently at the point where models do not adequately predict the operation
of the shortest pulsed lasers. Providing a computational method capable of accurately
modeling the full physics could revolutionize the development of mode-locked lasers,
which currently require the construction of prototypes costing hundreds of thousands
of dollars to build.
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Chapter 4

Phase Distortion in Ultrafast Optics

Historically, the performance of phase sensitive optical devices has been measured in
terms of group delay dispersion (GDD), and designs optimized by minimizing the inte-
grated deviation of GDD from the ideal desired response. We begin this chapter by ar-
guing that GDD is not always a meaningful criteria to consider for ultrahigh bandwidth
devices. We then derive an alternative spectral quantity with which to optimize a phase-
sensitive filter, which we refer to as the phase distortion ratio (PDR). This approach ex-
presses both reflectivity and phase errors in units of power, putting them on an equal
basis. This provides a rational way to include knowledge of the expected power spectral
density of the source, an important factor to consider that has heretofore been largely
neglected in dispersive filter optimization. We show that this approach yields greatly
improved results in applications such as pulse compression, cavity enhancement, and
mode-locked lasers.

4.1 Introduction

Optical thin-film mirrors are critical components of many modern ultrafast optical sys-
tems and communications devices. In some situations a specific group delay dispersion
(GDD) profile is desired, such as in dispersion compensating mirrors [16, 44], and in
others the dispersion is made as small as possible to minimize its effect on short pulses.
In either event, phase sensitive filters have historically been designed by numerically
minimizing a weighted integral of reflectance and GDD error.

For problems where a given dispersion curve can be matched very closely, it gener-
ally does not matter what one chooses for an optimization criterion (i.e. merit function)
so long as the merit function has a local minimum at the ideal response. Certainly, in-
tegrated GDD satisfies this condition. However, for difficult filter engineering problems
which push the limits of what is possible in terms of bandwidth and/or precision, perfor-
mance tradeoffs are necessary, and the only solutions available are those which roughly
approximate the desired outcome. In such cases, the optimization process must balance
among a large number of factors (i.e. the filter performance at a series of frequencies)
to arrive at the best compromise available. The choice of merit function plays a critical
role in determining the performance of the final design. If not, the optimization may
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converge to non-optimal points. Unfortunately, it is generally not computationally fea-
sible to use our ultimate goals as merit functions. For example, in the case of dispersion
compensating mirrors for a mode-locked laser, we may wish to find mirrors which mini-
mize the output pulse width of the laser. The stable pulse of a laser cannot be computed
quickly enough to be used in an optimization loop, so we must use some other criteria
as a proxy. The main task involved in optimization is the selection of computationally
efficient models for our problem that is as close as possible to a linear function of our
underlying objectives.

4.2 Group delay dispersion background

The concept of GDD arose in the context of the slowly varying envelope approximation,
where the relative bandwidth is, by definition, assumed to be small enough such that
dispersive broadening is well described by the local second-order phase. In these cases,
minimizing the GDD at a single point is a perfectly valid way to minimize dispersive
broadening. As bandwidths increased, such that a series expansion of phase at a single
point was no longer valid, the concept of GDD was extended by considering GDD as
a function of wavelength. The standard way to design wideband phase compensating
filters has historically been to minimize the mean squared deviation of GDD from the
desired profile [45].

It is not always clear, however, how to ascribe physical meaning to the frequency do-
main integral of squared GDD over a wide bandwidth where a series approximation is
not valid. Optimizing integrated GDD error would certainly minimize the mean distor-
tion of a set of independent sources each of narrow bandwidth (e.g. WDM channels).
However, in the case where a wide bandwidth of frequencies will be coherently inter-
fered (as with a laser pulse), RMS GDD error may not be an ideal measure of perfor-
mance.

Consider, for example, a dispersion compensating mirror used to compress an ultra-
short pulse. The dominant nonideality in such mirrors is the creation of satellite pulses
caused by an impedance mismatch at the mirror surface. It can be shown [46] that a
spurious reflection of magnitude a at a relative delay τ causes a GDD error proportional
to a2 (to lowest order in a). In many applications, however, it is the energy contained
in any satellite pulses that is of relevance, not their delay. The quadratic scaling of GDD
with delay, however, means that integrated GDD error is not a monotonic function of
satellite pulse energy, and thus GDD minimization will generally converge to a subopti-
mal solution. This is illustrated dramatically in Section 4.5.

One avenue around these issues is to optimize the mirror in the time domain [47, 48].
However, thin film filters are most naturally analyzed in the frequency domain (where
they are diagonalized) and thus time domain optimization presents its own difficulties.
Requiring one FFT per wavelength at each optimization step (to compute the gradient)
involves significant computation, and operating in the time domain renders analytic
gradients of merit functions infeasible. Thus, a single optimization step will require an
effort that scales as O(nλ lognλn2), with wavelength count nλ and layer count n. This
is significantly greater than the O(nλn) complexity experienced using analytic gradients
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in the frequency domain [49], and that is notwithstanding the potentially slower conver-
gence rate from using finite difference gradients.

In the following, we propose an alternative method to optimize a reflective filter in
the frequency domain in terms of a simple quantity we refer to as the phase distortion
ratio (PDR). This approach expresses both reflectivity and phase errors in units of power,
putting them on an equal basis, which facilitates weighting between them and elimi-
nates the ambiguity inherent in adding GDD errors and reflectivity errors (which have
incompatible units). Furthermore, this approach provides a rational way to consider the
expected power spectral density of the source, an important factor to consider that has
heretofore been neglected in dispersive filter optimization. We believe this approach
will yield improved results for many applications in communications and ultrafast op-
tics. As a bonus, the method avoids the costly evaluation of GDD and GDD gradients
during optimization.

4.3 Phase Distortion Ratio

In lieu of GDD, we propose a simple spectral quantity based on the fractional energy lost
to phase distortions. We will show in subsequent sections that this criterion turns out
to produce optimal designs in certain linear cases of pulse compressors and enhance-
ment cavities. While results cannot be proved for the case of a general nonlinear cavity,
we show through simulation that phase distortions are more predictive of cavity perfor-
mance than GDD errors.

4.3.1 Derivation

While we assert that integrated GDD error is not a valid basis for optimization, spectral
GDD is an ideal way to specify a desired dispersion curve. We will thus express the design
goal in terms of the ideal GDD curve, written as D̂2(ω). The GDD of our device being
optimized will be written at D2(ω), with the net phase error defined as

∆φ=
Ï ω2

ω1

dω2 D2(ω)− D̂2(ω), (4.1)

where ω1 and ω2 are the bounds of the optimization. Likewise, the optimal reflectivity
will be R̂(ω) and that of the design denoted as R(ω).

Without making any claims as to its validity for any purpose, we begin by considering
the total power contained in the difference between the ideal mirror response and that
of a given design. The phase error in (4.1) will, in general, include constant and linear
phase terms which we wish to ignore.1 These phases will be dealt with in the following
by the inclusion of floating termsφ0+φ1ω, withφ0 andφ1 chosen to minimize the error
power. By Parseval’s theorem, then, the total power contained in the difference between

1It is possible that optical comb enhancement cavity mirrors might eventually be concerned with an
absolute phase term, but for the present discussion we will focus on applications where the only goal is
an ideal spectral GDD.
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the pulses we want and those actually reflected is

Error Power = min
φ0,φ1

∫
dωP (ω)

∣∣∣e i mφ̂(ω) − r m(ω)e i m[φ(ω)+φ0+φ1ω]
∣∣∣2

=
∫

dωP (ω)
[
1+Rm(ω)

]+2 min
φ0,φ1

∫
dωP (ω)Rm(ω)cos[m(∆φ(ω)+φ0 +φ1ω)], (4.2)

where r (ω) is the absolute value of the field reflection coefficient, P (ω) is the expected
power spectral density of the source, and m is the number of reflections we are consid-
ering.

The cosine term is problematic. First, its periodicity would impede convergence in
a local gradient optimization. Second, it makes it impossible to solve directly for the
optimal values of the floating phase coefficients. Because of the floating terms, however,
the argument to the cosine at the end of an optimization will generally be much smaller
than π (assuming a reasonably good solution is found). As such, we can very effectively
replace the cosine with an expression that is second-order in phase. In addition, for any
reasonable solution the R(ω) factor can be well approximated by unity and thus dropped
from the second term,

EP =
∫

dωP (ω)
[
1− r m(ω)

]2 + min
φ0,φ1

∫
dωP (ω)m2 (

∆φ(ω)+φ0 +φ1ω
)2︸ ︷︷ ︸

PhaseDistortionRatio

. (4.3)

The first term above is the power lost to mirror leakage. The second term is the power
that is directed into phase distortions. Thus, the under-bracketed term is a spectral
quantity that represents the fraction of power lost to phase distortion at each wave-
length, which we call the spectral phase distortion ratio (PDR). This quantity turns out to
be very useful in the design and optimization of phase compensating filters, as we will
show in following sections.

To eliminate the variables of the minimization in (4.3), we take the gradient of the
second term in (4.3) with respect to the coefficients φ0 and φ1. Setting both gradient
elements to zero yields a set of coupled equations for the optimal constant and linear
phases,

φ0 +〈ω〉φ1 =−〈
∆φ(ω)

〉
〈ω〉φ0 +

〈
ω2〉φ1 =−〈

ω∆φ(ω)
〉

,
(4.4)

with 〈·〉 denoting the power weighted mean defined by
〈

f
〉= ∫

dωP (ω) f (ω)/
∫

dωP (ω).
Solving for the optimal floating phase terms and substituting back into (4.3) gives us a
quantity that is entirely a function of mirror parameters, and thus can be used directly
in an optimization. The final expression for the PDR is

PDR(ω) ≡ m2

[
∆φ(ω)− ∆ω

2 +ω2
0 −ωω0

∆ω2

〈
∆φ

〉+ ω−ω0

∆ω2

〈
ω∆φ

〉]2

, (4.5)
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where ∆ω =
√〈

ω2
〉−〈ω〉2 is the source bandwidth and ω0 = 〈ω〉 is the source center

frequency. Note that the coefficients in front of the ∆φ averages are all constants that
only need to be computed once during an optimization.

4.3.2 Practical issues of optimizing with PDR

In practice, directly computing the phase of the filter can be complicated by phase un-
wrapping issues, as it is often the case that filters have large group delay offsets.2 It
is best to compute the phase error by a numerical integration of group delay. As nu-
merical quadrature and the gradient are both linear operators, analytic gradients of the
above merit functions can be computed in a straightforward manner from gradients of
group delay and reflectivity, as in [49]. While the final analytic expression is cumber-
some to detail in closed form, it is straightforward algorithmically and does not pose a
significant computational burden, as numerical integration is linear in complexity. An
example merit function computation is shown in Appendix C.

4.4 Enhancement cavity design

Enhancement cavities for laser combs have received considerable attention recently,
both in the context of maximizing nonlinear conversion through field enhancement
[50], as well as for repetition rate (comb spacing) enhancement for spectroscopy [51].
In either case, a crucial aspect of such cavities is the mirror design, which must ex-
actly compensate for intracavity dispersion (if any) such that the cavity modes remain
equidistant. In enhancement cavities, the only concern is the absolute shifting of in-
dividual resonances, and any oscillation of the detuning as a function of frequency is
irrelevant. Optimizing for minimum GDD, as is usually done, places a significant un-
warranted penalty on designs with quickly varying phase oscillations, again leading to
suboptimal designs as the phase response is compromised needlessly.

4.4.1 Cavity transmission is a function of PDR

Assuming the reflectivities of the mirrors maintain a sufficient cavity finesse for field
enhancement and/or mode suppression, the dominant mechanism affecting the cavity
throughput will be the detuning of cavity resonances due to mirror dispersion nonide-
ality. We begin by considering the transmission of a Fabry-Perot resonator [25],

T (ω) = [1−R(ω)]2

[1−R(ω)]2 +4R(ω)sin2[φ(ω)/2]
, (4.6)

where R(ω) is the aggregate reflectivity of the cavity mirrors, and φ(ω) is the round trip
phase of the entire cavity, including free space propagation, intracavity materials, and

2By phase unwrapping, we refer to the process of removing spurious discontinuities in the reflection
phase that occur when the reflection phase ranges over more than 2π.
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the mirror under consideration. Phase distortions in the mirrors will affect the enhance-
ment cavity by pulling resonances of the cavity off of comb lines. The spectral transmis-
sion of a single comb through a cavity mode can be very closely approximated (assum-
ing reasonable transmission to begin with) by taking a second order series expansion
of (4.6) with respect to local mirror phase deviation ∆φ(ω) = πm −φ(ω), with m ∈ Z an
index representing the laser comb line nearest ω. This gives an expression for the local
change in transmission,

δT
∣∣∣
ω
= R

[1−R]2
∆φ2 +O[∆φ4]. (4.7)

Any global linear phase term in the mirror can be taken up by changing the length of the
cavity. A constant phase can be accounted for by changing the fCEO of the laser being
locked to the cavity.3 Therefore, (4.7) implies that the global transmission attenuation of
an enhancement cavity mirror system is proportional to the PDR, so the overall trans-
mission of a laser comb nominally repetition-rate-matched to the cavity is

T (ω) = 1− R(ω)

[1−R(ω)]2
PDR(ω)+O[PDR2(ω)]. (4.8)

This is valid at any frequency, assuming that the phase oscillations are much wider than
the mode spacing, and that the cavity resonances shift by much less than their width.
While the latter criterion will, by neccesity, hold for any useful cavity mirror design and
thus (4.8) is appropriate as an optimization merit function. If the cavity modes differ
from the laser comb spacing by an integer multiple, such as with a rate enhancement
cavity, (4.8) is to be interpreted as the fractional tranmission of those modes which fit
the cavity spacing.

4.4.2 Cavity merit function

While the specific optimization approach will depend on the application of the enhance-
ment cavity in question, the preceding shows that the relevant underlying spectral quan-
tity to consider is the PDR. For example, in the case of a repetition rate enhancement
cavity, a suitable approach would be to maximize (4.8) subject to the constraint that the
mirror reflectivity was above a certain minimum required for unwanted mode supres-
sion.

If the desired goal is to simply maximize the total field intensity inside the cavity,
(4.8) implies that the appropriate merit function to minimize is

Z =
∫

dωP (ω)
R(ω)(2−R +PDR(ω))−1

[1−R]3
. (4.9)

In practice, for relatively narrow relative bandwidths, less than one tenth, enhance-
ment cavities can be designed for low dispersion by using mirrors based on Bragg stacks.
To progress beyond that, however, enhancement cavities with chirped mirrors will have

3Were this not the case, and the carrier envelope phase of the laser fixed to some desired value, it is not
difficult to formulate an alternative spectral parameter that would allow for an arbitrary linear phase but
would hold a constant phase, modulo 2π. This might be termed a spectral dephasing ratio.
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Figure 4-1: Enhancement cavity mirror GDD error comparison.

to be used, with intracavity positive dispersion elements introduced. Given the extreme
sensitivity of wide bandwidth cavities to resonance shifts, proper design of the mirrors
will be imperative to successful implementation, and the performance of the mirrors
will be the limiting factor to bandwidth.

4.4.3 Example optimization

To demonstrate the efficacy of PDR optimization of cavity mirrors, we consider the case
of an ultra-broadband rate enhancement cavity with a modest finesse factor of 77, cre-
ated by a chirped mirror pair. The cavity was assumed to have roughly 1 mm of fused
silica providing internal positive dispersion. Such a cavity would be useful for increasing
the mode spacing of a femtosecond comb for high precision astrophysical spectroscopy,
as in [51].

A double chirped mirror pair was designed using the standard GDD optimization
approach. Another mirror pair was then optimized using the criterion in (4.8), starting
from the same starting point used in the GDD design. These two designs are compared
in Figure 4-1. It is clear that the GDD optimized design (grey) has less GDD ripple than
the minimum PDR design (black). In fact, the PDR optimized design is four times worse
in terms of RMS GDD.

The theoretical cavity transmission (assuming perfect cavity locking) is shown in Fig-
ure 4-2. Despite the significantly lower dispersion ripple of the GDD optimized mirror, it
is virtually useless, admitting only a few nanometers of bandwidth into the cavity before
the mirrors’ phase errors dephase the cavity from the comb. The PDR optimized cavity,
however, transmits an average of around 90% over the entire 400 nm bandwidth.
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Figure 4-2: Enhancement cavity transmission comparison. This transmission curve rep-
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Figure 4-3: Compressor GDD comparison.
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Figure 4-4: Compressor pulse comparison on a linear (a) and log scale (b).

4.5 Compressor Design

As an additional linear test case, we also consider the design of a six mirror dispersion
compensation system comprised of two complementary mirror types, intended to re-
compress a single-cycle NIR pulse after traveling through 2 mm of fused silica. As be-
fore, we performed two designs, one which minimizes GDD and one which minimizes
PDR. The two designs are compared in Figure 4-3.

The PDR optimization produced a GDD curve with 18 times more RMS GDD error
than the GDD design. However, when looking at the effect on a pulse after compression,
the minimum energy design performs significantly better, theoretically yielding output
pulses that are indistinguishable from fourier transform limited pulses. Figure 4-4(a)
shows the time domain error signal for the two filters relative to a theoretically perfect
mirror.

The GDD design has virtually no fast phase ripple, but the phase itself has longer
scale variations which destroy the pulse. Insight into why the GDD optimization failed
can be seen from a logarithmic plot of the pulse, Figure 4-4(b), that the PDR design
produces small phase distortions far from the main pulse, around 250 fs away. While
the energy contained in these satellite pulses is negligible, the quadratic GDD scaling
with delay discussed earlier prevents the GDD optimization from considering this a valid
solution.

Finally, we note that the minimum PDR design required no human intervention to
pick weighting values, necessitating less user intervention than the GDD design, which
required iterative adjustment of the weighting between GDD and reflectivity to achieve
sufficient reflectivity performance.
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Chapter 5

Dispersion Compensation of
Mode-Locked Lasers

In this chapter, we investigate the effects of intracavity phase distortions on mode-locked
laser performance. Unfortunately, analytic results from the master equation do not shed
a great deal of light on this problem, as phase distortions constitute a very high order ef-
fect that cannot be effectively handled by a perturbative approach. We are thus forced to
turn to numerical experiments. Fortunately, even one-dimensional laser cavity models
are capable of capturing the essential dynamics of dispersion-managed soliton lasers
[52].

We find that even small phase mirror phase oscillations of less than 0.1% of a wave
can profoundly affect the overall spectral shape of the laser. In addition, the standard
dispersion managed cavity arrangement of having small net positive dispersion is par-
ticularly vulnerable to phase oscillations. This suggests significant improvement in laser
performance is still potentially possible with advances in mirror technology.

Finally, we conclude this chapter by addressing the question of how to best optimize
cavity mirrors, using a statistical approach—enabled by our Krylov solver—to evaluate
the relative performance of PDR versus GDD optimization. The results suggest that nei-
ther method is ideal, but that PDR is significantly more predictive of cavity performance.

5.1 Effects of intracavity phase ripple

Phase ripple in intracavity dispersion compensating mirrors manifests in several ways.
The most simple is as an effective cavity loss. With sufficient SPM, satellite pulses are not
resonant with the main pulse and do not build up appreciably. If the satellite pulses do
not mix with the main pulse, the net effect of phase distortion is simply to pull a certain
amount of power out of the main pulse each round trip. This is the case for relatively
narrow band pulses which do not experience significant dispersion during a round trip.
In such situations, the integrated PDR is clearly a very relevent optimization criterion.

On the other hand, for dispersion managed systems with large swings in pulse chirp,
it is possible for the pulses to be broadened sufficiently during transit through the gain
medium for the main pulses and satellite pulses to overlap with each other and exchange
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energy via third-order nonlinearities. In this case, which clearly applies for sub-two-
cycle lasers, the effects of phase ripple can be quite complicated, explaining why neither
GDD nor PDR is found to be perfectly correlated with the pulse spectrum in Section 5.3.
While increasing the ripple magnitude past a certain point will always destroy mode-
locking, simulations show that increasing phase ripple will sometimes actually increase
the bandwidth, confirming that the only way to truly optimize dispersion compensating
mirrors is to consider a full cavity simulation. As we show in the following, phase dis-
tortions are responsible for the characteristic M-shaped spectral structure of few-cycle
lasers.

5.1.1 SPM and phase distortion

In the absense of significant SPM, simulations show that the presense of phase ripples of
even 1/1000 of a wave can result in spectral amplitude ripples of nearly full modulation.
That this should be the case is not obvious, because the reflectivity spectra of the mirrors
are flat. Were only linear effects taking place, the satellite pulses would not manifest as
amplitude oscillations. Absent SPM, the phase velocity of the satellite pulses is matched
to the main pulse, and thus power can be resonantly fed into the satellite pulses, allow-
ing them to grow to appreciable intensity. Furthermore, these satellite pulses experience
the same pulse shaping dynamics as the main pulse, a process that compresses them
and changes their phase relationship to the main pulse. In cavities with little or no SPM,
satellite pulses can be as short as the main pulse and nearly as intense. The interference
of the two results in large spectral amplitude oscillations.

To overcome these effects, SPM must be used. The introduction of SPM quells the
build up of phase distortions by establishing an intensity dependent round trip (soliton)
phase. Satellite pulses, having significantly less intensity, will not be phase matched
to the main pulse and will thus not grow appreciably. In the case of negative disper-
sion cavities, even small amounts of SPM can nearly completely eliminate the effect of
phase distortions, rendering phase distortions nothing more than another source of loss.
Cavity mirrors for such lasers should therefore be designed by minimizing the power
weighted sum of PDR and transmission.

5.1.2 Resonant phase distortions in positive dispersion cavities

A soliton-continuum net phase plot (such as that shown in Figure 2-3 in the context of
soliton perturbation theory of Section 2.3) turns out to be very useful in understanding
why positive dispersion regime lasers are more susceptible to phase distortions than
those operating in the negative dispersion regime.

Figure 5-1 shows a simulated spectrum from a 5 fs dispersion managed soliton laser
operating in the net positive dispersion regime, with parameters similar to the laser of
[53]. This is qualitatively representative of state-of-the-art few-cycle lasers, using sim-
ulated DCMs with phase ripple commensurate to those currently available (0.5% of a
wave peak-to-peak). Above the spectrum, we show a plot of the net phase difference be-
tween the “soliton” and the continuum (i.e. the linear phase of the cavity) over a single
round trip. Unlike the case for negative dispersion, a positive dispersion laser (assuming
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Figure 5-1: Simulated spectrum of few-cycle laser operating in the high-SPM, positive
dispersion regime typical of solid state oscillators. The resonant interaction of the phase
distortions with the main pulse result in the "M"-shaped power spectrum characteristic
of few-cycle oscillators.

sufficient dispersion) tends to operate with the soliton always close to resonance with
the continuum. Thus, even a small amount of ripple corresponds to a significant change
in the net soliton-cavity phase, bringing the continuum significantly closer to resonance
with the solition. Contrast this with the negative dispersion regime, illustrated in Figure
5-2, where the phase margin is well away from zero, despite the cavity having the same
nonlinear coefficient. Negative dispersion cavities are much less susceptible to phase
ripple as a result.

One possible interpretation of the amplitude ripples is interference from satellite
pulses at a temporal distance corresponding to the inverse ripple period. As discussed
earlier, this is certainly the case with saturable absorber mode-locked lasers with low or
zero SPM. However, in the positive dispersion and high-SPM regime, well-formed satel-
lite pulses cannot grow, as the nonlinearity renders them poorly phase matched to the
main pulse. Inspection of both simulation and experimental measurement of actual
lasers confirm that there are indeed no appreciable satellite pulses, only a complicated
pedestal structure (see, for example, Figure 9-8 in Chapter 9). The mechanism behind
the spectral peaks in a positive dispersion DMS laser is evidently fundamentally differ-
ent from that of a saturable absorber-only laser, the most prominent evidence of this be-
ing the fact that the ripples increase towards the wings in the positive dispersion regime
but decrease in the SA-only or negative dispersion regime.

Our proposed explanation for these observations is that when there is significant
positive dispersion, the main soliton can be nearly phase-matched to narrowband quasi-
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Figure 5-2: Comparison between two simulated laser cavities with mirror phase distor-
tions. The two cavities differ only in thesign of net dispersion. The negative dispersion
cavity operates with a significant margin between the soliton and the cavity, greatly at-
tenuating the effects of the mirror’s phase distortions.

solitons in the wings, which are supported by local negative dispersion caused by the
phase oscillations. These quasi-solitons have their own (much smaller) soliton phase
which is why they are more coupled at wavelengths where the main soliton approaches
resonance with the continuum, but only while the margin is negative (as it would be for
a normal soliton).

