INSTRUCTIONS! All participants, please:

- Download the tutorial slideset
 at http://www.mit.edu/~bgrosof/#ISWC2010RulesTutorial
 Also at: http://silk.semwebcentral.org

- Sign in on the participants list (hard copy sheet) with your name, organization, email;
 optionally also add your interests, homepage URL
Top-Level Outline of Tutorial

A. Introduction, Overview, and Uses
B. Concepts and Foundations
C. Conclusions and Directions

+ Appendix: References and Resources

Background Assumed:

• basic knowledge of first-order logic, relational databases, XML, RDF
Outline of Part A. Intro & Uses

1. Overview of tutorial, and get acquainted
2. What are: Rules on the Web, Semantic Rules/Web/Tech
3. Uses and Kinds of rules
 - Commercial, web. Current, envisioned.
 - Requirements. Business value, IT lifecycle.
 - Strategic roadmapping of future adoption
4. Example Use Cases
 - E-commerce: pricing, ordering policies, contracts
 - E-science: ecological process, mechanics context
 - Trust: compliance, policies, e.g. financial services
 - Info integration, ontology mapping, business reporting
 - Processes: policy-based workflow, causal action effects, Semantic Web Services

NB: (2.)-(4.) are interleaved.
Outline of Part B. Concepts & Foundations

1. Overview of Logical Knowledge Representations
 - Logic Programs (LP) and its relationship to First Order Logic (FOL)
 - Rule-based Ontologies: Description Logic, Description LP

2. SILK’s Hyper LP: Putting it all together

3. Basics: Horn Case; Functions

4. F-Logic, Frame Syntax, Object Oriented Style

5. HiLog, Higher-Order Syntax, Reification, Meta-Reasoning

6. W3C Rule Interchange Format (RIF): Dialects, Framework
 - Rules in W3C Web Ontology Language (OWL-RL); via RIF

7. Nonmonotonic LP: Defaults, Negation, Priorities, FOL Interchange
 - Semantics for Default Negation
 - Courteous LP, Argumentation Theories
 - Omni-directional Rules, FOL-Soundness, Remedying FOL’s Fragility

8. Procedural Attachments to Actions, Queries, Built-ins, and Events
 - Production/Situated LP, Production Rules

Outline of Part C. Conclusions & Directions

1. More about Tools

2. … incl. SILK

3. Conclusions

4. Directions for Future research

Appendix: References and Resources

(General Discussion)
Rough Schedule, Overall

~14:00-14:30 Part A: Intro & Uses

~14:30-15:45 Part B: Concepts & Foundations

~15:45-16:15 Coffee Break

~16:15-17:40 Part B, continued: Concepts & Foundations

~17:40-18:00 Part C: Conclusions & Directions
PART A. SLIDES

FOLLOW
Outline of Part A. Intro & Uses

1. Overview of tutorial, and get acquainted
2. What are: Rules on the Web, Semantic Rules/Web/Tech
3. Uses and Kinds of rules
 - Commercial, web. Current, envisioned.
 - Requirements. Business value, IT lifecycle.
 - Strategic roadmapping of future adoption
4. Example Use Cases
 - E-commerce: pricing, ordering policies, contracts
 - E-science: ecological process, mechanics context
 - Trust: compliance, policies, e.g. financial services
 - Info integration, ontology mapping, business reporting
 - Processes: policy-based workflow, causal action effects, Semantic Web Services

NB: (2.)-(4.) are interleaved.
Learning Goals for Tutorial

1. Overview of current state of logical KR theory, applications, languages, standards, tools/systems, market

2. Relationship to Web and Semantic Tech, overall

3. Introduction to the research issues
“Semantic” Technology

• “Semantic” in “semantic web” and “semantic rules” means:
 – 1. Knowledge-based
 … and …
 – 2. Having meaning independent of algorithm and implementation
 – Equipped with an interoperable conceptual abstraction
 … based on declarative knowledge representation (KR)
 = Shared principles of what inferences are sanctioned
 from a given set of premises
What are Rules on the Web

- **Convergence** of three streams is well along the way
 1. Using Web for **interchange** of rules, even pre-Web legacy kinds
 - XML syntax for rules. Transcend organizational silos.
 2. Rules working in **Web context**, using:
 - Web data, schemas, ontologies; Web services, queries, databases
 3. Rules using **semantic** knowledge representation (KR)
 - Semantics are required for effective sharing of knowledge and tools

- **Web as scope** for rule-based **structured knowledge**
 - Enrich the Web as a knowledge platform – public and intranets
 - **Collaborative** knowledge acquisition (KA), e.g., Wiki’s
 - Web-located knowledge bases (KBs) and KR services

- ⇒ **Semantic rules on the Web**
 - Standardization is a key activity currently. 1st wave just completed.
Semantic Web in context of Web

hazy still: Semantic Web Services

Semantic Web techniques

Automated Knowledge Bases

Rules (RuleML, RIF)

Ontologies (OWL, RDFS)

Databases (SQL, SPARQL)

Web Services techniques

APIs on Web

(WSDL/SOAP, REST)

Two interwoven aspects:
- Program: Web Services
- Data: Semantic Web

First Generation Web

XML
Semantic Web: concept, approach, pieces

• Shared semantics when interchanging data : knowledge

• Knowledge Representation (cf. AI, DB) as approach to semantics
 – Standardize KR syntax, with KR theory/techniques as backing

• Web-exposed Databases: relational and XML/RDF data/queries
 – Challenge: share database schemas via meta-data
 – RDF = “Resource Description Framework” W3C standard

• Ontology = formally defined vocabulary
 – OWL: “Web Ontology Language” W3C standard
 • Taxonomic class/property hierarchy, property-value restrictions, decidable subset of FOL
 – Ex.: Lions are a subcategory within felines
 – Ex.: Every health care visit has a required copayment amount

• Rules = if-then logical implications, facts ~subsumes relational DBs
 – RIF: “Rule Interchange Format” W3C standard
 • Based on Logic Programs (LP) Knowledge Representation
 • Based on RuleML (Rule Markup & Modeling Language) standards design
 • Production rule languages
 – Ex.: Any student who has abused printing privileges is prohibited from using color printers
 – Ex.: AAA members get a weekend discount of 20% on suites, at hotel chain X
 – Ex.: During the mitosis phase of an animal cell’s lifecycle, all DNA is replicated
Flavors of Rules Commercially Most Important today in E-Business

• E.g., in OO applications, DBs, workflows.

• Relational databases, SQL: Views, queries, facts are all rules.
 • SQL99 even has recursive rules.

• Production rules (OPS5 heritage): e.g.,

• Event-Condition-Action rules (loose family), cf.:
 – business process automation / workflow tools.
 – active databases; publish-subscribe.

• Prolog. “logic programs” as a full programming language.

• Lesser: other knowledge-based systems.

• Emerging: Semantic-based technology

Above are “Currently Commercially Important (CCI)”
Commercial Applications of Rules today in E-Business

- There are many. An established area since the 1980’s.
 - Expert systems, policy management, workflow, systems management, financial & insurance, e-commerce, trust, personal messaging, defense intelligence, ….
 - Far more applications to date than of Description Logic.

- Advantages in systems specification, maintenance, integration.

- Market momentum: moderately fast growing
 - Fast in early-mid 1980’s.
 - Slow late 1980’s-mid-1990’s.
 - Picked up again in late 1990’s. (Embeddable methodologies.)
 - Accelerating in 2000’s.
Vision: Uses of Rules in E-Business

• Rules are an important aspect of coming world of Internet e-business: rule-based business policies & business processes, for B2B & B2C.
 – represent seller’s offerings of products & services, capabilities, bids; map offerings from multiple suppliers to common catalog.
 – represent buyer’s requests, interests, bids; → matchmaking.
 – represent sales help, customer help, procurement, authorization/trust, brokering, workflow.
 – high level of conceptual abstraction; easier for non-programmers to understand, specify, dynamically modify & merge.
 – executable but can treat as data, separate from code
 • potentially ubiquitous; already widely used: e.g., SQL views, queries.
• Rules in communicating applications, e.g., embedded intelligent agents.

• Get the **KR** right (knowledge representation)
 – More mature research understanding
 – **Semantics** independent of algorithm/implementation
 – **Cleaner**; avoid general programming/scripting language capabilities
 – Highly **scaleable performance**; better algorithms; choice for interoperability
 – Highly **modular** wrt updating; use prioritization
 – → Highly **dynamic, scaleable rulebase authoring**: distributed, integration, partnering

• **Leverage Web**, esp. XML
 – Interoperable syntax
 – Merge knowledge bases

• **Embeddable**
 – Into mainstream software development environments (Java, C++, C#); not its own programming language/system (cf. Prolog)

• **Knowledge Sharing**: intra- or inter- enterprise

• **Broader** set of Applications
Value of Rules as form of KR

- Rules as a form of KR (knowledge representation) are especially useful
 - relatively mature from basic research viewpoint
 - good for prescriptive specifications (vs. descriptive)
 - a restricted programming mechanism
 - integrate well into commercially mainstream software engineering, e.g., OO and DB
 - easily embeddable; familiar
 - vendors interested already: Webizing, application development tools
- Identified as part of mission of the W3C Semantic Web Activity, in about 2001
Declarative Logic Programs (LP) is the Core KR in today’s world … including the Semantic Web

• LP is the core KR of structured knowledge management today
 • Databases
 • Relational, semi-structured, RDF, XML, object-oriented
 • SQL, SPARQL, XQuery
 • Each fact, query, and view is essentially a rule
 • Semantic Rules
 • Rule Interchange Format (RIF): -BLD, -Core
 • RuleML standards design, including SWRL
 • Semantic Ontologies
 • RDF(S)
 • OWL-RL (= the Rules subset). E.g., Oracle’s implementation of OWL.

• The Semantic Web today is mainly based on LP KR
 • … and thus essentially equivalent to semantic rules
 • You might not have realized that!
Candidate design: RuleML = Rule Markup & Modeling Language

DLP = Description Logic Programs

08-2005 W3C Semantic Web “Stack”: Standardization Steps
Updated: 10-2010 Semantic Web “Stack”

- **RIF** = Rule Interchange Format (W3C)
 - BLD = Basic Logic Dialect
 - FLD = Framework for Logic Dialects

- **RL** = Rule Profile
 - Horn FOL expressible
 - Horn LP expressible (i.e., DLP++)
 - E.g., axiomatize via ~70 RIF-BLD rules

Candidate designs for Rule extensions: SILK, ASP, FOL

- **SparQL**
- **OWL RL**
- **RDF Schema**
- **RDF Core**
- **XML**
- **Namespaces**
- **URI**
- **Unicode**

E.g., axiomatize via ~70 RIF-BLD rules

Modified from slide by W3C (just added annotation)
Overview of Key Languages & Standards

1. Database Queries & Facts are Rules
 - SQL; W3C SPARQL & RDF, also XQuery & XML-Schema

2. W3C Rule Interchange Format (RIF)
 - BLD, Core: Basic LP (no defaults or actions)
 - FLD: Framework for extensions (defaults & much more)
 - PRD: Production rules (lacks model-theoretic semantics)

3. RIF Precursor: Rule Markup/Modeling Language (RuleML)
 - Main focus is LP, with extensions; FOL too
 - SWRL function-free Horn; predecessor to RIF-BLD
 - SWSL for Web Services modeling; related: WSML

4. Rules in and for ontologies and ontology languages
 - W3C OWL-RL, RDF Schema

5. SILK: Hyper Logic Programs – advanced expressiveness

6. ISO Common Logic (successor to KIF): FOL (with HiLog)

7. OMG Sem. of Business Vocabulary & Business Rules (SBVR)
Overview of Key Tools

1. Rule systems designed to work with RDF/OWL/RIF
 - Commercial-world: Jena; Oracle; IBM; others
 - Research-world: SILK; SweetRules; cwm; others

2. Prolog and Production Rule systems
 - XSB; Jess; others

3. Advanced Expressiveness
 - FLORA-2 and SILK; IBM CommonRules

4. Rules in Semantic Wikis
 - Semantic MediaWiki+

5. Some Available Large Rule Bases
 - OpenCyc, Process Handbook, OpenMind
Need for Other Kinds of Ontologies besides OWL

• Forms of ontologies practically/commercially important in the world today*:
 – SQL DB schemas
 – “Conceptual models” in UML and E-R (Entity-Relationship)
 – OO inheritance hierarchies, procedural interfaces, datatype declarations
 – XML Schema
 – OWL is still emerging, wrt deployed usage – dwarfed by all the above
 – RIF – early emerging
 – LP/FOL/BRMS predicate/function signatures
 – Builtins (e.g., SWRL/RuleML)
 – Equations and conversion-mapping functions

• Overall relationship of OWL to the others is as yet largely unclear
 – There are efforts on some aspects, incl. UML.
 – Bright spot is OWL-RL relationship to RIF: formulated as a set of RIF-BLD axioms.

