
10/25/2002by Benjamin Grosof, Mahesh Ghande, Timothy Finin copyrights reserved

SweetJess:
Translating DamlRuleML To Jess

Presentation of Paper at the International Workshop on Rule Markup Languages for Business Rules on
the Semantic Web, held at the 1st International Semantic Web Conference, June 14, 2002, Sardinia, Italy

Benjamin Grosof
MIT Sloan School of Management

bgrosof@mit.edu http://www.mit.edu/~bgrosof/

Mahesh Ghande, Timothy Finin
Inst. For Global Electronic Commerce, Computer Science Dept.

University of Maryland Baltimore County (UMBC)
{mgandh1, finin}@cs.umbc.edu

http://www.csee.umbc.edu/{~mgandh1,~finin}

10/25/2002by Benjamin Grosof, Mahesh Ghande, Timothy Finin copyrights reserved

Overall Problem Addressed, Previous Work
• Rules as widely deployed KR → SW Knowledge Integration for Business

• Challenge: inter-operability of heterogeneous intelligent
applications (“agents”) that use rules (incl. relational DB’s).
– E.g., rules represent e-business policies and workflows.

– Heterogeneous rule systems: four important families:
• Prolog, SQL; production (OPS5), ECA

• History:
– Core requirements & design ‘99 (while at IBM Research)

• Declarative Logic Programs in XML; + extensions:
– Courteous LP: prioritized conflict handling; modularity; tractably
– Situated LP: procedural attachments for actions, queries: cleanly

– IBM CommonRules V1 ‘99 (V3 currently)
• large-scale pilot (EECOMS $29Million, supply chain) ‘99-’00

– Co-Lead RuleML: V0.7 ‘01 (V0.8 currently)

10/25/2002by Benjamin Grosof, Mahesh Ghande, Timothy Finin copyrights reserved

Problem and Previous Work continued
• SweetRules V1 ‘01: bi-directional translation with equivalent

semantics via RuleML, between:
– XSB Prolog: backward Ordinary Logic Programs (OLP)
– Smodels: forward OLP
– IBM CommonRules: forward Situated Courteous LP (SCLP)
– Knowledge Interchange Format (KIF): First Order Logic interlingua
– + Design in principle for: SQL

• well-understood in theory literature: as OLP

– + Design in principle for: production (OPS5), ECA
• Based on Situated extension of LP, piloted in IBM Agent Building

Environment ‘96 for info-workflow applications. Also piloted in EECOMS.
• BUT: not much other literature/theory to support
• HENCE motivation for this work: “bring them to the party”

– Jess: production (OPS5) , close to ECA
• popular, open-source, Java: it’s useful in particular

10/25/2002by Benjamin Grosof, Mahesh Ghande, Timothy Finin copyrights reserved

Projects Context at MIT Sloan since ‘01
• 1. Rules KR Technology, esp. for Semantic Web Services

– fundamental theory, technology, support of standards
– SweetRules prototype (Semantic WEb Enabling Technology)

• translation, inferencing, merging
• current work: + ontologies cf. OWL, database systems

• 2. Business Implications of the Semantic Web
– applications & strategy
– esp. B2B, e-contracting, finance, supply chain, policies
– SweetDeal prototype for rule-based e-contracting

• modular, reusable contract fragments: as SCLP RuleML rulesets

10/25/2002by Benjamin Grosof, Mahesh Ghande, Timothy Finin copyrights reserved

Outline• 1. Intro: Why Care
– “bring to the party” of SW e-business, RuleML, and SweetRules:

production/OPS5 & ECA rules; inter-operate Jess via RuleML translator

• 2. Some Details of the Translation
– Ordinary Logic Programs: facts, rules
– Situated extension to LP: procedural attachments

• effectors (actions); sensors (tests/queries)
– Courteous extension to LP: prioritized conflict handling; mutex’s, classical neg.

• via tractable Courteous Compiler → OLP

• 3. Other Contributions related to the Translation
– Inferencing in SCLP RuleML via: translate to Jess, run rules in Jess, go back
– DamlRuleML: DAML+OIL ontology for RuleML’s syntax

• E.g., Rule, Atom, Predicate as classes. Nice, but not necessary, for translating.

• 4. Conclusions and Future Work
– comparative insights: Jess limitations, e.g., all-bound-sensors
– in progress: prototype; deeper theory

10/25/2002by Benjamin Grosof, Mahesh Ghande, Timothy Finin copyrights reserved

Translating a Fact from
(Daml)RuleML to Jess

<damlRuleML:fact>

<damlRuleML:_rlab>fact8962</damlRuleML:_rlab>

<damlRuleML:_head>

<damlRuleML:atom>

<damlRuleML:_opr>

<damlRuleML:rel>shopper<damlRuleML:rel>

</damlRuleML:_opr>

<damlRuleML:ind>Debbie</damlRuleML:ind>

</damlRuleML:atom>

</damlRuleML:_head>

</damlRuleML:fact>

equivalent in JESS:

(assert (shopper Debbie))