The ripples in a positive dispersion laser are thus somewhat analogous to Kelly side-
bands [2]. However, they are fundamentally distinct in several ways. For one, they are
more broadband than Kelly sidebands and correspond to coupling to a narrowband
pulse, rather than a sharp continuum state. (To wit, in Figure 5-1, sharp Kelly sideband-
like features can be seen at the actual zero-crossings, in addition to the wider peaks
found at the local phase maxima.) Second, phase oscillation-induced peaks manifest
only in positive dispersion lasers where the phase margin between soliton and con-
tinuum is negative. As also seen in Figure 5-1, once the margin becomes positive, the
spectral oscillations go away. This further supports the notion that it is not a simple
continuum resonance.

5.1.3 Origin of M-shaped spectra in few-cycle lasers

Few-cycle dispersion managed soliton lasers have a characteristic M-shaped spectrum,
as illustrated in Figures 5-1 and 9-8. At first glace, it might seem that this is caused
solely by the kind of dynamics seen in All Normal Dispersion (ANDi) lasers. Such lasers
have been studied by Bélanger and Kalashnikov [54, 55], and realized experimentally by
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Figure 5-3: Set of simulated spectra for a DM soliton laser with varying amounts of intra-
cavity phase distortion. The top plot is for perfect mirrors, the last corresponds to phase
ripples typically produced by a well-matched DCM pair. The M-shaped spectrum is due
to increasingly resonant coupling between the main pulse and narrow-band peaks sup-
ported by negative local dispersion.

Chong [56].

However, the spectral peaks predicted by the theory of Bélanger occur in distributed
Ginzburg-Landau models without periodic perturbations or phase ripples. According to
Kalashnikov, the M-shaped spectra in such stretched pulse lasers occurs due to fourth-
order dispersion. This suggests another mechanism is at work in the case of few-cycle
solid-state lasers.

The resonant soliton-soliton coupling effects proposed in Section 5.1.2 may provide
an explanation for the characteristic ‘M’-shaped spectra. Towards the edges of the spec-
trum, the positive dispersion causes the cavity phase oscillation peaks to be increasingly
resonant with the soliton. This causes power to preferentially build in the wings, at the
expense of the region just outside the gain bandwidth. The result is a spectrum that is
high in the middle (due to gain) and high at the edges (due to resonant coupling).

To verify this theory, we performed a series of simulations for a range of phase ripple
magnitudes. The results are shown in Figure 5-3, and lend support to the notion that
few-cycle lasers owe their spectral structure to the mechanism just described. For zero
phase distortion, the spectrum is perfectly smooth, with no wing enhancement, and
power decreasing away from the gain center. It is only as phase ripple is introduced that
power is pulled out of the center and into the wings, culminating in spikes for the phase
oscillations closest to the soliton-soliton resonance. Note that the dispersion is the same
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in each case; only the magnitude of the fast phase oscillations were changed.

5.2 Toward single-cycle pulses from an oscillator

The presence of significant ripple in dispersion compensating mirrors forces cavities to
be operated at relatively high levels of SPM and positive dispersion. The large nonlin-
earity is needed to quell satellite pulses. It is well known that large nonlinearities lead
to pulse instability [57, 3], however. This means that larger amounts of dispersion are
required than would be ideal from a bandwidth standpoint.

Current sub-two-cycle lasers are especially subject to phase distortions; present thin
film mirror manufacturing technology is not capable of producing octave spanning mir-
rors without significant phase oscillations (i.e. below 0.1% of a wave). Few-cycle lasers
thus must be operated in a high-SPM/high-dispersion regime. Unfortunately, the large
nonlinearity results in significant spatio-temporal coupling, which degrades output beam
quality. The high nonlinearity also manifests as an M-shaped spectral phase (see Figure
5-1), hindering compression of the pulses to their fourier limit.

Since mirror phase distortions are evidently limiting laser performance, it is moti-
vating to consider what would be possible with improved mirrors. Figure 5.2 shows a set
of three cavity simulations for mirrors, simulated to have roughly one fifth the ripple of
current designs.

In the lower panel of Figure 5.2, we show what is possible if the mirror dispersion
is tuned to increase the resonant wing enhancement, pushing the zero-crossing fur-
ther out. The resulting bandwidth is sufficient for a single-cycle pulse, and yet this is
achieved with a smaller nonlinearity than that of the laser simulated in Figure 5-1. With
less phase distortion, the cavity can be operated with less dispersion, and thus less non-
linearity is needed to achieve a given bandwidth. If such a laser could be realized, it
would have higher beam quality and a smoother spectral phase, simplifying compres-
sion.

It should be stressed that the results here are from theoretical simulations, and there-
fore should be taken with some degree of skepticism, especially with regard to the possi-
blity for single-cycle pulses. In particular, shock terms were not taken into account in the
simulation, and SPM was assumed to be instantaneous. Nonetheless, given the excellent
agreement between similar simulations and experimentally measured two-cycle lasers
[52], it is reasonable to conclude that significant advances in laser performance are to be
had with further improvements in mirror manufacturing and design. Improvements in
the latter can come partly from the insights made here, as well as work underway to im-
prove the numerical optimization process. However, improvements must also occur in
coating manufacturing tolerances if dispersion compensating mirrors—and thus mode-
locked lasers—are to reach their full potential. While much effort has been focused lately
on external cavity compression, we should not forget that there is still much room left
to improve oscillator technology. The potential for pulses approaching a single-cycle
directly from an oscillator warrants further effort to improve dispersion compensating
mirror technology.
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Figure 5-4: (top) A simulated laser with low phase distortion mirrors (0.1% waves of
phase ripple) allowing for a relatively small positive net cavity dispersion (15 microns-
worth of BaF). (bottom) The same laser with DCMs slightly modified to push out the
soliton-continuum phase crossing, leading to a single-cycle pulse directly from the os-
cillator.

5.3 PDR versus GDD optimization

In the two examples of PDR optimization from the previous chapter, the optical systems
were entirely linear. It was thus possible to use a merit function that directly represented
the performance of the system. The situation is not so simple in the case of a nonlinear
system, such as a mode-locked laser cavity, where it is impossible to derive an analytic
function of the mirror layers that is monotonic to the pulse width or the bandwidth.

Nevertheless, there is reason to suspect that a minimal PDR design will at least be
better than a GDD-based design. In the absense of other considerations, minimizing
the energy taken out of the pulse through perturbations should be prioritized over min-
imizing the delay of satellite pulses. Of course, energy taken out can be fed back into the
pulse through the interplay of dispersion and SPM, as discussed in Section 5.1 and thus
we do not expect to find a simple relation between laser performance and PDR.

In the absence of analytic solutions, we must find some way to estimate the rela-
tive efficacies of one or more candidate functions to be used as a proxy for laser perfor-
mance. In other words, while minimizing neither GDD or PDR will directly maximize
our laser bandwidth, can we at least figure out which is superior in most cases? The
general question may be cast as follows.

Our mirror is parametrized by a state vector x of layer thicknesses. Let g (x) be a
function representing some simulated performance figure of a laser composed of such
mirrors. Let f (x) be a potential mirror merit function we wish to consider as a stand-in
for g , such as integrated PDR, for instance. How may we decide the extent to which f is
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a valid approximation to g in the context of an optimization?
We take a statistical approach that involves computing f (x) and g (x) for a random

set of x in the region of a feasible solution. If we consider each value of g and f in the
monte carlo sample to be values taken from random variables G and F , respectively, we
may cast the problem as one of random variable estimation. Ideally, f will be a close as
possible to a linear function of g so that they share the same extremal points. We thus
wish for F to be a good linear estimator of G . From elementary statistical estimation
theory [58] we know that the least squares linear estimator of G will be given by

E[G]+ρ(G ,F )
σG

σF

(
F −E[F ]

)
, (5.1)

where ρ is the correlation coefficient

ρ(G ,F ) = cov(G ,F )

σGσF
. (5.2)

It is convenient to normalize and shift our samples so that their means are zero and
their variances are unity. Let Ḡ = (G −E[G])/σG , and so on. Inspection of (5.1) shows
that the best estimator of Ḡ is simply F̄ multiplied by the correlation coefficient. From
estimation theory we then have the root mean squared error

RMS Estimation Error =
√

1−ρ2
(
Ḡ , F̄

)
. (5.3)

Assuming our Monte Carlo sampled points x are representative of mirrors actually seen
during optimization, the absolute value of the correlation coefficient will be a good pre-
dictor of how well f (x) will approximate our desired goal. This method should be gen-
erally applicable to any situation where we wish to optimize a physical observable in a
system that is not practical to directly compute.

If we take a large but representative set of samples of our proposed merit function f
and our actual goal g , we would expect f to be a good minimizer of g if F is statistically
well-correlated to G , and this is exactly what the above is saying. Furthermore, this ap-
proach provides for an intuitive method of computation. If we plot all the normalized
values of F and G and perform a linear regression, (5.1) implies that the correlation co-
efficient will be approximated by the slope of the fit line (if sufficient points are used).
An ideal merit function will fall tightly on a line, and a completely useless merit function
will result in a random scatter of points. Inspection of such a plot may provide infor-
mation not only regarding the correlation, but how it fails and perhaps how to correct
it.

As a test case, we take a sub-10 femtosecond dispersion managed soliton cavity sim-
ulated using an actual DCM design. We take as our target variable G the RMS change
in the pulse spectrum given random perturbation to the mirror layers. For each pertur-
bation, we compute the resulting integrated PDR and GDD of the mirror, considering
these samples from random variables F1 and F2. Computing 5000 such points1 using

1Computing the 5000 cavity perturbations using the Newton-Krylov solver took roughly 10 minutes on
an eight core computer. Doing so with a standard dynamic solver would have taken about two hours.
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Figure 5-5: Monte Carlo results showing the correlation between cavity bandwidth and
PDR and GDD, for a sub-10 fs laser.

the Newton-Krylov solver and normalizing the output as explained earlier, we generate
the plots shown in Figures 5.3(a) and (b). Obviously, neither PDR nor GDD is a perfect
predictor of perturbation to the steady state pulse. However, it is visually clear that PDR
is far more predictive; the GDD error is essentially uncorrelated with the change in spec-
trum. A linear fit to each is shown, and the correlation coefficient between PDR and the
RMS spectral deviation is 0.56, five times the correlation coefficient of GDD.

We conclude that using PDR to optimize cavity mirrors is preferable to using GDD.
Having said that, neither is particularly well-correlated with laser performance, nor would
we expect them to be given the complex nonlinear interactions possible between satel-
lite pulse and main pulse. Developing the ability to directly optimize the cavity perfor-
mance by putting a model of the laser somehow “in the loop” is the only way to truly
maximize mirror performance. Given the tremendous gains possible from improving
mirror performance (as demonstrated in Section 5.2) this is a goal well worth pursuing.
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Chapter 6

Thin Film Phase Response Optimization

In Chapter 4 we found that group delay dispersion is usually not the best choice as an
optimization criterion. Nonetheless, because of difficulties dealing with phase directly
(since phase must always be computed via an inverse tangent, leading to branch cut dis-
continuities) is is best to compute the phase by integrating the group delay after taking
out any delay offset. In this chapter, we discuss the specifics of efficiently computing the
group delay of a dielectric stack, including analytic gradients of the same. Analytic gradi-
ents are essential to the rapid convergence of optimization routines, as finite differences
suffer from either round-off or truncation error.

6.1 Introduction

Dispersion compensating dielectric mirrors [59, 16] have played a critical role in the
development of mode-locked lasers, with state-of-the-art mirror pairs allowing for fem-
tosecond group delay control over nearly an octave of bandwidth.[17] Such precise con-
trol of optical phase has enabled pulses containing only a few optical cycles directly
from an oscillator [34, 60]. Furthermore, the compression or manipulation of pulses
outside of the laser cavity requires the design of mirrors with prescribed group delay
dispersion over extremely wide bandwidths [61]. Thus, the synthesis of multilayer filters
with prescribed phase properties has received increasing interest in the past decade or
so [62, 63].

When numerically optimizing a thin film structure, the majority of the computa-
tional effort is dedicated to repeatedly computing the gradient of the merit function,
and perhaps also the merit function alone (such as during line searches with numerical
derivatives). Should the merit function include the spectral dispersion, one must be able
to compute the gradient of phase derivatives. While analytic methods have been pub-
lished for computing gradients of simple reflectivity [64], no work has been shown on
analytically computing gradients of dispersion. To our knowledge, this is the first pub-
lished algorithm for computing analytic gradients of dispersion, approximate or other-
wise.

We recently demonstrated an inductive method[65, 66] for computing analytic deriva-
tives of multilayer phase to any order. Here, we extend this method to computing the
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full analytic gradient of such phase derivatives. This was the first published algorithm
to compute the exact analytic gradient of dispersion. The method is O[nm2] in terms of
matrix multiplications, where n is the number of layers and m is the dispersion order.
Furthermore, we show an approximation that allows for the accurate computation of
dispersion gradients in only O[nm], with significant improvement in practice even for
m = 1 (group delay).

Computing analytic gradients is important for optimizing multilayer coatings for two
reasons. First, the use of analytic derivatives avoids the issues of numerical stability as-
sociated with finite differences, improving accuracy and convergence.[67] Second, and
perhaps most importantly, computing gradients using finite differences results in a gra-
dient algorithm that scales as O[n2] in the number of layers, making it rather inefficient
for complicated mirror systems.

While the general scheme shown in this paper can be applied to the computation
of any order of dispersion, the implementation complexity increases for higher orders.
Fortunately, as we be shown in later chapters, group delay is generally all that is needed.

6.2 Analytic Computation of Stack Phase Derivatives

Here, we review the analytic computation of phase derivatives for a dielectric stack. We
leave out most details here, and only cover computation of first-order phase derivatives
(group delay). However, the method can be directly extended to any order of dispersion.
Further details and a discussion of the validity of the constant coupling approximation
can be found in Ref. [66].

6.2.1 General Case

In this paper we will follow the convention established in the Ref. [66] and consider a
dielectric stack whose total transfer matrix is written as

T(k) =
(
T11(k) T12(k)
T ∗

12(k) T ∗
11(k)

)
. (6.1)

In our notation, T` refers to the transfer matrix of the `th layer, which is defined to in-
clude only the interface reflection between it and the previous medium and propagation
through the layer. We’ll write T(`2,`1) ≡ T`2 · · ·T`1+2T`1+1 to refer to the matrix that goes
from the end of layer `1 to the end of layer `2. The substrate can be handled as a final
layer with a thickness of zero.

For convenience, we depart from computing phase derivatives in terms of frequency,
as was done in Ref. [66], and use vacuum wavenumber, k = ω/c, instead. This simply
avoids having c appear in intermediate formulas, which will help when considering gra-
dients. This also more closely matches the way computation is done in practice, making
it easier to compare the results of this paper with the code provided.

In our notation, the transfer matrix operates on a vector whose components are the
forward and reverse propagating wave amplitudes, respectively.[68] For reasons that will
become clear later, we will write the matrix for the `th layer as the product of a full matrix
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Figure 6-1: Diagram showing transfer matrix notation.

D`, which handles the transfer across the interface, followed by a diagonal matrix P` that
propagates through the layer:

T` ≡ P`D` (6.2)

=
(
e−i ñ`(k)d`k 0

0 e i ñ`(k)d`k

)
× 1

2

(
1+p`(k) 1−p`(k)
1−p`(k) 1+p`(k)

)
, (6.3)

where ñ`(k) ≡ n`(k)cosθ` is the effective index (which takes into account the propaga-
tion angle θ` of the wave) and p`(k) is the ratio

p`(k) ≡


ñ`−1(k)
ñ`(k) TE polarization,

ñ`−1(k)n2
`

(k)

ñ`(k)n2
`−1(k)

TM polarization.
(6.4)

The complex transmission and reflection coefficients are given from the elements of the
transfer matrix (6.2) by

Γ(k) =−T ∗
12(k)

T ∗
11(k)

, (6.5)

T (k) = T11(k)− |T12(k)|2
T ∗

11(k)
, (6.6)

respectively.

To determine the mth frequency derivative of phase (either in reflection or transmis-
sion) one must know the zeroth through mth derivatives of the elements of the transfer
matrix. As discussed in Ref. [66], this can be done in O[nm2] operations by inductively
computing the matrices T(`,0) for ` from one to n. In the case of group delay, for example,
this means repeatedly computing matrices of the form

T(`,0) = T`T(`−1,0), (6.7)

∂T(`,0)

∂k
= ∂T`
∂k

T(`−1,0) +T`
∂T(`−1,0)

∂k
. (6.8)
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6.2.2 Constant Coupling Approximation

Assuming p ′
`

(k) → 0 yields a significant decrease in complexity for computing disper-
sion, from O[m2] to O[m], as experimentally verified in Table 1 of Ref. [66]. This implies
that we neglect the derivatives of the D`(k) matrices that couple between forward and
backward waves, hence the name. The reason why this is more efficient can be seen by
considering the derivative of (6.2) under the approximation,

T′
`(k) ≈ P′

`D` (6.9)

=
(−i d`

[
ñ`(k)+kñ′

`
(k)

]
0

0 i d`
[
ñ`(k)+kñ′

`
(k)

])P′
`D` (6.10)

≡−i d`
[
ñ`(k)+kñ′

`(k)
]
σ3T`(k). (6.11)

For convenience, we have used the Pauli matrix

σ3 ≡
(+1 0

0 −1

)
, (6.12)

though there is obviously no implied connection between the present application and
spinors except where the commutation relations may prove useful (e.g two such deriva-
tive approximations in succession cancel to a scalar). The reason for the simple form is
that P` is diagonal, and so taking the derivative of it is equivalent to left multiplying it
with another diagonal matrix. Since the symmetry of transfer matrices is such that we
only need to keep track of one row, left multiplication by a diagonal matrix is computa-
tionally equivalent to a single scalar multiplication (though it still does not commute, of
course, so it cannot be lumped with other scalars). The net result is that the first deriva-
tive matrix can be computed using only one matrix multiplication instead of two.

6.2.3 Accuracy of constant coupling approximation

Empirically, works well for computing at least second order dispersion for any mirror.
Moreover, there is theoretical reason to believe that this should be the case, especially
for the chirped structures used in dispersion compensating mirrors. Using results from
the theory of double chirped mirrors developed by Kärtner and Matuschek[16, 17], we
show that the constant coupling assumption is physically justified. This is supported by
results from a computation on an actual chirped mirror design.

It is well known that a dielectric stack can be modeled using coupled-mode theory[69].
In this context, the local coupling coefficient κ(ω) is approximately proportional to the
Fresnel reflection between layers:

κ(ω) ≈−2r (ω) =−2
1−p(ω)

1+p(ω)
, (6.13)

where we have dropped the ` subscript for this section. Thus, setting p ′(ω) = 0 is tan-
tamount to assuming that κ′(ω) = 0. Matuschek showed that a chirped mirror can be
transformed into a weakly-inhomogeneous coupled-mode problem which can then be
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solved using the WKB approximation. The group delay of a chirped mirror is then found
to be (see equation (52) in [69])

τg (ω) =−2
∫ mt (ω)

0

∂

∂ω

√
δ2(m)−κ2(m) dm, (6.14)

where m is a normalized spatial variable which parameterizes location within the mir-
ror, mt (ω) is the location of the classical turning point, and δ(m) is the coupled-mode
detuning coefficient. Matuschek argues that in the classically accessible region of the
mirror, the detuning coefficient dominates the coupling coefficient and so, to zeroth or-
der, we have

τ(0)
g (ω) = 2

∫ mt (ω)

0

∂

∂ω
|δ(m)| dm,

= 2π
∫ mt (ω)

0

1

kB
dm. (6.15)

Finally, if the Bragg wavelength kB is taken to first order as

kB (m) = k0 +k1m, (6.16)

then the group delay can be found analytically to be approximately

τ(0)
g (ω) = 2π

ck1

[
ln

(
1− κ(ω)

π

)
+ ln

(
ck0

ω

)]
. (6.17)

The contribution of κ(ω) to the group delay will be minor for r ¿ 1. Furthermore, κ′(ω)
only appears in GDD or higher. Thus, we would expect that neglecting p ′(ω) would be
a good approximation for GD, with fair but decreasing accuracy for higher orders of dis-
persion. This is borne out in the examples shown in [66]. Nonetheless, neglecting κ′(ω)
is still only approximately correct for GD due to approximations made in going from
(6.14) to (6.15).

This can all be understood intuitively by recognizing that the effective round trip op-
tical path length is dominated by the material indices and the location of the classical
turning point, the latter of which is not strongly affected by the Fresnel reflection co-
efficient, r (ω). This is the case even when the material dispersion itself is large such
that local index derivatives must be considered. Thus, despite the fact that p ′(ω) and
n′(ω) contribute to GD at the same order, and both appear to the same order in ω (since
c/d` ∼ω), it is only necessary to consider n′(ω) when computing φ′(ω).

6.3 Gradients of T(k)

At the core of computing the gradient of group delay is the problem of computing the
gradients of T(n,0)(k) and T′

(n,0)(k) with respect to the n layer thicknesses, denoted as d`.
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To begin with, we factor the total transfer matrix to isolate the `th layer:

T = T(n,`) T`T(`−1,0). (6.18)

The `th gradient element is then simply

∂T

∂d`
= T(n,`)

∂T`
∂d`

T(`−1,0) (6.19)

=−i kñ`T(n,`)σ3 T(`,0), (6.20)

where we have used (6.2) to compute the derivative.

Inspection of (6.20) immediately suggests the general method for computing the gra-
dients: If we precompute all the front matrices T(`,0) as well as the back matrices T(n,`)

for each layer `, then the gradients can be computed trivially in n matrix multiplications.
(The multiplication by the Pauli matrixσ3 is not counted as it is computationally equiv-
alent to a scalar multiplication, as explained in the previous section.) More importantly,
the front matrices can be computed in n matrix multiplications by simply computing
them inductively as shown in Section 6.2. The same is true of the back matrices, though
there are some complications that will be covered in Section 6.4.3. The entire gradient
can thus be computed in O[n] matrix multiplications, a significant improvement over
the O[n2] operations required for a naïve finite difference gradient.

6.4 Gradients of T′(k)

6.4.1 General Method

The scheme outlined in the previous section can be applied in a straightforward way
to find gradients of any order wavenumber derivative, albeit with significant growth in
complexity as higher derivatives are used. As justified earlier in Chapter 5, we will sim-
ply demonstrate the method for the first wavenumber derivative used to compute GD.
Taking the k derivative of (6.18), the matrix product rule gives us the following decom-
position:

T′(k) = T′
(n,`) T`T(`−1,0) +T(n,`) T′

`T(`−1,0) +T(n,`) T`T′
(`−1,0). (6.21)

The `th gradient element is then

∂T′(k)

∂d`
=−i kñ`T′

(n,`)σ3 T(`,0) +T(n,`)
∂T′

`

∂d`
T(`−1,0) − i kñ`T(n,`)σ3 T′

(`,0), (6.22)
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where we’ve applied the result in (6.20) to simplify the outer two terms. From the defi-
nition of T` in (6.2) we obtain

∂T′(k)

∂d`
=−i kñ`

[
T′

(n,`)σ3 T(`,0) +T(n,`)σ3 T′
(`,0)

]
+

1

2p
T(n,`)

(
2p(d`kñ + i )(ñ +kñ′)− i kñp ′ −i kñp ′e−i 2d`kñ

i kñp ′e i 2d`kñ 2p(d`kñ − i )(ñ +kñ′)+ i kñp ′

)
T(`,0), (6.23)

where all primes refer to wavenumber derivatives and we’ve dropped some of the unam-
biguous ` subscripts for convenience. In arriving at the above, we solved for the matrix
which takes the simultaneous wavenumber and layer thickness derivative of T`.

The front and back derivative matrices, T′
(`,0) and T′

(n,`) respectively, are found using
the exact methods of Section 6.2. The front matrices are available directly as they are the
intermediate results of computing T′. The back derivative matrices require extra com-
putation, however, and can be found by proceeding through the stack in reverse, doing
right multiplications in lieu of left multiplications. (In the case where the constant cou-
pling approximation is used, there is a more efficient way to compute the back matrices,
discussed in Section 6.4.3.)