• OWL cannot represent the nonmon aspects of OO inheritance

• OWL does not yet represent, except quite awkwardly:
 – n-ary relations
 – ordering (sequencing) aspects of XML Schema

• (*NB: Omitted here are statistically flavored ontologies that result from inductive learning and/or natural language analysis.)
Outline of Part A. Intro & Uses

1. Overview of tutorial, and get acquainted
2. What are: Rules on the Web, Semantic Rules/Web/Tech
3. Uses and Kinds of rules
 - Commercial, web. Current, envisioned.
 - Requirements. Business value, IT lifecycle.
 - Strategic roadmapping of future adoption
4. Example Use Cases
 - E-commerce: pricing, ordering policies, contracts
 - E-science: ecological process, mechanics context
 - Trust: compliance, policies, e.g. financial services
 - Info integration, ontology mapping, business reporting
 - Processes: policy-based workflow, causal action effects, Semantic Web Services

NB: (2.)-(4.) are interleaved.
EECOMS Example of Conflicting Rules: Ordering Lead Time

- Vendor’s rules that prescribe how buyer must place or modify an order:
 - A) 14 days ahead if the buyer is a qualified customer.
 - B) 30 days ahead if the ordered item is a minor part.
 - C) 2 days ahead if the ordered item’s item-type is backlogged at the vendor, the order is a modification to reduce the quantity of the item, and the buyer is a qualified customer.
 - D) 45 days ahead if the buyer is a walk-in customer.

- Suppose more than one of the above applies to the current order? Conflict!

 Helpful Approach: precedence between the rules.
 - E.g., D is a catch-case: A > D, B > D, C > D
 - Often only partial order of precedence is justified.
 - E.g., C > A, but no precedence wrt B vs. A, nor wrt C vs. B.
Ordering Lead Time Example in LP with Courteous Defaults

@prefCust orderModifNotice(?Order,14days) :-
 preferredCustomerOf(?Buyer,SupplierCo), purchaseOrder(?Order,?Buyer,SellerCo) ;
@smallStuff orderModifNotice(?Order,30days) :-
 minorPart(?Buyer,?Seller,?Order), purchaseOrder(?Order,?Buyer,SupplierCo) ;
@reduceTight orderModifNotice(?Order,2days) :-
 preferredCustomerOf(?Buyer,SupplierCo) and
 orderModifType(?Order,reduce) and
 orderItemIsInBacklog(?Order) and
 purchaseOrder(?Order,?Buyer,SupplierCo) ;
silk:overrides(reduceTight, prefCust) ; // reduceTight has higher priority than prefCust

// The below exclusion constraint specifies that orderModifNotice is unique, for a given order.
silk:opposes(orderModifNotice(?Order,?X), orderModifNotice(?Order,?Y)) :- ?X != ?Y ;

• Rule D, and prioritization about it, were omitted above for sake of brevity.
• Above rules are represented in Logic Programs KR, using the Courteous defaults feature
• Notation:
 “:-” means “if”. “@…” declares a rule tag. “?” prefixes a logical variable.
 “overrides” predicate specifies prioritization ordering.
 An exclusion constraint specifies what constitutes a conflict.
 “!=” means ≠. “silk:” is a namespace prefix.
EECOMS Supply Chain: Early Commercial Implementation & Piloting

• EECOMS agile supply chain collaboration industry consortium including Boeing, Baan, TRW, Vitria, IBM, universities, small companies
 – $29 Million 1998-2000; 50% funded by NIST ATP
 – application piloted IBM CommonRules and early approaches which led to SweetDeal, RuleML, SweetRules, RIF, and SILK

• contracting & negotiation; authorization & trust
Example: E-Commerce Pricing Offer from SupplierCo to Buyer

@usualPrice price(per_unit, ?PO, $60) :-
 purchaseOrder(?PO, supplierCo, ?AnyBuyer) and
 quantity_ordered(?PO, ?Q) and (?Q ≥ 5) and (?Q ≤ 1000) and
 shipping_date(?PO, ?D) and (?D ≥ “2000-04-24”) and (?D ≤ “2000-05-12”) ;

@volumeDiscount price(per_unit, ?PO, $51) :-
 purchaseOrder(?PO, supplierCo, ?AnyBuyer) and
 quantity_ordered(?PO, ?Q) and (?Q ≥ 100) and (?Q ≤ 1000) and
 shipping_date(?PO, ?D) and (?D ≥ “2000-04-28”) and (?D ≤ “2000-05-12”) ;

silk:overrides(volumeDiscount , usualPrice) ; // volumeDiscount rule has higher priority
// The below exclusion constraint says the value of price is unique for a given PO
silk:opposes(price(per_unit, ?PO, ?X), price(per_unit, ?PO, ?Y)) :- ?X != ?Y ;
...

• Notation:
 “@foo” is an annotation preamble to a rule that specifies the rule’s tag. “?” prefixes a logical variable.
 The “overrides” predicate specifies prioritization ordering.
 An exclusion constraint specifies what constitutes a conflict.
 “!=” means ≠. “silk:” is a namespace prefix prefix.
XML Encoding of Rules in RuleML

<rulebase>
 <imp>
 <rlab>usualPrice</rlab>
 <head>
 <cslit>
 <opr><rel>price</rel></opr>
 <ind>per_unit</ind>
 <var>PO</var>
 <ind>$60</ind>
 </cslit>
 </head>
 <body> ... (see next page, if included) ... </body>
 </imp>
</rulebase>

• NB: This uses an older version of RuleML markup syntax. RIF syntax is similar, but RIF Basic Logic Dialect cannot express defaults.
Ecology Ex. of Causal Process Reasoning (in SILK)

/* Toxic discharge into a river causes fish die-off. */
/* Init. facts, and an “exclusion” constraint that fish count has a unique value */

occupies(trout,Squamish);
fishCount(0,Squamish,trout,400); /* 1st argument of fishCount is an integer time */
silk:opposes(fishCount(?s,r,f,C1), fishCount(?s,r,f,C2)) :- \(?C1 \neq ?C2 \);

/* Action/event description that specifies causal change, i.e., effect on next state */
@tdf1 fishCount(?s+1,r,f,0) :- occurs(?s,discharge,r) and occupies(?f,r);

/* Persistence (“frame”) axiom */
@pefc1 fishCount(?s+1,r,f,p) :- fishCount(?s,r,f,p);

/* Action effect axiom has higher priority than persistence axiom */
silk:overrides(tdf1,pefc1);

/* An action instance occurs */
@UhOh occurs(1,toxicDischarge,Squamish);

As desired: |= fishCount(1,Squamish,trout,400),
 fishCount(2,Squamish,trout,0);

Notes: @… declares a rule tag. ? prefixes a variable. :- means if. != means ≠. opposes indicates an exclusion constraint between two literals, which means “it’s a conflict if”.

E-Commerce Ex. of Causal Process Reasoning (in SILK)

/* E-commerce delivery logistics. */
/* Initial fact, and prevention constraint that location is unique */
loc(0,PlasmaTV46,WH_LasVegasNV);
silk:opposes(loc(?s,?item,?posn1), loc(?s,?item,?posn2)) :- ?posn1 != ?posn2;

/* Action/event description that specifies causal change, i.e., effect on next state */
@mov1 loc(?s+1,?item,?addr) and neg loc(?s+1,?item,?warehouse)
 :- shipment(?s,?item,?warehouse,?addr) and loc(?s,?item,?warehouse);

/* Persistence (“frame”) axioms about location */
@peloc1 loc(?s+1,?item,?posn) :- loc(?s,?item,?posn);

/* Action effect axiom has higher priority than the persistence axioms */
silk:overrides(mov1,peloc1);
silk:overrides(mov1,peloc2);

/* An action instance occurs */
@de7 shipment(1, PlasmaTV46, WH_LasVegasNV, 9_Fog_St_SeattleWA);

As desired: |= loc(2, PlasmaTV46, 9_Fog_St_SeattleWA);
|=! loc(2, PlasmaTV46, WH_LasVegasNV);
In Frame syntax: subject[property -> object] stands for property(subject,object).

/* Trust policy administration by multiple agents, about user permissions */
/* Admin. Bob controls printing privileges including revocation (neg). */
Bob[controls -> print]; Bob[controls -> neg print]; /* neg print means it is disallowed.*/
Cara[controls -> ?priv]; /* Cara is the most senior admin., so controls all privileges. */
/* If an administrator controls a privilege and states at a time (t) that a user has a privilege,
then the user is granted that privilege. Observe that ?priv is a higher-order variable. */
@grant(?t) ?priv(?user) :- ?admin[states(?t) -> ?priv(?user)] and ?admin[controls(?priv)];
/* More recent statements have higher priority, in case of conflict. */
silk:overrides(grant(?t2), grant(?t1)) :- ?t2 > ?t1;
/* Admins Bob and Cara make conflicting statements over time about Ann’s printing */
Bob[states(2008) -> neg print(Ann)];

As desired: |= neg print(Ann); webPage(Ann); /* Currently, Ann is permitted a webpage but not to print. */
/* “P8: Joe drops a glove from the top of a 100m cliff. How long does the fall take in seconds?” */

// Initial problem-specific facts
AP_problem(P8); fall_event(P8); P8[height->100];

// Action description that specifies causal implications on the continuous process
?e[time->((2 * ?h / ?n)^0.5)] :- fall_event(?e) and ?e[height->?h, net_accel->?n];
?e[net_accel->(?g - ?a)] :- fall_event(?e) and
 ?e[gravity_accel->?g, air_resistance_accel->?a];

// Other facts
?e[gravity_accel->9.8] :- loc(?e, Earth);
?e[gravity_accel->3.7] :- loc(?e, Mars);

// Contextual assumptions for answering Advanced Placement exam (AP) problems
@implicit_assumption loc(?e, Earth) :- AP_problem(?e);
silk:opposes(loc(?e, Earth), loc(?e, Mars));
@implicit_assumption ?e[air_resistance_accel->0] :- AP_problem(?e);
silk:overrides(explicitly_stated, implicit_assumption);

As desired: |= P8[net_accel->9.8, time->4.52]; // 4.52 = (2*100/9.8)^0.5
Physics Ex. of Contextual Assumptions (in SILK)

/* “P8: Joe drops a glove from the top of a 100m cliff on Mars. How long does the fall take in seconds?” */
/* Initial problem-specific facts*/
AP_problem(P8); fall_event(P8); P8[height->100];
@explicitly_stated loc(P8,Mars);

...

