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Overall Problem Addressed, Previous Work
• Rules as widely deployed KR → SW Knowledge Integration for Business

• Challenge:  inter-operability of heterogeneous intelligent 
applications (“agents”) that use rules (incl. relational DB’s).
– E.g., rules represent e-business policies and workflows. 

– Heterogeneous rule systems:  four important families:  
• Prolog,   SQL;     production (OPS5),  ECA

• History: 
– Core requirements & design ‘99   (while at IBM Research)

• Declarative Logic Programs in XML;  +  extensions:
– Courteous LP:  prioritized conflict handling; modularity; tractably
– Situated LP:  procedural attachments for actions, queries:  cleanly

– IBM CommonRules V1 ‘99 (V3 currently)  
• large-scale pilot (EECOMS $29Million, supply chain) ‘99-’00

– Co-Lead RuleML:  V0.7 ‘01 (V0.8 currently)
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Problem and Previous Work continued
• SweetRules V1 ‘01:   bi-directional translation with equivalent 

semantics via RuleML, between:
– XSB Prolog:   backward Ordinary Logic Programs (OLP)
– Smodels:   forward OLP
– IBM CommonRules:   forward Situated Courteous LP (SCLP)
– Knowledge Interchange Format (KIF):   First Order Logic interlingua 
– + Design in principle for:   SQL   

• well-understood in theory literature:   as OLP

– + Design in principle for:   production (OPS5), ECA
• Based on Situated extension of LP, piloted in IBM Agent Building

Environment ‘96 for info-workflow applications.  Also piloted in EECOMS.
• BUT:  not much other literature/theory to support
• HENCE motivation for this work:  “bring them to the party”

– Jess:  production (OPS5) , close to ECA
• popular, open-source, Java: it’s useful in particular
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Projects Context at MIT Sloan since ‘01
• 1. Rules KR Technology, esp. for Semantic Web Services

– fundamental theory, technology, support of standards
– SweetRules prototype (Semantic WEb Enabling Technology)

• translation, inferencing, merging
• current work:     + ontologies cf. OWL, database systems 

• 2. Business Implications of the Semantic Web
– applications & strategy
– esp. B2B, e-contracting, finance, supply chain, policies
– SweetDeal prototype for rule-based e-contracting

• modular, reusable contract fragments:  as SCLP RuleML rulesets
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Outline• 1. Intro:  Why Care
– “bring to the party” of SW e-business, RuleML, and SweetRules:  

production/OPS5 & ECA rules;   inter-operate Jess via RuleML translator

• 2. Some Details of the Translation
– Ordinary Logic Programs:  facts, rules
– Situated extension to LP:  procedural attachments

• effectors (actions);  sensors (tests/queries)
– Courteous extension to LP:  prioritized conflict handling; mutex’s, classical neg.

• via tractable Courteous Compiler → OLP

• 3. Other Contributions related to the Translation
– Inferencing in SCLP RuleML via: translate to Jess, run rules in Jess, go back
– DamlRuleML:  DAML+OIL ontology for RuleML’s syntax

• E.g., Rule, Atom, Predicate as classes.      Nice, but not necessary, for translating. 

• 4. Conclusions and Future Work
– comparative insights:    Jess limitations, e.g., all-bound-sensors
– in progress:   prototype;  deeper theory
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Translating a Fact from 
(Daml)RuleML to Jess

<damlRuleML:fact>

<damlRuleML:_rlab>fact8962</damlRuleML:_rlab>

<damlRuleML:_head>

<damlRuleML:atom>

<damlRuleML:_opr>

<damlRuleML:rel>shopper<damlRuleML:rel>

</damlRuleML:_opr>

<damlRuleML:ind>Debbie</damlRuleML:ind>

</damlRuleML:atom>

</damlRuleML:_head>    

</damlRuleML:fact>

equivalent in JESS: 

(assert (shopper Debbie) )
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Translating a Rule from 
(Daml)RuleML to Jess<damlRuleML:imp>