Higher order dispersion terms beyond what we’ve shown here can be computed sim-
ilarly, and the computation of the front and back matrices will scale as O[nm2], as per
Section 6.2. However, the number of matrix multiplications required for the final ma-
trices [e.g. equation (6.23)] grows exponentially, as O[3m], and the complexity of the
elements in each matrix increases considerably. Thus, higher order dispersion quickly
becomes infeasible with this method, and even the m = 1 case (for group delay) is rather
complex, as can be seen from (6.23). In the next section, we will show how to use the con-
stant coupling approximation to greatly simplify the gradient computation, significantly
speeding up low order dispersion and enabling the gradient computation of higher or-
der dispersion.

6.4.2 Constant Coupling Approximation

We have already seen how the assumption that D′
`

(k) → 0 greatly speeds up the com-
putation of the front and back matrices, as needed for (6.23). However, it also greatly
simplifies the final terms in (6.23). Under the constant coupling approximation, the off
diagonal terms in the last product term vanish, leaving a trivial scalar multiplication in
lieu of a matrix product. Thus, equation (6.23) becomes

∂T′(k)

∂d`
=−i kñ`

[
T′

(n,`)σ3T(`,0) +T(n,`)σ3T′
(`,0)

]
+

i (ñ +kñ′)
2p

T(n,`)σ3T(`,0) +d`kñ(ñ +kñ′)T, (6.24)

where the third term is a scalar multiplication of the zeroth-order gradient element from
(6.23), and the last term is just a scaling of the total transfer matrix.

In general, the simplification afforded by the constant coupling approximation not
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only takes the front and back matrix computation from O[nm2] to O[nm], but also
makes the final matrix expression [e.g. (6.24)] scale as O[2m] instead of O[3m], as all
terms consist of only two full matrices. In the specific case of group delay, the total
speedup in practice is roughly a factor of two, assuming n is large enough such that the
computation of front and back matrices dominate.[66]

Finally, the approximation makes it reasonable to compute GDD gradients, affording
a speed-up of roughly a factor of four. Taking another k derivative of (6.24) and combin-
ing like terms gives

∂T′′(k)

∂d`
=−i [(n +kn′)/2p −n]

[
T′

(n,`)σ3T(`,0) +T(n,`)σ3T′
(`,0)

]
−

2i kn
[

T′
(n,`)σ3T′

(`,0) +T′′
(n,`)σ3T(`,0) +T(n,`)σ3T′′

(`,0)

]
+

i n′

2p
T(n,`)σ3T(`,0) + (d`ñ2 +2d`nn′k)T+d`nk(ñ + ñ′k)T′. (6.25)

The individual terms above are all derived in Ref. [66]. While it is certainly possible to
compute GDD gradients without the constant coupling approximation, the final gradi-
ent terms become extremely cumbersome. Fortunately, given the accuracy of the con-
stant coupling approximation for GDD, as demonstrated in Fig. 6-3, there is little reason
to use exact GDD computations except perhaps as a final refinement step.

6.4.3 Efficient Computation of Back Derivative Matrices

An element of extending the constant coupling method of Section 6.2.2 to gradients that
is not straightforward is the issue of efficiently handling the back matrices, T(n,`), which
take the fields from the interior of the stack to the end. The efficiency of the constant
coupling approximation hinges on the fact that we build the full matrix from successive
left multiplications of PD layers, as in (6.2). Were we to simply compute the matrices by
using right multiplications and working our way backwards from the end, therefore, the
constant coupling approximation would not yield any advantage.

The way around this is to actually compute the back matrices as the “front” matri-
ces for the reversed stack. This can be done without having to recompute any of the
individual transfer matrices by using the reversal theorem of transfer matrices[70]

TR = T†

|T| , (6.26)

where TR denotes the transfer matrix for the reversed stack. In terms of a specific layer,
we must also take into account the fact that the propagation must occur after the bound-
ary. With this in mind, we can write a single layer of the reversed stack in terms of the
components of the original stack,

TR
n−`+1 = P†

`

D†
`−1

|D`−1|
. (6.27)
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Note that the propagation matrix is once again exposed on the left side as in (6.9).

If we were to have to compute all of the determinants arising from (6.27), the extra
complexity would mitigate any advantage of the constant coupling approximation. For-
tunately, however, we can safely ignore the determinants as they cancel in the end. To
see how, consider the computation for T(n,`) in terms of the reverse stack,

T(n,`) =
(
TR

(`,0)

)†

∣∣∣TR
(`,0)

∣∣∣ (6.28)

=

[
D†
`−1

|D`−1|

(
P†
`−1

D†
`

|D`|

)
· · ·

(
P†

n−1
D†

n
|Dn |

)]†

∣∣∣∣ D†
`−1

|D`−1|

(
P†
`−1

D†
`

|D`|

)
· · ·

(
P†

n−1
D†

n
|Dn |

)∣∣∣∣ . (6.29)

The groups in parentheses represent the individual layer matrices of the reversed stack.
Moving the determinants in the denominator outside the surrounding determinant yields
the product of the squared determinants (since we are dealing with 2×2 matrices), giv-
ing us

T(n,`) =

[
D†
`−1

(
P†
`−1D†

`

)
···

(
P†

n−1D†
n

)]†

|D`−1||D`||Dn |∣∣∣D†
`−1

(
P†
`−1D†

`

)
···

(
P†

n−1D†
n

)∣∣∣
(|D`−1||D`||Dn |)2

. (6.30)

The determinants then all cancel (the determinant of a propagation matrix is one) yield-
ing a very simple and direct way to go from the individual layer matrices to the back
matrices,

T(n,`) =
[

D†
`−1

(
P†
`−1D†

`

)
· · ·

(
P†

n−1D†
n

)]†
(6.31)

This expression has two advantages. First, and most importantly, it allows us to us to
build up the back matrices using successive left multiplications of PD matrix pairs, en-
abling the use of the fast approximate algorithm discussed in Section 6.2.2 to find the k
derivatives of (6.31). Second, everything on the right hand side of (6.31) has already been
computed in finding the front matrices, T(`,0). Consult the code referenced in Section 6.8
for further details and a demonstration.

6.5 Dispersion Gradients from Matrix Gradients

Having computed gradients of the full transfer matrix and its k derivatives, the final step
in any optimization will be the translation of those values into gradients of dispersion
for use in the merit function gradient computation. For reference, we provide formulas
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for the case of reflection group delay:

Γ′(k) = T12T ′
11 −T ′

12T11

T 2
11

, (6.32)

φ′(k) = ℑ[Γ′]ℜ[Γ]−ℜ[Γ′]ℑ[Γ]

|Γ|2 , (6.33)

∇Γ(k) =− 1

T11
(Γ∇T11 +∇T12), (6.34)

∇|Γ(k)|2 = 2(ℜ[∇Γ]ℜ[Γ]+ℑ[∇Γ]ℑ[Γ]) , (6.35)

∇Γ′(k) = 1

T 2
12

[∇T12T ′
11 +∇T11T ′

12 +Γ(2∇T11T ′
11 −T11∇T ′

11 −T11∇T ′
12)

]
, (6.36)

∇φ(k) = ℑ[∇Γ]ℜ[Γ]−ℜ[∇Γ]ℑ[Γ]

|Γ|2 , (6.37)

∇φ′(k) = 1

|Γ|2
[
ℑ[∇Γ′]ℜ[Γ]−ℜ[∇Γ′]ℑ[Γ]−∇φ(ℜ[Γ′]ℜ[Γ]−ℑ[Γ′]ℑ[Γ]

)+ φ′∇|Γ|2
2

]
.

(6.38)

In the above, all gradients are with respect to the layer thicknesses, and all primes refer
to k derivatives.

6.6 Algorithm Overview

Here we summarize the overall dispersion gradient algorithm. The general steps are:

Algorithm 2 Analytic Dispersion Gradient Computation

1. Precompute all individual layer transfer matrices P` and D` and their derivatives
with respect to k, .

2. Iteratively compute front transfer matrices T(`,0) and their derivatives for n −1 > `> 1,
as demonstrated in Section 6.2 and Ref. [66].

3. Compute back transfer matrices T(n,`) and derivatives by repeating Step 2 for the
reversed stack and then taking the hermitian transpose, as shown in (6.31) and ex-
plained in Section 6.4.3.

4. Loop through all layers, computing matrix gradient elements of ∇T and ∇T′ as per
the exact expression (6.20) or the approximate expression (6.24).

5. Translate matrix gradients into reflectivity and group delay gradients as done in
Section 6.5.

6. Compute total gradients from the matrix gradients found in step 5.
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Figure 6-2: Spectral group delay of example chirped mirror. A portion of the response
past the high reflectivity region (wavelengths greater than about 1050 nm) is shown to
demonstrate that the approximation even holds when the group delay is rapidly varying.

6.7 Example Gradient Computation

To demonstrate the efficacy of the constant coupling approximate gradient algorithm,
we have computed the gradient of group delay at a central wavelength for a typical
chirped mirror. For reference, the chirped mirror spectral GD and GDD are plotted in
Figures 6-2 and 6-3, respectively.

When computing the gradient at 256 wavelengths, the constant coupling gradient
was empirically found to be 63% faster than the exact gradient algorithm, demonstrat-
ing that computational savings in the gradient extend from the algorithms given in Ref.
[66]. We thus estimate that our GD gradient method is roughly four times faster than
computing gradients using GDD.

Note that the gradient itself is exact (i.e. it is an exact analytic gradient of an ap-
proximate group delay) so using the approximation should not affect the convergence
rate, but may have a small effect on the final solution. We expect that, on average, op-
timizations will be made correspondingly faster. Should final group delay error be so
small that the constant coupling approximation error is no longer negligible, a few re-
finement steps can be performed at the end with the exact gradient to converge at the
exact solution.
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Figure 6-3: Spectral group delay dispersion of chirped mirror shown in Fig. 6-2.

6.8 MATLAB and C Code

To simplify use of these algorithms, we have provided MATLAB and C code of both the
GD gradient algorithms discussed in this thesis. The C codes are written as MATLAB
MEX functions to enable their use in optimization routines within MATLAB, though
each function is available as a stand-alone for use in user programs. Several ancillary
MATLAB functions that facilitate mirror optimization using the Optimization Toolbox
are also included. The code is available in electronic form at http://www.mit.edu/˜birge/dispersion .

84



Chapter 7

Robust Mirror Optimization

Currently the limiting factor to dispersion compensating mirror performance is the ex-
tent to which manufacturing errors cause the fabricated mirrors to deviate from their
designed specification. In this chapter, we develop a design method which seeks to pro-
duce designs which sacrifice some amount of nominal performance for an increased
tolerance to manufacturing errors. This work was done jointly with Omid Nohadani and
Demetris Bertsimas.

7.1 Introduction

The dispersion compensating mirror, first proposed in 1994 [44], has become an en-
abling technology for modern ultrafast lasers. Solid-state mode-locked lasers can only
operate at or below few-cycle pulse widths when the total cavity dispersion is reduced to
nearly zero, with only a small amount (on the order of a few fs2) of residual second-order
dispersion. While prisms can be used to compensate for second- and third-order cavity
dispersion, their relatively high loss and inability to compensate for arbitrary disper-
sion limits their use; pulse durations below ten femtoseconds were not possible directly
from oscillators until the development of high performance double-chirped mirror pairs
[16, 69, 17].

As bandwidths increase, so do the number of layers required to produce a mirror
with the high reflectivity needed for an intra-cavity mirror. For bandwidths exceeding
an octave, mirror pairs with over 200 total layers are generally required. The sensitivity
of a dielectric stack to manufacturing errors increases with the number of layers, and
dispersion compensating mirrors push the limits of manufacturing tolerances, requiring
layer precisions on the order of a nanometer. Currently, this challenges even the best
manufacturers.

While the nominal optimization of layer thickness has lead to successful design of
dispersion compensating dielectric mirrors allowing dispersion and reflectivity control
over nearly an octave bandwidth, in practice the performance for such complicated mir-
rors is limited by the manufacturing tolerances of the mirrors. Small perturbations in
layer thickness not only result in suboptimal designs, but due to the nonlinear nature of
mode-locking, such perturbation may completely destroy the phenomenon.
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Despite the fact that manufacturing errors often limit the performance of thin-film
devices [71], there has been little work on optimizing thin-film designs to mitigate the
effects of errors. Some previous work in designing fault-tolerant mirrors has focused
on optimizing first-order tolerances, a method readily available in commercial thin film
design codes. One approach to tolerance optimization is performed by adding terms to
the overall cost function (see [72], for example) of the form

∑
i

∑
k

w(λk )

(
∂g (λk ;x)

∂xi

)2

, (7.1)

where xi is the thickness of the i th layer, g (λ;x) is a relevant characteristic of the mirror
(such as reflectivity or dispersion), and w(λ) is a weighting vector. It can be shown that
as the merit function approaches zero, the sum in (7.1) converges to the trace of the
Hessian of the merit function, a second-order estimate of the robustness. However, to
rely on tolerances of this form assumes that the merit function can be well approximated
by a quadratic form. Given symmetry, the robust minimum and the nominal minimum
of a purely quadratic function are equivalent. Thus, if robust optimization is needed, it
implies that the merit function cannot be effectively modelled by a second-order series
over the expected error range.

Our approach to robust optimization probes the exact merit function in a bounded
space of potential thickness errors. While this results in a much more computationally
involved optimization, the result is arguably more robust to significant perturbation as
the full structure of the merit function is considered in a neighborhood around a nomi-
nal solution. Furthermore, the robustness is guaranteed to be equal or better than that
obtained with nominal optimization, and in the case where it is equal, no sacrifice in
nominal optimality will be made.

Other prior work was done by Yakovlev and Tempea [73], who employed stochastic
global optimization to achieve robustness of the final solution by virtue of the fact that
they optimized a Monte Carlo computed integral over a neighborhood around a nom-
inal design. Their method does not suffer the limitations of first-order tolerances, and
was able to produce mirrors with significant improvement over nominally optimized de-
signs, demonstrating conclusively that robustness can be greatly improved at the design
level by proper optimization.

Ben-Tal and Nemirovski provided a first robust optimization approach based on an
application in antenna design [74]. Recent works have been devoted to problems with
convex objectives and constraints (e.g. linear) [75, 76, 77]. These works have shown that
a convex optimization problem with parameter uncertainty can be transformed to an-
other convex optimization problem. Despite significant advancements, all these results
are limited to convex problems. But modern engineering design often involves prob-
lems with objectives and constraints that are not explicitly given and highly nonconvex.
Thus, no internal structure can be exploited.

We present a new deterministic robust optimization method that provides for de-
signs which are intrinsically protected against potentially significant layer thickness per-
turbations occurring during manufacturing. The presented method is generic and can
be applied to many problems that are solved through numerical simulations. Here, we
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introduce the algorithm specifically for double chirped mirrors and tailor the parame-
ters to this particular problem. First, we discuss the optical properties of these mirrors
and define a cost function based on reflectivity and group delay. We continue with the
introduction of the concept of the uncertainty set as well as a novel method to identify
worst-case designs within this set. Once these configurations are found, we show how
an update direction can be found which eliminates these worst cases. Furthermore, we
demonstrate the performance of the nominal and robust solutions for a large range of
perturbation and propose a technique to increase the manufacturing yield.

7.2 Computation of Cost Function

The merit function for a chirped mirror is typically composed of two terms, one rep-
resenting the performance of the reflectivity (which is ideally one) and another which
quantifies the deviation of the dispersion from ideal. We employ a cost or merit func-
tion than is given as

f (x) =∑
k

wr (λk ) [R(λk ;x)−1]4 +∑
k

wd (λk )
[
τg (λk ;x)− τ̂g (λk )+τ0(x)

]2 , (7.2)

where R(λ;x) is the wavelength domain reflectivity of the total mirror pair described by
layer thicknesses x, τg (λ;x) is the group delay (GD) of the pair, τ̂g (λ) is the ideal GD,
and the wr,d (λ) are weighting functions. To account for an irrelevant offset between
the computed and ideal group delay curves, we include a constant offset, τ0(x), that
minimizes the error. For the reflectivity errors, we use the fourth power of the error to
approximate a Chebychev norm, though a standard squared error can also be used.

The computation of reflectivity from a thin-film stack is done using transfer matrix
methods [68]. In a standard nominal optimization, the merit function and its gradient
must be evaluated thousands of times over hundreds of wavelengths. In a robust op-
timization, the computational burden is even greater, with the merit function typically
computed on the order of a million times. Any discrepancy in the gradient will hinder
the convergence rate. Thus, it is imperative that the merit function be computed effi-
ciently and accurately. We employ the methods described in [66, 49], where the group
delay is computed in an approximate analytic form that allows for a significant reduc-
tion in computational complexity. The approximation simply neglects the local change
in wavelength of the Fresnel reflections between each layer. For chirped mirrors, the ap-
proximation error is negligible, as demonstrated and explained in [66]. The gradient of
the group delay is computed analytically in a self-consistent manner with the approxi-
mation, resulting in an optimization that converges quickly, both in terms of iterations
and total processing time.

7.3 Problem Statement

Our design problem consists of a double chirped mirror pair with 208 layers for use in
a few-cycle Titanium:sapphire mode-locked laser [61]. The initial design was computed
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using the analytic method of [17]. The materials used were SiO2 and TaO5, with the
dispersion of each modelled using Sellmeier coefficients obtained from fits to manufac-
turer’s index data. The total reflection dispersion of the pair is specified to compensate
for 2.2 mm of Titanium:sapphire, 2 meters of air, and 8 mm of Barium Fluoride in a
cavity containing six mirrors. The group delay and reflectivity are optimized over 156
wavelengths, uniformly spaced from 650 to 1200 nanometers. This discretization was
empirically found to be sufficient to avoid narrow resonances “leaking” through the grid.
The angle of incidence is taken to be six degrees, and the polarization is assumed to be
transverse in the magnetic field (TM). The reflectivity and group delay are optimized as
in Eq. (7.2), with constant weightings wr = 1 and wd = 10−8 fs−2.

7.4 Implementation Errors

7.4.1 General Model

For the purposes of developing this algorithm, we model manufacturing errors as in-
dependent random sources of additive noise, since any known systematic errors, such
as miscalibration, can be best addressed in the actual production. As empirically sup-
ported, the layer-thickness errors can be regarded as not correlated. Therefore, we as-
sume that when manufacturing a mirror with layer thicknesses given by x, statistically
independent additive implementation errors ∆x ∈ Rn may be introduced due to varia-
tion in the coating process, resulting in an actual thicknesses x+∆x. We assume a mean
of zero and a variance on each layer that is motivated by actual manufacturing errors.
Here, ∆x resides within an uncertainty set

U := {
∆x ∈Rn | ‖∆x‖2 ≤ Γ

}
. (7.3)

Note that Γ > 0 is a scalar describing the size of perturbation against which the design
needs to be protected. For this paper, we took the manufacturing uncertainty to be nor-
mally distributed with a standard deviation of σ= 0.5 nm. To maintain 95% cumulative
confidence to capture all errors within U for this 208-dimensional problem, we chose
Γ= 0.0075µm. We seek a robust design x by minimizing the worst case cost

g (x) := max
∆x∈U

f (x+∆x). (7.4)

The worst case cost g (x) is the maximum possible cost of implementing x due to an error
∆x ∈U . Thus, the robust optimization problem is given through

min
x

g (x) ≡ min
x

max
∆x∈U

f (x+∆x). (7.5)

In other words, the robust optimization method seeks to minimize the worst case cost.
When implementing a certain design x = x̂, the possible realization due to implementa-
tion errors ∆x ∈U lies in the set

N := {x | ‖x− x̂‖2 ≤ Γ} . (7.6)
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Figure 7-1: A two-dimensional illustration of the neighborhood. For a design x̂, all pos-
sible implementation errors ∆x ∈ U are contained in the shaded circle. The bold arrow
d shows a possible descent direction and thin arrows ∆x∗

i represent worst errors.

We call N the neighborhood of x̂; such a neighborhood is illustrated in Fig. 7-1. A design
x is a neighbor of x̂ if it is in N . Therefore, g (x̂), is the maximum cost attained within N .
Let ∆x∗ be one of the worst implementation error at x̂, ∆x∗ = arg max

∆x∈U
f (x̂+∆x). Then,

g (x̂) is given by f (x̂+∆x∗).
Since we seek to navigate away from all the worst implementation errors, the inner

maximization problem needs to be solved first. Given that f is nonconvex and pro-
vided through numerical calculations, we cannot exploit any possible internal structure
to compute g . Therefore, we conduct local searches to determine worst configurations
within N .

Previously, it was shown that all worst-case scenarios reside on the shell of N [76].
Thus, to improve the speed of the inner maximization, we can restrict ourselves to only
considering error vectors∆x such that the ‖∆x‖2 = Γ. Problem (7.5) then transforms into
a constrained maximization over the shell ‖∆x‖2 = Γ, which makes the search computa-
tionally more efficient.

7.4.2 Restricted Search Space

To protect a design against errors, it is helpful to utilize available understanding of possi-
ble errors. For example, if there are worst-case scenarios in the respective neighborhood
that are very rare according to our assumed layer perturbation distribution, there is no
need for them to be considered during the inner maximization problem (7.4). By ex-
cluding these rare events from U , we are able protect the design against realistic and
statistically relevant errors only, without needlessly sacrificing nominal performance to
guard against rare errors. Moreover, this approach leads to a reduction of the size of the
respective search space and, thus, to an increase of the computational efficiency.

It is well known that the reflection coefficients of thin-film stacks are closely related
to the Fourier transform of the layer thicknesses [78]. Thus, one promising class of rare
perturbations to eliminate from consideration are those which have strong correlations
between the layers. These errors involve, for example, shifting of all the thicknesses in
one direction, which results in a spectral shift regardless of the design. Even though
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such errors may occur in actual manufacturing due to systematic issues, there is little
or nothing that can be done to deal with them by design optimization, and to attempt
to do so will only result in a highly compromised design. We thus restrict ourselves to
considering only statistically independent random perturbations to the layers. In this
context, the probability of errors occurring with high correlation between the layers is
negligible, and thus we should not concern ourselves with protecting against them. We
therefore seek a class of errors which restrict the allowable correlation between layers,
i.e., we restrict the maximum variation in the amplitude of the Fourier components of
the error vector. A straightforward way to do this, is to restrict the search to the class
of error vectors with minimum coherence, requiring all Fourier components to have a
uniform amplitude.

In addition to the above, this choice of subset is justified empirically. Monte Carlo
simulations reveal that the set of perturbations with uniform amplitude in the Fourier
domain with uniformly distributed phases have virtually identical statistics to the gen-
eral uncertainty set U defined in Eq. (7.3). The cumulative probability distribution of
the reduced set never exceeds the full set by more than 4%. This confirms that our worst
case search over the reduced subset will not miss anything statistically relevant in the
full set, and thus robustness is not compromised by using this set.

In the restricted space, the components of ∆x can be written as

∆x j = Γ

bN /2c
bN /2c∑
k=1

cos

(
2πk j

N
+φk

)
, (7.7)

whereφk is the phase of the kth Fourier component of∆x and N is the number of layers.
We furthermore assume the constant (zero frequency) component is zero, which corre-
sponds to the aforementioned pathological case of all layers shifting a similar amount.
Using Parseval’s theorem, i.e., the sum of the square of a function is equal to the sum of
the square of its transform, we can verify that the magnitude of the errors remains on
the shell of the original uncertainty set U ,

‖∆x‖2
2 =

N∑
k=1

|∆xk |2 = Γ2. (7.8)

Using this transformation, we search over the phases φk for worst-case neighbors.
Therefore, the search space dimensionality is reduced to bN /2c, hence, the efficiency of
this algorithm increases by N 2. Most importantly, since the maximization problem is
over the free phase-space on the shell and the magnitude of these vectors are constant,
the advantages of an unconstrained search can be exploited. Consequently, we obtain
the set of local maxima in the phase space using standard gradient-based optimization.
Furthermore, we obtain a set of true bad neighbors, which is significantly smaller in size
(¿ 500) than had we left the search space more general. Since this size determines the
number of constraints in the Problem, we experience a significant speed up in this part
of the algorithm as well.
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7.5 Robust Optimization

Once worst-case neighbors are identified, a direction is sought along which an updated
neighborhood would not include these worst-case scenarios any longer. This direction
is a vector that spans the largest angle Θ≥ 90◦ to all worst implementation errors at x̂ in
the set of worst implementation errors

U ∗(x̂) :=
{
∆x∗ |∆x∗ = arg max

∆x∈U
f (x̂+∆x)

}
. (7.9)

To navigate away from the elements in U ∗(x̂), a descent direction d∗ can be found effi-
ciently by solving the following second-order cone problem (SOCP):

minimize
d,β

β

subject to ‖d‖2 ≤ 1
d ·∆x∗ ≤β ∀∆x∗ ∈U ∗(x̂)
β≤−ε,

(7.10)

where ε is a small positive scalar, β is an auxiliary variable, and || · ||2 is the Euclidean
norm. A feasible solution to Problem (7.10), d∗, forms the maximum possible angle
θmax with all ∆x∗, as illustrated in Fig. 7-1. This angle is always greater than 90◦ due to
the constraint β ≤ −ε < 0. This constraint guarantees that d∗ will provide an updated
design neighborhood that excludes all known ∆x∗. The value of ε is chosen heuristically
such that when Problem (7.10) is infeasible, then x̂ is a robust local minimum. Note,
that the constraint ‖d∗‖2 = 1 is automatically satisfied if the problem is feasible. Such
an SOCP can be solved efficiently using both commercial and noncommercial solvers.
Because∆x∗ usually reside among designs with nominal costs higher than the rest of the
neighborhood, the following algorithm summarizes a heuristic strategy for the robust
local search: [79]

Algorithm 3

Step 0. Initialization: Let x1 be an arbitrarily chosen initial decision vector. Set k := 1.

