Trust Policies using Rules, with Applications in Financial Services Benjamin Grosof

Douglas Drane Assistant Professor of Information Technology MIT Sloan School of Management <u>http://ebusiness.mit.edu/bgrosof</u>

Chitravanu (Chitro) Neogy

Masters Of Technology student MIT Sloan School of Management <u>http://www.chitro.com</u>

Said Tabet

Macgregor Inc. and RuleML Initiative stabet@comcast.net

including also joint work with Aykut Firat, Stuart Madnick, Joan Feigenbaum, Ninghui Li

Presentation at the WWW-2004 Developers Day Trust on the Web track <u>http://www.www2004.org</u>. Held May 22, 2004, NYC.

Outline

- Introduction
 - Challenge of Semantics
 - Opportunities of the New Generation Web
- Policies and Compliance
 - Landscape Today
 - Advantages of Standardized Semantic Web Rules (Situated Courteous Logic Programs in <u>RuleML</u>)
 - Examples: Financial Trust Policies, e.g., Credit Verification
- Financial Information Integration
 - Conflicting Definitions in Business Reporting
 - Mapping Approach (Extended <u>CO</u>ntext <u>IN</u>terchange)
- Research Challenges & Directions

Challenge: Capturing Semantics

- Deep challenge is to capture the semantics of data and processes, so that can:
 - Represent, monitor, and enforce policies e.g., trust and contracts
 - Map between definitions of entities, e.g., in financial reporting
 - Integrate policy-relevant information powerfully

Opportunity from Semantic Web Services -- the New Generation Web Platform

- New technologies for <u>Rules</u> (RuleML standard, based on Situated Courteous Description Logic Programs knowledge representation)
 - + New technologies for <u>Ontologies</u>* (OWL standard)
 - + Databases (SQL, XQuery, RDF)
 - + Web Services (WSDL, SOAP, J2EE, .Net)
- Status today:
 - Technologies: emerging, strong research theory underneath
 - Standards activities: intense (W3C, Oasis, ...)
 - Commercialization: early-phase (majors in alpha, startups)

(* Ontology = structured vocabulary, e.g., with subclass-superclass, domain, range, datatypes. E.g., database schemas.)

Copyright 2004 by Benjamin Grosof. All Rights Reserved

2/11/2005

Outline

- Introduction
 - Challenge of Semantics
 - Opportunities of the New Generation Web
- Policies and Compliance
 - Landscape Today
 - Advantages of Standardized Semantic Web Rules (Situated Courteous Logic Programs in <u>RuleML</u>)
 - Examples: Financial Trust Policies, e.g., Credit Verification
- Financial Information Integration
 - Conflicting Definitions in Business Reporting
 - Mapping Approach (Extended <u>CO</u>ntext <u>IN</u>terchange)
- Research Challenges & Directions

Policies and Compliance in US Financial Industry Today

- Ubiquitous high-stakes Regulatory Compliance requirements
 - Sarbanes Oxley, SEC, HIPAA, etc.
- Internal company policies about access, confidentiality, transactions
 - For security, risk management, business processes, governance
- Complexities guiding who can do what on certain business data
- Often implemented using rule techniques
- Often misunderstood or poorly implemented leading to vulnerabilities
- Typically embedded redundantly in legacy silo applications, requiring high maintenance
- Policy/Rule engines lack interoperability

Example Financial Authorization Rules

Classification	Application	Rule
Merchant	Purchase Approval	If credit card has fraud reported on it, or is over limit, do not approve.
Mutual Funds	Rep trading	<i>Blue Sky</i> : State restrictions for rep's customers.
Mortgage Company	Credit Application	TRW upon receiving credit application must have a way of securely identifying the request.
Brokerage	Margin trading	Must compute current balances and margin rules before allowing trade.
Insurance	File Claims	Policy States and Policy type must match for claims to be processed.
Bank	Online Banking	User can look at own account.
All 2/11/2005	House holding	For purposes of silo (e.g., statements or discounts), aggregate accounts of all family members.