<damlRuleML:_rlab>

<damlRuleML:ind>steadySpender</damlRuleML:ind>

</damlRuleML:_rlab>

<damlRuleML:_body>

<damlRuleML:andb>

<damlRuleML:atom>

<damlRuleML:_opr>

<damlRuleML:rel>shopper<damlRuleML:rel>

</damlRuleML:_opr>

<damlRuleML:var>Cust</damlRuleML:var>

</damlRuleML:atom>

<damlRuleML:atom>

<damlRuleML:_opr>

<damlRuleML:rel>spendingHistory<damlRuleML:rel>

</damlRuleML:_opr>

<damlRuleML:tup>

<damlRuleML:var>Cust</damlRuleML:var>

<damlRuleML:ind>loyal</damlRuleML:ind>

</damlRuleML:tup>

</damlRuleML:atom>

</damlRuleML:andb> 

</damlRuleML:_body>



10/25/2002by Benjamin Grosof, Mahesh Ghande, Timothy Finin   copyrights reserved

Continued:  Translating a Rule from 
(Daml)RuleML to Jess<damlRuleML:_head>

<damlRuleML:atom>

<damlRuleML:_opr>

<damlRuleML:rel>giveDiscount<damlRuleML:rel>

</damlRuleML:_opr>

<damlRuleML:tup>

<damlRuleML:ind>percent5</damlRuleML:ind>

<damlRuleML:var>Cust</damlRuleML:var>

</damlRuleML:tup>

</damlRuleML:atom>

</damlRuleML:_head>

</damlRuleML:imp>

Equivalent in  JESS:

(defrule steadySpender

(shopper ?Cust)

(spendingHistory ?Cust loyal) 

=>

(assert (giveDiscount percent5 ?Cust) ) ) 
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Translating an Effector Statement
<damlRuleML:effe>

<damlRuleML:_opr>

<damlRuleML:rel>giveDiscount</damlRuleML:rel>
</damlRuleML:_opr>
<damlRuleML:_aproc>

<damlRuleML:jproc>

<damlRuleML:meth>setCustomerDiscount</damlRuleML:meth>

<damlRuleML:clas>orderMgmt.dynamicPricing</damlRuleML:clas>

<damlRuleML:path>com.widgetsRUs.orderMgmt
</damlRuleML:path>

</damlRuleML:jproc>
</damlRuleML:_aproc>

</damlRuleML:effe>

Equivalent in  JESS:  key portion is:  

(defrule effect_giveDiscount_1

(giveDiscount ?percentage ?customer)

=>

(effector setCustomerDiscount orderMgmt.dynamicPricing

(create$ ?percentage  ?customer) ) ) 

Associates with predicate  P :  an attached 
procedure  A  that is side-effectful. 

- Drawing a conclusion about P triggers an 
action performed by  A.  

jproc = Java attached procedure.

meth, clas, path = its methodname,  

classname, pathname.
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Translating a Sensor Statement
<damlRuleML:sens>

<damlRuleML:_opr> 
<damlRuleML:rel>spendingHistory</damlRuleML:rel>

</damlRuleML:_opr>
<damlRuleML:_aproc>

<damlRuleML:jproc>
<damlRuleML:meth>getSpendingLevel</damlRuleML:meth>
<damlRuleML:clas>transactions.customers.queries</damlRuleML:clas>
<damlRuleML:path>com.widgetsRUs.transactionsDB.customers

</damlRuleML:path> </damlRuleML:jproc>  </damlRuleML:_aproc>

<damlRuleML:_modli>
<damlRuleML:bmode val="bound"></damlRuleML:bmode>

<damlRuleML:bmode val="bound"></damlRuleML:bmode>
</damlRuleML:_modli>

</damlRuleML:sens>

Simplistic view of Equivalent in JESS is:  

(defrule sense_steadySpender_1

(shopper ?Cust)

(test (shopper_SF getSpendingLevel transaction.customer.queries

(create$ ?Cust   loyal) ) ) 

=> (assert (giveDiscount percent5 ?Cust) ) ) 

modli = the proc.’s  binding pattern: 

a list of, for each argument, a ...

bmode = binding mode (bound vs. free) 

Associates with predicate  P :  an attached 
procedure  Q  that is side-effect-free. 