Step 1. Neighborhood Exploration :

Find a set of implementation errors ∆xi with the highest cost within the
neighborhood of xk . For this, we conduct multiple unconstrained maxi-
mization searches over the shell of the uncertainty set starting from ran-
dom initial configurations. The results of all function evaluations

(
x, f (x)

)
are recorded in a bad-neighbors set.

Step 2. Robust Local Move :

(i) Solve the SOCP (7.10); terminate if the problem is infeasible.

(ii) Set xk+1 := xk + t k d∗, where d∗ is the optimal solution to the SOCP.

(iii) Set k := k +1. Go to Step 1.
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Figure 7-2: The robust optimization algorithm improves (left) the worst-case cost in the
neighborhood of the current design. Discoveries of new bad neighbors cause the small
peaks. (Right) The Price of Robustness is an increase in the nominal cost.

The step size t k is computed as the shortest step size that eliminates all bad neighbors
from xk . Reference [79] provides a detailed discussion on the actual implementation.

7.6 Results

Starting from a nominally optimized solution, our robust optimization algorithm suc-
cessively decreased the worst-case cost, as in Eq. (7.4). This performance is shown in
Fig. 7-2. The significant improvement of robustness comes at the price of a small in-
crease in the nominal cost. The algorithm converges to the robust local minimum, at
which point no descent direction can be found.

The reflectivity and group delay of the robust and nominal optimum are shown in
Fig. 7-3. While both solution satisfy the design objectives, the robust design is signifi-
cantly more protected against possible errors. The unavoidable “Price of Robustness”
through a decrease on the nominal performance of the robust solution is apparent, with
increased ripple in the group delay and reflectivity. This price is especially apparent in
the bottom plot of Fig. 7-3, which compares the total group delay error for the robust
and nominally optimized mirror pairs. However, as will be shown in Figs. 7-5 and 7-6,
the robust solution performs better when the layer perturbations are taken into account.
Even though the nominally optimized design is able to achieve GD errors of less than
one femtosecond, it turns out that the half nanometer layer perturbations we took as
our assumed manufacturing tolerances result in GD errors on the order of plus or minus
five In a sense

In Fig. 7-4, we show the layer thicknesses for the mirror pair both after nominal op-
timization and robust optimization. The general structure of the mirror is preserved in
the robust optimum solution, in keeping with the observation that its nominal perfor-
mance is not degraded significantly. The larger variations are found in the first several

92



0.7 0.8 0.9 1 1.1 1.2

99

99.5

100
Reflectivity

R
 (

%
)

0.7 0.8 0.9 1 1.1 1.2

!40

!20

0

20

40

Group Delay

G
D

 (
fs

)

! (µm)

Average

Mirror 1

Mirror 2

0.7 0.8 0.9 1 1.1 1.2

99

99.5

100
Reflectivity

R
 (

%
) Average

Mirror 1

Mirror 2

0.7 0.8 0.9 1 1.1 1.2

!40

!20

0

20

40

Group Delay

G
D

 (
fs

)

! (µm)

Figure 7-3: Reflectivity and group delay for each chirped mirror in the pair: (Left) nomi-
nally optimal design; (Right) robustly optimal configuration.
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Figure 7-4: Layer thicknesses of nominal optimum and robust optimum of the mirror
pair.

layers, which perform impedance matching into the chirped stack, suggesting that they
are the most sensitive to perturbation. This is consistent with the fact that any spuri-
ous reflections off of the front surface of the mirror will significantly degrade the GD
performance.

While we intended to match the size of the uncertainty to the reported manufac-
turing and measurement errors, the value of Γ might not fully reflect the actual errors.
Therefore, our algorithm seeks to find robust solutions with stable performance even
beyond predicted errors. To illustrate these effects, we varied the size of the uncertainty
set and evaluated the worst possible neighbor within this neighborhood. The worst-
case scenarios of the nominal optimum and robust optimum, both in cost as well as the
optical properties are compared for increasing neighborhood size in Fig. 7-5.

The worst-case performance of both the nominal and robust designs behave fairly
similarly within a small range of perturbations, which is in fact comparable to Γ. How-
ever, once the size of possible errors increases, the worst-case cost of the nominal design
drastically rises, showing that this design would lose its phenomena completely.
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Figure 7-5: Comparison of worst case cost and worst case GD cost of two designs, the
nominal and robust optimum, for increasing size of possible perturbations or errors.
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Figure 7-6: Comparison of the nominal and robust design: mean and 95th percentile of
the cost distribution of 106 randomly sampled designs for varying perturbation sizes.

Since any manufacturing process is to some extend statistical, it is essential for a
design to yield a high manufacturing yield. Our robust optimization method not only
minimizes the worst-case performance, but also addresses these statistical effects. This
is demonstrated in Fig. 7-6. A series of Monte Carlo simulations, each with 106 ran-
domly sampled designs with normally distributed layer perturbations, were performed
with varying standard deviations at the robust and the nominal optimum. The mean µ

and the 95th percentile P95 of the distribution for each perturbation size are plotted to
illustrate the center and the actual width of this statistical process. While both designs
are similarly distributed within the expected errors σ, they deviate significantly beyond
this mark. In fact, the mean and more importantly the spread of the distribution for
the nominal optimum design increases rapidly beyond σ, while the robust optimum is
more moderate. Moreover, the mean of the nominal optimum at all perturbation sizes
is within the distribution (P95) of the robust optimum, demonstrating that the manufac-
turing yield of the robust solution remains high and provides performances comparable
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to the nominal design, even beyond the assumed errors. Since the notion of the actual
manufacturing errors are often somewhat uncertain, our method can provide a robust
solution despite these uncertainties.

7.7 Summary

We have developed a new robust optimization technique specifically tailored to the
problem of thin-film filter optimization. Our method obtains robust solutions by per-
forming a series of deterministic gradient ascent searches around a given trial solution
for worst-case errors. To avoid taking into account extremely rare potential errors, we
perform this search over the space of all errors on the shell of our neighborhood whose
components are minimally coherent. This avoids taking into account rare but highly
significant errors, such as those associated with certain types of systematic manufactur-
ing errors, that would otherwise dominate the optimization. This modification allows
an unconstrained inner maximization over a reduced search space, thus, improves the
efficiency. Once, a set of worst-case designs are identified within an uncertainty set, our
method provides an updated design, that has reduced worst-case performance. After a
number of iterations, we obtain a robust optimum that has the lowest worst-case per-
formance.

We apply the method to a demanding optimization of a 208 layer chirped mirror
pair with nearly an octave of bandwidth. The robust solution is compared with that ob-
tained using standard optimization techniques, and is found to achieve improved statis-
tical performance for layer errors of half a nanometer. Furthermore, the fault tolerance
of the robust solution increases significantly relative to the nominally optimized mir-
ror as the error variance increases, demonstrating that the robust solution is not tied to
the particular manufacturing error variance assumed during optimization (see Fig. 7-6).
Therefore, our robust design warrants for a high manufacturing yield even when errors
occur that are larger than originally assumed.

In this initial demonstration, we performed the optimization on a fixed number of
layers. However, the robust optimization problem can be viewed as providing a new
cost function which takes into account robustness and, thus, can be used within other
refinement algorithms, such as needle optimization [80], that allow for changing layer
counts.
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Chapter 8

Systematic Errors in Spectral Shearing
Methods for Few-Cycle Pulses

One of the prominent characterization methods for very short pulses is spectral phase
interferometry for direct electric-field reconstruction (SPIDER). Due to its unique band-
width advantages and noise properties, spectral shearing interferometry is well suited
to the measurement of few- and single-cycle pulses. However, there is a calibration sen-
sitivity with standard SPIDER (and many of its variants) that needs to be taken into con-
sideration for pulses on the order of about two-cycles and below.

In this chapter, we begin by providing a brief overview of spectral shearing, includ-
ing a derivation showing that SPIDER involves a calibration whose error effects scale
with the square of the bandwidth. We then discuss experimental techniques to mitigate
these effects, and conclude with a survey of various alternative approaches to spectral
shearing which avoid some or all of the issues discussed.

8.1 Introduction

Steady progress in ultrafast laser sources over the past several decades has led to the
recent development of robust sources of few-cycle laser pulses. Sub-two cycle pulses
can now be produced directly from oscillators, and sources of single-cycle pulses are
under development [60, 81]. Furthermore, as few-cycle lasers are increasingly used to
drive attosecond extreme-UV and X-ray pulses, these applications will require extremely
accurate and precise characterization of the few- and single-cycle pulse envelopes used
to drive the high harmonic generation process [82].

The technology for measuring ultrashort optical pulses must, of course, keep pace
with the lasers themselves, and few- and single-cycle pulses present unique difficulties
in this regard. The most obvious difficultly in few-cycle pulse measurement stems from
the tremendous bandwidths involved. All self-referenced pulse characterization meth-
ods involve nonlinear operations of some sort [83], and in the case of few-cycle pulses
one essentially has to implement a specialized analog optical switch capable of oper-
ating with hundreds of terahertz of bandwidth. Any bandwidth filtering is especially
relevant for techniques where the amplitude of the trace is a critical parameter, such as
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interferometric autocorrelation (IAC) [84] and frequency resolved optical gating (FROG)
[85].

As pulses become shorter, the time scales of nonidealities do not always scale with
them. For example, the relative delays of satellite pulses due to secondary reflections
off dispersion compensating mirrors do not scale with the main pulse width. In fact, if
anything they scale inversely to the pulse width as mirrors become thicker to accom-
modate wider spectral range. The spectral phase oscillation periods caused by such
delays are usually on the order of 5–10 THz. Thus, as bandwidths approach 200 THz
and beyond, the time-bandwidth product required for a full characterization on even a
well-compressed pulse can exceed 20.

In addition, the extreme bandwidths involved result in higher-order material dis-
persion playing a significant role in pulse shaping, yielding pulses which are typically
highly asymmetric. As such, the commonly used technique of IAC, which is relatively
insensitive to pulse asymmetries [86], can miss details. The squared intensity operation
inherent to IAC greatly suppresses the effect of satellite pulses, for instance. As such,
iterative reconstructions based on IAC (e.g. [84]) may fail to properly converge in the
presence of noise when higher-order dispersive effects are significant.

As one of the dominant characterization methods for very short pulses is spectral
shearing inteferometry, typified by SPIDER. In many ways, SPIDER is uniquely suited
to the task of measuring few- and single-cycle pulses. However, there is a calibration
sensitivity with standard SPIDER (and many of its variants) that needs to be taken into
consideration for pulses on the order of a single cycle.

We begin by briefly explaining the principle behind spectral shearing and its advan-
tages in the few-cycle regime. Due to its importance to both accuracy and sensitivity, we
discuss the importance of choosing a proper shear frequency, and the considerations
for doing so. Next, we analyze the sensitivity of the measurement to the delay reference
inherent to spectral shearing, deriving an analytic result and simple scaling law. We
show that relative measurement errors scale quadratically with pulse bandwidth, lead-
ing to extreme sensitivity to calibration errors as pulse widths decrease past a few optical
cycles. We then illustrate this principle on experimental data from a sub-two-cycle os-
cillator, showing that a standard SPIDER apparatus would require mechanical stability
far exceeding the scale of the wavelengths involved. Finally, we conclude by suggest-
ing ways to mitigate the sensitivity, and survey some recent alternative spectral shearing
methods which attempt to eliminate it.

Our focus on spectral shearing is not meant to imply that we feel it is alone in pre-
senting challenges to the characterization of pulses approaching a single cycle. In fact,
our feeling is that spectral shearing is otherwise so well-suited to handling such pulses
that it is worth examining these issues in some detail.
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8.2 Spectral Shearing Interferometry

8.2.1 Theory

Spectral phase interferometry for direct electric-field reconstruction, or SPIDER, was
developed by Iaconis and Walmsley in 1999[18]. It is a modification of spectral interfer-
ometry, where both interfering components are obtained from the input pulse and are
slightly shifted in frequency. This obviates the need for the reference pulse that is re-
quired in standard spectral interferometry. Called spectral shearing interferometry, this
general idea represents a fundamentally unique mode of pulse measurement, in that it
directly observes interference between two adjacent frequency components. As such, it
can be an extremely robust and direct method that avoids the need for iterative inver-
sion algorithms.

Figure 8-1 shows a conceptual schematic of SPIDER. While the practical details vary
greatly, all spectral shearing methods involve a nonlinear interferometer whereby one
arm experiences a different frequency shift than the other. Interference is observed be-
tween the two by putting some sort of phase shift on one of the arms. In the case of
standard SPIDER, a linear phase shift is realized by interferometrically delaying the two
pulse copies by τ.

By upconverting the pulse to be measured with a pair of frequencies separated by
Ω, any original wavelengths in the pulse which are separated by this “shear” frequency
are mapped to the same wavelength in the output. One may thus directly observe the
phase delay between two nearby wavelengths, and thereby the spectral dispersion. In
standard SPIDER, the spectrally resolved output is given by [18]

D(ω) = |E(ω−Ω)|2 +|E(ω)|2 +2 |E(ω−Ω)E(ω)|cos[φ(ω−Ω)−φ(ω)︸ ︷︷ ︸
φ′(ω−Ω/2)Ω+O[Ω2]

+τω], (8.1)

where E(ω) = |E(ω)|e−iφ(ω) is the upconverted spectrum of the pulse and τ is the delay
between the two upconverted copies. (In practice E(ω) will be roughly doubled in fre-
quency from the fundamental, but its phase will be identical and its phase is all we are
concerned with.) The oscillating cosine “carrier” fringe is the only element of interest,
and its phase encodes a finite difference of the pulse spectral phase, approximately pro-
portional to the spectral group delay. The method for isolating this phase is beyond the
scope of this paper, and is not important to our end here. It suffices to mention that so
long as τ is sufficiently large, the fringe phase may be reliably extracted by standard sig-
nal processing techniques. Since the initial development of SPIDER, many variants of
spectral shearing interferometry have been invented, but all share the same fundamen-
tal property of generating a carrier fringe in some domain (perhaps in space or time,
if not frequency) which is shifted in proportion to the finite difference of the spectral
phase, φ(ω−Ω)−φ(ω). As such, spectral shearing interferometry essentially “samples”
the spectral phase (up to a constant phase) with a discretization ofΩ.
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Figure 8-1: Conceptual schematic of SPIDER. This model intentionally abstracts away
several practical details, such as the fact that, in practice, both pulse copies are upcon-
verted by slightly different optical frequencies. However, these details are not important
to an analysis of SPIDER.

8.2.2 Application to Few-cycle Pulses

The spectral shearing approach has three salient features relevant in the context of few-
cycle pulses. First, the upconversion of the short pulse with a monochromatic field is
fundamentally easier to perform than the full second-harmonic operation inherent to
IAC and FROG. To begin with, the output relative bandwidth is roughly half that of the
input as the spectrum is simply shifted, as the spectra is not convolved with itself as in
the case with second-harmonic-based methods. Most importantly, however, only one
of the field components in the nonlinear operation contains the full bandwidth, which
greatly facilitates phase matching; Type II upconversion can be engineered to have sig-
nificant bandwidth in one of the input fields with a narrow bandwidth in the other, a
perfect match for spectral shearing interferometry (see [87] for an illustration of this).

A second advantage comes from the use of phase to encode the spectral group de-
lay. The spectral signal (8.1) produced by SPIDER can be viewed as a carrier wave that
is frequency modulated by a signal proportional to the spectral group delay. Much as
frequency modulation is more robust to interference than amplitude modulation for
a given signal power [88], this modulation scheme renders SPIDER methods relatively
impervious to phase matching bandwidth effects, as well as highly immune to experi-
mental noise. This noise tolerance was observed by Gallman and others in [89], and by
Jensen in [90]. Robustness to noise is especially important given the relatively low effi-
ciency of most spectral shearing embodiments, wherein much of the measured light is
thrown away to create the chirped upconverting signal. The phase modulation scheme
also makes spectral shearing tolerant to the presence of unwanted signals (such as the
fundamental pulse or higher diffraction orders from a grating spectrometer), which be-
come increasingly difficult to suppress as bandwidths exceed an octave.

Lastly, spectral shearing directly measures spectral phase rather than the effects of
it on the pulse envelope. Together with the aforementioned noise immunity of the en-
coding scheme, this makes spectral shearing methods extremely sensitive to the kind of
pulse asymmetries and secondary pulses that are common in few-cycle lasers.

However, one issue that the original SPIDER does share with its correlation-based
cousins (e.g. IAC) is that it requires the measured pulse to be split and delayed. For
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pulses approaching an octave of bandwidth, it is not yet possible to implement a disper-
sionless beamsplitter and the dispersion of the beamsplitter is imprinted on the SPIDER
measurement. Fortunately, this is not fundamental to spectral shearing; a few methods,
to be discussed later, have been developed which involve nothing but reflections for the
measured pulse.

8.2.3 Choice of Shear Frequency

The shear frequencyΩ plays a critical role in both determining the sensitivity, as well as
the accuracy of a SPIDER measurement. Since Ω determines the frequency spacing at
which we concatenate the spectral phase, this ratio is equal to the number of points at
which we sample our spectrum over its bandwidth. According to the Shannon sampling
theorem, the temporal window which we can handle without aliasing is the reciprocal of
twice the shear. The time-bandwidth product that can be resolved is therefore ∆ω/2Ω.

Since the modulation of the SPIDER fringe (8.1) is proportional to the shear, one
maximizes the signal to noise ratio of a spectral shearing measurement by choosing the
largest shear that will avoid aliasing. As will be shown later, this also results in the least
sensitivity to calibration errors. However, how can one determine, a priori, what that
is? In theory, there is no way to know without actually making a measurement. Nor-
mally when one samples a signal, the bandwidth is known. However, in this case the
“bandwidth” is the temporal extent of the pulse, and there is no reliable way to know
that without having already done a pulse characterization. In practice, however, one
generally knows the range of dispersion expected. Furthermore, one can fairly assume
that structures in the power spectral density will coincide with oscillations in the spec-
tral phase. In most cases, especially with few-cycle pulses, it is the latter that determines
the required spectral sampling resolution. Thus, picking a shear that is sufficient to re-
solve the features of the amplitude spectrum will usually suffice. If in doubt, a sequence
of shears can be used to effectively verify sufficient sampling.

Most lasers produce pulses with satellite structures and pedestals, to some extend
or another. As such, in a properly performed measurement of a well-compressed pulse,
with the spectral features sufficiently sampled, the vast majority of the energy is con-
tained in a relatively small region of the resolvable temporal window. Given such a re-
sult, it is tempting for the user to assume that a larger shear can be safely used, with the
argument being that if the power outside the main pulse region is negligible, it will not
hurt to ignore its effects when aliased. However, what may appear negligible in intensity
when well-separated may have a significant effect when added coherently to the main
pulse. Consider the case of a measurement where a pulse has distant satellite pulses that
are no more than 1% of the intensity of the main pulse. Increasing the shear enough to
alias the pedestal onto the main pulse can potentially result in 20% relative changes in
the main pulse on an intensity basis. In general, the only way to verify sufficient sam-
pling is to take another measurement at a different resolution.
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8.3 Spectral Shearing Delay Sensitivity

8.3.1 Pulse Width Error Scaling

Unfortunately, the advantages enumerated above come at a certain cost. In order to
gauge the phase of the fringe in (8.1) we must know the nominal period of the fringe,
given by 1/τ. Of course, all ultrafast measurement techniques contain inherent length
references which must be calibrated (such as the distance traveled by a delay stage in an
autocorrelation or the spectrometer grating period in any spectrally resolved method).
In most methods, the calibrations affect the measurement in a proportional way. How-
ever, it turns out that an error δτ in the interpulse delay τ will result in an additive mea-
surement error, and thus this calibration becomes increasingly sensitive as pulses be-
come shorter.

In this section we derive a rough scaling law for the worst case error δt in the mea-
sured pulse width as a function of δτ by considering the characterization of a Gaus-
sian pulse with a spectral 1/e2 half-width of ∆ω (a figure which we use for mathemat-
ical simplicity, and which is within ten percent of the commonly used full-width-half-
maximum, or FWHM). We assume that the pulse we’re measuring is dispersed solely by
an amount of second-order dispersion given byφ′′, and we are concerned with the error
in estimating the pulse width in the presence of a given uncertainly δτ in the interpulse
delay. The complex spectrum of the pulse is given by

E(ω) = e−(ω/∆ω)2+ 1
2 iφ′′ω2

. (8.2)

From (8.1) we can see that any unaccounted delay δτ occurring between the two
upconverted pulses will be associated, to first-order, with the group delay and thus be
interpreted by the reconstruction as an erroneous linear group delay,

δφ′(ω) = δτω

Ω
. (8.3)

Taking the derivative of both sides of this equation with respect to ω gives us an expres-
sion for the erroneous dispersion contributing to the measurement as a result of the
delay error,

δφ′′ = δτ

Ω
. (8.4)

To consider the effect of this extra dispersion we begin with the well-known result
(see [91], for example) for the temporal width (where we have translated the formula so
that it is in terms of 1/e2 width) of a pulse broadened by second-order dispersion,

T = T0

√
1+

(
φ′′∆ω

2

)2

, (8.5)

with T and T0 the dispersed and Fourier limited widths, respectively. The actual mea-
sured pulse width, T +δT , can be written by replacing the dispersion in (8.5) with the
measured dispersion δφ′′+φ′′. Using the expression for δφ′′ given in (8.4), this means
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the pulse width actually measured is simply

T +δT = T0

√
1+

(
δτ∆ω

2Ω
+ φ′′∆ω

2

)2

. (8.6)

We consider the scenario where we erroneously measure a chirped pulse to be shorter
than its true width. This implies we consider the situation whereφ′′ (the true dispersion)
is enough to significantly broaden the pulse, and δτ/Ω (the erroneous dispersion added
by the measurement) is of opposite sign so as to diminish our estimate. Because of the
second-order nature of broadening in (8.6), the measured pulse width can be very close
to transform limited, and yet still include enough dispersion such that the effects of ex-
tra delay are well approximated by a linear treatment of the dispersion curve. To derive
a rough scaling law of the sensitivity of the measurement, then, we consider the first-
order change in (8.6) to δτ. Performing a series expansion of (8.6) with respect to δτ and
then solving for δT gives

δT =
(

φ′′√
4/∆ω4 + (φ′′)2

)(
δτ∆ω

Ω

)
+O[δτ2]. (8.7)

Strictly speaking, this first-order expression is only accurate for φ′′ À−δτ/Ω, but it
turns out to be off by no more than 25% as long as |φ′′| > |δτ/Ω|. However, this expres-
sion is only an accurate prediction if we can estimate the actual dispersion of the pulse
(as in the case of an intentionally chirped pulse) and we know our delay error is small
relative to it. Nonetheless, the prefactor is close to one for any significant actual chirp
(the case we must worry about). For example, it is already about 0.45 for a pulse that is
12% wider than its transform limit. Therefore, we have a worst case error that roughly
scales as

δT ≈ ∆ω
Ω
δτ. (8.8)

The final result is rather intuitive, and simply states that the absolute measurement
error is approximately the uncertainty in the interpulse delay times the dimensionless
quantity ∆ω/Ω, found earlier to be proportional to the number of spectral samples, and
thus also the time-bandwidth product. Again, this formula is an overestimate in the case
where our measured pulse is transform limited (since φ′′ =−δτ/Ω). However, in reality
this is somewhat offset by the fact that very short pulses usually have residual higher-
order dispersion which cannot be perfectly compensated. In practice, this formula is
thus fairly accurate, as illustrated later in Section 8.5.