Policies for Compliance and Trust Mgmt.: Role for Semantic Web Rules

- Trust Policies usually well represented as rules
 - Enforcement of policies via rule inferencing engine
 - E.g., Role-based Access Control
 - This is the most frequent kind of trust policy in practical deployment today.
 - W3C P3P privacy standard, Oasis XACML XML access control emerging standard, ...
- Ditto for Many Business Policies beyond trust arena, too
 - "Gray" areas about whether a policy is about trust vs. not: compliance, regulation, risk management, contracts, governance, pricing, CRM, SCM, etc.
 - Often, authorization/trust policy is really a part of overall contract or business policy, at application-level. Unlike authentication.
 - Valuable to reuse policy infrastructure

2/11/2005

Advantages of Standardized SW Rules

- Easier Integration: with rest of business policies and applications, business partners, mergers & acquisitions
- Familiarity, training
- Easier to understand and modify by humans
- Quality and Transparency of implementation in enforcement
 - Provable guarantees of behavior of implementation
- Reduced Vendor Lock-in
- Expressive power
 - Principled handling of conflict, negation, priorities

Advantages of SW Rules, cont'd: Loci of Business Value

- Reduced system dev./maint./training costs
- Better/faster/cheaper policy admin.
- Interoperability, flexibility and re-use benefits
- Greater visibility into enterprise policy implementation => better compliance
- Centralized ownership and improved governance by Senior Management
- Rich, expressive trust management language allows better conflict handling in policy-driven decisions

Example I – Credit Card Verification System

- Typical for eCommerce websites accepting credit cards Visa, MC, Discover, Amex
- Rules for transaction authorization
 - Bank performs account limit, expiration, address and card code verification
 - A fraud alert service may flag a card
 - Service provider may blacklist customer
- Overrides, e.g., alert service over bank rules

2/11/2005

Example II – Brokerage Access Control

- Need protection of customer accounts of retail (own) and many client correspondents from unauthorized access by traders (reps)
- Many Complex Rules for access control
 - Retail reps can look at any retail account but not correspondent accounts
 - A correspondent user may look at accounts for their organization but...
 - Only from those branches over which rep's branch has fiduciary responsibility
 - For certain branches, customer accounts are explicitly owned by certain reps and cannot be divulged even to his partner!
- More rules, with several overrides

Example III – Check 21

- "Hot" legislation to enable electronic check transfer between banks via substitutes.
- Rules for substitute check validation
 - Federal Reserve Board: needs match on check back/front image, MICR, BOFD
 - ANSI X9: match MICR, size
 - The Banks: must accept substitute checks
 - Country of Origin=US and EPC=2 or 5

CommonRules Implementation for Credit Card Verification Example

Sample Rule Listing

```
<bankResp>
 if checkTran(?Requester)
 then
   transactionValid(self,?Requester);
<cardRules2>
          checkCardDet(?Requester, ?accountLimit, ?exp_flag, ?cardholderAddr,
    if
    ?cardholderCVC) and
    checkTranDet(?Requester, ?tranAddr, ?tranCVC) and
    notEquals(?tranCVC, ?cardholderCVC)
    then
    CNEG transactionValid(self,?Requester);
                                                         CommonRules translates
overrides(cardRules2, bankResp);
                                                      straightforwardly \leftrightarrow RuleML.
checkTran(Joe);
                                                       We show its human-oriented
checkCardDet(Joe, 50, "false", 13, 702);
                                                    syntax as a presentation syntax for
checkTranDet(Joe, 13, 702);
cardGood(Fraudscreen.net,Joe,good);
                                                                  RuleML.
```

2/11/2005 Copyright 2004 by Benjamin Grosof. All Rights Reserved

customerRating(Amazon.com, Joe, good);

Runtime Results for Credit Card Verification

Sample Output

SCLPEngine: Adorned Derived Conclusions:

CNEG transactionValid_c_3(self, Mary); transactionValid_c_2(self, Joe); transactionValid_c_2(self, Mary); transactionValid_r_2(self, Mary); transactionValid_u(self, Joe); CNEG transactionValid_u(self, Mary);

transactionValid(self, Joe); CNEG transactionValid(self, Mary);

Adorned conclusions represent intermediate phases of prioritized conflict handling in Courteous Logic Programs

CNEG = limited <u>classical neg</u>ation (which is permitted in Courteous LP)

CNEG p means p is (believed to be) false

Self = the agent making the authorization decision, i.e., the viewpoint of this local rulebase.

