Overview of SweetRules V2.1:
Tools for Semantic Web Rules and Ontologies, including Translation, Inferencing, Analysis, and Authoring

http://sweetrules.projects.semwebcentral.org

Presentation (15-min.) by Benjamin Grosof* and Mike Dean**
Tools by multi-institutional team (MIT, UMBC, BBN, ...)

held Galway, Ireland, Nov. 10-12, 2005.
*MIT Sloan School of Management, http://ebusiness.mit.edu/bgrosof
**BBN Technologies, http://www.daml.org/people/mdean

11/10/2005
Copyright 2005 by Benjamin Grosof and Mike Dean. All Rights Reserved
SweetRules V2.1 Overview

Key Ideas:

– Unite the commercially most important kinds of rule and ontology languages via a new, common knowledge representation (SCLP) in a new standardized syntax (RuleML), including to cope with heterogeneity and resolve contradictory conflicts.
 • Capture most of the useful expressiveness, interoperably and scalably.
– Provide an open source tool platform to combine a large distributed set of rule and ontology knowledge bases that each are active: each has a different associated engine for reasoning capabilities (inferencing, authoring, and/or translation).
– Based on recent fundamental KR theory advances, esp. Situated Courteous Logic Programs (SCLP) and Description Logic Programs.
 • Including semantics-preserving translations between different rule languages/systems/families, e.g., Situated LP ↔ production rules

Application Areas (prototyped scenarios):

– Policies and authorizations; process monitoring; contracting, supply chain management; retailing, customer relationship management; business process automation and e-services; financial reporting and information; etc.

Distributed Active Knowledge Bases

• heterogeneous rules / ontologies
• with associated inferencing, authoring, translation capabilities

Inferencing + Translation

New Integration Capabilities

Authoring + Testing

11/10/2005

Copyright 2005 by Benjamin Grosof and Mike Dean. All Rights Reserved

http://sweetrules.projects.semwebcentral.org
SweetRules
Concept and Architecture

- **Concept and Architecture:** Tools suite for Rules and RuleML
 - Translation and interoperability between heterogeneous rule systems (forward- and backward-chaining) and their rule languages/representations
 - Inferencing including via translation between rule systems
 - Authoring, Analysis, and testing of rulebases
 - Open, lightweight, extensible, pluggable architecture overall

- Merge knowledge bases
 - Combine rules with ontologies, incl. OWL
 - SWRL rules as special case of RuleML
 - Focus on kinds of rule systems that are commercially important
SweetRules V2.0+ Fundamental KR Today

- **Fundamental KR:** Situated Courteous Logic Programs (SCLP)
 - Horn
 - + Negation-As-Failure (NAF) = Ordinary LP
 - + **Courteous** prioritized conflict handling
 - overrides relation on rule labels, classical negation, mutex integrity constraints
 - + **Situated** sensing & effecting
 - Invoke external procedural attachments
 - Sensing = tests/queries; e.g., built-ins
 - Effecting = side-effectful actions, triggered by conclusions
SweetRules V2.1 Translators Graph

RuleML (SCLP)

- Courteous Compiler
- KIF (FOL -subset)
- CommonRules (fwd. SCLP)
- XSB (bkw. OLP)
- Smodels (fwd. OLP)
- Process Handbook (OO/frame def.-inh)
- Jena-2 (fwd. Horn LP)
- OWL (-DLP)
- Jess/CLIPS (prodn. ≡ fwd. SOLP)

(SCLP = Situated Courteous Logic Programs. OLP = Ordinary LP (plain NAF))
SweetRules Inferencing Capabilities Today: Overview

- Inferencing engines in RuleML/SWRL via translation:
 - Indirect inferencing:
 1. translate to another rule system, e.g., {XSB, Jess, CommonRules, or Jena}
 2. run inferencing in that system’s engine
 3. translate back
 - Can use composite translators
SweetRules V2.0+ New Inferencing Engines

Key: ↑ = SweetRules raises power

#1 CommonRules (fwd. SCLP)
#2 ↑fwd. SCLP Jess/CLIPS (prodn. ≡ fwd. SCLP)
#3 ↑fwd. SCLP & bkw. CLP XSB (bkw. OLP)
#4 SWRL built-ins Jena-2 (fwd. Horn LP)
#5 ↑+ SWRL built-ins

RuleML (SCLP)
SWRL (Horn)

KIF (FOL -subset)

Process Handbook (OO/frame def.-inh)

OWL (-DLP)

Smodels (fwd. OLP)

Copyright 2005 by Benjamin Grososf and Mike Dean. All Rights Reserved
SweetRules Capabilities Today Cont.’d

- **Authoring and Testing front-end:** currently less mature, more partial
 - Command-line UI
 - Protégé OWL Plug-in Enhancement
- **SWRL Rule Editor** (separate component from SweetRules)

- **Analyzers incl. Validators:** currently less mature, more partial
 - e.g., DiffFacts for incremental reasoning
Novel Capabilities I