A corollary of (8.8) is that the relative error in measurement scales with the square of
the spectrum,

δT

T +δT
≈ ∆ω

2

2Ω
δτ, (8.9)

which was obtained by multiplying both sides of (8.8) by the bandwidth and using the
Fourier uncertainty relation, where we have assumed that the pulse as measured is close
to the Fourier limit.

One might hope that as pulses become shorter, the number of sampling points could
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be kept constant by increasingΩ in proportion to the bandwidth. Unfortunately, this is
generally not the case for few-cycle pulses, as explained in Section 8.4. As bandwidths
increase in an optical system, the temporal window which we must resolve becomes
limited by the pulse pedestal and secondary pulses, and at this point the shear must
remain fixed and the number of sampling points must grow with the spectrum. Thus,
while (8.9) would indicate a linear scaling with bandwidth if everything in a laser scaled
in unison, in practice this is not the case, and we must conservatively assume that the
scaling is square in the bandwidth.

8.3.2 Tolerance on Delay Uncertainty for Compressed Pulses

In the preceding section, a rough intuitive scaling law was derived where several approx-
imations were made, most notably that some residual measured dispersion remains. We
now address the situation where the pulse has been perfectly compressed according to
the measurement. In this case, we can exactly determine how much delay uncertainty
can be allowed while still being assured of having a compressed pulse to within some
tolerance. Taking 5% as our tolerance for deviation from the transform limited width,
the allowable delay uncertainty δτ5% can be found without approximation by taking
T → 1.05T0 and φ′′ → τ5%/Ω in (8.5). Solving for δτ5% gives

δτ5% = 0.64
Ω

∆ω2
= 0.32

T0

N
. (8.10)

where N is the number of spectral sampling points within the bandwidth (twice the
time-bandwidth product).

8.4 Calibration of SPIDER in Practice

8.4.1 Required Precision

By way of example, we consider the prospect of measuring a single-cycle gaussian pulse
whose full width 1/e2 bandwidth is ∆ f = 282 THz. Using a shear of Ω = 2π ·5 THz will
result in a resolvable time-bandwidth product of roughly 30 (using the FWHM values).
Based on our experience with few-cycle lasers, this would be a conservative resolution
requirement for a single-cycle laser. In practice, for few-cycle pulses and below, the
spectra tend to be highly structured, with the number of spectral samples required on
the order of 20–100. See, for example, Refs. [92, 81, 93]. For a standard SPIDER config-
uration, this shear implies a delay of around τ= 200 fs. (This is to ensure that sufficient
chirp is used such that the upconversion can be considered a pure shift.)

According to (8.10), in order to limit our maximum error to within five percent (roughly
0.14 fs), the interpulse delay error must be measured and maintained to within 25 at-
toseconds, corresponding to a delay of 7.5 nm. Recently, the shortest isolated pulses
ever published [81] were measured using a modified SPIDER (modified to amplify the
chirped pulses) with a shear of Ω = 2π · 4.11 THz, which implies a tolerance of about
21 as, or 6.3 nm.
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8.4.2 Sources of Delay Error

There are several avenues through which unaccounted for interpulse delays can arise
in practice with a standard SPIDER setup. It is our hope that by enumerating them,
researchers can mitigate their effects simply by keeping aware of them during construc-
tion and operation of a SPIDER apparatus.

1. Delay calibration. The most obvious source of delay error is simple error in the
calibration measurement. In our example, a relative measurement precision of
0.025% is required, over four orders of magnitude. This is not exactly trivial, but
certainly achievable using interferometric means. As pointed out by Dorrer in [94],
however, errors in the calibration of the spectrometer will translate into errors in
the effective τused. Thus, the spectrometer used in the measurement must be free
of relative errors (over the pulse bandwidth) to within the same precision unless
the errors can be canceled out by self-calibration (see below).

2. Thermal drift. A perhaps more worrisome source of delay error is thermal drift
in the setup over time. Taking, for instance, the thermal expansion coefficient of
aluminum (2.5×10−5), and considering a relatively small Michelson interferome-
ter with arm lengths of 2.5 cm, a temperature differential of 0.006 degrees Celsius
between the two arms will cause a problematic change in delay. Uniform temper-
ature shifts should not pose a problem; an interferometer of any size will be able to
withstand a temperature shift of up to 5 degrees Celsius before a noticeable delay
occurs.

3. Alignment drift. Another source of delay is alignment drift of the incoming laser
beam. Any misalignment in the beam will change the delay by τ times the cosine
of the angle error. Assuming perfect alignment to begin with, this means that 15
milliradians of change in laser pointing will cause noticeable errors for a single-
cycle pulse. This is not an issue for passive stability of the laser, but suggests that
any tuning of the laser itself will require a recalibration of the SPIDER for few-cycle
pulses.

4. Unmeasured path difference. Calibrating the interpulse delay often involves chang-
ing the experimental configuration somewhat (such as rotating the nonlinear crys-
tal to produce Type I second-harmonic generation). Thus, care must be taken
such that the delay measured is identical to the delay actually used. For exam-
ple, if the SHG interference fringe is to be used to calibrate out the delay phase,
it is even important that the total distance travelled by the beam not change from
the calibration configuration to the measurement configuration. This could be a
potential issue with noncollinear arrangements where the SHG geometry will be
fundamentally different from the SFG geometry. Assuming the two pulse copies
are only known to be collinear to within 1 milliradian, changing the total propa-
gation length by more than two centimeters would put the unknown delay out of
tolerance for a single cycle pulse.
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8.4.3 Avoiding Delay Error

The most obvious lesson from the above is that for few-cycle pulse characterization with
standard SPIDER, a new calibration should be performed immediately preceding each
measurement to avoid issues of delay stability, leaving only the matter of delay measure-
ment.

Fortunately, the issue of the delay calibration becoming enmeshed with the spec-
trometer calibration has been previously addressed. In [94], Dorrer shows in that if the
delay is calibrated using the interference of the individual second harmonic of each
pulse copy using the same spectrometer which will be used for the SPIDER measure-
ment, then any spectrometer error will cancel out. When making measurements of
few-cycle pulses using a standard SPIDER, it is thus imperative that the delay phase
be removed in such a self-calibrated way. Otherwise, the delay calibration sensitivity
translates into the more difficult issue of calibrating the spectrometer to within at least
four orders of magnitude relative precision and measuring a fringe period to the same
degree. One potential issue with this is that the SHG signals must cover the same band-
width as the sheared upconverted signals. Given the difference in phasematching be-
tween the SHG and SFG signal, this could present a difficulty, and may explain why a
self-calibrating SPIDER measurement has not been demonstrated (to our knowledge)
for a few-cycle pulse.

Ideally, for the sake of avoiding any possibility of delay drift, the calibration of the
delay would be done simultaneously with the measurement. Dorrer has developed a
method [95] to do just that by taking advantage of multiple diffraction orders in a grating
spectrometer. His method is also self-calibrating in the sense described above, since
both the calibration fringe at the fundamental frequency and the SPIDER fringe at the
upconverted frequency share the same wavelength range on the detector.

When standard SPIDER is used, and when the pulse lengths are not so short that dis-
persion is an issue, beamsplitting may be done using an etalon (as in [96]) to eliminate
issues of thermal sensitivity.

Lastly, the effects of beam pointing can be greatly mitigated by ensuring that the
interferometer generating the pulse copies is well-aligned, such that pointing errors in-
troduce only second-order delay errors. Collinear SPIDER implementations, which rely
on pulse shaping to create the pulse copies [97], and those which use no delay (see 8.6.3
below), have an advantage in this regard.

8.5 Numerical Simulations

In the derivation of Section 8.3.1, we relied on Gaussian analysis. However, the spectra
in real lasers tend to have more complicated spectra that are often closer to rectangular
than Gaussian. To test the validity of our analytic results, we simulated the effect of a
spurious delay δτ on a standard SPIDER measurement of a sub-two-cycle pulse, using
spectral data from an actual Ti:sapphire laser.

We recently constructed a sub-two-cycle ring laser [98] and characterized it using
2DSI [20], the spectrum and phase of which are shown for reference in Figure 8-2. The
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Table 8.1: Summary of simulated Ti:sapphire measurements

δτ

Meas. 15 nm/c 30 nm/c 60 nm/c
FWHM 4.94 fs 5.032 fs 5.26 fs 12.8 fs

RMS 10.95 fs 11.31 fs 11.85 fs 13.31 fs

power and phase spectrum are both rather oscillatory, caused by SPM and extra re-
flections from the intracavity dispersion compensating mirrors. In order to resolve the
finest oscillations, a shear of 4.5 THz was required. Using the spectral phase measured
by 2DSI, we simulated the case where a standard SPIDER measurement shows a very
slightly chirped pulse of 4.94 fs FWHM. This is nearly as compressed as can be achieved
by bulk material compensation. We then computed what the actual pulse was assum-
ing a worst-case interpulse delay error due to several lengths of extra path length. The
envelopes were computed using a padded FFT of the complex spectrum, neglecting any
carrier offset (since we are only interested in the pulse envelope). The pulse RMS width
(over a 40 fs window) and the FWHM were computed. The latter was calculated by using
a Newton method to solve for the intersection of a cubic spline with the 50% point. The
resulting pulses are shown in Figure 8-3, with results tabulated in Table 8.1. (The RMS
widths are much larger due to significant satellite pulses and pedestal.)

Note that it only took an extra delay of 30 nm, or 100 as, to cause an error over
5%. Furthermore, this example was actually conservative in that the measured pulse
was well compressed and thus the nonlinear relation of the FWHM width to dispersion
helped; the same data also imply that had the actual pulse been 12.8 fs long, only 30 nm
of spurious delay would’ve appeared to be only 5.25 fs long. The point here is that if
spectral shearing is used to measure pulses that are intentionally chirped (as in the case
of pulses used in coherent control or those precompensated for material dispersion) the
measurement will be maximally sensitive, such that (8.8) is an accurate estimate.

To test the applicability of the analytic results from Section 8.3.1, the relative error
was simulated for a range of δτ between zero and 60 nanometers, and compared with
that predicted by (8.9), taking the 1/e2 half width∆ω to be 2π ·138 THz (about half of the
full range of the measured spectrum). The results are shown in Figure 8-4. After enough
dispersion, the FWHM behaves severely nonlinearly as subpulses grow past 50%. As an-
ticipated by the fact that this pulse is nearly transform limited as measured, the linear
scaling law overestimates the errors. However, the error is not large, and it is generally
within a factor of two of the RMS width. By comparison, the exact 5% tolerance pre-
dicted by (8.10) is δτ5% = 81 nm, a significant underestimate of that actually achieved
(due to the residual higher order dispersion in this measured pulse). This is because
(8.10) assumes a smooth spectrum with no high order dispersion. Thus, if our laser is
representative, the sensitivity estimates given in Section 8.4.1 for a single-cycle laser may
be conservative.
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Figure 8-2: The spectral power density and spectral phase for an actual sub-two-cycle
Ti:sapphire oscillator measured with 2DSI.
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Figure 8-4: The measured pulse FWHM and RMS widths of the pulse in Fig. 8-3 for a
range of δτ values, compared with that predicted by (8.8) using the half-width of the
spectrum as ∆ω.

8.6 Alternative Spectral Shearing Methods

We have already presented an outline of various ways to mitigate systematic errors re-
lated to spurious delays in spectral shearing. For cases where the sensitivity or pulse
splitting of SPIDER cannot be tolerated, several alternative modes of spectral shearing
have been developed in the past several years which address these issues.

8.6.1 Arbitrary Shear Methods

As discussed before, the shear plays a crucial role in the sensitivity of the measurement.
This applies to any spectral shearing method. Since the error δT is proportional to the
absolute uncertainty δτ, and not the relative uncertainty, the effect of calibration errors
can be minimized by choosing as small a τ as possible while still allowing decoding of
the fringe phase. Similarly, we want to choose as large an Ω as is consistent with the
Nyquist criterion of the spectral phase.

In standard SPIDER, unfortunately, the delay and shear are linked through the dis-
persion used to produce the monochromatic signal used for upconversion. From [18]
this relation is τ = −Ωφ′′

chirp. It can be shown that the amount of chirp needed to avoid

artifacts is proportional to 1/Ω2. However, the minimum requirement on τ is actually
quite complicated, and it is best found empirically. Thus, SPIDER does not, in general,
offer sufficient degrees of freedom to optimally choose τ andΩ.

However, there are several spectral shearing variants that do allow for independent
selection of τ and Ω. The first to do so was HOT SPIDER [99], which uses a homodyne
technique to allow two measurements against a local oscillator to be combined to yield
a normal SPIDER trace. While this method requires a second source that covers the up-
conversion wavelengths, it also has the benefit of implicitly calibrating the delay. How-
ever, this method may be of limited use for very short pulses because of the requirement
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for a separate source with the same bandwidth but at twice the frequency (the main
source can also be used, but this would be highly inefficient and against the point of
homodyning).

8.6.2 Zero-dispersion Methods

Another approach that is capable of arbitrary shears is ZAP-SPIDER [100], developed
by Baum, which introduced the idea of using dual chirped pulses to upconvert a sin-
gle short pulse. This means that the pulse to be measured never has to pass through
any material (other than the thin nonlinear crystal before it is upconverted) and hence
this method adds Zero Additional Phase. To our knowledge, ZAP-SPIDER was the first
demonstration of a self-referencing pulse characterization method that involved no added
dispersion to the measured pulse. One potentially issue is that the noncollinear nature
of ZAP-SPIDER may present difficulties in measuring τ, at least in a self-calibrating way.
SEA-SPIDER [101] and 2DSI [20] also use two chirped pulses to avoid dispersion on the
measured pulse, and furthermore both set the delay to zero. This brings us to another
way to address the delay calibration: avoid it altogether.

8.6.3 Zero-delay Methods

In the SPIDER interferogram, described in (8.1), the dense fringe created by the delay
phase τω allows for robust and unambiguous extraction of the φ(ω) −φ(ω−Ω) term
in which we are interested. However, this “carrier” fringe need not be in the spectral
domain; the phase shown in the lower arm of the SPIDER schematic in Figure 8-1 does
not have to be a function of optical frequency. In fact, having any component of it in the
spectral domain is really the origin of the entire calibration sensitivity issue discussed in
this paper.

To this end, SEA-SPIDER, developed by Kosik [101] and demonstrated for sub-10 fs
pulses by Wyatt [102], is a version of SPIDER that creates a fringe in the spatial domain
on an imaging spectrometer. A related method, 2DSI [20], developed by the authors,
uses a collinear output and creates a fringe in the time domain.

In theory, these two methods should be immune to the delay uncertainty errors dis-
cussed in this paper. However, in practice things may not be so simple. The error given
in equation (8.8) is true for any spectral shearing method, even those with nominally
zero delay between the two pulse copies. Thus, any incidental path length difference
that occurs will contribute to measurement errors in exactly the same way as with stan-
dard SPIDER.

In the case of SEA-SPIDER, the spatial fringe is created by sending the two upcon-
verted pulses along separate routes in a plane before meeting at the spectrometer. This
creates a spatially dependent delay in an axis perpendicular to the axis over which the
spectrum is resolved. Any deviation of these pulses out of the plane, or delays incurred
during their separate travels, will create a δτ that must be either calibrated or avoided
to the same precision as for standard SPIDER. Furthermore, if the spectrometer grating
axis is rotated with respect to the nominal spatial fringe, this will have the same effect as
a delay, and may have to be calibrated.
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In 2DSI, the fringe is produced by scanning the phase of one of the chirped pulses,
and a two-dimensional fringe is produced as a function of wavelength and this phase.
The only thing that matters in the 2DSI fringe is the absolute phase of the fringe at a
given wavelength, and thus no calibration is needed. The cost of this is that 2DSI is
incapable of single-shot measurements.

The two upconverted pulses in 2DSI originate from the same point and are collinear,
so it should not be possible for a delay to occur between the pulse copies. However,
misalignment and nonidealities in the imaging of the pulses into the spectrometer could
potentially introduce an unwanted delay. Nonetheless, we have not seen any evidence
of this after several measurements of few-cycle pulses [19, 103]. In fact, we have recently
measured a 4.9 fs pulse directly from an oscillator, and verified it against both an IAC
and a simulation of the laser [98, 93, 24].

8.6.4 Multiple Shearing

Finally, for those methods where multiple shears can be produced–and where changing
the shear can be guaranteed to have no affect on the delay–the issue of delay calibration
can be eliminated by making two or more measurements with different shear frequen-
cies. By subtracting the phase of two spectral shearing measurements made with dif-
ferent shears, the phase of the delay drops out and one is essentially left with a SPIDER
measurement performed with the difference in the shears.

As long as one of the measurements is done with a shear that is consistent with the
sampling theorem, the subsequent “calibration” measurements can be made with much
larger shears with the only requirement being that they are integer multiples of the shear
used for the final measurement. A novel version of SPIDER which relies on this principle
for a continuum of shears was recently presented by Gorza [104].

8.7 Conclusion

We have shown, though analysis and numerical simulation, that as pulses approach the
single-cycle limit, the SPIDER technique involves a calibration that is exceedingly diffi-
cult. However, given the unique position of SPIDER as the only direct method of phase
measurement, and given its inherent bandwidth advantages over other methods, it is
worthwhile to search for mitigation strategies. We conclude that for most cases, aware-
ness of the calibration sensitivity and careful adherence to the principle that calibrations
must be done before every measurement are sufficient to yield accurate results. For ex-
tremely short pulses, however, it may best to employ one of the variants of SPIDER dis-
cussed in Section 8.6 that remove the delay calibration issue.
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Chapter 9

Two-Dimensional Spectral Shearing
Interferometry

9.1 Introduction

Spectral shearing interferometry (pioneered by the SPIDER method of Iaconis and Walm-
sley [18]) is unique among pulse measurement techniques in that it unambiguously
measures the spectral phase of an optical signal by directly interfering neighboring fre-
quency components. Furthermore, by encoding group delay information on the phase
of a spectral domain fringe, SPIDER produces a frequency modulated signal and thus
enjoys excellent immunity from noise and nonlinear phasematching bandwidth effects.
This gives spectral shearing an advantage for measuring very wide bandwidths, relative
to the “amplitude modulated” signals characteristic of other methods, differences in ef-
ficiency notwithstanding. Consequently, it has become one of the principal methods
used to measure few-cycle pulses [89], alongside FROG [85], and the many variants of
both. As is the case for any method, however, challenges arise with standard SPIDER
as bandwidths approach the single-cycle. Our method seeks to address these issues by
trading single-shot ability (at least in the present version) for calibration stability.

All spectral shearing methods, by their nature, involve measuring spectral group de-
lay by observing the interference of two spectrally shifted copies of the pulse being mea-
sured. As will be explained in more detail in Section 9.2, any linear phase (delay) that
occurs between the two components will be interpreted as a quadratic phase (disper-
sion) in the reconstruction. It turns out that the resulting error in measured pulse width
scales linearly with the unaccounted for delay, multiplied by a factor proportional to the
resolution of the measurement. At the very least, this implies that great care must be
taken in a SPIDER measurement to ensure that any linear phase is calibrated out.

Here, we present a method recently we developed [19] that seeks to ensure that there
is no possibility for uncalibrated phase, by eliminating the possibility for a delay by ro-
bustly encoding the spectral phase measurement in a series of spectra of a single output
pulse. Our technique requires only the non-critical calibration of the shear frequency
and does not perturb the pulse before up-conversion. Rather than encode the spectral
group delay in a fringe in the spectral domain, 2DSI encodes phase in a pure cosine
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fringe along a completely independent dimension, by scanning the relative phase of the
two spectrally sheared components. This reduces the resolution demands on the spec-
trometer to that required for proper sampling of the pulse itself, allowing for complex
phase spectra to be measured with high accuracy over extremely large bandwidths, po-
tentially exceeding an octave. We believe that 2DSI is thus a cost effective and efficient
method for accurately and reliably measuring few- and even single-cycle pulses. While
the method is relatively recent, it is well tested and has been successfully demonstrated
on several different lasers, including one producing 4.9 fs pulses with 4.3 fs transform
limited bandwidth [20, 21, 22].

9.2 Background and Motivation for Delay-Free Method

In any spectral shearing method, the net result is the creation of two spectral copies of
the pulse under measure, with a small frequency shift Ω disposed between them. For
sake of simplicity, in this paper we will ignore the overall offset in frequency caused by
the nonlinear upconversion, and will express everything in terms of the lowest upcon-
verted pulse spectrum A(ω) = |A(ω)|e iφ(ω). In the conventional SPIDER method, the two
output pulses are delayed with respect to one another by a time τ, leading to a dense
fringe in the spectral domain upon which the group delay spectrum is encoded,

I (ω) = |A(ω)|2 +|A(ω−Ω)|2 +2|A(ω)A(ω−Ω)|cos[τω+φ(ω)−φ(ω−Ω)]. (9.1)

If the delay is large enough, the argument to the cosine can be isolated by signal process-
ing of the fringe in the Fourier domain. The contribution of the delay is then subtracted
out, leaving the finite difference of the spectral phase. More details are provided in [18]
and [1].

As explained in more detail in Chapter 8, any unaccounted for delay is lumped in
with the phase finite difference, and mistaken for a quadratic phase term, potentially
one which results in underestimation of the true pulse width. Any error in estimating
the interpulse delay results in an absolute error in the extracted pulse width [105]. The
worst-case measurement error is equal to the delay error multiplied by the ratio of the
shear to the bandwidth; this ratio is essentially the number of points over which we sam-
ple our spectral phase. Because this error is absolute, the relative measurement error
caused by a given interpulse delay uncertainty is proportional to the square of the pulse
bandwidth, as shown in equation (8.9). It should be kept in mind that this is a worst case
error and an approximate analytic result; we are not claiming all SPIDER measurements
are uncertain to the degree given in (8.9). That notwithstanding, the scaling of the error
with the square of the bandwidth applies regardless and implies that calibration require-
ments increase dramatically as the single-cycle is approached.

The shear is the sampling interval in the spectral domain. By the sampling theorem,
it is inversely proportional to the temporal window over which we are measuring. As
we will argue further in Section 9.8, the minimum time window we must resolve (i.e.
the spectral sampling density) ceases to scale inversely to bandwidth once pulse widths
become shorter than the characteristic time scale of intracavity dispersion oscillations
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in the source laser (such as those caused by reflections off the surface of dispersion
compensating mirrors). The scaling of the delay uncertainty is more complicated, but
by similar arguments, it either scales with the temporal measurement window (in the
case of standard SPIDER) or is a constant (in the case of zero delay variants). As such,
beyond a certain bandwidth the measurement uncertainty scales as the square of the
bandwidth.

As the single cycle limit is approached, the effect of even tens of attoseconds of un-
known delay becomes a concern. Calibrating and maintaining a delay on the order of
hundreds of femtoseconds to within tens of attoseconds is not trivial, especially if the
experimental configuration must be changed to measure the delay, as in those systems
where the delay is measured by the spectral interference between the second harmonics
of the pulses. At the very least, it is certainly necessary to recalibrate the device before
each measurement.

The preferred way of calibrating a standard SPIDER fringe, introduced by Dorrer [94],
does not involve explicitly computing a delay. In this approach, two SPIDER measure-
ments with different shears are subtracted from each other to obtain the SPIDER phase
net of any common phase due to the pulse delay and spectrometer nonlinearity. (This
assumes that it can be done so such that the delay is invariant between the two measure-
ments. One can ensure this is the case by taking them simultaneously, as in [95].) When
the spectrometer and delay calibrations are mixed together in this way, one then does
not speak of “delay” calibration but rather a general baseline phase calibration that han-
dles simultaneous calibration of the delay and any spectrometer nonlinearity. However,
whether explicit or not, a measurement of delay is inherent, and as the main compo-
nent of the SPIDER fringe and the leading term in any calibration error, it makes sense
to cast any discussion of sensitivity in terms of the effective delay uncertainty. Even
in the absence of systematic delay miscalibration, simple measurement noise will con-
tribute some effective δτ that will be the dominant source of pulse width uncertainty.
This is borne out in the noise simulations discussed in Section 9.9.