10/25/2002by Benjamin Grosof, Mahesh Ghande, Timothy Finin copyrights reserved

Translating a Rule from
(Daml)RuleML to Jess<damlRuleML:imp>

<damlRuleML:_rlab>

<damlRuleML:ind>steadySpender</damlRuleML:ind>

</damlRuleML:_rlab>

<damlRuleML:_body>

<damlRuleML:andb>

<damlRuleML:atom>

<damlRuleML:_opr>

<damlRuleML:rel>shopper<damlRuleML:rel>

</damlRuleML:_opr>

<damlRuleML:var>Cust</damlRuleML:var>

</damlRuleML:atom>

<damlRuleML:atom>

<damlRuleML:_opr>

<damlRuleML:rel>spendingHistory<damlRuleML:rel>

</damlRuleML:_opr>

<damlRuleML:tup>

<damlRuleML:var>Cust</damlRuleML:var>

<damlRuleML:ind>loyal</damlRuleML:ind>

</damlRuleML:tup>

</damlRuleML:atom>

</damlRuleML:andb>

</damlRuleML:_body>

10/25/2002by Benjamin Grosof, Mahesh Ghande, Timothy Finin copyrights reserved

Continued: Translating a Rule from
(Daml)RuleML to Jess<damlRuleML:_head>

<damlRuleML:atom>

<damlRuleML:_opr>

<damlRuleML:rel>giveDiscount<damlRuleML:rel>

</damlRuleML:_opr>

<damlRuleML:tup>

<damlRuleML:ind>percent5</damlRuleML:ind>

<damlRuleML:var>Cust</damlRuleML:var>

</damlRuleML:tup>

</damlRuleML:atom>

</damlRuleML:_head>

</damlRuleML:imp>

Equivalent in JESS:

(defrule steadySpender

(shopper ?Cust)

(spendingHistory ?Cust loyal)

=>

(assert (giveDiscount percent5 ?Cust)))

10/25/2002by Benjamin Grosof, Mahesh Ghande, Timothy Finin copyrights reserved

Translating an Effector Statement
<damlRuleML:effe>

<damlRuleML:_opr>

<damlRuleML:rel>giveDiscount</damlRuleML:rel>
</damlRuleML:_opr>
<damlRuleML:_aproc>

<damlRuleML:jproc>

<damlRuleML:meth>setCustomerDiscount</damlRuleML:meth>

<damlRuleML:clas>orderMgmt.dynamicPricing</damlRuleML:clas>

<damlRuleML:path>com.widgetsRUs.orderMgmt
</damlRuleML:path>

</damlRuleML:jproc>
</damlRuleML:_aproc>

</damlRuleML:effe>

Equivalent in JESS: key portion is:

(defrule effect_giveDiscount_1

(giveDiscount ?percentage ?customer)

=>

(effector setCustomerDiscount orderMgmt.dynamicPricing

(create$?percentage ?customer)))

Associates with predicate P : an attached
procedure A that is side-effectful.

- Drawing a conclusion about P triggers an
action performed by A.

jproc = Java attached procedure.

meth, clas, path = its methodname,

classname, pathname.

10/25/2002by Benjamin Grosof, Mahesh Ghande, Timothy Finin copyrights reserved

Translating a Sensor Statement
<damlRuleML:sens>

<damlRuleML:_opr>
<damlRuleML:rel>spendingHistory</damlRuleML:rel>

</damlRuleML:_opr>
<damlRuleML:_aproc>

<damlRuleML:jproc>
<damlRuleML:meth>getSpendingLevel</damlRuleML:meth>
<damlRuleML:clas>transactions.customers.queries</damlRuleML:clas>
<damlRuleML:path>com.widgetsRUs.transactionsDB.customers

</damlRuleML:path> </damlRuleML:jproc> </damlRuleML:_aproc>

<damlRuleML:_modli>
<damlRuleML:bmode val="bound"></damlRuleML:bmode>

<damlRuleML:bmode val="bound"></damlRuleML:bmode>
</damlRuleML:_modli>

</damlRuleML:sens>

Simplistic view of Equivalent in JESS is:

(defrule sense_steadySpender_1

(shopper ?Cust)

(test (shopper_SF getSpendingLevel transaction.customer.queries

(create$?Cust loyal)))

=> (assert (giveDiscount percent5 ?Cust)))

modli = the proc.’s binding pattern:

a list of, for each argument, a ...

bmode = binding mode (bound vs. free)

Associates with predicate P : an attached
procedure Q that is side-effect-free.

- Testing a rule condition about P results
in a query to Q.