- RuleML-based interoperability, knowledge-merging, reasoning for commercially important kinds of rules, e.g.,
 - Production rules ↔ Prolog, with strong semantic equivalence
 - Platform with pluggability and automatic tool composition
- Supports Correct Negation-As-Failure in Production Rules, via new techniques
- Newly Uses Courteous Compiler to support Courteous feature (prioritized conflict handling) even in systems that don’t directly support it, as long as they support negation-as-failure
 - E.g., in XSB Prolog, Jess, Smodels
- New Include-a-KB mechanism, similar to owl:imports (prelim. RuleML V0.9)
 - Include a remote KB that is translatable to RuleML
- Uses New Action Launcher component to support Situated effecting feature (actions triggered by conclusions) even in systems that don’t directly support it. Facts input, actions output.
 - E.g., in SweetXSB forward inferencing
Additional Firsts in Implementation

- **Forward Situated Courteous** LP inferencing+action with intrinsically highly **scaleable** run-time performance, and moreover with **general non-stratified NAF**
 - Both XSB/Prolog and Jess/Rete/production-rules reportedly scale very well to very large rulebases (~100K+ non-fact rules, many Millions facts)

- **Backward Courteous** LP inferencing for **general non-stratified NAF**, and **scaleably** in above sense

- **RuleML Presentation Syntax Support:**
 - Includes Situated feature
 - Generator. *Parser is in testing.*

- **WSDL Web Services permitted as procedural attachments**
 - Initially, only for effecting not yet sensing. Dynamic.
Novel KB Merging of Rules + Ontologies

- Combine:
 - Multiple SCLP RuleML (/ SWRL) rulebases
 - Or any knowledge base that is translatable into RuleML
 - Heterogeneous kinds of rules
 - E.g., originally XSB rules + Jess facts
 - These get translated and union’d into a single RuleML rulebase (possibly virtual)
 - OWL ontologies
 - Translate Description Logic Programs (DLP) subset of OWL into RuleML
 - Hybrid reasoning via DLP-fusion, i.e., LP inferencing after translate
 - OO/Frame ontologies with default inheritance
 - E.g., Process Handbook ontologies
 - … which get translated to (S)CLP rules
SweetRules Application Scenarios

• Contracts/negotiation, advertising/discovery
 – E-procurement, E-selling
 – Pricing, terms & conditions, supplier qualification, …

• Monitoring:
 – Exception handling, e.g., of contract violations
 • Late delivery, refunds, cancellation, notifications
 – Notifications, personal messaging, and other workflow

• Trust Policies: authorization, confidentiality & privacy, security, access control
 – E.g., financial services, health care
 • Extensive analysis of business case/value

• Semantic mediation: rule-based ontology translation, context-based information integration

• Object-oriented process ontologies: e.g., MIT Process Handbook
 – With default inheritance
Business Value of RuleML Rules for Policies, e.g., Authorization/Security

• Interoperability, flexibility and re-use benefits
 – Reduced Vendor Lock-in
• Easier Integration: with rest of business policies and applications, business partners, mergers & acquisitions
 – Enterprise integration, B2B
• Reduced system development, maintenance, & training costs
• Better/faster/cheaper policy development & administration
 – Easier to understand and modify by humans
• Quality and Transparency of implementation in enforcement
 – Provable guarantees of behavior of implementation
• Improved visibility and assurance in enterprise policy implementation ⇒ better compliance, senior governance
• Rich, expressive policy management language allows better conflict handling in policy-driven decisions: prioritization & negation mechanisms
• ⇒ Agility, change management ↑
SweetRules Goals & Site

• Research vehicle: embody ideas, implement application scenarios (e.g., contracting, policies)
 – Situated Courteous Logic Programs (SCLP) KR
 – Description Logic Programs (DLP) KR which is a subset of SCLP KR
 – RuleML/SWRL

• Proof of concept for feasibility, including of KR algorithms and translations between heterogenous families of rule systems
 – Encourage others: researchers; industry esp. vendors

• Catalyze/nucleate SW Rules communal efforts on:
 – Tools, esp. open-source
 – Application scenarios / use cases, esp. in services

• See http://sweetrules.projects.semwebcentral.org
 – Open-source code; extensive documentation; tutorial material
SweetRules Context and Players

- Part of SWEET = “Semantic WEb Enabling Tools” (2001 –)
 - Other parts: … these use SweetRules …
 - SweetDeal for e-contracting
 - SweetPH for Process Handbook ontologies
- Cross-institutional. Collaborators invited!
 - Originated and coordinated by MIT Sloan since 2001
 - Code base: Java, XSLT; convenience shell scripts (for testing drivers)
 - Code by MIT, UMBC, BBN, Stanford, U. Zurich
 - Cooperating other institutions: U. Karlsruhe, IBM, NRC/UNB, SUNY Stonybrook, HP, Sandia Natl. Labs; RuleML Initiative
 - Collaboration on design of code by Stanford, U. Karlsruhe
 - Uses code by IBM, SUNY Stonybrook, Sandia Natl. Labs, HP, Stanford, Helsinki
 - Many more are good targets: subsets of Flora-2, cwm, KAON, JTP, SWI Prolog, Hoolet, Triple, DRS, ROWL, ...