A second difficulty with standard SPIDER is the need to split the measured pulse into
two copies. In practice, doing so without the introduction of additional dispersion is ex-
tremely difficult, especially for pulses with spectra exceeding an octave. The splitting
issue can be avoided by the use of two chirped pulses, as pioneered by Zero Additional
Phase SPIDER (ZAP-SPIDER) [100]. ZAP-SPIDER produces a standard SPIDER fringe,
but does so without requiring the interferometric splitting of the short pulse, adding no
additional dispersion from the beamsplitting operation, hence the name. However, the
calibration issue still remains in ZAP-SPIDER, as the two chirped pulses are disposed
along separate paths to allow for the upconverted components to be delayed with re-
spect to one another.

Our solution to the above issues is to use two collinear chirped beams such that the
output is a single beam, in essence a single pulse with a complicated spectrum. This
arrangement should eliminate the potential for a delay to occur between the two out-
put components. That this is the case is suggested, at the least, by our results in Sec-
tion 9.10.2. However, we must admit that the precise extent to which this is true cannot
be proven conclusively down to the level of attoseconds. In the absence of a perfectly
known “reference pulse,” a numerical spatiotemporal simulation of the noncollinear up-

115



eiϕ

eiτΩω
OSA

Input

CPU

eiD2ω
2

eiτsfgω

Figure 9-1: Frequency domain block diagram of 2DSI process.

conversion would have to be performed to determine the effects of phase matching on
the output beam properties.

9.3 Principle of 2DSI Operation

9.3.1 Spectral Shearing Approach

In what follows, refer to Figure 9-1 for a conceptual frequency domain block diagram of
the conceptual process, and Figure 9-2 for a prototypical experimental layout.

As with any shearing method, the method makes use of two CW beams separated
in frequency by Ω, which will be used to modulate the pulse under test in a nonlinear
crystal. The only requirement on these CW beams is that they are coherent to each other
and their frequency difference is stable. As such, they may originate from a separate
mode-locked laser from the one being measured, or even from two locked CW lasers.
In the case of measuring weak laser pulse it may be helpful to amplify a narrowband
portion of the original pulse to be used for the CW beams. In the majority of cases,
however, it is most convenient to use the short pulse as the source of the CW signals,
and this is accomplished by dispersion and splitting of the pulse into two chirped pulses
that act as quasi-CW sources (element C in Figure 9-1).

In any case, because the short pulse is mixed with two essentially pure frequencies
the output spectrum consists of two spectrally shifted copies of the original spectrum,
each with a slightly different shift. If the chirped pulses are collinear, the two frequency
components will have the same propagation vector and thus we can regard the output
as a single pulse. This neglects the small difference in transverse photon momentum
between the two chirped pulses. However, for small deviations such that nonidealities
in the imaging optics can be neglected, there should be no possibility for delay to arise.
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Figure 9-2: Experimental schematic of 2DSI setup.

A given wavelength is imaged to the same pixel regardless of output angle, and thus no
phase difference should arise by Fermat’s principle.

The upconversion frequencies can be independently and arbitrarily chosen to suit
the pulse characteristics and maximize the overall signal to noise ratio. A discussion of
how best to do so is taken up in Section 9.8. This ability also allows for a wide range
of pulse widths and complexities to be measured by the same setup. Given that a large
range is likely to be encountered in the course of optimizing a laser, it is useful to have
this flexibility. In contrast, the shear in standard SPIDER is constrained by the dispersive
element and the required delay, limiting its versatility. The collinearity of the chirped
beams in 2DSI also means that the shear can be changed without affecting the alignment
of the system.

The pulse under test only experiences a few reflections, no transmission through
bulk materials, and is therefore relatively unperturbed before measurement. The Michel-
son interferometer that splits the chirped pulses, on the other hand, can be highly dis-
persive and even unbalanced, allowing for the use of simple splitting optics. The low
distortion experienced by the short pulse is extremely important for single-cycle pulses,
as any spurious dispersion inherent to the apparatus will invariably end up (in the op-
posite sign) in the pulse after optimization.

The fact that the output is essentially one pulse, the spectrum of which encodes the
spectral group delay, is the key to the stability and reliability of 2DSI. In theory, all the
information needed to recover the spectral phase is present in the spectrum of one of
these output pulses if we were willing to trust the spectral amplitude information. How-
ever, such operation would negate one of the primary strengths of SPIDER methods: the
encoding of group delay as a fringe phase, lending immunity to phasematching band-
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width effects. It would also introduce a time direction ambiguity.

Thus, to observe the spectral phase difference between the two pulse components at
a given wavelength (which we recall is proportional to the local group delay) in a robust
way, the phase of one of the quasi-CW beams is scanned over a few optical cycles prior to
mixing (block A in Figure 9-1), which results in a phase ϕ being added to the upconver-
sion. The net effect is to produce a variable differential phase between the upconverted
spectral components. Scanning this phase allows one to directly observe interference
between the two spectral components as a function of wavelength, providing a direct
observation of the spectral group delay of the original pulse.

This phase scan is typically achieved by vibrating one of the mirrors in the Michelson
interferometer, though it could also be achieved with some other kind of phase modu-
lator, such as a liquid crystal or electro-optic device. Assuming the quasi-CW beam is
monochromatic over a time scale of a few optical cycles, a delay τcw simply manifests as
a pure phase ϕ= τcwωcw, and doesn’t materially shift the frequency of upconversion.

9.3.2 Form of Interferogram

The spectrum of the up-converted signal is then recorded as a function of the phase ϕ,
yielding a 2-D intensity function that is given by

I (ω,ϕ) = |A(ω)+ A(ω−Ω)e iϕ|2
= 2|A(ω)A(ω−Ω)|cos[ϕ+φ(ω)−φ(ω−Ω)︸ ︷︷ ︸

τg (ω−Ω/2)Ω+O[Ω2]

]+D.C., (9.2)

where, as before, A(ω) is the low upconverted pulse spectrum, and φ(ω) is its spectral
phase. (For simplicity we refer to everything in terms of the upconverted fields.) The
under-bracketed expression can be viewed as a finite difference approximation of the
group delay scaled by the shear. This term is what all SPIDER variants measure, though
in 2DSI it is available directly without any filtering, as discussed in the next section, since
there are no other terms dependent on the optical frequency. A simple two-dimensional
raster plot of I (ω,ϕ) reveals the up-shifted pulse spectrum along theω-axis, with fringes
along the ϕ-axis that are locally shifted in proportion to the group delay at the given
frequency (as illustrated in Figure 9-3). The user can thus immediately ascertain salient
properties of the complex spectrum simply by looking at the raw data: the cosine fringe
at each wavelength is vertically shifted in proportion to its actual delay in time, with the
fringe amplitude roughly proportional to the power spectral density (neglecting band-
width effects). The ability to use the raw spectrometer data when optimizing a laser
yields information not available from processed data from an inversion algorithm alone,
such as measurement noise and laser stability.
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Figure 9-3: Raw 2DSI traces from 5 fs laser, with (a) extracted spectral group delay over-
laid to demonstrate the interpration of fringe offset, and (b) the same pulse with one
mm of fused silica. The presence of extra dispersion is evident in the raw trace without
any need for reconstruction.

9.4 Relation to Other Spectral Shearing Methods

9.4.1 Relation to SPIDER

Comparison of equations (9.1) and (9.2) shows that the fringes produced by 2DSI and
conventional SPIDER are mathematically identical, except for the fact that the fringe in
2DSI is produced by a phase occurring in a separate domain (the ϕ domain), whereas
in SPIDER the fringe oscillates in the spectral domain. In either case, the fringe can
be viewed as creating sidebands in the respective Fourier domain of the fringe; with
SPIDER we get sidebands in the pseudo-time domain and in 2DSI the sidebands are
pulled into the “pseudo-frequency” domain relative to the phase delay. This is illustrated
in Figure 9-4. In both, the purpose of the fringe is to pull the sidebands away from the
central DC term so that they don’t interfere, rendering the phase extraction insensitive
to the amplitude of the fringe. In SPIDER, the fact that the sidebands are in the optical
frequency domain results in a significant increase in required spectrometer resolution
over that needed to simply resolve the fundamental pulse spectrum. In 2DSI, the extra
dimension means that the spectrometer resolution required is simply that required by
the Nyquist limit for the pulse being measured (i.e. determined by the time window that
must be resolved), enabling larger time bandwidth products to be measured than with
standard SPIDER.
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Figure 9-4: Illustration of the different sideband schemes between 2DSI (top) and SPI-
DER (bottom), showing the two schemes for pulling the information containing side-
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the frequency domain, whereas in 2DSI the same sidebands remain stationary in spec-
tral domain and are shifted in a second dimension in the 2D interferogram.
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9.4.2 SEA-SPIDER

SEA-SPIDER, a method developed by Ellen Kosik [101] and successfully adapted for few-
cycle pulses by Adam Wyatt [102], follows ZAP-SPIDER in using two chirped pulses. By
putting a tilt between the two upconverted beams and measuring the output with an
imaging spectrometer, a spatial fringe is observed in one axis while spectrally resolving
the other,

I (ω, x) = 2|A(ω, x)A(ω−Ω, x)|cos[ωcosθx/c +φ(ω)−φ(ω−Ω)]+D.C., (9.3)

where x is the transverse spatial dimension and θ is the half angle of intersection be-
tween the two upconverted beams.

SEA-SPIDER’s use of spatial encoding allows for single-shot pulse characterization,
including some kinds of spatiotemporal measurement along one axis. 2DSI is similar
to SEA-SPIDER in many respects, with the fringe encoded in terms of an upconversion
phase, rather than mixed with the pulse profile and encoded in space. However, the use
of separate output paths from the crystal in SEA-SPIDER makes the method more sus-
ceptible to a delay occurring between the point of upconversion and interference on the
CCD detector. It is necessary to calibrate both the intersection angle of the two beams
in SEA-SPIDER (the nominal fringe spacing) as well as the angle of the spectrometer
grating axis (i.e. the nominal fringe angle) and inspection of (4) and comparison to (1)
shows that miscalibration of either angle is equivalent to an erroneous delay in SPIDER,
manifesting as discussed in Section 9.2.

Because nonlinear mixing does not commute with a linear delay, the fact that a 2DSI
system involves a scanning of the chirped pulse delay prior to upconversion renders
it fundamentally different from SEA-SPIDER, which involves delays applied after. The
result is that in SEA-SPIDER there is a varying time delay between pulse copies (with an
associated frequency dependence), whereas in 2DSI there is a changing pure phase that
is constant in frequency.

We believe varying the chirped pulse phase before upconversion results in a more ro-
bust measurement than changing a delay after upconversion, as our approach results in
a simpler interferogram that requires less calibration. Furthermore, because the output
of 2DSI is a single pulse, it is impossible for the two components to experience further
differential phase shifts.

9.4.3 CAR-SPIDER

More recently, Ian Walmsley et al introduced a method which simultaneously records
multiple SPIDER fringes over a range of different shears [104]. This allows for the cal-
ibration of the delay through a consistency requirement on all of the fringes, and was
recently demonstrated for a 70 fs pulse. Because it implicitly relies on a thick crystal,
however, applying this method to few- or single-cycle pulses may not be possible.

The orthogonality of the temporal fringe to the spectral domain is also why the fringe
period does not need to be known in 2DSI. At each wavelength, the fringe encodes only
one piece of information (the group delay), and we are only concerned with the relative
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shift between wavelength. We thus do not care about the frequency of the fringe or even
whether or not it is constant, only needing to know its relative phase. This eliminates
many potential avenues for measurement error in a real system, such as scan linearity
and calibration. In fact, the only calibration needed by 2DSI is for the up-conversion
frequencies which produce the shear. This is a relatively non-critical calibration, as the
relative pulse measurement uncertainty is proportional to the relative uncertainty in the
shear [18].

9.4.4 Single-shot potential

There is a cost for the present version of 2DSI’s simplicity in reconstruction and exper-
iment, which is the loss of single-shot capability. An alternative, spatially-resolved em-
bodiment of 2DSI (which might be termed 3DSI) should be capable of single-shot op-
eration (as discussed in Section 9.11). Nonetheless, while the requirement for scanning
in 2DSI renders single-shot operation impossible, it is capable of video-rate operation.
This helpful for laser tuning or automated pulse compression. In fact, the scanning mir-
ror only needs to move a few microns, at most, and thus the system is theoretically ca-
pable of operation at kilohertz rates with sufficient laser power.

In practice, the issue of single-shot measurement is often moot; signal to noise gen-
erally puts a lower bound on the required integration time to yield sufficient accuracy.
This requirement will usually exceed the pulse repetition rate for unamplified pulses, es-
pecially given the low efficiency of spectral shearing techniques (save for modified SPI-
DER, which uses amplification of the ancillary chirped pulses to increase signal [106]).

9.5 Physical Layout and Operation

As with any method, there are several ways to implement the optical operations required
for 2DSI. In Figure 9-2, we provide a schematic of one approach, to which we will refer
here. This arrangement has proven to be robust and cost effective.

9.5.1 Pulse Chirping and Splitting

To begin with, a highly chirped pulse is created by picking off a portion of the pulse to be
measured, and dispersing it. Roughly four percent of the short pulse under test is picked
off by the Fresnel reflection from the glass cube beamsplitter (C) used in the Michelson
interferometer. This can be done with a wedge bonded to the beamsplitter, or by sim-
ply operating the interferometer at slightly shallower than a right angle geometry. The
remainder of the pulse is split in the interferometer, where a one inch glass beamsplit-
ter provides sufficient chirping to measure a pulse in the few-cycle regime (see Section
9.8.2). If longer pulses need to be measured, an additional glass block can be placed in
the output path of the interferometer. The arms of the interfeometer are significantly
delayed relative to one another (on the order of picoseconds) such that at any given in-
stant in time there is a difference of Ω between the instantaneous angular frequencies
of the chirped beams.
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9.5.2 Upconversion

After the interferometer, the polarization of each chirped beam is rotated by a half-wave
plate. (The polarization must be rotated since we are using Type II upconversion.) A
simple low-order half-wave plate is sufficient since the rotation only needs to occur at
two frequencies that are separated by the shear, which is typically on the order of 5 to 10
THz.

The short pulse to be measured and the chirped pulses are made parallel and then
focused by an off-axis parabolic mirror into a thin (roughly 30 µm) Type II BBO crystal.
Provided they are sufficiently dispersed, when the two chirped pulses are then mixed
with the original short pulse in a Type-II χ(2) crystal in a noncollinear geometry, the
short pulse effectively sees a single frequency of each chirped beam, presuming they
were sufficiently dispersed.

As pointed out by Walmsley in [1], BBO is rather fortuitous as an upconversion medium
for spectral shearing methods, as its Type II phase matching curve can be engineered to
have octave-spanning bandwidths in one polarization, with narrow bandwidths in the
other. In Figure 9-5 we show a phasematching curve for a typical 2DSI geometry. Nu-
merical simulations show that the Type II bandwidth is maximized when the narrow
band beams (and therefore the output) is collinear. 2DSI thus preserves the favorable
phase-matching of standard SPIDER. Coupled with the fact that bandwidth effects don’t
impair spectral shearing measurements beyond reducing the signal to noise ratio, this
renders 2DSI theoretically capable of precise self-referenced measurements of pulses
down to a single-cycle.

The net effect of each CW signal to shift the frequency of the pulse under test. The
absolute upconversion frequencies are set by adjusting the total delay through each path
of the interferometer, with the difference between them (the shear Ω) thus determined
by the relative delay between each arm. Inevitably, there will also be second harmonic
generation (SHG) that occurs in the crystal alongside the desired sum frequency gen-
eration (SFG). Since the short pulse and chirped pulses were focused into the crystal at
opposite incoming angles, the SFG signal can be separated from the fundamental and
second harmonic terms the output by use of apertures. Lastly, the upconverted beam is
focused into a spectrometer.

9.6 Control

Mirror (B) is controlled manually by a translation stage with a relatively long travel (at
least millimeters). This mirror is used to control the delay between the chirped pulse
copies that determines the shear. The other mirror (A) is controlled by a short throw
piezoelectric translation stage. Since this scanning mirror will only need to be translated
a few microns, at most, a flexure stage can be used to maximize stability and reduce
noise during the scan. (Obviously, which mirror is used for which function is arbitrary,
and both the large manual adjustment and the small piezo oscillation can be performed
on one mirror.)

A third delay stage (D) is used to adjust the temporal overlap between the short pulse
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Figure 9-5: top: 2DSI Phase matching plot for Type II sum frequency generation for BBO
cut to measure a typical few-cycle Ti:sapphire laser. The lined areas denote the phase-
matched regions, with each line denoting increased efficiency by 10 percent. bottom:
Slices of the phase matching curves for two upconversion wavelengths separated by 6
THz, showing the efficiency of upconversion for the two spectrally sheared components.
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and the chirped pulses, which determines the overall frequency of the upconversion.
This stage should be rather long, on the order of a centimeter, at least, to provide for
ease in alignment. Together, stages (B) and (D) provide sufficient degrees of freedom
that both upconversion frequencies can be independently chosen.

While 2DSI appears on the surface to have an experimental complexity similar to
IAC or FROG, due to the scanning, this is not the case given the short distance of the
scan and the lack of any calibration needed for it. The scan itself may be handled in an
open loop fashion, and a basic function generator may be used to ramp the mirror while
spectra are taken at regular intervals. (This is the method we employed to provide the
experimental demonstrations shown in the following section, in fact.)

Our simulations show that nonlinearity of the fringe has no effect on the accuracy,
though it does affect the reconstruction in the presence of noise by broadening the
fringe in the frequency domain. Empirically, we found that even 50% nonlinearity (de-
fined as the maximum relative deviation from the nominal scan rate) results in only a
halving of the signal to noise ratio. Nonlinearities below 10% were not found to have an
appreciable effect on the noise performance. The linearity of the scan will thus not be
an issue for most commercial stages.

Before a reconstruction is performed, the upconversion frequencies must be deter-
mined. This is done by alternately blocking one of the arms of the Michelson and record-
ing the spectrum of each individual upconverted component. By cross-correlating the
upconverted spectrum with the fundamental pulse spectrum (taken by a separate OSA),
the individual upconversion frequencies can be computed, and from this the shear, pro-
viding all information necessary for the reconstruction of the pulse. The calibration of
the upconversion frequencies is not particularly sensitive; once this calibration is done,
it does not need to be repeated for subsequent measurements unless the configuration
is changed.

To take a measurement, a computer controlling the piezoelectric stage moves mirror
(A) over a total range of roughly 1 micron, recording a dozen or so spectra during the
scan. Due to the effective monochromaticity of the chirped pulses, this is equivalent to
scanning a pure zeroth-order phase of the corresponding upconverted spectral compo-
nent. As discussed in Section 9.7, only four spectra are actually needed for reconstruc-
tion, but taking more results in a more intuitively understandable trace and one that
allows for a simplified reconstruction algorithm.

9.6.1 Alignment

Aligning 2DSI is no more difficult than for any SFG arrangement. Nonetheless, getting
ultrashort pulses to arrive at the same time in a micron-sized volume is not an entirely
trivial task and there are a few techniques that will make the initial setup much easier.

During the inital building, one must make every effort to ensure that the optical
pathlengths seen by the short pulse and by the chirped pulse are the same, such that
they arrive at the same time in the crystl. Of course, this can only be done to rough or-
der. It is thus wise to choose a long travel delay stage (one with at least a few cm of travel)
for stage (D). It is also helpful to only work with one chirped beam during initial align-
ment, to avoid the possibility of destructive interference attenuating the output signal
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(i.e. during alignment you have no idea if you’re sitting on the null of a fringe).
The first alignment task is to ensure that the short pulse beam and the chirped beam

are parallel, and that they are aligned in time such that the short pulse will arrive during
the broad peak of the chirped pulse. These two goals can be simultaneously achieved by
observing a spatial interference pattern, preferably using a CCD camera. To widen the
coherence length and increase fringe visibility, a narrowband pass filter should be used
to limit the incoming bandwidth to something on the order of 10 nm. Once stage (D)
is adjusted to the point of observing strong interference (indicating good overlap of the
short with the chirped pulse) they made be made parallel to high precision by attempt-
ing to null the fringes in the overlap of the spatial mode tails. Stopping down irises to
diffract the beams can be helpful to widen the spatial mode and increase visibility.

The next step is to make sure the focus of the beams fall in the interior of the crystal.
This can be achieved by optimizing the SHG signal of each beam independently. At this
point, allowing both chirped and short pulses to focus in the crystal should yield an
SHG signal visible on a detector. A blue glass filter may be useful to isolate the SHG from
the large fundamental scattered light. It is then a simple matter of further aligning the
beams and tuning the temporal overlap to maximize the signal. Lastly, the unaligned
chirped beam can be brought into alignment by observing spatial interference with it
and the aligned chirped beam (again, with a bandlimiting filter in place).

9.7 Reconstruction Algorithm

9.7.1 FFT Harmonic Inversion

The inversion process for 2DSI is significantly simpler than that required for FROG, or
even SPIDER. The only information we need to extract from the 2D interferogram is
the phase of the fringes along the direction of the scan delay (i.e. the vertical direc-
tion in Figure 9-3). Precise quantitative determination of the fringe phase, and thus the
group delay, at each wavelength, can be obtained in one of several ways. The most di-
rect method of extracting the fringe phases is to simply fit a cosine to the fringe at each
wavelength. While this approach is potentially accurate, it is relatively slow and will not
always converge in the presence of noise.

If the fringe period is known exactly, the phase can be very effectively recovered using
a 2D variation of the Takada algorithm [107], analogously to what is done in SEA-SPIDER
[101]. However, this would require having a calibrated scan. It would complicate the
experiment to require the scan to be known and linear, necessitating either feedback
control or accurate measurement of the mirror displacement and linearization via signal
processing.

Fortunately, the fact that no information is encoded in each fringe other than the
spectral group delay means that we can use simpler reconstruction algorithms. In essence,
2DSI reconstruction is an issue of very simple single-term harmonic inversion [108] (i.e.
characterization of an unknown sinusoid from a time series) rather than the decoding
of a phase modulated known carrier typical of other shearing methods. In fact, any har-
monic inversion algorithm should work well to decode a 2DSI signal, especially one
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with interference from the fundamental or SHG signals, though in general this would
be overkill.

An simple, computationally efficient and direct way to access the fringe phase is to
compute a series of 1D FFTs along the fringe axis. According to (2), the fringes generate
well-separated sidebands in the continuous Fourier domain (see Figure 9-4) and their
phase angle represents the spectral group delay term in (1). However, depending on the
length of the scan and how close it is to a multiple of the fringe period, windowing effects
may broaden the sidebands such that they and the central DC term interfere, perturbing
the phase. This can be effectively dealt with by applying a windowing function to elim-
inate the broadening. We have empirically found a hamming window to perform quite
well if the number of fringes initially visible is at least three. This method comes with
the disadvantage of throwing away information at the edges of the scan, however, which
will necessarily reduce the SNR of the measurement. Nonetheless, we mention it as it is
by far the simplest approach to take, and will work in virtually any situation.

In practice, fortunately, windowing isn’t necessary so long as a sufficient number
of fringes are observed. Because we are actually measuring group delay, any constant
offset is meaningless, which mitigates the effects of windowing. The worst-case relative
error in the recovered pulse spectral phase φrec can be shown (see Appendix A) to be
approximately limited by

|εr (ω)| ≤ ∆ν

n +∆ν , (9.4)

where n is the index of the FT component (the harmonic number), ∆ν is the difference
in frequency between the fringe and the harmonic, normalized relative to the funda-
mental, such that the worst case scenario is ∆ν = 0.5. As can be seen, the error will be
relatively small if the fringe frequency is close to the FFT harmonic, or if n is large. As
a rule of thumb, so long as three or more fringes are visible, or the scan length is within
10% of the fringe period, the worst possible error will be no more than a few percent and
windowing will not be necessary.

It is often advisable to filter in the wavelength domain to suppress noise outside the
measurement time window. This filtering can be efficiently combined with the recon-
struction by computing a 2D FFT of the interferogram, and selecting a subset of the
single line of points representing the 2D sideband within the shear Nyquist limit. Wave-
length domain filtering is especially important when the detector is significantly over-
sampling the spectrum.

9.7.2 Finite Difference Inversion

Having determined the phase of the fringe at each wavelength, multiplying by the shear
yields the finite difference of the spectral phase, as shown in (9.2). The final step, then, is
to compute the spectral phase of the measured pulse from these finite differences. This
step is common to all spectral shearing methods, and has been discussed elsewhere in
the literature.