As desired: |= P8[net_accel->3.7, time->7.35]; // 7.35 = (2*100/3.7)^0.5;
Outline of Part A. Intro & Uses

1. Overview of tutorial, and get acquainted
2. What are: Rules on the Web, Semantic Rules/Web/Tech
3. Uses and Kinds of rules
 - Commercial, web. Current, envisioned.
 - Requirements. Business value, IT lifecycle.
 - Strategic roadmapping of future adoption
4. Example Use Cases
 - E-commerce: pricing, ordering policies, contracts
 - E-science: ecological process, mechanics context
 - Trust: compliance, policies, e.g. financial services
 - Info integration, ontology mapping, business reporting
 - Processes: policy-based workflow, causal action effects, Semantic Web Services

NB: (2.)-(4.) are interleaved.
Challenge: Capturing Semantics around Policies

• Deep challenge is to capture the semantics of data and processes:
 – To represent, monitor, and enforce policies – e.g., trust and contracts
 – To map between definitions of policy entities, e.g., in financial reporting
 – To integrate policy-relevant information powerfully
Policies for Compliance and Trust Mgmt.: Role for Semantic Web Rules

• Trust Policies usually well represented as rules
 – Enforcement of policies via rule inferencing engine
 – E.g., Role-based Access Control
 • This is the most frequent kind of trust policy in practical deployment today.
 – W3C P3P privacy standard, OASIS XACML, XML access control emerging standard, …

• Ditto for Many Business Policies beyond trust arena, too
 – “Gray” areas about whether a policy is about trust vs. not: compliance, regulation, risk management, contracts, governance, pricing, CRM, SCM, etc.
 – Often, authorization/trust policy is really a part of overall contract or business policy, at application-level. Unlike authentication.
 – Valuable to reuse policy infrastructure
Trust Policies and Compliance in US Financial Industry Today

- Ubiquitous high-stakes Regulatory Compliance requirements
 - Sarbanes Oxley, SEC (also in medical domain: HIPAA), etc.
- Internal company policies about access, confidentiality, transactions
 - For security, risk management, business processes, governance
- Complexities guiding who can do what on certain business data
- Often implemented using rule techniques

- Often misunderstood or poorly implemented leading to vulnerabilities
- Typically embedded redundantly in legacy silo applications, requiring high maintenance
- Policy/Rule engines lack interoperability
Example Financial Authorization Rules

<table>
<thead>
<tr>
<th>Classification</th>
<th>Application</th>
<th>Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Merchant</td>
<td>Purchase Approval</td>
<td>If credit card has fraud reported on it, or is over limit, do not approve.</td>
</tr>
<tr>
<td>Mutual Funds</td>
<td>Rep trading</td>
<td>“Blue Sky:” State restrictions for rep’s customers.</td>
</tr>
<tr>
<td>Mortgage Company</td>
<td>Credit Application</td>
<td>TRW upon receiving credit application must have a way of securely identifying the request.</td>
</tr>
<tr>
<td>Brokerage</td>
<td>Margin trading</td>
<td>Must compute current balances and margin rules before allowing trade.</td>
</tr>
<tr>
<td>Insurance</td>
<td>File Claims</td>
<td>Policy States and Policy type must match for claims to be processed.</td>
</tr>
<tr>
<td>Bank</td>
<td>Online Banking</td>
<td>User can look at own account.</td>
</tr>
<tr>
<td>All</td>
<td>Householding</td>
<td>For purposes of silo (e.g., statements or discounts), aggregate accounts of all family members.</td>
</tr>
</tbody>
</table>
Verticals that appear good candidates for Early Adoption of SW Rules for Privacy

• Financial
 – Cf. discussion earlier in this talk
 – Historically, an early adopter of information technology overall esp. for integration
 – Large sector of global economy
 – Privacy/trust policies very important, distributed & heterogeneous

• Medical
 – Privacy/trust policies very important, distributed & heterogeneous
 – Expecting help on privacy from information technology
 – Large sector of global economy

• Police/Military
 – Privacy/trust policies very important, distributed & heterogeneous
 – Looking for help on privacy from information technology
 – Major funder of SW basic research to date, e.g., DARPA Agent Markup Language program 2000-2005

• In many other realms, there is a large gap between revealed vs. avowed preferences for value of privacy/confidentiality.
Advantages of Standardized SW Rules

- Easier Integration: with rest of business policies and applications, business partners, mergers & acquisitions
- Familiarity, training
- Easier to understand and modify by humans
- Quality and Transparency of implementation and enforcement
 - Provable guarantees of implementation behavior
- Reduced Vendor Lock-in
- Expressive power
 - Principled handling of conflict, negation, priorities
Advantages of SW Rules, cont’d:

Loci of Business Value

- Reduced system dev./maint./training costs
- Better/faster/cheaper policy admin.
- Interoperability, flexibility and re-use benefits
- Greater visibility into enterprise policy implementation => better compliance
- Centralized ownership and improved governance by Senior Management
- Rich, expressive trust management language allows better conflict handling in policy-driven decisions
Some Answers to: “Why does SW/SWS Matter to Business?”

2. “Business processes require communication between organizations / applications.” - Data and programs cross org./app. boundaries, both intra- and inter- enterprise.

3. “It is the automated knowledge economy, stupid!”
 - The world is moving towards a knowledge economy. And it is moving towards deeper and broader automation of business processes. The first step is automating the use of structured knowledge.
 - Theme: reuse of knowledge across multiple tasks/apps/orgs
SW Early Adoption Candidates: High-Level View

• “Death. Taxes. Integration.”

• Application/Info Integration:
 – Intra-enterprise
 • EAI, M&A; XML infrastructure trend
 – Inter-enterprise
 • E-Commerce: procurement, SCM
 – Combo
 • Business partners, extranet trend
SW Adoption Roadmap: Strategy Considerations

- Likely first uses in a lot of B2B interoperability or heterogeneous-info-integration intensive applications (e.g., finance, travel)
 - Actually, probably 1st intra-enterprise, e.g., EAI
- Reduce costs of communication in procurement, operations, customer service, supply chain ordering and logistics
 - increase speed, create value, increase dynamism
 - macro effects create
 - stability sometimes (e.g., supply chain reactions due to lag; other negative feedbacks)
 - volatility sometimes (e.g., perhaps financial market swings)
 - increase flexibility, decrease lock-in
- Agility in business processes, supply chains
Outline of Part A. Intro & Uses

1. Overview of tutorial, and get acquainted
2. What are: Rules on the Web, Semantic Rules/Web/Tech
3. Uses and Kinds of rules
 - Commercial, web. Current, envisioned.
 - Requirements. Business value, IT lifecycle.
 - Strategic roadmapping of future adoption
4. Example Use Cases
 - E-commerce: pricing/ordering policies, contracts
 - E-science: ecological process
 - Trust: compliance, policies, e.g. financial services
 - Info integration, ontology mapping, business reporting
 - Processes: policy-based workflow, causal action effects, Semantic Web Services

NB: (2.)-(4.) are interleaved.
Ontology Translation Via Rules

- Use rules to represent mappings from data source to domain ontologies
 - Rules can be automatically or manually generated
 - Can support unit of measure conversion and structural transformation
- Example using SWRL
- http://snoggle.semwebcentral.org
Uses of Semantic Rules for XBRL

• Ontology mappings: contextual, reformulation
 – Examples:
 • Price with vs. without shipping, tax
 • Earnings last 4 qtrs vs. \{last 3 qtrs + forecast next qtr\}
 • Profit with vs. without depreciation
 • Historical info when statutory treatment changes
 • Implicit context: use a typical definition of revenue
 – Your vs. my pro-forma or analytic view
 • Between companies, governmental jurisdictions
 – Exception handling, special cases, one-time events
 • Footnotes – “where the real action is”
 • Example: Revenue includes sale of midtown NYC headquarters bldg
Example: Exception in Ontology Translation (in SILK)

/* Company BB reports operating earnings using R&D operating cost which includes price of a small company acquired for its intellectual property. Organization GG wants to view operating cost more conventionally which excludes that acquisition amount. We use rules to specify the contextual ontological mapping. */

@normallyBringOver ?categ(GG)(?item) :- ?categ(BB)(?item);
@acquisitionsAreNotOperating neg ?categ(GG)(?item) :- acquisition(GG)(?item) and (?categ(GG) ## operating(GG));
silk:overrides(acquisitionsAreNotOperating, normallyBringOver); /* exceptional */
acquisition(GG)(?item) :- price_of_acquired_R_and_D_companies(BB)(?item);
R_and_D_salaries(BB)(p1001); p1001[amount -> $25,000,000];
R_and_D_overhead(BB)(p1002); p1002[amount -> $15,000,000];
price_of_acquired_R_and_D_companies(BB)(p1003); p1003[amount -> $30,000,000];
R_and_D_operating_cost(BB)(p1003); /* BB counts the acquisition price item in this category */
R_and_D_operating_cost(GG) ## operating(GG);
Total(R_and_D_operating_cost)(BB)[amount -> $70,000,000]; /* rolled up by BB cf. BB’s definitions */
Total(R_and_D_operating_cost)(GG)[amount -> ?x] :- …; /* roll up the items for GG cf. GG’s definitions */

As desired: $ R_and_D_salaries(GG)(p1001); …
 neg R_and_D_operating_cost(GG)(p1003); /* GG doesn’t count it */
 Total(R_and_D_operating_cost)(GG)[amount -> $40,000,000];

Notation: @… declares a rule tag. ? prefixes a variable. :- means if. X ## Y means X is a subclass of Y. silk:overrides(X,Y) means X is higher priority than Y.
Equational Ontological Conflicts in Financial Reporting

<table>
<thead>
<tr>
<th>Definition</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td># of customers</td>
<td># of customers = # of end_customers + # of distributors</td>
</tr>
<tr>
<td>Gross Profit</td>
<td>Gross Profit = Net Sales – Cost of Goods – Depreciation</td>
</tr>
<tr>
<td>P/E Ratio</td>
<td>P/E Ratio = Price/ [Earnings(last 3 Qtr) + Earnings(next quarter)]</td>
</tr>
<tr>
<td>Price</td>
<td>Price = Nominal Price + Shipping + Tax</td>
</tr>
</tbody>
</table>

"heterogeneity in the way data items are calculated from other data items in terms of definitional equations"
Primark was a company that owned:

- Disclosure
- Worldscope
- DataStream
- Information services

EOC in Primark Databases

Top 25 US Co. by Net Sales (Disclosure DB)

<table>
<thead>
<tr>
<th>Rank</th>
<th>Company</th>
<th>Net Sales (000's)</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>General Motors Corp</td>
<td>168,828,600</td>
<td>12/31/95</td>
</tr>
<tr>
<td>2</td>
<td>Ford Motor Co</td>
<td>137,137,000</td>
<td>12/31/95</td>
</tr>
<tr>
<td>3</td>
<td>Exxon Corp</td>
<td>121,804,000</td>
<td>12/31/95</td>
</tr>
<tr>
<td>4</td>
<td>Wal Mart Stores Inc</td>
<td>93,627,000</td>
<td>01/31/96</td>
</tr>
<tr>
<td>5</td>
<td>AT&T</td>
<td>79,609,000</td>
<td>12/31/95</td>
</tr>
<tr>
<td>6</td>
<td>Mobil Corp</td>
<td>73,413,000</td>
<td>12/31/95</td>
</tr>
<tr>
<td>7</td>
<td>International Business M</td>
<td>67,904,000</td>
<td>12/31/95</td>
</tr>
<tr>
<td>8</td>
<td>General Electric Co</td>
<td>70,028,000</td>
<td>12/31/95</td>
</tr>
</tbody>
</table>

Top 25 International Co. by Net Sales (Worldscope DB)