- Testing a rule condition about P  results 
in a query to  Q.  
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Translating a Sensor Statement
continued

• Equivalent in  JESS:  More precisely, the presence of a sensor 
statement modifies the translation of every rule whose body mentions 
that sensor predicate:  

• (defrule steadySpender

• (shopper ?Cust)

• (or (spendingHistory ?Cust ?loyal)

• (test (sensor getSpendingLevel transaction.customer.queries

• (create$ ?Cust   loyal) ) ) )

• => (assert (giveDiscount percent5 ?Cust) ) ) 
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Also in the Jess equivalent:
(deffunction effector                       /* generic effector */ 

(?methodName ?className $?arglist)

(bind ?classInstance (new ?className)) 

/*create new instance of class */

(return (call ?classInstance ?methodName $?arglist) )  )

(deffunction sensor                       /* generic sensor */ 

(?methodName ?className $?arglist)

(bind ?classInstance (new ?className)) 

/*create new instance of class */

(return (call ?classInstance ?methodName $?arglist) )  )

[& set the CLASSPATH, appropriately]

[similar for RMI, using hostname instead of classpath]



SweetRules & SweetJess:
Translating Courteous features of SCLP RuleML

compiler

Translation

for Situated OLP

courteous 

ordinary (“vanilla”)
(Sit.)OLP  representation

mutex priorities
>

representation

≡ equivalent

semantically

Courteous

(Sit.) Courteous LP.
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*

* classical negation too

Tractable:

O(n^3), often linear

Preserves ontology.
Plus extra predicates for

- phases of 

prioritized argumentation

- classical negations
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Discussion, Conclusions, and Future Work
• Nature of contribution:  

– design for translation, and its use in inferencing 
• In progress:   implementation  → testing/refinement of the design
• In progress:   deeper theory  → proof of correctness, hard limits of 

expressiveness that can handle 

• Tricky/subtle:  Jess "Functions”
– used for procedures, logical functions, and system commands

• Expressive restrictions imposed on the translation (currently): 
– “All-bound-sensors”:  sensor arguments must all be bound (i.e., 

instantiated) before call. 
– “Datalog” (= no ctor’s), stratified,      misc. about naming
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continued:  Conclusions and Future Work
• Comparative insights:  

– Courteous more powerful & clean than control-sequencing
– Situated more powerful and clean  than Jess “functions”

• Implications → Future Work:
– Can do translation and RuleML-based inter-operability for 

more systems in production/reactive/ECA category
• Current Work:  more closely represent Events cf. ECA

– Enables merging, knowledge sharing/integration 
– Helps achieve business intelligence on the Semantic Web

• Broad Future Direction:  
– Represent and reason over RDF and DAML+OIL content
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• For More Info:
–http://www.mit.edu/~bgrosof/

• Download Site:
–http://daml.umbc.edu/sweetjess
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OPTIONAL SLIDES FOLLOW
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“RuleML:

Semantic Web
Rules!”



Functionality:   SWEETRules Prototype
(Semantic WEb Enabling Technology)
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RuleML-SCLP

*

* classical negation too



Dec.-2001 Architecture:   SWEETRules Prototype
(Semantic WEb Enabling Technology)
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Directly to more rule systemsRuleML
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Criteria for 
Contract Rule Representation

• High-level: Agents reach common understanding; contract is easily 
modifiable, communicatable, executable.

• Inter-operate:  heterogeneous commercially important rule systems.
• Expressive power, convenience, natural-ness.
• ... but:  computational tractability.
• Modularity and locality in revision.
• Declarative semantics.
• Logical non-monotonicity:  default rules, negation-as-failure.  

– essential feature in commercially important rule systems.
• Prioritized conflict handling.  
• Ease of parsing.
• Integration into Web-world software engineering.
• Procedural attachments.   

1

2

3

OLP}
Courteous

} XML

Situated