The most straightforward way is to simply treat the finite differences as proportional
to the spectral group delay, numerically integrating them using standard methods and
accepting the O(Ω2) error. However, this does not result in the most accurate measure-
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ment possible, as the truncation error due to the finite difference is actually reversible.
One can regard a finite difference as approximating the continuous derivative operator
with a two term discrete time FIR filter. The amplitude transfer function of this effective
FIR filter is sinusoidal in the pseudotime domain, peaking at half the inverse period of
the finite difference (half the shear Nyquist rate). Thus, it underestimates the magni-
tude of phase oscillations, with the underestimation increasing as the oscillation period
decreases. In terms of pulse reconstruction, this means that the amplitude of satellite
pulses will be underestimated the further away they are from the main pulse.

A rigorous approach to the phase reconstruction is to compute the inverse of the fi-
nite difference operation, yielding the phase without any errors other than those caused
by noise. To do so, the data must first be antialiased by filtering out all ω-domain oscil-
lations with a period below Ω. Then, a sinc interpolation can be used to compute the
fringe phase φ on a regular grid of points spaced by Ω. A simple cumulative sum will
then yield the spectral phase of the pulse. It may seem that this approach is not optimal
in terms of noise performance, as the data will be concatenated at a lower resolution
than that provided by the spectrometer, seemingly throwing out data points that are
being skipped over. However, the antialiasing filter step provides the averaging in this
case. By suppressing all noise beyond the shear’s Nyquist limit, the final filtered phase
data will be made internally consistent such that the concatenation operation will yield
the same result regardless of the starting point.

9.8 Design Considerations

The construction and alignment of 2DSI presents no challenges beyond that required for
any Michelson interferometer and sum frequency generation. The experimental setup
is essentially the same as a conventional SPIDER, with the main differences being the
location of the dispersion and the addition of motion control to one delay stage. Care
should be taken to ensure relative collinearity of the chirped beams with respect to each
other. Fortunately, any deviation from this should not result in a spurious spectral phase,
as discussed in Section 9.3. In fact, all conceivable misalignments, to the best of our
knowledge, will simply result in attenuation of signal, not errors.

When engineering a 2DSI setup, there are essentially six design issues that must be
decided:

1. How much shearΩ to use

2. How far to scan and how linear it must be made

3. How much dispersion D2 to use for chirping

4. How often to measure the spectrum during the scan

5. The required spectrometer resolution

6. The optimal nonlinear crystal thickness
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These six issues are not independent, and are all determined by the bandwidth and
temporal extent T of the measurement. All but 2 apply to all other spectral shearing
methods, as well. Each is discussed individually in the following subsection.

9.8.1 Shear Frequency

The shear frequency ultimately becomes the “sampling period” of the phase in the spec-
tral domain, and most of the other parameters can be derived from it. By the Shannon
sampling theorem, this determines the temporal window over which we can reliably
measure,

T ≤ 2π

Ω
(9.5)

We will refer to this time period as the shear’s Nyquist duration. While it may be tempt-
ing to simply pick a shear sufficient to include a region of interest, such as the main
pulse, this is not sufficient. Any satellite pulses or pedestal structure will still be mea-
sured, but will be aliased into our chosen temporal window, resulting in errors. Thus, the
shear must be chosen so as to allow resolution of all spectral features. Moreover, satel-
lite pulses which may seem negligible can have significant effects when aliased onto the
main pulse, due to the fact that aliases add in field. Our numerical simulations have
shown that a satellite pulse with an intensity of only 2% of the main pulse can change
the FWHM of the main pulse by up to 5.5% should it be aliased on top of it.

The required temporal measurement window T is not known a priori, by definition,
in a pulse that we are seeking to characterize. It is tempting to simply conclude the sam-
pling was sufficient by taking a measurement and verifying that the reconstruction is
well contained with the time window. However, the nature of aliasing is that once sam-
pling occurs, one cannot tell the difference between correctly or insufficiently sampled
signals. The only reliable way to assure that the sampling rate is sufficient is to take mea-
surements at a series of decreasing shears, and verify that the measurements converge
to required precision.

In practice, for sub-two-cycle pulses produced by oscillators with dispersion com-
pensating mirrors, we have found that a shear of around 4-âĂŞ5 THz is required to suffi-
ciently resolve the satellite pulses and pedestal. Unfortunately, this appears to be inde-
pendent of the final pulse bandwidth, as one would expect given that the mechanisms
for creating them are independent of bandwidth.

9.8.2 Chirping Dispersion

The signal of the final measurement is inversely proportional to the amount of dis-
persion used to create the quasi-CW beams, and thus the chirp of the ancillary pulses
should be the minimal amount required to result in an accurate measurement. Over-
chirping results in an unnecessarily weak signal, and under-chirping results in a com-
plicated blurring of the measurement in the spectral domain as the upconversion occurs
with a range of interacting wavelengths. Having determined the required spectral res-
olution with the shear, the chirping should be selected such that the associated blur is
smaller than this resolution.
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In the limit of large chirping (which is a prerequisite, at any rate) such that the dis-
persed pulse width is much larger than the original short pulse, the change ∆ωcw in the
chirped pulse’s instantaneous frequency over the temporal measurement window T is
given by ∆ωcw ≈ T /D2. We require that the chirped pulse’s instantaneous frequency
does not change by more than the shear over the entire temporal window, so ∆ωcw <Ω.
In light of (9.5), this implies that we must choose

D2 ≥ 2π

Ω2
. (9.6)

For example, if 5 THz of shear is used, the dispersion required is at least 80,000 fs2. To
give a sense of scale, this is the GDD provided by roughly 40 cm of SF11 glass. This is
quite a bit of dispersion, and will significantly impair the signal power.

However, equation (9.6) presumes that we care about properly measuring the field
over the entire temporal window. In most cases, we only care about accurately mea-
suring a main pulse. (This is consistent with our previous statement that all satellite
structure must be resolved; while we may not be interested in the accurate measure-
ment of satellite pulses, we still must ensure that they do not alias.) If a well-separated
satellite pulse sees shifted local frequencies of the chirped pulses, it will simply result in
a local error in the reconstruction of that feature in proportion. Thus, a more reason-
able criterion is simply for the frequency of the CW beam to change by no more than the
shear over the temporal extent of the main pulse. Taking this width to be Tp , this gives

D2 ≥
Tp

Ω
. (9.7)

Since the optimal shear cannot be known a priori (as explained above) neither can the
dispersion be determined without knowing the temporal extent of the pulse, exactly the
thing we seek to measure. Ideally, one would iteratively increase the chirping as with the
shear, until the measurement converged to some satisfactory precision. However, this
is generally not feasible, as variable sources of dispersion with wide variability are not
easily found and would be expensive regardless. As such, the chirp will have to be cho-
sen somewhat conservatively when the 2DSI system is built, with the worst-case pulse
width in mind and a conservative estimate for the smallest shear likely to be used. A
safe configuration for a few-cycle laser can be found by assuming a shear of 5 THz, and
a pulse width of no more than 25 fs, yielding a dispersion of 5000 fs2. This is a small
enough amount that it can be provided by the cube beamsplitter used in the chirped
beam interferometer (as in Figure 9-2).

9.8.3 Delay Scan Length

The scan must be long enough such that the sidebands illustrated in Figure 9-4 are well
separated from the central DC peak. This distance will vary depending on whether or
not we are performing windowing, and how accurately the scan can be matched to the
fringe period. In general, one will be fine as long as at least three fringes are visible, as
derived in Section 9.7. Beyond this consideration, the length of the scan actually does
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not matter. This implies scan lengths on the order of a micron or two, at most, allowing
very stable short-throw piezoelectric stages to be used, and enabling high scan rates
limited only by signal levels. In our setup, we have been able to achieve scan rates of
several Hertz, limited by the interface speed of our piezo controller.

9.8.4 Scan Sample Rate

The number of points over which the scan is sampled is largely irrelevant so long as
they are sufficiently sampled. Beyond that, doubling the number of samples but halving
the integration time of each will result in identical measurements. The only thing that
matters is the total measurement time. The exception to this is if the measurement is
limited by readout noise, in which case keeping the samples to a minimum is advised.
In such a situation, it is actually possible to get by with only four measurements .

Otherwise, a rate high enough to yield a human-readable spectrogram can be useful,
such as that shown in Figure 9-3. This allows the user to visually gauge the functioning
of both the laser and the 2DSI system.

9.8.5 Spectrometer Resolution

The required spectrometer resolution is simply that consistent with the sampling rate
set by the shear. Any more will only result in excess measurement noise. Of course, the
spectrometer resolution is not a readily changed variable, so we recommend choosing a
spectrometer with a resolution of at least 2 THz, to ensure the apparatus can be used to
measure any reasonable time-bandwidth product.

9.8.6 Nonlinear Crystal Thickness

Thanks to the phase encoding inherent to spectral shearing, the bandwidth of the non-
linear crystal only affects the measurement from a signal-to-noise standpoint. The uni-
formity of the upconversion is thus not an issue, and the ideal crystal is such that the
minimum conversion efficiency is maximized. In most cases, this entails choosing the
crystal angle that maximizes the minimum conversion over the expected bandwidth,
regardless of the resulting variation of efficiency across the spectrum.

As mentioned earlier, a unique aspect of spectral shearing interferometry is that the
nonlinear operation is between a signal with high bandwidth (the pulse under test) and
one which is nearly monochromatic (the chirped beams). This allows one to take ad-
vantage of the inherent asymmetry in Type II upconversion, wherein one polarization
will have greater bandwidth than the other. In the case of BBO, the dispersion works
especially favorably for Type II upconversion in the NIR, such that bandwidths exceed-
ing an octave can be efficiently upconverted with crystals of reasonable thickness. This,
combined with the natural noise resilience of spectral shearing, helps to make it up for
the relatively low optical efficiency of SPIDER methods. To optimize the conversion ef-
ficiency, a full non-collinear phase matching curve must be considered for the specific
wavelength ranges to be used. An example of such a curve is shown in Figure 9-5.
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9.9 Sensitivity to Noise

As illustrated in Figure 9-4, the sidebands in 2DSI are spectrally compact. The fringe is
simply an impulsive line in the 2D Fourier domain, the sharpness of which is limited
by the scan length. This spectral compactness means that the bulk of any noise will
not interfere with the signal, maximizing SNR. A significant amount of noise immunity
is gained by isolating the sideband assuming the noise is uniformly distributed over all
frequencies. Furthermore, the information is contained in the phase of the sideband,
not its intensity, further reducing the sensitivity to noise.

An important question to answer is whether or not 2DSI’s need to scan over a delay
renders it more or less sensitive to noise than standard SPIDER. Intuitively, one might
expect that for a given total integration time, they would be comparable in light of our
previous assertion that 2DSI simply takes the SPIDER sidebands and moves them in a
new direction. To illustrate the noise immunity of 2DSI (and in fact spectral shearing in
general) we simulated the measurement of a pulse with a rectangular spectrum of 300
THz bandwidth, whose transform-limited pulse width is roughly 3 fs. Additive gaussian
noise was simulated, with a SNR of 0.5. The SPIDER method was simulated using the
same noise source, with an integration time equal to the total measurement time of the
2DSI trace. The SPIDER calibration method used was that of [94], where a calibration
measurement with exactly zero shear was assumed to be available that exactly preserved
the delay.

The results are shown in Figure 9-6. For a given measurement time, 2DSI has half
the variance of SPIDER. The difference between the two is entirely due to uncertainty
introduced into the SPIDER calibration by the detector noise. Furthermore, it is appar-
ent from the middle plot in Figure 9-6 that the SPIDER error is predominantly composed
of a second-order term, validating our consideration of the calibration as largely mani-
festing as an effective delay uncertainty. Both methods recover the spectral phase well,
despite the low signal to noise. Note, also, that the 2DSI reconstruction involved no
knowledge of the fringe spacing by the algorithm.

If the SPIDER calibration noise issue is ignored, the two methods perform identi-
cally, regardless of the type of noise used (i.e. additive or shot). This is to be expected,
given that 2DSI simply takes the SPIDER sidebands and moves them into another di-
mension. From a signal processing point of view, a SPIDER measurement is equivalent
to a 2DSI measurement where the upconversion phase is constant and the sidebands
are created by a temporal delay. It is thus to be expected that the two methods would
perform similarly outside of calibration issues.

9.10 Experimental Demonstration

9.10.1 Precision Test

To gauge the relative precision of the method, a few-cycle (5 fs FWHM) pulse from a
prismless Ti:sa laser was measured using a 2DSI setup similar to that shown in Figure 1,
using a shear of 18 THz. The pulse was measured both before and after dispersion by a
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Figure 9-7: (a) Spectrum of 5 fs laser used in test; (b) extracted group delay both with
and without glass slide; (c) Phase of glass slide as measured by 2DSI and as predicted by
known glass dispersion; (d) Net phase delay error in glass dispersion measurement.

one mm fused silica plate, Figure 9-7(b). It is apparent from the spectral GD curves that
the pulse is initially slightly negatively chirped, and the positive dispersion introduced
by the glass plate is evident. The sharp roll-off in the GD below 650 nm is genuine, and
caused by phase distortion from the output coupler. Oscillations in the spectral group
delay, caused by the chirped mirrors, are also clearly visible. Despite these perturbations
in the individual spectra, the oscillations completely cancel in the difference between
the phase of the two measurements, which matches well to that predicted by the known
Sellmeier equations for fused silica, as shown in Figure 9-7(c). In fact, in terms of phase
delay, the 2DSI system measured the glass dispersion to within 30 attoseconds of phase
delay over a bandwidth from 600 to 1000 nm, Figure 9-7(d). This precision was achieved
despite the absolute phase delay of each measurement ranging over more than 40000
as.

While these results suggest that the 2DSI apparatus is capable of precise measure-
ments, they do not rule out the possibility of constant errors occurring that are con-
sistent between measurements. For example, if there were an unknown linear phase
creeping in the measurement somehow such a systematic error would not be evident
from these dispersion measurements.

9.10.2 Accuracy Test

To qualitatively demonstrate the absolute accuracy of the system and rule out the exis-
tence of systematic errors, we recently performed a measurement on an octave span-
ning sub-two-cycle pulse [93, 98] from another unamplified Ti:sapphire oscillator, and
compared the 2DSI measurement to that obtained with a standard IAC (Figure 9-8).

In Figure 9-8(d), we show the reconstructed pulse envelope and phase for the pulse,
measured to have a full width half maximum of 4.9 fs. To our knowledge, this is the
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shortest pulse measured with a spectral shearing method directly from an oscillator (i.e.
without use of an external amplifier). As shown in Figure 9-8(b), the measured IAC and
that predicted by the 2DSI measurement show fairly close agreement. We attribute most
of the difference between the two to band-limiting effects on the IAC, which is not well
suited to measuring a 4.9 fs pulse (note, for example, the lack of symmetry in the IAC
trace). Thus, we do not present this measurement as further evidence of the precision
of 2DSI, as an IAC is not a particularly reliable measurement of fine detail. However, the
fact that the overall pulse widths predicted by both are consistent does suggest that we
are correct in assuming that no appreciable hidden linear phase can occur in 2DSI. This
validates the assertion that 2DSI does not require a separate calibration step. This has
also been corroborated by detailed simulations of the laser cavity in question, which also
predict a 4.9 fs pulse with a large sub-pulse 9 fs away from the peak (see [52] for details).

9.11 Future Work

The geometry of 2DSI is unique in that the pulse to be measured never encounters a
dispersive element, and yet the arrangement is still collinear. Were the spectrometer
replaced by an imaging spectrometer, a spatially resolved 2DSI measurement could be
taken along one axis. Moreover, if a full 2D imaging spectrometer were used, such as
that available with imaging Fourier transform spectroscopy or grisms, one could make
a full 2DSI measurement at a 2D array of points along both transverse axes. By spatially
filtering the chirped beams so that they were spatially coherent, they would provide a
constant phase reference across the beam profile, enabling a full spatiotemporal recon-
struction up to a trivial constant and quadratic spatial phase (focusing). This would
allow for the first self-referenced 3D measurement of few-cycle pulses.

By using a nanostructured stepped mirror, a single-shot version of 2DSI might be im-
plemented. The differential upconversion phase would then be encoded as a function
of space, and the fringe could be read using an imaging spectrometer. This arrange-
ment would result in the mixing of the spatial profile with the fringe, essentially creating
a collinear variation of SEA-SPIDER with a spatially varying zeroth-order phase as op-
posed to linear phase. This could provide similar advantages to SEA-SPIDER, but with
potentially simpler calibration and alignment.

9.12 Summary

Two-dimensional spectral shearing interferometry involves a relatively simple optical
setup with little calibration required, and yet is capable of spectral phase measurements
accurate to within tens of attoseconds of phase delay over octaves of bandwidth. The
lack of dispersion of the pulse to be measured, the absence of delay between the sheared
pulses, and the relaxed spectrometer resolution requirements make 2DSI extremely well
suited for the measurement of wide-bandwidth pulses, including those with potentially
complicated spectral phase.
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Appendix A

Derivation of Worst-Case FFT Harmonic
Inversion Error

We derive the relative error in recovering the phase of a pure cosine fringe by taking the
phase of the dominant FFT component, as discussed in Section 9.7. The FFT will be ap-
proximated by a continuous integral over the space [0,2π], as it is the windowing, not
the discretization, that we are concerned with. We consider a fringe with a frequency
of n +∆ν, where n is an integer, and ∆ν is the deviation from that integer frequency.
In other words, n is the approximate number of complete fringes contained within the
scan, and corresponds to the index of the dominant FFT component we are to consider.
Without loss of generality we will consider a cosine fringe with phase offset φ. The com-
plex value fn of the nth FFT component will be approximately given by the continuous
integral

fn ≈
∫ 2π

0
d x cos[(n +∆ν)x +φ]e−i nx . (A1)

Performing this integral, computing the argument of the complex value and simplifying
the expression gives the extracted fringe phase

φext = arctan
ℑ fn

ℜ fn
(A2)

= arctan

[
n tan[π∆ν+φ]

n +δν
]

(A3)

The above expression gives us the absolute phase recovered from the FFT, which is
proportional to the spectral group delay of the pulse we’re measuring. Since constant
offsets to GD are irrelevent, we are really only concerned with the slope of the relation
between phirec and φ. This is the factor by which fringe phase changes will be magni-
fied. It is thus the relative error in our extracted dispersion at a given wavelength,

εr (ω) = 1− ∂φext

∂φ

∣∣∣∣
ω

(A4)

= 1− n(n +∆ν)sec[π∆ν+φ]2

(n +∆ν)2 +n2 tan[π∆ν+φ(ω)]2
. (A5)
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Since we cannot control the offset of φ, we must consider the worst-case error over all
φ. We thus solve for the stationary point of (A5). This yields the equation

2n∆ν(n +∆ν)(2n +∆ν)sec[π∆ν+φ]2 tan[π∆ν+φ](
(n +∆ν)2 +n2 tan[π∆ν+φ]2

)2 = 0. (A6)

There are multiple roots of (A6), but the one that applies for ∆ν near zero is φ = −π∆ν.
Plugging this solution in (A5) and simplifying gives us a final expression for the worst
case relative measurement error due to the FFT harmonic inversion,

|ε(ω)| ≤ ∆ν

n +∆ν . (A7)
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Appendix B

Newton-Krylov Solver Code

For reference, a copy of the most important parts of the Newton-Krylov MATLAB code
are detailed below.

B.1 Solver

function [Ufinal, converged, Fnorms] = . . .
cavitysolverls(U0, cav, cavfun, tol, maxiter, ngcr, diags)

% CAVITYSOLVERLS Computer steady state solution to NL cavity.
% BFGS. Experiment with Jacobian computation in step function, perhaps averaging
% before and after parameters. Try using striped preconditioner, assuming
% decomposition of such a matrix is O[n^2]. Base
% termination of GCR on direction stabilizing, not length.
% Is there a way to make this
% parallel? (I suppose not, since Krylov spaces are defined in terms of
% matrix powers.) 10

% Initialization and parameters.
a = mean(abs(U0))/10000; % perturbation used in finite difference
s = 1000; % ORTHOMIN restart?
f = cav.f;
n = length(f);
if nargin < 5

maxiter = 10;
elseif nargin < 6 | | ngcr == 0

ngcr = 64; % max GCR iterations 20

autogcr = true;
else

autogcr = false;
end
if nargin < 7

diags = false;
end
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if nargout > 2
Fnorms = zeros(1,2);

end 30

k = 0;
fn = 0;
p = zeros(n, ngcr);
Jp = zeros(n, ngcr);

% *** Newton Iterations. ***
U = U0;
[Ucav, Uout, Jdiag] = cavfun(f, U, cav, ’norm’); fn = fn + 1;
Binv = diag(1./(1 − Jdiag)); 40

BinvF = Binv*U − Binv*Ucav; % what we want to set to zero
F = U − Ucav;
Fnorm = norm(F)/norm(U);
if nargout > 2

Fnorms(1) = Fnorm;
end
kiter = 1;
converg = false;
done = false;

50

% Diagnostics.
if diags

nl = 45;
fprintf([repmat(’=’, 1, nl) ’\n’])
fprintf(’iter\tevals\t|du| (log)\t|F| (log)\n’)
fprintf([repmat(’-’, 1, nl) ’\n’])
fprintf(’%d\t%d\t%f\t%f\n’, k, fn−1, 0, log10(Fnorm))

end

while ~done % *** Newton *** 60

m = 0;
r = −BinvF; % null starting vector
dU = zeros(n,1);
gcrdone = false;
while (m < ngcr) && ~gcrdone, % *** GCR ***

m = m + 1;
kiter = kiter + 1;

p(:,m) = r; % use residual as search direction
70

% Compute Approximate Binv*J*p using finite differences.
d = a/norm(p(:,m));
dUp = d*p(:,m);
Ucavdp = cavfun(f, U + dUp, cav, ’norm’); fn = fn + 1;
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Jp(:,m) = Binv*(p(:,m) + (Ucav − Ucavdp)/d);

% Make the new Jp vector orthogonal to the s most recent Jp vectors.
for j = max(1,m−1−s):m−1,

beta = real(Jp(:,m)’ * Jp(:,j)); % projection
p(:,m) = p(:,m) − beta*p(:,j); % subtract out orthogonal parts 80

Jp(:,m) = Jp(:,m) − beta*Jp(:,j); % “
end

% Make the orthogonal Jp vector of unit length.
Jpnorm = norm(Jp(:,m),2);
Jp(:,m) = Jp(:,m)/Jpnorm;
p(:,m) = p(:,m)/Jpnorm;

% Determine the optimal amount to change x in the p direction
% by projecting r onto Mp. 90

alpha = real(r’ * Jp(:,m));

% Update x and r
dU = dU + alpha*p(:,m);
r = r − alpha*Jp(:,m);

% Automatically terminate.
if autogcr

if abs(alpha)/norm(dU) < Fnorm
gcrdone = true; 100

end
end

% These don’t count, since it’s just for diagnostics.
if nargout > 2

Utest = cavfun(f, U + dU, cav, ’norm’);
Fnorms(kiter) = norm(U + dU − Utest)/norm(U);

end
end % *** GCR ***

110

k = k + 1;
kiter = kiter + 1;

% Do quadratic line search with first three Newton iterates.
b = 2; % distance along line of second point (2 works well)
nF = norm(F);
[Ucav1, Uout, J1] = cavfun(f, U + dU, cav, ’norm’);
Fnorm1 = norm(U + dU − Ucav1);
[Ucav2, Uout, J2] = cavfun(f, U + b*dU, cav, ’norm’);
Fnorm2 = norm(U + b*dU − Ucav2); 120

p2 = polyfit([0 1 b], [nF Fnorm1 Fnorm2], 2);
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rmin = roots(polyder(p2));
[Ucavls, Uout, Jls] = cavfun(f, U + rmin*dU, cav, ’norm’);
Fnormls = norm(U + rmin*dU − Ucavls);
[Fmin, kmin] = min([Fnorm1 Fnorm2 Fnormls]);
dU = take([dU b*dU rmin*dU], kmin);
Ucav = take([Ucav1 Ucav2 Ucavls], kmin);
Jdiag = take([J1, J2, Jls], kmin);
if diags

fprintf(’line search: option %d\n’, kmin) 130

end

% Handle update.
fn = fn + 1; % two could be done completely in parallel, one is diagnostic
U = U + dU;
dUnorm = norm(dU);
%[Ucav, Uout, Jdiag] = cavfun(f, U, cav, ’norm’); fn = fn + 1;
Binv = diag(1./(1 − Jdiag));
BinvF = Binv*U − Binv*Ucav;
F = (U − Ucav); 140

Fnorm = norm(F)/norm(U);

converg = Fnorm < tol;
done = converg | | (k > maxiter);

if nargout > 2
Fnorms(kiter) = Fnorm;

end

% Output 150

if diags
fprintf(’%d\t%d\t%f\t%f\n’, k, fn−1, log10(dUnorm), log10(Fnorm))

end
end % *** Newton ***
if diags

fprintf([repmat(’=’, 1, nl) ’\n’])
end

if nargout > 1
if converg 160

converged = fn;
else

converged = 0;
end

end

Ufinal = U;
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B.2 Cavity round trip function

function [Ucav, Uout, Jdiag] = ringcavitystep(f, Uin, cavparams, norm, diag)
% RINGCAVITYSTEP Propagate soliton-like laser cavity for m steps.
% Assumes length(ts) is an even number (best if a power of 2).
% Optionally returns the diagonal of the Jacobian in Jdiag, for use in
% preconditioning solvers.
%
% This is a fast version of the solitoncavityfd function that is meant to
% be called from other functions, notably cavnewtonfd. It uses column
% vectors and only computes one step.