<table>
<thead>
<tr>
<th>Rank</th>
<th>Company</th>
<th>Net Sales (000's)</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mitsubishi Corporation</td>
<td>165,848,468</td>
<td>03/31/96</td>
</tr>
<tr>
<td>2</td>
<td>General Motors Corp</td>
<td>163,861,100</td>
<td>12/31/95</td>
</tr>
<tr>
<td>3</td>
<td>Exxon Corp</td>
<td>107,893,000</td>
<td>12/31/95</td>
</tr>
<tr>
<td>4</td>
<td>Wal Mart Stores Inc</td>
<td>93,627,000</td>
<td>01/31/96</td>
</tr>
<tr>
<td>5</td>
<td>AT&T</td>
<td>79,609,000</td>
<td>12/31/95</td>
</tr>
<tr>
<td>6</td>
<td>Mobil Corp</td>
<td>73,413,000</td>
<td>12/31/95</td>
</tr>
<tr>
<td>7</td>
<td>International Business M</td>
<td>67,940,000</td>
<td>12/31/95</td>
</tr>
<tr>
<td>8</td>
<td>General Electric Co</td>
<td>69,948,000</td>
<td>12/31/95</td>
</tr>
<tr>
<td>16</td>
<td>International Business M</td>
<td>64,767,000</td>
<td>12/31/95</td>
</tr>
</tbody>
</table>
Solution Approach: ECOIN

Extended CONtext INterchange MIT Sloan prototype E-Shopping App. (Financial Info is ubiquitous in e-biz)

Context Mediator

Price Equations

Price: Nominal + Tax + Shipping Product Code: Alpha

Query

Prices of Products Cheaper in eToys compared to Kid’s World

Results

<table>
<thead>
<tr>
<th>Product</th>
<th>eToys</th>
<th>Kid’s World</th>
</tr>
</thead>
<tbody>
<tr>
<td>pokemon</td>
<td>17</td>
<td>13.3</td>
</tr>
<tr>
<td>starwars</td>
<td>45</td>
<td>30.1</td>
</tr>
</tbody>
</table>

Price: Nominal Product Code: Alpha

123456 20
234567 40
...
...
• Context-based loosely-coupled integration

• Symbolic Equation Solving combined with LP
An Introduction to XBRL

XBRL is a language for the electronic communication of business and financial data which revolutionising business reporting around the world. It provides major benefits in the preparation, analysis and communication of business information. It offers cost savings, greater efficiency and improved accuracy and reliability to all those involved in supplying using financial data.

XBRL stands for eXtensible Business Reporting Language. It is one of a family of "XML" languages which is becoming a standard means of communicating information between businesses and on the internet.

XBRL is being developed by an international non-profit consortium of approximately 450 companies, organisations and government agencies. It is an open standard, free of licence fees. It is already being put to practical use in a number of countries and implementatio XBRL are growing rapidly around the world.

This site provides information about the nature, uses and benefits of XBRL. It explains how individuals and companies can join the effort to move forward and make use of the language.

A Simple Explanation

The idea behind XBRL, eXtensible Business Reporting Language, is simple. Instead of treating financial information as a block of text - as in a standard internet page or a print document - it provides an identifying tag for each individual item of data. This is comput readable. For example, company net profit has its own unique tag.

The introduction of XBRL tags enables automated processing of business information by computer software, cutting out laborious and costly processes of manual re-entry and comparison. Computers can treat XBRL data "intelligently": they can recognise the information in a XBRL document, select it, analyse it, store it, exchange it with other computers and present it automatically in a variety of ways for users. XBRL greatly incre the speed of handling of financial data, reduces the chance of error and permits automated checking of information.

Companies can use XBRL to save costs and streamline their processes for collecting and reporting financial information. Consumers of financial data, including investors, analysts, financial institutions and regulators, can receive, find, compare and analyse data much more rapidly and efficiently if it is in XBRL format.

XBRL can handle data in different languages and accounting standards. It can flexibly be adapted to meet different requirements and uses. Data can be transformed into XBRL by suitable mapping tools or it can be generated in XBRL by appropriate software.

The How XBRL Works page gives further explanation of XBRL, while Benefits and Uses outlines how different types of organisation can gain from the standard.
Outline of Part A. Intro & Uses

1. Overview of tutorial, and get acquainted
2. What are: Rules on the Web, Semantic Rules/Web/Tech
3. Uses and Kinds of rules
 - Commercial, web. Current, envisioned.
 - Requirements. Business value, IT lifecycle.
 - Strategic roadmapping of future adoption
4. Example Use Cases
 - E-commerce: pricing, ordering policies, contracts
 - E-science: ecological process, mechanics context
 - Trust: compliance, policies, e.g. financial services
 - Info integration, ontology mapping, business reporting
 - Processes: policy-based workflow, causal action effects, Semantic Web Services

NB: (2.)-(4.) are interleaved.
Contracts in E-Commerce Lifecycle

- Discovery, advertising, matchmaking
 - Search, sourcing, qualification/credit checking
- Negotiation, bargaining, auctions, selection, forming agreements, committing
 - Hypothetical reasoning, what-if’ing, valuation
- Performance/execution of agreement
 - Delivery, payment, shipping, receiving, notification
- Problem Resolution, Monitoring
 - Exception handling
Approach:

Rule-based Contracts for E-commerce

- Rules as way to specify (part of) business processes, policies, products: as (part of) contract terms.
- Complete or partial contract.
 - As default rules. Update, e.g., in negotiation.
- Rules provide high level of conceptual abstraction.
 - easier for non-programmers to understand, specify, dynamically modify & merge. E.g.,
 - by multiple authors, cross-enterprise, cross-application.
- Executable. Integrate with other rule-based business processes.
Semantic Web Services

• Convergence of Semantic Web and Web Services
• Consensus definition and conceptualization still forming
• Semantic (Web Services):
 – Knowledge-based service descriptions, deals
 • Discovery/search, invocation, negotiation, selection, composition, execution, monitoring, verification
 • Advantage: reuse of knowledge across apps, these tasks
 – Integrated knowledge
 • (Semantic Web) Services: e.g., infrastructural
 – Knowledge/info/DB integration
 – Inferencing and translation
Rule-based Semantic Web Services

• Rules often good to **executably specify** service process models
 – e.g., business process automation using procedural attachments to perform side-effectful/state-changing actions ("effectors" triggered by drawing of conclusions)
 – e.g., rules obtain info via procedural attachments ("sensors" test rule conditions)
 – e.g., rules for knowledge translation or inferencing
 – e.g., info services exposing relational DBs

• **Infrastructural:** rule system functionality as services:
 – e.g., inferencing, translation
W3C Web Services Stack (2004)

Diagram courtesy Tim Berners-Lee: http://www.w3.org/2004/Talks/0309-ws-sw-tbl/slide6-0.html

NOTES:

WSDL is a Modular Interface spec
SOAP is Messaging and Runtime
Also:
- UDDI is for Discovery
- BPEL4WS, WSCI, …
 are for transactions
- Routing, concurrency, …
SWS Language effort (2005), on top of Web Services Standards Stack

"Wire" Protocols

- W3C WS Choreography Group
- BPEL4WS (Microsoft, IBM, BEA)
- WSCL (HP)BPML (Most but Microsoft)
- WSCI (Sun, BEA, Yahoo, ...)
- XLANG (Microsoft), WSFL (IBM), ...

Service Description

- SOAP Blocks
- SOAP/XMLP
- XML
- HTTP/SMTP
- TCP/IP

SWS Language

- Process
- WSDL Extensions
- WSDL
- XML

Registry (UDDI)

SWS Initiative (SWSI) -- automate Tasks of:

- Discovery
- Invocation
- Interoperation
- Deal Negotiation
- Composition
- Monitoring
- Verification

[Slide authors: Benjamin Grosof (MIT Sloan), Sheila McIlraith (Stanford), David Martin (SRI International), James Snell (IBM)]
Semantic Web Services Framework (SWSF)

- By Semantic Web Services Initiative (SWSI) http://www.swsi.org
 - Coordinated global research and standards design in SWS during 2002-2005
 - Researchers from universities, companies, government
 - Industrial partners; DAML and WSMO backing
 - Collaborators: OWL-S, WSMO, RuleML, DAML

- Designed SWSF in 2005: http://www.daml.org/services/swsf/1.0/
 - Rules & FOL language (SWSL/RuleML)
 - Ontology for SWS (SWSO)
 - Drawn largely from OWL-S and PSL
 - Application Scenarios
 - Also: requirements analysis

- Influential, explored the issues
 - ⇒W3C SAWSDL – Semantic Annotations for WSDL and XML Schema
 - Extension mechanism – a hook – with shallow semantics in itself
SWS(F) Tasks Form 2 Distinct Clusters, each with associated Central Kind of Service-description Knowledge and Main KR

1. Security/Trust, Monitoring, Contracts, Advertising/Discovery, Ontology-mapping Mediation
 • Central Kind of Knowledge: Policies
 • Main KR: Nonmonotonic LP (rules + ontologies)

2. Composition, Verification, Enactment
 • Central Kind of Knowledge: Process Models
 • Main KRs: FOL + Nonmonotonic LP
Rule-based Semantic Web Services

• Rules/LP in appropriate combination with DL as KR, for RSWS
 – DL good for categorizing: a service overall, its inputs, its outputs

• Rules to describe service process models
 – rules good for representing:
 • preconditions and postconditions, their contingent relationships
 • contingent behavior/features of the service more generally,
 – e.g., exceptions/problems
 – familiarity and naturalness of rules to software/knowledge engineers

• Rules to specify deals about services: cf. e-contracting.
Services Engineering Lifecycle

1. Expressive standardized semantic rules can help with several long-standing challenges in services engineering, across the whole lifecycle:
 - Reuse, interoperability, integration, context, transparency, governance
 - Cost reduction, agility
 - Etc.

2. Frequent tasks:
 - Monitoring: events / exceptions → react, policy-based agile workflows
 - Confidentiality: authorizations for access, transactions
 - Contractual: ads, trades / e-commerce, SLAs
Outline of Part A. Intro & Uses

1. Overview of tutorial, and get acquainted
2. What are: Rules on the Web, Semantic Rules/Web/Tech
3. Uses and Kinds of rules
 - Commercial, web. Current, envisioned.
 - Requirements. Business value, IT lifecycle.
 - Strategic roadmapping of future adoption
4. Example Use Cases
 - E-commerce: pricing, ordering policies, contracts
 - E-science: ecological process, mechanics context
 - Trust: compliance, policies, e.g. financial services
 - Info integration, ontology mapping, business reporting
 - Processes: policy-based workflow, causal action effects, Semantic Web Services

NB: (2.)-(4.) are interleaved.
Outline of Part B. Concepts & Foundations

1. Overview of Logical Knowledge Representations
 - Logic Programs (LP) and its relationship to First Order Logic (FOL)
 - Rule-based Ontologies: Description Logic, Description LP
2. SILK’s Hyper LP: Putting it all together
3. Basics: Horn Case; Functions
4. F-Logic, Frame Syntax, Object Oriented Style
5. HiLog, Higher-Order Syntax, Reification, Meta-Reasoning
6. W3C Rule Interchange Format (RIF): Dialects, Framework
 - Rules in W3C Web Ontology Language (OWL-RL); via RIF
7. Nonmonotonic LP: Defaults, Negation, Priorities, FOL Interchange
 - Semantics for Default Negation
 - Courteous LP, Argumentation Theories
 - Omni-directional Rules, FOL-Soundness, Remedying FOL’s Fragility
8. Procedural Attachments to Actions, Queries, Built-ins, and Events
 - Production/Situated LP, Production Rules
Updated: 06-2010 Semantic Web “Stack”

RIF = Rule Interchange Format (W3C)
BLD = Basic Logic Dialect
FLD = Framework for Logic Dialects

RL = Rule Profile
= Horn FOL expressible
\cong\text{Horn LP expressible}
(i.e., DLP++)

Candidate designs for Rule extensions: SILK, RuleML; CL (Common Logic)

SILK, RuleML; CL (Common Logic)
A KR S is defined as a triple $(LA, LC, |=)$, where:

- LA is a formal language of sets of assertions (i.e., premise expressions)
- LC is a formal language of sets of conclusions (i.e., conclusion expressions)

Remark: In LP KR, LC is not even a subset of LA!

- $|=\,$ is the entailment relation.