10/25/2002by Benjamin Grosof, Mahesh Ghande, Timothy Finin copyrights reserved

Translating a Sensor Statement
continued

• Equivalent in JESS: More precisely, the presence of a sensor
statement modifies the translation of every rule whose body mentions
that sensor predicate:

• (defrule steadySpender

• (shopper ?Cust)

• (or (spendingHistory ?Cust ?loyal)

• (test (sensor getSpendingLevel transaction.customer.queries

• (create$?Cust loyal))))

• => (assert (giveDiscount percent5 ?Cust)))

10/25/2002by Benjamin Grosof, Mahesh Ghande, Timothy Finin copyrights reserved

Also in the Jess equivalent:
(deffunction effector /* generic effector */

(?methodName ?className $?arglist)

(bind ?classInstance (new ?className))

/*create new instance of class */

(return (call ?classInstance ?methodName $?arglist)))

(deffunction sensor /* generic sensor */

(?methodName ?className $?arglist)

(bind ?classInstance (new ?className))

/*create new instance of class */

(return (call ?classInstance ?methodName $?arglist)))

[& set the CLASSPATH, appropriately]

[similar for RMI, using hostname instead of classpath]

SweetRules & SweetJess:
Translating Courteous features of SCLP RuleML

compiler

Translation

for Situated OLP

courteous

ordinary (“vanilla”)
(Sit.)OLP representation

mutex priorities
>

representation

≡ equivalent

semantically

Courteous

(Sit.) Courteous LP.

Copyright 2002 by Benjamin Grosof MIT All Rights Reserved

*

* classical negation too

Tractable:

O(n^3), often linear

Preserves ontology.
Plus extra predicates for

- phases of

prioritized argumentation

- classical negations

10/25/2002by Benjamin Grosof, Mahesh Ghande, Timothy Finin copyrights reserved

Discussion, Conclusions, and Future Work
• Nature of contribution:

– design for translation, and its use in inferencing
• In progress: implementation → testing/refinement of the design
• In progress: deeper theory → proof of correctness, hard limits of

expressiveness that can handle

• Tricky/subtle: Jess "Functions”
– used for procedures, logical functions, and system commands

• Expressive restrictions imposed on the translation (currently):
– “All-bound-sensors”: sensor arguments must all be bound (i.e.,

instantiated) before call.
– “Datalog” (= no ctor’s), stratified, misc. about naming

10/25/2002by Benjamin Grosof, Mahesh Ghande, Timothy Finin copyrights reserved

continued: Conclusions and Future Work
• Comparative insights:

– Courteous more powerful & clean than control-sequencing
– Situated more powerful and clean than Jess “functions”

• Implications → Future Work:
– Can do translation and RuleML-based inter-operability for

more systems in production/reactive/ECA category
• Current Work: more closely represent Events cf. ECA

– Enables merging, knowledge sharing/integration
– Helps achieve business intelligence on the Semantic Web

• Broad Future Direction:
– Represent and reason over RDF and DAML+OIL content

10/25/2002by Benjamin Grosof, Mahesh Ghande, Timothy Finin copyrights reserved

• For More Info:
–http://www.mit.edu/~bgrosof/

• Download Site:
–http://daml.umbc.edu/sweetjess

10/25/2002by Benjamin Grosof, Mahesh Ghande, Timothy Finin copyrights reserved

OPTIONAL SLIDES FOLLOW

10/25/2002by Benjamin Grosof, Mahesh Ghande, Timothy Finin copyrights reserved

“RuleML:

Semantic Web
Rules!”

Functionality: SWEETRules Prototype
(Semantic WEb Enabling Technology)

app N

app 1

app 2

compiler Translation
between RuleML-SCLP,

rule system languages

deep shared semantics
in common representation:

common cores

Logic
Program
family

X
Rule

family

Y
Rule

family

rule sys 1

rule sys 2

rule sys N

Heterogeneous

courteous

ordinary (“vanilla”)
(Sit.)OLP representation

mutex priorities
>

representation

≡ equivalent

semantically

string

XSB
formats

Smodels

IBM CommonRules

Courteous

(Sit.) Courteous LP.

situated courteous LP’s

RuleML,

KIF,
Prolog,

Inferencing: forward, backward

rule systems

objects

other

Copyright 2002 by Benjamin Grosof MIT All Rights Reserved

RuleML-SCLP

*

* classical negation too

Dec.-2001 Architecture: SWEETRules Prototype
(Semantic WEb Enabling Technology)

app N

app 1

app 2

IBM
CommonRules

Speaks BRML

(Business Rules

Markup Language)

TranslationCourteous
Compiler

rule sys 1

rule sys 2

rule sys N

Heterogeneous

RuleML

BRML, other formats

representation

≡ equivalent

semantically

BRML

string

XSB
formats

Smodels

IBM CommonRules

RuleML

Translators

Log. Prog.

KIF,
Prolog,

Drivers: translation,

rule systems

objects

other

inferencing

Copyright 2001 by Benjamin Grosof MIT All Rights Reserved

Directly to more rule systemsRuleML

10/25/2002by Benjamin Grosof, Mahesh Ghande, Timothy Finin copyrights reserved

Criteria for
Contract Rule Representation

• High-level: Agents reach common understanding; contract is easily
modifiable, communicatable, executable.

• Inter-operate: heterogeneous commercially important rule systems.
• Expressive power, convenience, natural-ness.
• ... but: computational tractability.
• Modularity and locality in revision.
• Declarative semantics.
• Logical non-monotonicity: default rules, negation-as-failure.

– essential feature in commercially important rule systems.
• Prioritized conflict handling.
• Ease of parsing.
• Integration into Web-world software engineering.
• Procedural attachments.

1

2

3

OLP}
Courteous

} XML

Situated