(This is as usual in trust management.)

2/11/2005

Outline

- Introduction
 - Challenge of Semantics
 - Opportunities of the New Generation Web
- Policies and Compliance
 - Landscape Today
 - Advantages of Standardized Semantic Web Rules (Situated Courteous Logic Programs in <u>RuleML</u>)
 - Examples: Financial Trust Policies, e.g., Credit Verification
- Financial Information Integration
 - Conflicting Definitions in Business Reporting
 - Mapping Approach (Extended <u>CO</u>ntext <u>IN</u>terchange)
- Research Challenges & Directions

Equational Ontological Conflicts in Financial Reporting

- # of customers = # of end_customers + # of distributors
- Gross Profit = Net Sales Cost of Goods
- P/E Ratio = Price / Earnings(last 4 Qtr)

Price = Nominal Price + Shipping

of customers = # of end_customers
+ # of prospective customers

Gross Profit = Net Sales – Cost of Goods – Depreciation

P/E Ratio = Price/ [Earnings(last 3 Qtr) +Earnings(next quarter)]

Price = Nominal Price + Shipping + Tax

"heterogeneity in the way data items are *calculated* from other data items *in terms of definitional equations*"

2/11/2005

Approach: ECOIN

•Context-based loosely-coupled integration

Extends the Context Interchange (COIN) framework developed at MIT

•Symbolic Equation Solving using Constraint Logic Programming

Integrates symbolic equation solving techniques with abductive logic programming

Outline

- Introduction
 - Challenge of Semantics
 - Opportunities of the New Generation Web
- Policies and Compliance
 - Landscape Today
 - Advantages of Standardized Semantic Web Rules (Situated Courteous Logic Programs in <u>RuleML</u>)
 - Examples: Financial Trust Policies, e.g., Credit Verification
- Financial Information Integration
 - Conflicting Definitions in Business Reporting
 - Mapping Approach (<u>Extended COntext IN</u>terchange)
- Research Challenges & Directions

Research Challenges: Core

- Integrating rules with ontologies
 - Rules refer to ontologies (e.g., in RuleML)
 - Rules to specify ontologies (e.g., Description Logic Programs)
 - Rules to map between ontologies (e.g., ECOIN)
 - Combined rules + ontologies knowledge bases (e.g., RuleML + OWL)
- Describing business processes & web services via rules + ontologies
 - Rules query web services (e.g., in RuleML Situated feature)
 - Rules trigger actions that are web services (e.g., ditto)
 - Capture object-oriented process ontologies
 - Default inheritance via rules (e.g., Courteous Inheritance)
 - Wrapper/transform to legacy C++, Java, UML
 - Develop open source knowledge bases (e.g., MIT Open Process Handbook Initiative)
 - Event triggering of rules (e.g., capture ECA rules in RuleML)

Research Challenges: Business Policies

- Apply advanced rule and ontology representation to business policies in compliance, trust, contracts, etc.
 - Application scenarios for compliance checking/support services intra- and inter- enterprise
 - Policy language & engines on top of rule language & engines
 - In/with existing/emerging standards: XBRL, XACML, P3P, ebXML, EDI, Legal XML, ...
 - Strategy and roles in the market ecology: regulators, communal repositories, service providers, etc.
 - Embedding into the bigger pictures of financial services, ecommerce, semantic web services, business process automation

Context: Our Overall Research Agenda

- Invent Core Technologies and concepts of the New Generation Web
 - Semantic Web; Rules and RuleML emerging standard
 - supporting <u>knowledge representation</u> theory of Situated Courteous Description Logic Programs
 - Semantic Web Services; Business Process Automation for B2B and EAI
 - Requirements analysis
 - Use of Rules, together with ontologies or to represent ontologies
- Pilot Business Application Scenarios
 - End-to-end <u>e-contracting</u>, e.g., in manufacturing supply chain
 - SweetDeal approach using rules (plus ontologies)
 - <u>Financial</u> information and reporting:
 - ECOIN approach mapping ontologies
 - Other: security authorization, travel, ...
- Analyze Prospective Early Adopter Areas
 - Strategy: Adoption Roadmap; Market Evolution
 - Entrepreneurial Opportunities 2/11/2005 Copyright 2004 by Benjamin Grosof. All Rights Reserved