- Conc(A, S) stands for the set of conclusions that are entailed in KR S by a set of premises A
 - We assume here that Conc is a functional relation.

- Typically, e.g., in FOL and LP, entailment is defined formally in terms of models, i.e., truth assignments that satisfy the premises and meet other criteria.
Background: Example KR’s

1. Relational databases: relational algebra.
 • This is a restricted form of declarative Logic Programs (“Datalog Horn”).

2. Mathematical classical logic: first-order logic (FOL), higher-order logic.
 • Used in verification of programs, for example.

3. Rules in various flavors.
 • Central abstraction: declarative Logic Programs, which extend Horn FOL.
 • (Core) SQL database is an LP rulebase.

4. Many others: Bayesian probabilistic networks, inductive learning, Description Logic, fuzzy logic, temporal modal logic, etc.
Knowledge Representation: What’s the Game?

• Expressiveness: useful, natural, complex enough

• Reasoning algorithms

• Syntax: encoding data format -- here, in XML

• Semantics: principles of sanctioned inference, independent of reasoning algorithms

• Computational Tractability (esp. worst-case): scale up in a manner qualitatively similar to relational databases: computation cycles go up as a polynomial function of input size
Overview of Logic Knowledge Representation (KR) and Markup Standards

• First Order Logic (FOL). Also called “classical logic”, as is HOL (below).
 – Standards efforts:
 • ISO Common Logic (CL); FOL RuleML
 – Restriction: Horn FOL
 – Restriction: Description Logic (DL) – overlaps with Horn
 • Standard: W3C OWL-DL (Web Ontology Logic)
 – Extension: Higher Order Logic (HOL)
 • HiLog = higher order syntactically, but reducible to first order
• Logic Programs (LP)
 – (Here: in the declarative sense.)
 – Standard: W3C RIF (Rule Interchange Format)
 – Standard designs for additional expressiveness: RuleML / SWSL / SILK
 – Extension features: HiLog; also:
 • Nonmonotonicity: Negation, Defaults (cf. Courteous)
 • Procedural attachments for external queries, events, actions
 – Restriction: Horn LP
 – Restriction: Description Logic Programs (DLP) – overlaps with DL
Venn Diagram: Expressive Overlaps among KRs

Description Logic

Horn Logic Programs

First-Order Logic

Logic Programs

Description Logic Programs

(Nonmonotonicity)

(Procedural Attachments)

NB: Nonmon LP, including Courteous, relies on Default Negation as fundamental underlying KR expressive mechanism for nonmonotonicity.
Description Logic cf. OWL 2: KR Expressiveness

- Restriction of First Order Logic (FOL)
 - Strongest restriction is on the patterns of variable appearances
 - Cannot represent many kinds of chaining (joins) among predicates
 - No logical functions
- Allows:
 - Class predicates of arity 1
 - Property predicates of arity 2 (Indirectly can represent n-ary predicates)
 - Membership axioms: foo instanceOf BarClass
 - Inclusion axioms between classes (possibly complex)
 - C1 subclassOf C2
 - I.e., x instanceOf C1 ⇒ x instanceOf C2
 - Complex class expressions, e.g.
 - Electrical device that has two speakers and a 120V or 220V power supply
 - Property chaining, with some restrictions (feature added to OWL 2)
- Good for representing:
 - Many kinds of ontological schemas, including taxonomies
 - Taxonomic/category subsumptions (with strict inheritance)
 - Some kinds of categorization/classification and configuration tasks
Summary of Computational Complexity of KRs

• For task of inferencing, i.e., answering a given query.
 – Tractable = time is polynomial in \(n \), worst-case; \(n = |\text{premises}| \)

• First Order Logic (FOL)
 – Intractable for Propositional (co-NP-complete)
 – Undecidable in general case
 – Decidable but intractable for Description Logic

• Logic Programs (LP) with extensions for negation, defaults, HiLog, frames, attached procedures, …
 – Tractable for broad cases; same as Horn
 • \(O(n^2) \) for Propositional with negation and defaults
 • Complexity qualitatively similar to Relational DBs
 • Truly Web-scaleable, therefore
 – Undecidable in general (cause: infinite recursion through functions)
More on Computational Complexity of LP

- O(n) for propositional Horn. (Ditto in FOL.)
- O(n·m) for propositional with negation (well-founded), where m = # atoms (m ≤ n)
 - Defaults add no increase in the complexity bound (reducible linearly to NAF)
- Typically-met restrictions:
 - Constant-bounded number of distinct variables per rule (VB restriction)
 - In DL form of DLP, VB ≡ constant-bounded number of distinct DL quantifiers (incl.
 min/max cardinality) in class descriptions per inclusion axiom
 - Time per attached procedure call is tractable (AT restriction)
- Most feature extensions can be added to LP without affecting tractability
- Key restriction to ensure tractability (or decidability) is to:
 - Avoid blow-up from recursion through logical functions (of arity > 0)
 - ⇒ Keep the relevant set of ground atoms tractable (or finite)
 - Here, recursion means dependency cycles among rules
 - E.g., function-free is a simple sufficient condition
 - Then # of ground atoms = O(n^{v+1}) , where v is the bound in VB
 - More research on detailed theory and algorithms is needed, however
Updated: 10-2010 Semantic Web “Stack”

Candidate designs for Rule extensions: SILK, ASP, FOL

RIF = Rule Interchange Format (W3C)
BLD = Basic Logic Dialect
FLD = Framework for Logic Dialects

RL = Rule Profile
= Horn FOL expressible
≈ Horn LP expressible
(i.e., DLP++)
E.g., axiomatize via
~70 RIF-BLD rules

RIF, OWL, RDF Schema, RDF Core, XML, Namespaces, URI, Unicode

Proof
Logic framework

FOL
BLD

SparQL

OWL

Rules

OWL RL

RDF Core

Encryption

Signature

Trust

Modified from slide by W3C (just added annotation)
KR View of Semantic Web related standards

Hazy wrt Standardization: more Framework
- Uncertainty (probabilistic, fuzzy); Provenance (proof, trust)

Logical Framework standards/designs: RIF-FLD, RuleML, SILK

LP (Logic Programs)
- Umbrella standards/designs
 - SILK
 - RuleML-LP
- Database Query Standards*
 - SQL
 - SPARQL
 - XQuery
- Business Rules Families*
 - Production
 - RIF-PRD
 - ECA (Event-Condition-Action)
 - Prolog

FOL (First Order Logic)
- Umbrella standards/designs:
 - CL (ISO Common Logic)
 - RuleML-FOL
- Semantic/Web Standards (other)
 - RDF
 - RDFS (Schema)
 - OWL RL (Rule Profile)
 - RIF-BLD (Basic Logic Dialect)
 - (and SWRL)
 - OWL DL (Description Logic)
 - OWL Full
 - SBVR (OMG Semantic Business Vocabulary and Rules)

*Via KR mapping to LP, maybe with restrictions
KR View of Semantic Web related standards

Hazy wrt Standardization: more Framework

- **Uncertainty** (probabilistic, fuzzy); **Provenance** (proof, trust)

Logical Framework standards/designs: RIF-FLD, RuleML, SILK

<table>
<thead>
<tr>
<th>LP</th>
<th>FOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Horn</td>
<td>• Umbrella standards/designs:</td>
</tr>
<tr>
<td></td>
<td>- CL (ISO Common Logic)</td>
</tr>
<tr>
<td></td>
<td>- RuleML-FOL</td>
</tr>
<tr>
<td>• Rest</td>
<td>- Semantic/Web Standards (other)</td>
</tr>
<tr>
<td></td>
<td>- RDF</td>
</tr>
<tr>
<td></td>
<td>- RDFS (Schema)</td>
</tr>
<tr>
<td></td>
<td>- OWL RL (Rule Profile)</td>
</tr>
<tr>
<td></td>
<td>- RIF-BLD (Basic Logic Dialect)</td>
</tr>
<tr>
<td></td>
<td>- (and SWRL)</td>
</tr>
<tr>
<td></td>
<td>- OWL DL (Description Logic)</td>
</tr>
<tr>
<td></td>
<td>- OWL Full</td>
</tr>
<tr>
<td></td>
<td>- SBVR (OMG Semantic Business</td>
</tr>
<tr>
<td></td>
<td>Vocabulary and Rules)</td>
</tr>
</tbody>
</table>

Via KR mapping to LP (sound, nearly complete)
KR View of Semantic Web related standards

Hazy wrt Standardization: more Framework

– Uncertainty (probabilistic, fuzzy); Provenance (proof, trust)

Logical Framework standards/designs: RIF-FLD, RuleML, SILK

LP

- Umbrella standards/designs
 - SILK

FOL

* Via KR mapping to LP (hypermonotonic)

Sound, but incomplete

- lack disjunctiveness
 (no reasoning-by-cases)
Outline of Part B. Concepts & Foundations

1. Overview of Logical Knowledge Representations
 - Logic Programs (LP) and its relationship to First Order Logic (FOL)
 - Rule-based Ontologies: Description Logic, Description LP
2. SILK’s Hyper LP: Putting it all together
3. Basics: Horn Case; Functions
4. F-Logic, Frame Syntax, Object Oriented Style
5. HiLog, Higher-Order Syntax, Reification, Meta-Reasoning
6. W3C Rule Interchange Format (RIF): Dialects, Framework
 - Rules in W3C Web Ontology Language (OWL-RL); via RIF
7. Nonmonotonic LP: Defaults, Negation, Priorities, FOL Interchange
 - Semantics for Default Negation
 - Courteous LP, Argumentation Theories
 - Omni-directional Rules, FOL-Soundness, Remedying FOL’s Fragility
8. Procedural Attachments to Actions, Queries, Built-ins, and Events
 - Production/Situated LP, Production Rules
SILK research program (2008-) in Vulcan’s Project Halo

• For Vision of Digital Aristotle: question-answering for science
 • Put the bulk of the world’s scientific and similar knowledge on-line
 • Answer questions, act as personal tutor, with deep reasoning. E.g., textbooks/exams.
 • 1st yr college-level Biology is current domain focus: complex causal processes

• Advanced KR language and system, for esp. defaults & processes
 • Largest* rule research program in USA. Multi-institutional: primarily via contractors.
 • Higher-abstraction KR closer to human cognition and social pragmatics
 • Radically extends expressive power of SQL, RDF(S), SPARQL, OWL-RL, RIF-BLD
 • Remedies major limitations of semantic web’s current KR foundation

• Potential application areas in business and government
 • Horizontal: policies, workflows; ontology mapping, knowledge integration
 • Vertical: e-commerce, defense intelligence, trust, biomed, financial, mobile

• http://silk.semwebcentral.org

* (that we’re aware of)
SILK Contributors current/past (partial list)

- Vulcan (Benjamin Grosof, Mark Greaves, Dave Gunning, Peter Clark)
- Stony Brook Univ. (Michael Kifer, H. Wan, S. Liang, P. Fodor)
- Raytheon BBN Technologies (Mike Dean, C. Andersen, B. Benyo, B. Ferguson)
- SRI International (Vinay Chaudhri, David Martin, Ken Murray)
- Cycorp (Keith Goolsbey, Doug Lenat, Jon Curtis)
- Automata (Paul Haley)
- Terrance Swift, consultant
- Smart Info Flow Technologies (Mark Burstein)
- Richard Fikes, consultant (Stanford Univ.)
- Texas Tech Univ. (Michael Gelfond, D. Inclezan)
- University of Toronto (Sheila McIlraith, S. Sohrabi, H. Ghaderi)
- Ontoprise GmbH (Daniel Hansch, Jurgen Angele)
- Boeing
- Univ. of Texas (Bruce Porter, Ken Barker)
- Univ. of Amsterdam (Bert Bredeweg)
- Univ. of Freiburg (Georg Lausen)
- Univ. of Michigan (Michael Wellman)
- Raphael Volz, consultant
- Acknowledgements to RuleML (Harold Boley, Said Tabet)
Expressiveness “Brittleness” Areas Targeted