10

% Cavity parameters. %
Harm1 = cavparams.Harm1; % Linear arm transfer function
Harm2 = cavparams.Harm2; % “”
g0 = cavparams.g0re; % Small signal gain amplitude
gainphi = cavparams.g0im; % Small signal gain phase
TR = cavparams.TR; % cavity roundtrip time (fs from MHz)
Psat = cavparams.Psat; % gain saturation power (W)
q = cavparams.q; % saturable absorber gain per RT
Isat = cavparams.Isat; % saturation intensity of absorber (W)
oc = cavparams.l; % output coupler gain spectrum 20

if ~isfield(cavparams, ’nstep’)
nstep = 32;

else
nstep = cavparams.nstep;

end
if nargin > 3

if strcmp(norm, ’norm’)
normed = true;

else
normed = false; 30

end
else

normed = false;
end
if nargin < 5

diag = false;
end

% Memory allocation and precalculations. %
n = length(f); 40

df = abs(f(2) − f(1));
dt = 1/df/n;
A = dt/TR; % average power integral scaling
nlparams.d = cavparams.d; % SPM coefficient of nl material (1/W)
nlparams.phi = gainphi;
nlparams.Isat = cavparams.Isat;
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nlparams.q = cavparams.q;

% Calculation. %
50

% Arm 1
U = Harm1.*Uin;

% Nonlinear gain material with SA
P = real(U’*U)*A/n;
nlparams.g0 = g0/(1 + P/Psat); % ss gain for RT
U = nlpropgen(U, nlparams, floor(nstep), diag);

% Arm 2
U = Harm2.*U; 60

% OC
if nargout > 1

Uout = (1 − abs(oc).^2).*U;
end
U = oc.*U;

% Phase normalization and output.
if normed

[Ucav, dphi] = altphasenorm(f, Uin, U); 70

else
Ucav = U;

end

% Compute approximate Jacobian diagonal.
if nargout >2

u = ifft(U);
Iu = real(u.*conj(u)); % intensity (W)
dnl = mean(exp(−1j*cavparams.d*Iu));
sa = mean(exp(q./(1 + Iu/Isat))); 80

Jdiag = dnl .* sa .* oc .* Harm1 .* Harm2 .* . . .
exp(g0/(1 + P/Psat) + 1j*gainphi);

if normed
Jdiag = Jdiag .* exp(1j*dphi);

end
end

B.2.1 Nonlinear propagation

function Uout = nlpropgen(Uin, nlparams, m, diag)
% nlpropfd Propagate NLSE through material broken into m steps.

% Input %
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if nargin < 4
diag = false;

end

% Cavity parameters %
g0 = nlparams.g0; % total small signal gain 10

phi = nlparams.phi;
d = nlparams.d; % SPM coefficient (1/W)
q = nlparams.q; % SA
Isat = nlparams.Isat;

% Memory allocation and precalculations %
%w = 2*pi*f;
H = exp((g0 + 1j*phi)/m);
H2 = exp((g0 + 1j*phi)/m/2);

20

% Calculate m steps. %
% Initial frequency domain:
U = H2.*Uin;
for k = 1:m,

% Time domain:
u = ifft(U);
Iu = real(u .* conj(u)); % intensity (W)
u = exp(q./(1 + Iu/Isat)/m + 1j*d*Iu/m) .* u;
U = fft(u);

30

% Output:
if diag

fprintf(’nlprop: %d/%d, SPM: %f, cumSPM: %f\n’, k, m, max(d/m*Iu), max(d*Iu));
end

% Frequency domain:
if k == m

Uout = H2.*U;
else

U = H.*U; 40

end
end

B.2.2 Phase normalization

function [Uout, dphiout] = altphasenorm(f, Uin, U)
% Minimize the change in phase between Uin and Uout by adding trivial
% phases to U. The idea is that this forces the cavity Jacobian to be as
% close to the identity as possible, enhancing convergence.

phiUin = unwrap(angle(Uin));
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phiU = unwrap(angle(U));
weff = abs(Uin).*abs(U);
Weff = sum(weff);
omegaWeff = sum(weff.*f); 10

omega2Weff = sum(weff.*f.^2);
M = [Weff omegaWeff; omegaWeff omega2Weff]; % always a constant
phierr0 = phiU − phiUin;
b = [sum(phierr0.*weff); sum(phierr0.*weff.*f)];
x = M\b;
phi0 = x(1);
phi1 = x(2);
dphi = phi0 + phi1*f;
Uout = U.*exp(−1j*dphi);

20

if nargout > 1
dphiout = −dphi;

end

B.3 Preconditioner

function d = cavityprecond(f, U, cav)
% CAVITYPRECOND Compute diagonal preconditioner
% Compute diagonal preconditioner for the cavity given by cav, around the
% point given by the Fourier component vector U, at the frequencies given
% in f.
%
% It would be slightly more efficient to compute this in
% solitoncavitystep, but is put here for the sake of

n = length(U); 10

dt = 1/f(2)/n;
w = 2∗pi∗f;
u = ifft(U);
oc = sqrt(cav.l);
P = (u‚*u)*dt/cav.TR;
Iu = real(u .∗ conj(u));
dgsp = cav.g0∗lorentznorm(f, cav.Wg)/(1 + P/cav.Psat);
phinet = −j∗(cav.D2net∗w.^2/2 + cav.D3net∗w.^3/6);
d = oc.∗exp(mean(j∗cav.d∗Iu + cav.q./(1 + Iu/cav.Isat)) + phinet + dgsp);
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Appendix C

PDR Gradient Code

Here, we provide sample code for computing the analytic gradient of the PDR from gra-
dients of group delay, as discussed in Chapter 4. We believe computing the GD and then
converting to PDR is the most reliable way to implement PDR-based optimization.

C.1 Single mirror PDR Error

function [Z, Zgrad] = mirrorpdrerr(. . .
ds, ks, n0, ns, dns, theta, pol, gdgoal0)

% Computes error energy for reflection for mirror ds is the *square
% root* of the thickness vector. This ensures that we cannot have a
% negative layer.

c = .2997924580; % um/fs

nk = length(ks);
n1 = length(ds)/2; 10

% Compute matrix which solves for floating phases
weff = ones(size(ks));
Weff = sum(weff);
omega = c*ks;
omegaWeff = sum(weff.*omega);
omega2Weff = sum(weff.*omega.^2);
M = [Weff omegaWeff; omegaWeff omega2Weff]; % always a constant
Minvt = inv(M).’;

20

gdgoal = gdgoal0 − sum(weff.*gdgoal0)/Weff;
c = .2997924580; % um/fs
phigoal = c*cumtrapz(ks, gdgoal);

% Compute GD and GD gradients
[r, gd, Jr, Jgd] = stackgdgradmex(ks, ds.^2, n0, ns, dns, theta, pol);

147



gd = gd − mean(gd);

rserr = 1 − r;
30

phi = cumtrapz(omega, gd);
phierr0 = phi − phigoal;
b = [sum(phierr0.*weff), sum(phierr0.*weff.*omega)];
x = b*Minvt;
phi0 = x(1);
phi1 = x(2);
phierr = phierr0 − phi0 − phi1*omega;

Z = sum(weff.*phierr.^2) + sum(rserr);
40

Jphi = cumtrapz(omega, Jgd, 2);
bgrad = [Jphi*weff.’, Jphi*(weff.*omega).’];
xgrad = bgrad*Minvt;
phi0grad = xgrad(:,1);
phi1grad = xgrad(:,2);
Jphierr = Jphi − phi0grad*ones(1,nk) − phi1grad*omega;

gradphi = Jphierr*(weff.*phierr).’
gradr = sum(Jr,2);
Zgrad = 2*ds.*(gradphi + gradr); 50
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Appendix D

Thin Film Gradient Code

This is the code which is central to dispersion compensating mirror optimization, where
the group delay and group delay gradient is computed at a series of wavelengths.

D.1 Stack GD Gradient MEX

/*=================================================================
*
* stackgdgradmex.c
*
* Requires a C99 compiler.
*
*=================================================================*/

#include <math.h> 10

#include <complex.h>
#include <string.h>
#include "mex.h"

/* Input Arguments */
#define KS IN prhs[0]
#define DS IN prhs[1]
#define N0 IN prhs[2]
#define NS IN prhs[3] 20

#define DNS IN prhs[4]
#define THETA IN prhs[5]
#define POL IN prhs[6]

/* Output Arguments */
#define R2 OUT plhs[0]
#define GD OUT plhs[1]
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#define R2GRAD OUT plhs[2]
#define GDGRAD OUT plhs[3]

30

/* Definitions */
#define C 0.2997924580

/* Core computation routine */
static void stackgdgrad(

const int nk,
const int n,
const double ks[ ],
const double ds[ ], 40

const double n0,
const double ns[ ],
const double dns[ ],
const double theta,
const int isTM,

double r2[ ],
double gd[ ],
double r2grad[ ],
double gdgrad[ ]) 50

{
/* Variables */
int dx, kx;
double neffs[3], dneffs[3], dterms[3], kneffs[3];
double knefflay[n+1];
complex dTdkgradterm, dTdkgradmat1[n+1], dTdkgradmat2[n+1];
double pps[4], pms[4], dps[4];
const int lastx = (n+1) & 1; /* last material index index */
complex ephi;
complex Dlay[n+1], Tlay1[n+1], Tlay2[n+1], dTlay1[n+1], dTlay2[n+1]; 60

complex Tfor1[n+1], Tfor2[n+1], dTfor1[n+1], dTfor2[n+1];
complex Trev1[n+1], Trev2[n+1], dTrev1[n+1], dTrev2[n+1];
complex dTgradfor1[n], dTgradfor2[n];
complex T1, T2;
complex R, dR;
double r, dr, dphi;
complex Rgrad, dRgrad;

/* Common terms and offset vectors. */
const double n0sintheta2 = (n0*sin(theta))*(n0*sin(theta)); 70

const double *nsofk = ns, *dnsofk = dns; /* offset index pointers */
double *r2gradofk = r2grad, *gdgradofk = gdgrad;

/* Initialization. */
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dTlay1[n] = 0; dTlay2[n] = 0;
dTrev1[n] = 0; dTrev2[n] = 0;

/*
* Loop over all wavenumbers.
*/ 80

for (kx = 0; kx < nk; kx++)
{

/*
* Precalculate all material parameters.
* index variables: [n1, n2, nsub]
* p variables: [p01, p12, p21, p2sub]
*/

{
register int j;
double pTEs[4], dpTEs[4]; 90

/* Calculate effective indices and common expressions. */
for (j = 0; j < 3; j++)
{

neffs[j] = sqrt(nsofk[j]*nsofk[j] − n0sintheta2);
dneffs[j] = nsofk[j]*dnsofk[j]/neffs[j];
dterms[j] = neffs[j] + ks[kx]*dneffs[j];
kneffs[j] = ks[kx]*neffs[j];

}
/* Calculate pTEs (needed regardless of polarization). */ 100

pTEs[0] = n0*cos(theta)/neffs[0];
pTEs[1] = neffs[0]/neffs[1];
pTEs[2] = 1/pTEs[1];
pTEs[3] = neffs[lastx]/neffs[2];
dpTEs[0] = −pTEs[0]*dneffs[0]/neffs[0];
dpTEs[1] = (dneffs[0] − pTEs[1]*dneffs[1])/neffs[1];
dpTEs[2] = (dneffs[1] − pTEs[2]*dneffs[0])/neffs[0];
dpTEs[3] = (dneffs[lastx] − pTEs[3]*dneffs[2])/neffs[2];

/* Calculate TM or TE as needed. */ 110

if (isTM) /* TM */
{

double ps, p0s[4], dp0s[4];

/* Calculate pTM from p0 (normal incidence) and pTE. */
p0s[0] = n0/nsofk[0];
p0s[1] = nsofk[0]/nsofk[1];
p0s[2] = 1/p0s[1];
p0s[3] = nsofk[lastx]/nsofk[2];
dp0s[0] = −p0s[0]*dnsofk[0]/nsofk[0]; 120

dp0s[1] = (dnsofk[0] − p0s[1]*dnsofk[1])/nsofk[1];
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dp0s[2] = (dnsofk[1] − p0s[2]*dnsofk[0])/nsofk[0];
dp0s[3] = (dnsofk[lastx] − p0s[3]*dnsofk[2])/nsofk[2];
for (j = 0; j < 4; j++)
{

ps = pTEs[j]/(p0s[j]*p0s[j]);
dps[j] = (p0s[j]*dpTEs[j]−2*pTEs[j]*dp0s[j])/(p0s[j]*p0s[j]*p0s[j]);
pps[j] = 1 + ps;
pms[j] = 1 − ps;

} 130

}
else // TE
{

for (j = 0; j < 4; j++)
{

dps[j] = dpTEs[j];
pps[j] = 1 + pTEs[j];
pms[j] = 1 − pTEs[j];

}
} 140

}

/*
* Precalculate all layer matrices.
*/

{
int nx, px; /* material data indices */

for (dx = 0; dx < n; dx++)
{ 150

/* Select appropriate material parameter index */
if (dx & 1) { /* even layer (mod(dx,2) == 1) */

nx = 1;
px = 1; }

else if (dx == 0) { /* first layer */
nx = 0;
px = 0; }

else { /* odd layer */
nx = 0;
px = 2; 160

}

/* ephi = exp(I*d*k*neff)/2 */
ephi = (cos(ds[dx]*kneffs[nx]) − I*sin(ds[dx]*kneffs[nx]))/2;
Dlay[dx] = −I*ds[dx]*dterms[nx];
Tlay1[dx] = ephi*pps[px];
Tlay2[dx] = ephi*pms[px];
dTlay1[dx] = Dlay[dx]*Tlay1[dx] + ephi*dps[px];
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dTlay2[dx] = Dlay[dx]*Tlay2[dx] − ephi*dps[px];
knefflay[dx] = −kneffs[nx]; 170

dTdkgradterm = −(ds[dx]*kneffs[nx]+I)*(neffs[nx]+ks[kx]*dneffs[nx]);
dTdkgradmat1[dx] = dTdkgradterm − I*kneffs[nx]*dps[px]/pps[px];
dTdkgradmat2[dx] = dTdkgradterm + I*kneffs[nx]*dps[px]/pms[px];

}
}
/* Propagation into substrate matrix. */
Tlay1[n] = pps[3]/2;
Tlay2[n] = pms[3]/2;
dTlay1[n] = dps[3]/2;
dTlay2[n] = −dps[3]/2; 180

/*
* Step forward through structure, calculating forward matrices.
*/

Tfor1[0] = Tlay1[0]; Tfor2[0] = Tlay2[0];
dTfor1[0] = dTlay1[0]; dTfor2[0] = dTlay2[0];
dTgradfor1[0] = (1/ds[0] + I*knefflay[0])*dTfor1[0];
dTgradfor2[0] = (1/ds[0] + I*knefflay[0])*dTfor2[0];
for (dx = 1; dx < n+1; dx++)
{ 190

/* Calculate Lth forward matrix. */
Tfor1[dx] = Tlay1[dx]*Tfor1[dx−1] + Tlay2[dx]*conj(Tfor2[dx−1]);
Tfor2[dx] = Tlay1[dx]*Tfor2[dx−1] + Tlay2[dx]*conj(Tfor1[dx−1]);

builtin prefetch(Tlay1+dx+1);
builtin prefetch(Tlay2+dx+1);

/* Calculate total k derivative of the Lth forward T matrix. */
dTfor1[dx] = dTlay1[dx]*Tfor1[dx−1] + dTlay2[dx]*conj(Tfor2[dx−1]) +

Tlay1[dx]*dTfor1[dx−1] + Tlay2[dx]*conj(dTfor2[dx−1]); 200

dTfor2[dx] = dTlay1[dx]*Tfor2[dx−1] + dTlay2[dx]*conj(Tfor1[dx−1]) +
Tlay1[dx]*dTfor2[dx−1] + Tlay2[dx]*conj(dTfor1[dx−1]);

}

/*
* Step backward through structure, calculating reverse matrices.
*/

Trev1[n] = Tlay1[n]; Trev2[n] = Tlay2[n];
dTrev1[n] = dTlay1[n]; dTrev2[n] = dTlay2[n];
for (dx = n−1; dx > 0; dx−−) 210

{
builtin prefetch(Trev1+dx−1,1);
builtin prefetch(Trev2+dx−1,1);
builtin prefetch(Tlay1+dx−1);
builtin prefetch(Tlay2+dx−1);
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Trev1[dx] = Trev1[dx+1]*Tlay1[dx] + Trev2[dx+1]*conj(Tlay2[dx]);
Trev2[dx] = Trev1[dx+1]*Tlay2[dx] + Trev2[dx+1]*conj(Tlay1[dx]);

dTrev1[dx] = dTrev1[dx+1]*Tlay1[dx] + dTrev2[dx+1]*conj(Tlay2[dx]) + 220

Trev1[dx+1]*dTlay1[dx] + Trev2[dx+1]*conj(dTlay2[dx]);
dTrev2[dx] = dTrev1[dx+1]*Tlay2[dx] + dTrev2[dx+1]*conj(Tlay1[dx]) +

Trev1[dx+1]*dTlay2[dx] + Trev2[dx+1]*conj(dTlay1[dx]);
}

/*
* Calculate full stack scalars at the current wavelength.
*/

T1 = Tfor1[n];
T2 = Tfor2[n]; 230

R = −T2/T1;
r = cabs(R);
r2[kx] = r*r;
dR = (T2*dTfor1[n] − T1*dTfor2[n])/(T1*T1);
dr = (creal(dR)*creal(R) + cimag(dR)*cimag(R))/r;
dphi = (cimag(dR)*creal(R) − creal(dR)*cimag(R))/r2[kx];
gd[kx] = dphi/C;

/*
* Step through structure, calculating gradients and output. 240

*/
{

complex dTdkgradfor1, dTdkgradfor2;
complex Tgrad1, Tgrad2, dTgrad1, dTgrad2;
double rgrad, phigrad, dphigrad;

for (dx = 0; dx < n; dx++)
{

Tgrad1 = I*knefflay[dx]*
(Trev1[dx+1]*Tfor1[dx] − Trev2[dx+1]*conj(Tfor2[dx])); 250

Tgrad2 = I*knefflay[dx]*
(Trev1[dx+1]*Tfor2[dx] − Trev2[dx+1]*conj(Tfor1[dx]));

/* if (dx > 0) */
if ( builtin expect(!!(dx > 0), 1))
{

dTdkgradfor1 = dTdkgradmat1[dx]*Tlay1[dx]*Tfor1[dx−1] +
dTdkgradmat2[dx]*Tlay2[dx]*conj(Tfor2[dx−1]);

dTdkgradfor1 += I*knefflay[dx]*(Tlay1[dx]*dTfor1[dx−1] +
Tlay2[dx]*conj(dTfor2[dx−1])); 260

dTdkgradfor2 = dTdkgradmat1[dx]*Tlay1[dx]*Tfor2[dx−1] +
dTdkgradmat2[dx]*Tlay2[dx]*conj(Tfor1[dx−1]);
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dTdkgradfor2 += I*knefflay[dx]*(Tlay1[dx]*dTfor2[dx−1] +
Tlay2[dx]*conj(dTfor1[dx−1]));

}
else
{

dTdkgradfor1 = dTdkgradmat1[dx]*Tlay1[dx];
dTdkgradfor2 = dTdkgradmat2[dx]*Tlay2[dx];

} 270

builtin prefetch(r2gradofk+dx, 1, 1);
builtin prefetch(gdgradofk+dx, 1, 1);

dTgrad1 = Trev1[dx+1]*dTdkgradfor1 + Trev2[dx+1]*conj(dTdkgradfor2);
dTgrad2 = Trev1[dx+1]*dTdkgradfor2 + Trev2[dx+1]*conj(dTdkgradfor1);
dTgrad1 += I*knefflay[dx]*(dTrev1[dx+1]*Tfor1[dx] −
dTrev2[dx+1]*conj(Tfor2[dx]));
dTgrad2 += I*knefflay[dx]*(dTrev1[dx+1]*Tfor2[dx] −
dTrev2[dx+1]*conj(Tfor1[dx])); 280

/* Final gradients */
Rgrad = −(R*Tgrad1 + Tgrad2)/T1;
rgrad = (creal(Rgrad)*creal(R) + cimag(Rgrad)*cimag(R))/r;
r2gradofk[dx] = 2*r*rgrad;
dRgrad = (Tgrad2*dTfor1[n] + Tgrad1*dTfor2[n] +
R*(2*Tgrad1*dTfor1[n] − T1*dTgrad1) − T1*dTgrad2)/(T1*T1);
phigrad = (cimag(Rgrad)*creal(R) − creal(Rgrad)*cimag(R))/r2[kx];
dphigrad = (cimag(dRgrad)*creal(R) − creal(dRgrad)*cimag(R))/r2[kx] −

(phigrad*dr + rgrad*dphi)/r; 290

gdgradofk[dx] = dphigrad/C;
} /* gradient for loop */

} /* gradient scope */

/* Update offset vectors for next wavenumber. */
nsofk += 3;
dnsofk += 3;
r2gradofk += n;
gdgradofk += n;

} 300

return;
}

/* MEX function gateway routine. */
void mexFunction(

int nlhs, mxArray* plhs[ ],
int nrhs, const mxArray* prhs[ ])
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{ 310

/* Check dimensions. */
int nk = mxGetN(KS IN);
int n = mxGetM(DS IN);

#ifdef DEBUG
/* Check for proper number of arguments. */
if (nrhs < 7)
{

mexErrMsgTxt("stackgdfast2mex: 7 input arguments required.");
} 320

else if (nlhs != 4)
{

mexErrMsgTxt("stackgdfast2mex: 4 output arguments required.");
}

/* Check for correct input dimensions. */
int mk = mxGetM(KS IN);
int m = mxGetN(DS IN);
if ((mk != 1) | | (m != 1))
{ 330

mexErrMsgTxt("StackGDFast2 called with incorrect dimensions.");
}

#endif

/* Create matrices for return arguments */
R2 OUT = mxCreateDoubleMatrix(1, nk, mxREAL);
GD OUT = mxCreateDoubleMatrix(1, nk, mxREAL);
R2GRAD OUT = mxCreateDoubleMatrix(n, nk, mxREAL);
GDGRAD OUT = mxCreateDoubleMatrix(n, nk, mxREAL);

340

/* Assign pointers and values to the parameters */
double* r2 = mxGetPr(R2 OUT);
double* gd = mxGetPr(GD OUT);
double* r2grad = mxGetPr(R2GRAD OUT);
double* gdgrad = mxGetPr(GDGRAD OUT);

double* ks = mxGetPr(KS IN);
double* ds = mxGetPr(DS IN);
double n0 = mxGetScalar(N0 IN);
double* ns = mxGetPr(NS IN); 350

double* dns = mxGetPr(DNS IN);
double theta = mxGetScalar(THETA IN);
int polstrlen = mxGetN(POL IN);
char polstr[8];
mxGetString(POL IN, polstr, polstrlen + 1);
int isTM = (strncmp("TM", polstr, 2) == 0);
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#ifdef DEBUG
/* Check for negative thicknesses. */
for (int dx = 0; dx < n; dx++) 360

{
if (ds[dx] < 0.0)
{

mexWarnMsgTxt("Negative layer thickness.\n");
break;

}
}

#endif

/* Do the actual computation */ 370

stackgdgrad(nk, n, ks, ds, n0, ns, dns, theta, isTM,
r2, gd, r2grad, gdgrad);

return;
}
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