More Strategic Opportunities in Compliance

- XBRL (eXtensible Business Reporting Language):
 - SWS rules + ontologies can reduce degree of industry consensus required to enable interoperability
 - Difficult to get agreement on single definition of "earnings"; easier to agree on "long-term capital gains realized from sale of real estate assets".
 - Translate between different use contexts' ontologies
- SEC and other regulatory agencies:
 - They can accelerate compliance
 - via providing automated SWS specifications of regulations and reporting forms (+ the instructions)
 - e.g., RuleML regulatory rulebases accessible via Web Services interfaces

Outline

- Introduction
 - Challenge of Semantics
 - Opportunities of the New Generation Web
- Policies and Compliance
 - Landscape Today
 - Advantages of Standardized Semantic Web Rules (Situated Courteous Logic Programs in <u>RuleML</u>)
 - Examples: Financial Trust Policies, e.g., Credit Verification
- Financial Information Integration
 - Conflicting Definitions in Business Reporting
 - Mapping Approach (Extended <u>CO</u>ntext <u>IN</u>terchange)
- Research Challenges & Directions

OPTIONAL SLIDES FOLLOW

Quickie Bio of Presenter

- MIT Sloan professor since 2000
- 12 years at IBM T.J. Watson Research; 2 years at startups
- PhD Comp Sci, Stanford; BA Applied Math Econ/Mgmt, Harvard
- Semantic web services is main research area:
 - Rules as core technology
 - Business Applications, Implications, Strategy:
 - e-contracting/supply-chain; finance; trust; ...
 - Overall knowledge representation, e-commerce, intelligent agents
- Co-Founder, Rule Markup Language Initiative the leading emerging standards body in semantic web rules (<u>http://www.ruleml.org</u>)
- Core participant in Semantic Web Services Initiative which coordinates world-wide SWS research and early standards (<u>http://www.swsi.org</u>)
 - Area Editor for Contracts & Negotiation, Language Committee
 - Co-Chair, Industrial Partners program (SWSIP)

Trust Management Policies: Role for Semantic Web Rules

- Policies usually well represented as rules
 - E.g., Role-based Access Control
 - This is the most important kind of trust policy in practical deployment today.
- Advantages of standardized SW rules:
 - Familiarity, training
 - Quality and Transparency of implementation in enforcement
 - Reduced Vendor Lock-in
 - Expressive power

2/11/2005

- Integration with rest of business policies

Trust in larger context of Business Policies and Contracts

- Trust/authorization is <u>often closely tied to other business policies</u>, e.g., pricing, bidding, customer selection, lead-time, service level. E.g.,
 - <u>Risk</u> of new business partner B, when supplier S makes bid.
 - ? Will B fulfill its commitments if B places an order?
 - ? Will S lose by reserving capacity while awaiting B's decision?
 - ? Will B leak information to competitors about B's pricing & capacity?
- *From another viewpoint:* Trust is what contracts are all about:
 - <u>Contracts</u> encode agreements that define <u>conditions of trust</u>.

Discussion

 Gray areas: trust/security/privacy policies vs. other business policies
 –Risk vs. benefit

Rule-based Policies for Trust and Security Authorization

- Use <u>rule-based executable specification</u> of security authorization policies, a.k.a. <u>trust management</u>: including delegation, certificates.
 - Straightforwardly generalizes Role-Based Access Control (RBAC).
- Often, authorization/trust policy is really a part of overall contract or business policy, at application-level. Unlike authentication.
- Advantages of rule-based approach, esp. from declarative semantics:
 - easier integration with general business policy.
 - easier to understand and modify by humans.
 - provable guarantees of behavior of implementation.
 - principled handling of negation and conflict.