- **Defaults/Exceptions/Defeasible** (incl. nonmonotonic reasoning, theory revision, argumentation, truth maintenance)
 - A kinematics problem situation has standard earth gravity, and no air resistance. [physics AP]
 - A given organism has the anatomy/behavior that is typical/normal for its species, e.g., a bat has 2 wings and flies. [bio AP]
 - Price info for an airplane ticket on Alaska Air’s website is accurate and up to date. [e-shopping]

 ![Practical reasoning almost always involves a potential for exceptions](image)

- **Hypotheticals**
 - If Apollo astronaut Joe golfed a ball on the moon, then standard earth gravity would not apply. [negative hypothetical]

 ![conflict between defaults, resolved by priority among them](image)

 ![If I had swerved my car 5 seconds later than I did, I would have hit the debris in the left lane with my tire.](image)

- **Actions and Causality**
 - If a doorkey is incompletely inserted into the keyhole, turning the key will fail. [precondition]
 - During the mitotic stage of prometaphase, a cell’s nuclear envelope fragments [biology AP]
 - After a customer submits an order on the website, Amazon will email a confirmation and ship the item. [Event-Condition-Action (ECA) rule] [policy]

- **Processes (i.e., representing and reasoning about processes)**
 - Mitosis has five stages; its successful completion results in two cells. [compose] [partial description]
 - If Amazon learns that it will take an unexpectedly long time to stock an ordered item, then it emails the customer and offers to cancel the order without penalty. [exception handling]
 - A Stillco sensor-based negative feedback thermal regulator is adequate to ensure the overnight vat fermentation of the apple mash will proceed within desired bounds of the alcohol concentration parameter. [science-based business process]

Ubiquitous in science, commonsense, business, etc. All are interrelated.
Causal process reasoning is a large portion of AP Biology, often requiring multi-step causal chains and/or multiple grain sizes of description to answer a question.

Several such complex examples drawn from exams or textbooks have been successfully represented in SILK. E.g.:

- "A researcher treats cells with a chemical that prevents DNA synthesis from starting. This treatment traps the cells in which part of the cell cycle?"
The correct answer is: G1 [which is a sub-phase of interphase]

- "In some organisms, mitosis occurs without cytokinesis occurring. This will result in:
 a. cells with more than one nucleus
 b. cells that are unusually small.
 c. cells lacking nuclei.
 d. destruction of chromosomes.
 e. cell cycles lacking an S phase."
The correct answer is: a. [two nuclei form in a cell, but no new cell wall splits the cell]

- “Suppose the typical number of chromosomes in a human liver cell was 12. [Notice this is counterfactual; there are actually 46]. What would the typical number of chromosomes in a human sperm cell be?”
The correct answer is: 6 [half of the number in the liver and most other organs]
SILK’s Goals

- Address fundamental requirements for scaling Semantic Web to widely-authored Very Large KBs in business and science that answer questions, proactively supply info, and reason powerfully

- **Expressiveness + Semantics + Scalability**
 - Push the frontier. Language and system.

- **Better Knowledge Representation (KR)**
 - Expressive power: defeasibility, higher-order. E.g., causal processes in AP Biology.
 - Performance scalability of reasoning, including knowledge updates

- **More effective Knowledge Acquisition (KA)**
 + By Subject Matter Experts (SMEs), not programmers or knowledge engineers
 + Collaboratively – incorporate large #s of SMEs in KB construction & maintenance
 + Leveraging the Web

- **Better KR also for sake of better KA**
 - Web knowledge interchange (with merging) for scalability of collaborative KA
 - The underlying KR is the target for KA: “The KR is the deep UI”
 - Understandability via semantics and expressiveness
 - Raise abstraction level closer to the user’s natural language and cognition
SILK’s KR: **Hyper Logic Programs**

- **New Extension of LP that is the first to combine key advanced features**

 - **Defaults + Higher-Order + External Actions/Events/Queries**
 - + Webized, Frames, Negation (neg and naf), Equality, Functions, Skolems, Aggregates, Integrity Constraints, Lloyd-Topor, …

- **Omni-directionality: new feature**
 - Permit head disjunction, treat via directionalization. Handle multi-way conflicts.
 - Much broader FOL-sound interchange: any clause or universal formula, not just Horn

- **Transforms knowledge from higher to lower abstraction levels**
 - Raises expressive abstraction level. Higher is good for **knowledge acquisition (KA)**
 - Lower is good for reasoning (code reuse, optimization) and knowledge interchange

- **Tractable computationally – complexity is same as Horn LP**
 - Polynomial time -- similar to relational DBMS -- if there’s no recursion thru functions
 - Retains pragmatic quality of LP: “intuitionistic” – lack general “reasoning by cases”

- **Uses new argumentation theory approach to defaults**
 - ~20 “meta-” rules specify debate principles for defeat. Much easier to implement than code.
 - Enables much more expressiveness (e.g., HiLog). Much more efficient when updating.

- **RIF-SILK dialect extends RIF-BLD (Basic Logic Dialect)**
SILK’s KR Approach, continued

• KR Language
 • Syntax: ASCII presentation syntax, abstract syntax, RIF dialect (RIF-SILK)
 • Semantics: model theory, proof theory. Closely related to the transformations (above).

• Knowledge Interchange
 • Via load, or query, or event. E.g., embed a SPARQL query in the body of a rule.
 • KR languages: SPARQL, RDF(S), SQL, ODBC; SILK, RIF, OWL(-RL), Cyc, AURA

• Reasoning system
 • Backward inferencing primarily -- i.e., query answering
 • Tabling saves and reuses computation from previous subqueries
 • Supports fast updating and forward inferencing
 • Good efficiency/scalability of performance

• Synergizes 20 years of LP research progress
 • Courteous defaults and external actions/queries cf. IBM Common Rules, SweetRules
 • Higher-order cf. HiLog, Common Logic
 • Negation-As-Failure cf. well founded
 • Performance optimizations from DBMS, Prolog, BRMS, AI

• Extensive requirements analysis, use cases, benchmarking
 • Use cases in business policies, ontology mapping, e-commerce, biomed, …
Representational Uses for Defaults and Higher-Order

Defaults (cf. Courteous, with Prioritization)

• Negation
• Pragmatic knowledge/reasoning has potential for exceptions and revision
 • Learning and science: may falsify previous hypotheses after observation or communication
• Debate and trust: priorities from authority, reliability, recency
• Updating, merging, change: increase modularity/reuse in KA/KB lifecycle
• Process causality: persistence, indirect ramified effects, interference
• Hypotheticals, e.g., counterfactuals
• Inheritance: more-specific case overrides more-general case
• Policies, regulations, laws – the backbone of society and institutions
• Natural language understanding (NLU) aspects: e.g., co-reference

Higher-Order (cf. Hilog and reification)

• Meta- knowledge and meta- reasoning, generally
• Ontology mapping, KB translation, KR macros, reflection, NLU aspects
• Provenance, multi-agent belief, modals, many aspects of context
Outline of Part B. Concepts & Foundations

1. Overview of Logical Knowledge Representations
 - Logic Programs (LP) and its relationship to First Order Logic (FOL)
 - Rule-based Ontologies: Description Logic, Description LP
2. SILK’s Hyper LP: Putting it all together
3. Basics: Horn Case; Functions
4. F-Logic, Frame Syntax, Object Oriented Style
5. HiLog, Higher-Order Syntax, Reification, Meta-Reasoning
6. W3C Rule Interchange Format (RIF): Dialects, Framework
 - Rules in W3C Web Ontology Language (OWL-RL); via RIF
7. Nonmonotonic LP: Defaults, Negation, Priorities, FOL Interchange
 - Semantics for Default Negation
 - Courteous LP, Argumentation Theories
 - Omni-directional Rules, FOL-Soundness, Remedying FOL’s Fragility
8. Procedural Attachments to Actions, Queries, Built-ins, and Events
 - Production/Situated LP, Production Rules
The Horn subset of FOL is defined relative to clausal form of FOL.

A Horn clause is one in which there is at most one positive literal. It takes one of the two forms:

1. \(H \lor \neg B_1 \lor \ldots \lor \neg B_m . \) A.k.a. a definite clause / rule
 - Fact \(H . \) is special case of rule (H ground, m=0)
2. \(\neg B_1 \lor \ldots \lor \neg B_m . \) A.k.a. an integrity constraint

where m ≥ 0, H and Bi’s are atoms. (An atom = pred(term_1,…,term_k) where pred has arity k, and functions may appear in the terms.)

A definite clause (1.) can be written equivalently as an implication:

- Rule := \(H \iff B_1 \land \ldots \land B_m . \) where m ≥ 0, H and Bi’s are atoms
 - head if body;

An integrity constraint (2.) can likewise be written as:

- \(\bot \iff B_1 \land \ldots \land B_m . \) A.k.a. empty-head rule (\(\bot \) is often omitted). For refutation theorem-proving, represent a negated goal as (2.).
Horn LP Syntax and Semantics

• Horn LP syntax is similar to implication form of Horn FOL
 – The implication connective’s semantics are a bit weaker however. We will write it as \leftarrow (or as \therefore) instead of \subseteq.
 – Declarative LP with model-theoretic semantics
 – Same for forward-direction (“derivation” / “bottom-up”) and backward-direction (“query” / “top-down”) inferencing
 – Model $M(P) =$ a set of (concluded) ground atoms
 • Where $P =$ the set of premise rules
• Semantics is defined via the least fixed point of an operator T_P. T_P outputs conclusions that are immediately derivable (through some rule in P) from an input set of intermediate conclusions I_j.
 – $I_{j+1} = T_P(I_j)$; $I_0 = \emptyset$ (empty set)
 • $I_{j+1} =$ {all head atoms of rules whose bodies are satisfied by I_j}
 – $M(P) =$ LeastFixedPoint(T_P) ; where LFP = the I_m such that $I_{m+1} = I_m$
 – Simple algorithm: DO {run each rule once} UNTIL {quiescence}
Example of Horn LP vs. Horn FOL

Let P be:
- DangerousTo(?x,?y) ← PredatorAnimal(?x) ∧ Human(?y);
- PredatorAnimal(?x) ← Lion(?x);
- Lion(Simba);
- Human(Joey);

I1 = {Lion(Simba), Human(Joey)}
I2 = {PredatorAnimal(Simba), Lion(Simba), Human(Joey)}
I3 = {DangerousTo(Simba,Joey), PredatorAnimal(Simba), Lion(Simba), Human(Joey)}
I4 = I3. Thus M(P) = I3.

Let P’ be the Horn FOL rulebase version of P above, where ← replaces ⇐.
Then the ground atomic conclusions of P’ are exactly those in M(P) above.
P’ also entails various non-ground-atom conclusions, including:
1. Non-unit derived clauses, e.g., DangerousTo(Simba,?y) ⇐ Human(?y).
2. All tautologies of FOL, e.g., Human(?z) ∨ ¬Human(?z).
3. Combinations of (1.) and (2.), e.g., ¬Human(?y) ⇐ ¬DangerousTo(Simba,?y).
Horn LP Compared to Horn FOL

- **Fundamental Theorem connects Horn LP to Horn FOL:**
 - \(M(P) = \{ \text{all ground atoms entailed by } P \text{ in Horn FOL} \} \)

- Horn FOL has additional non-ground-atom conclusions, notably:
 - non-unit derived clauses; tautologies

- Can thus view Horn LP as the f-weakening of Horn FOL.
 - “f-” here stands for “fact-form conclusions only”
 - A restriction on form of conclusions (not of premises).

- **Horn LP – differences from Horn FOL:**
 - Conclusions \(\text{Conc}(P) = \) essentially a set of ground atoms.
 - Can extend to permit more complex-form queries/conclusions.
 - Consider Herbrand models only, in typical formulation and usage.
 - P can then be replaced equivalently by \(\{ \text{all ground instantiations of each rule in } P \} \)
 - But can extend to permit: extra unnamed individuals, beyond Herbrand universe
 - Rule has non-empty head, in typical formulation and usage.
 - Can extend to detect violation of integrity constraints
The “Spirit” of LP

The following summarizes the “spirit” of how LP differs from FOL:

- **“Avoid Disjunction”**
 - Avoid disjunctions of positive literals as expressions
 - In premises, intermediate conclusions, final conclusions
 - \((\text{conclude } (A \lor B)) \text{ only if } ((\text{conclude } A) \text{ or } (\text{conclude } B))\)
 - Permitting such disjunctions creates exponential blowup
 - In propositional FOL: 3-SAT is NP-hard
 - In the leading proposed approaches that expressively add disjunction to LP with negation, e.g., propositional Answer Set Programs
 - No “reasoning by cases”, therefore

- **“Stay Grounded”**
 - Avoid (irreducibly) non-ground conclusions

LP, unlike FOL, is straightforwardly extensible, therefore, to:

- Nonmonotonicity – defaults, incl. NAF
- Procedural attachments, esp. external actions
Venn Diagram: Expressive Overlaps among KRs

First-Order Logic

Description Logic

Horn Logic Programs

Logic Programs

Description Logic Programs

(Nonmonotonicity)

(Procedural Attachments)

NB: Nonmon LP, including Courteous, relies on Default Negation as fundamental underlying KR expressive mechanism for nonmonotonicity
Requirements Analysis for Logical Functions

• Function-free is a commonly adopted restriction in practical LP/Web rules today
 – DB query languages: SQL, SPARQL, XQuery
 – RDFS
 – Production rules, and similar Event-Condition-Action rules
 – OWL

• BUT functions are often needed for Web (and other) applications. Uses include:
 – HiLog and reification – higher-order syntax
 • For meta- reasoning, e.g., in knowledge exchange or introspection
 – Ontology mappings, provenance, KB translation/import, multi-agent belief, context
 – KR macros, modals, reasoning control, KB modularization, navigation in KA
 – Meta-data is important on the Web
 – Skolemization – to represent existential quantifiers
 • E.g., RDF blank nodes
 – Convenient naming abstraction, generally
 • steering_wheel(my_car)
Outline of Part B. Concepts & Foundations

1. Overview of Logical Knowledge Representations
 - Logic Programs (LP) and its relationship to First Order Logic (FOL)
 - Rule-based Ontologies: Description Logic, Description LP

2. SILK’s Hyper LP: Putting it all together

3. Basics: Horn Case; Functions

4. F-Logic, Frame Syntax, Object Oriented Style

5. HiLog, Higher-Order Syntax, Reification, Meta-Reasoning

6. W3C Rule Interchange Format (RIF): Dialects, Framework
 - Rules in W3C Web Ontology Language (OWL-RL); via RIF

7. Nonmonotonic LP: Defaults, Negation, Priorities, FOL Interchange
 - Semantics for Default Negation
 - Courteous LP, Argumentation Theories
 - Omni-directional Rules, FOL-Soundness, Remedying FOL’s Fragility

8. Procedural Attachments to Actions, Queries, Built-ins, and Events
 - Production/Situated LP, Production Rules

Frame Syntax and F(rame)-Logic

- An object-oriented first-order logic
- Extends predicate logic with
 - Objects with complex internal structure
 - Class hierarchies and inheritance
 - Typing
 - Encapsulation
- A basis for object-oriented logic programming and knowledge representation

<table>
<thead>
<tr>
<th>O-O programming</th>
<th>Relational programming</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-logic</td>
<td>Predicate calculus</td>
</tr>
</tbody>
</table>

- Background:
 - Basic theory: [Kifer & Lausen SIGMOD-89], [Kifer, Lausen, Wu JACM-95]
 - Path expression syntax: [Frohn, Lausen, Uphoff VLDB-84]
 - Semantics for non-monotonic inheritance: [Yang & Kifer, ODBASE 2002]
 - Meta-programming + other extensions: [Yang & Kifer, Journal on Data Semantics 2003]
Major F-logic Based Languages

- **FLORA-2** - an open source system developed at Stony Brook U.
- **OntoBroker** – commercial system from Ontoprise.de
- **WSMO** (Web Service Modeling Ontology) – a large EU project that developed an F-logic based language for Semantic Web Services, **WSML-Rule**
- **SWSI** (Semantic Web Services Initiative) – an international group that proposed an F-logic based language **SWSL-Rules** (also for Semantic Web Services)
- RuleML supports it as an included extension, developed in collaboration with SWSI
- **TRIPLE** – an open source system for querying RDF
- **SILK**
Object description:

John[\text{name} \rightarrow \text{‘John Doe’} \text{ and } \text{phones} \rightarrow \{6313214567, 6313214566\}, \text{children} \rightarrow \{\text{Bob, Mary}\}]

Mary[\text{name} \rightarrow \text{‘Mary Doe’}, \text{phones} \rightarrow \{2121234567, 5129297945\}, \text{children} \rightarrow \{\text{Anne, Alice}\}]

Structure can be nested:

Sally[\text{spouse} \rightarrow \text{John[address} \rightarrow \text{‘123 Main St.’}] \]
ISA hierarchy:

- John # Person // class membership
- Mary # Person
- Alice # Student

- Student ## Person // subclass relationship
- Person # EntityType
- Student # EntityType

Class & instance in different contexts
“Methods”: like attributes, but can take arguments

?S[professor(?Course) → ?Prof] :-
 ?S:student[took(?Semester) → ?Course[taught(?Semester) → ?Prof]];

• professor, took, taught – 1-argument methods
• object attributes can be viewed as 0-ary methods

Queries:

? - Alice[professor(?Course) → ?P], ?Course # ComputerScienceCourse;

Alice’s CS professors.
F-Logic Examples (cont.’d)

Browsing the IsA hierarchy:
- John # ?X ; // all classes of which John is a member
- Student ## ?Y; // all superclasses of class student

Defining a virtual class:

?X # RedCar :- ?X # Car and ?X[color -> red];

Complex meta-query about schema:

?O[attributesOf(?Class) -> ?Attr] :-

Rule defining a virtual class of red cars
Rule defining a method that returns attributes whose range is class ?Class
Remark: Semantics for HiLog & F-Logic

- The F-logic and HiLog semantics & proof theory
 - Generalize terms and literals
 - Not limited to rules/LP
 - Apply also to classical logic (FOL) – and other logics
 - Sound & complete
Outline of Part B. Concepts & Foundations

1. Overview of Logical Knowledge Representations
 - Logic Programs (LP) and its relationship to First Order Logic (FOL)
 - Rule-based Ontologies: Description Logic, Description LP
2. SILK’s Hyper LP: Putting it all together
3. Basics: Horn Case; Functions
4. F-Logic, Frame Syntax, Object Oriented Style
5. HiLog, Higher-Order Syntax, Reification, Meta-Reasoning
6. W3C Rule Interchange Format (RIF): Dialects, Framework
 - Rules in W3C Web Ontology Language (OWL-RL); via RIF
7. Nonmonotonic LP: Defaults, Negation, Priorities, FOL Interchange
 - Semantics for Default Negation
 - Courteous LP, Argumentation Theories
 - Omni-directional Rules, FOL-Soundness, Remedying FOL’s Fragility
8. Procedural Attachments to Actions, Queries, Built-ins, and Events
 - Production/Situated LP, Production Rules
HiLog

• A higher-order extension of predicate logic, which has a tractable first-order syntax
 – Allows certain forms of logically clean, yet tractable, meta-programming
 – Syntactically appears to be higher-order, but semantically is first-order and tractable

• Appears promising for OWL Full and its use of RDF [Kifer; Hayes]

• Implemented in FLORA-2 and SILK
 – Also partially exists in XSB, Common Logic, others

Examples of HiLog

Variables over predicates and function symbols:
\[p(?X,?Y) : - \ ?X(a,?Z) \text{ and } ?Y(?Z(b)) \; ; \]

Variables over atomic formulas \((\text{reification})\):
\[p(q(a)); \]
\[r(?X) : - p(?X) \text{ and } ?X; \]

A use of HiLog in FLORA-2 and SILK (e.g., even more complex schema query):
\[?\text{Obj}[\text{unaryMethods}(?\text{Class}) \rightarrow ?\text{Method}] : - \]
\[?\text{Obj}[?\text{Method}(?\text{Arg}) \rightarrow ?\text{Val}] \text{ and } ?\text{Val} \# ?\text{Class}; \]

\textbf{Meta-variable:} ranges over unary method names
Reification

• Blending HiLog with F-logic also allows reification – making objects out of formulas:

 john[believes \rightarrow \{ mary[likes \rightarrow \{ bob \}] \}]

• Introduced in [Yang & Kifer, ODBASE 2002]

• Rules can also be reified
Outline of Part B. Concepts & Foundations

1. Overview of Logical Knowledge Representations
 - Logic Programs (LP) and its relationship to First Order Logic (FOL)
 - Rule-based Ontologies: Description Logic, Description LP

2. SILK’s Hyper LP: Putting it all together

3. Basics: Horn Case; Functions

4. F-Logic, Frame Syntax, Object Oriented Style

5. HiLog, Higher-Order Syntax, Reification, Meta-Reasoning

6. W3C Rule Interchange Format (RIF): Dialects, Framework
 - Rules in W3C Web Ontology Language (OWL-RL); via RIF

7. Nonmonotonic LP: Defaults, Negation, Priorities, FOL Interchange
 - Semantics for Default Negation
 - Courteous LP, Argumentation Theories
 - Omni-directional Rules, FOL-Soundness, Remedying FOL’s Fragility

8. Procedural Attachments to Actions, Queries, Built-ins, and Events
 - Production/Situated LP, Production Rules

What is RIF?

- A collection of dialects (rigorously defined rule languages)
- Intended to facilitate rule sharing and exchange
- XML is medium of exchange
- Dialect consistency

 Sharing of RIF machinery:
 - XML
 - syntactic elements
 - elements of semantics
Current State of RIF

RIF-FLD (RIF Logic Framework)

Advanced LP dialect 1
Advanced LP dialect 2

Core LP dialect

RIF-PRD (Production Rules Dialect)

RIF-BLD (Basic Logic Dialect)

RIF Core

- Official Standard (06-2010)
- forthcoming
The Basic Logic Dialect (BLD)

- Basically Horn rules (no negation) plus
 - Frames
 - Predicates/functions with named arguments
 - Equality both in rule premises and conclusions
- Web-ized
 - XML data types
 - IRIs throughout
- Semantic Web integration
 - Can import RDF and OWL
 - BLD + OWL \supset SWRL
RIF-CORE and RIF-PRD

- RIF-Core is defined by restricting BLD
 - No function symbols
 - Equality only in rule body
 - Decidable (module the built-ins)
- RIF-PRD – a separate branch of dialects
 - Contains RIF-Core
 - Procedural, not logic-based
 - Shares much of the notational machinery with BLD
Why RIF Framework (RIF-FLD)?