Delegation Logic*: Goal and Basic Approach

- Goal: Develop a language that
 - can represent, with significant expressive power,
 policies and *credentials* for authorization in Internet scenarios
 - can provide mechanisms for delegation
 - has a clear declarative semantics
- Approach: Delegation Logic (DL): multi-agent logic programs with delegation to complex delegatees
 - D1LP: extends negation-free OLP \Rightarrow with delegation
 - D2LP: extends Courteous LP \Rightarrow with delegation
 - Tractable "Delegation compiler" similar to courteous compiler.

Delegation Logic (D1LP) Example: accessing medical records

- **Problem:** Hospital HM to decide: requester Alice authorized for patient Peter?
- **Policies**: HM will authorize only the patient's physician. HM trusts any hospital it knows to certify the physician relationship. Two hospitals together can vouch for a 3rd hospital.
 - HM says authorized(?X, read(medRec(?Y))) if HM says inRole(?X, physic(?Y)).
 - HM delegates inRole(?X, physic(?Y))^1 to threshold(1,?Z, HM says inRole(?Z,hosp)).
 - HM delegates inRole(?H,hosp)^1 to threshold(2,?Z,HM says inRole(?Z,hosp)).
- Facts: HC certifies Alice is Peter's physician. HM knows two hospitals HA and HB. HA and HB each certify HC as a hospital.
 - HC says inRole(Alice, physic(Peter)). HA says inRole(Joe, physic(Sue).
 - HM says inRole(HA,hosp). HM says inRole(HB, hosp).
 - HA says inRole(HC,hosp). HB says inRole(HC, hosp).
- Conclusion: HM says authorized(Alice, read(medRec(Peter))). Joe NOT authorized.

Example Scenario of Delegation Logic

- Each agent is a principal; in a given scenario one is a requester.
- Each agent initially has a ruleset, that represents policies and/or credentials.
- Agent 1 as requester sends a request to Agent 2 as authorizer.
- The authorizer evaluates the request by executing the authorizer's policies:
 - Performs situated inference of the policy rules.
 - During evaluation, the authorizer also queries other agents (3rd parties, or the requester) for additional relevant credentials (rules).
 - Other agents, when queried, respond by sending credentials to the authorizer.
- After evaluation, the authorizer informs the requester about the decision.

Example Scenario Information Flow

What is a Delegation Relationship?

- What relationships can be viewed as a delegation from *Alice* to *Bob*?
- 1. Trusting
 - Alice trusts Bob on something
 - Implication: if *Bob* says something, then *Alice* agrees
- 2. Entrusting
 - Alice allows Bob to act on Alice's behalf
 - Implication: a request from *Bob* should be viewed as from *Alice*
- 3. Granting
 - Alice grants certain rights to Bob
 - Implication: if *Alice* has a certain right, then *Bob* should also have it

D1LP: Semantics - overview

- An authorizer has *policies* and receives *credentials*. Taken together, these form a rule-set *P*, a.k.a. a logic program.
- The declarative semantics of D1LP decides a unique set of statements that are true according to *P*, *i.e.*, the conclusions of *P*.
- The conclusion set is unique and **finitely computable**.
- Define semantics via a transform to ordinary logic programs:
 - Given a D1LP P, define a language LO_P that expresses definite logic programs. (definite = without negation-as-failure).
 - Given an model-theoretic interpretation *I* of *LO_P*, transform *P* into a ground definite logic program *O^I* in *LO_P*.

D1LP Compiler (Architecture)

• Java Implementation (part of CommonRules research prototype)

- Prolog Implementation:
 - The compiler is written in Prolog
 - The compiler dynamically asserts OLP rules into Prolog engine
 - Uses Prolog engine to do inference

Platform for Privacy Preferences (P3P)

- W3C P3P is leading technical standard for privacy policies representation and enforcement
- Client privacy policies specified in a simple rule language (APPEL, part of P3P)
- Has not achieved great usage yet
- Microsoft dominance of browsers a strategic issue

 Many believe it is an inhibitor to progress
 <u>Discussion: What do you think?</u>

eXtensible Access Control Language (XACML)

- Oasis XACML is leading technical standard for access control policies in XML
 - -Access to XML info
 - -Policies in XML
- Uses a rule-based approach
 Including for prioritized combination of policies