- Too hard to define dialects from scratch
 - RIF-BLD is just a tad more complex than Horn rules, but requires more than 30 pages of dense text
- Instead: define dialects by *specializing* from another dialect
 - RIF-BLD can be specified in < 3pp in this way
- A “*super-dialect*” is needed to ensure that all dialects use the same set of concepts and constructs
- RIF Framework is intended to be just such a super-dialect
- Several LP dialects are defined by specializing RIF-FLD
 - -SILK http://silk.semwebcentral.org/RIF-SILK.html
 - -CLPWD (core well-founded) http://ruleml.org/rif/RIF-CLPWD.html
 - -CASPD (core ASP) http://ruleml.org/rif/RIF-CLPWD.html
- Even RIF-BLD was initially defined by specialization from RIF-FLD
RIF-FLD Features

• Not a completely specified logic by itself: dialects are required to specify a number of parameters (to specialize)
• Highly extensible syntax and semantics
• Supports most forms of non-monotonic reasoning (e.g., various forms of negation, defaults)
• … And classical logic
Outline of Part B. Concepts & Foundations

1. Overview of Logical Knowledge Representations
 - Logic Programs (LP) and its relationship to First Order Logic (FOL)
 - Rule-based Ontologies: Description Logic, Description LP
2. SILK’s Hyper LP: Putting it all together
3. Basics: Horn Case; Functions
4. F-Logic, Frame Syntax, Object Oriented Style
5. HiLog, Higher-Order Syntax, Reification, Meta-Reasoning
6. W3C Rule Interchange Format (RIF): Dialects, Framework
 - Rules in W3C Web Ontology Language (OWL-RL); via RIF
7. Nonmonotonic LP: Defaults, Negation, Priorities, FOL Interchange
 - Semantics for Default Negation
 - Courteous LP, Argumentation Theories
 - Omni-directional Rules, FOL-Soundness, Remedying FOL’s Fragility
8. Procedural Attachments to Actions, Queries, Built-ins, and Events
 - Production/Situated LP, Production Rules
OWL-RL

• RL is a standard OWL 2 “Profile” (= subset) designed for implementations based on rules (LP)
• Syntactic restriction of OWL 2
 – Omits DisjointUnion, ReflexiveObjectProperty, cardinalities > 1, owl:real, and owl:rational
 – I.e., Horn + a little
• Inspired by Description Logic Programs (DLP) and pD*.
• PTIME-complete complexity.
• Includes a partial axiomatization as 70+ rules
• http://www.w3.org/TR/2009/REC-owl2-profiles-20091027/#OWL_2_RL
OWL-RL in RIF

• Representation of OWL 2 RL axiomatization rules in RIF-Core
• Can be implemented via either
 – Static rules
 – Translation algorithm
• E.g., approach is used in Oracle, SILK
• http://www.w3.org/TR/rif-owl-rl/
 – Currently a W3C Working Group Note
RIF-SILK Dialect

• **It’s expressively powerful RIF** (RIF = W3C Rule Interchange Format standard)
 • New dialect defined using RIF’s Framework for Logic Dialects (FLD)
 • Extends (supersumes) RIF-BLD (Basic Logic Dialect) and RIF-Core
 • These are based essentially on Horn LP
 • Notably: adds defaults and external actions (side-effectful)
 • Needed for most of today’s business applications of (non-semantic) rules
 • Retains “Grade AAA” semantics – model-theoretic
 • Retains computational scalability of Horn LP

• **Status**
 • http://silk.semwebcentral.org/RIF-SILK.html
 • Semantics section is in progress (summarizes previous theory papers)
 • Implemented translator (bidirectional) is in current SILK system
 • Under discussion with W3C: role in next steps of RIF overall
RIF and OWL-RL in SILK V2.2

- **RIF support**
 - Import RIF-BLD
 - Export RIF-BLD (lossy)
 - Import RIF-SILK
 - Export RIF-SILK

- **OWL-RL support**
 - Import RDF/XML
 - Import Turtle
 - OWL-RL in RIF static rules
Outline of Part B. Concepts & Foundations

1. Overview of Logical Knowledge Representations
 - Logic Programs (LP) and its relationship to First Order Logic (FOL)
 - Rule-based Ontologies: Description Logic, Description LP
2. SILK’s Hyper LP: Putting it all together
3. Basics: Horn Case; Functions
4. F-Logic, Frame Syntax, Object Oriented Style
5. HiLog, Higher-Order Syntax, Reification, Meta-Reasoning
6. W3C Rule Interchange Format (RIF): Dialects, Framework
 - Rules in W3C Web Ontology Language (OWL-RL); via RIF
7. Nonmonotonic LP: Defaults, Negation, Priorities, FOL Interchange
 - Semantics for Default Negation
 - Courteous LP, Argumentation Theories
 - Hyper Rules, FOL-Soundness, Remedying FOL’s Fragility
8. Procedural Attachments to Actions, Queries, Built-ins, and Events
 - Production/Situated LP, Production Rules
Concept of Logical Monotonicity

- A KR S is said to be **logically monotonic** when in it:

 $$P_1 \subseteq P_2 \quad \Rightarrow \quad \text{Conc}(P_1,S) \subseteq \text{Conc}(P_2,S)$$

- Where P_1, P_2 are each a set of premises in S

- I.e., whenever one adds to the set of premises, the set of conclusions non-strictly grows (one does not retract conclusions).

- **Monotonicity is good for pure mathematics.**

 “Proving a theorem means never having to say you are sorry.”
Nonmonotonicity – its Pragmatic Motivations

• Pragmatic reasoning is, in general, nonmonotonic
 – E.g., policies for taking actions, exception handling, legal argumentation, Bayesian/statistical/inductive, etc.
 – Monotonic is a special case – simpler in some regards

• Most commercially important rule systems/applications use nonmon
 – A basic expressive construct is ubiquitous there:
 • Default Negation a.k.a. Negation-As-Failure (NAF)
 – BUT with varying semantics – often not fully declarative cf. LP
 • Primarily due to historical hangovers and lack of familiarity with modern algorithms
 – Another expressive construct, almost as ubiquitous there, is:
 • Priorities between rules

• Such nonmonotonicity enables:
 – Modularity and locality in revision/updating/merging
Default Negation: Intro

- Default negation is the most common form of negation in commercially important rule and knowledge-based systems.
- Concept/Intuition for $\sim q$; \sim stands for default negation
 - q is not derivable from the available premise info
 - fail to believe q
 - … but might also not believe q to be false
 - A.k.a. “weak” negation, or NAF. In ASCII: “naf”
- Contrast with: $\neg q$; \neg stands for strong negation
 - q is believed to be false
LP with Negation As Failure

- **Normal LP (NLP), a.k.a. Ordinary LP (OLP)**
 - Adds NAF to Horn LP

- **Syntax:** Rule generalized to permit NAF’d body literals:
 \[
 H \leftarrow B_1 \land \ldots \land B_k \land \neg B_{k+1} \land \ldots \land \neg B_m;
 \]
 where \(m \geq 0 \), \(H \) and \(B_i \)'s are atoms

- **Semantics has subtleties** for the fully general case.
 - Difficulty is interaction of NAF with “recursion”, i.e., cyclic dependencies (thru the rules) of predicates/atoms.
 - Lots of theory developed during 1984-1994
 - Well-understood theoretically since mid-1990’s
Semantics for LP with Default Negation

• For fully general case, there are two major alternative semantics

 • Both agree for a broad restricted case: **stratified** ordinary LP

 • **Well Founded Semantics (WFS)**: popular, widely used
 – Tractable for the propositional case. Often linear, worst-case quadratic.
 – Major commercial focus. E.g., XSB, OntoBroker.
 – Employs a 3rd truth value \textit{u} (“undefined”), when non-stratified (“unstratified”)
 – Definition uses \textit{iterated} minimality: Horn-case then close-off; repeat til done.
 – Major limitation: cannot reason by cases

• **Answer Set Programs (ASP)**: popular as research topic
 – Enables a limited kind of disjunction in heads, conclusions
 – Good for combinatorial KR problems requiring nonmonotonicity
 – Only 2 truth values \(\Rightarrow \) sometimes ill-defined: no \textit{set} of conclusions
 – Generalizes earlier “stable model semantics”
 – Can reason by cases! \(\Rightarrow \) Intractable for propositional case
Basic Example of LP with NAF

• RB1:
 - price(Amazon, Sony5401, ?day, ?cust, 49.99)
 \[\leftarrow \text{inUSA(?cust)} \land \text{inMonth(?day, 2004_10)} \land \sim\text{onSale(?day)};\]
 - price(Amazon, Sony5401, ?day, ?cust, 39.99)
 \[\leftarrow \text{inUSA(?cust)} \land \text{inMonth(?day, 2004_10)} \land \text{onSale(?day)};\]
 - inMonth(2004_10_12, 2004_10);
 - inMonth(2004_10_30, 2004_10);
 - inUSA(BarbaraJones);
 - inUSA(SalimBirza);
 - onSale(2004_10_30);

• RB1 entails: (among other conclusions)
 1. Price(Amazon, Sony5401, 2004_10_12, BarbaraJones, 49.99)
 2. Price(Amazon, Sony5401, 2004_10_30, SalimBirza, 39.99)

• RB2 = RB1 updated to add: onSale(2004_10_12);

• RB2 does NOT entail (1.). Instead (nonmonotonically) it entails:
 3. Price(Amazon, Sony5401, 2004_10_12, BarbaraJones, 39.99)
Brief Examples of Non-Stratified Normal LP

- **RB3:**
 - a;
 - c ← a ∧ ¬b;
 - p ← ¬p;
- **Well Founded Semantics (WFS) for RB3 entails conclusions \{a, c\}. p is not entailed. p has “undefined” (u) truth value (in 3-valued logic).**
- **ASP Semantics for RB3: ill defined; there is no set of conclusions.**
 - *(NOT there is a set of conclusions that is empty.)*

- **RB4:**
 - a;
 - c ← a ∧ ¬b;
 - p ← ¬q;
 - q ← ¬p;
- **WFS for RB4 entails conclusions \{a, c\}. p, q have truth value u.**
- **ASP Semantics for RB4 results in two alternative conclusion sets: \{a, c, p\} and \{a, c, q\}. Note their intersection \{a, c\} is the same as the WFS conclusions.**
(Review:) Semantics of Horn LP

- **Declarative LP with model-theoretic semantics**
 - Same for forward-direction (“derivation” / “bottom-up”) and backward-direction (“query” / “top-down”) inferencing

- Model $M(P) = \{\text{a set of concluded ground atoms}\}$
 - Where $P = \{\text{the set of premise rules}\}$

Semantics is defined via the **least fixed point** of an operator T_P. T_P outputs conclusions that are **immediately derivable** (through some rule in P) from an input set of intermediate conclusions I_j.

- $I_{j+1} = T_P(I_j)$; $I_0 = \emptyset$ (empty set)
 - $I_{j+1} = \{\text{all head atoms of rules whose bodies are satisfied by } I_j\}$

- $M(P) = \text{LeastFixedPoint}(T_P)$; where LFP = the I_m such that $I_{m+1} = I_m$

- Simple algorithm: DO {run each rule once} UNTIL {quiescence}
Well Founded Semantics: Least Model

P : an rulebase over language L

M : a partial Herbrand interpretation
 – a set of literals (atoms and naf atoms) in the Herbrand Base
 – all other atoms/literals have truth value u which means “undefined”

Consider ground cases.

- M is a model of P when it satisfies every rule in P
- A model M is a least model of P
 if it is minimal with respect to \leq
 - $M1 \leq M2$ iff $M1^+ \subseteq M2^+$ and $M1^- \supseteq M2^-$
 - $M^+ = \text{the set of } naf\text{-free literals in } M; \ M^- = \text{the set of } naf\text{ literals in } M$
 - I.e., the usual notion of “minimal” for LP models
- If P is Horn, i.e., naf-free, then M is said to be the minimal model.
 - In this case, M is simply the least fixed point of T_P (last slide)
 - ... and is straightforwardly computed via an iteration
Well-Founded Model: Quotient

- The well-founded semantics for LP, i.e., for NAF, is defined as a least model obtained by an iterative process (follows general outline of [*Przymusinski 94]’s WFS definition).

- **Quotient of a rulebase w.r.t. an interpretation:**
 - Let Q be a set of rules, and J a partial Herbrand interpretation for Q
 - The quotient $\frac{Q}{J}$ is obtained by:
 - In the **body** of each rule in Q, replace $\sim L$ by $J(\sim L)$

The resulting quotient LP is *almost* a set of plain Horn rules. Because J is a partial, not total, interpretation, it’s a bit more complicated. The quotient includes appearances of u. It is said to be semi-positive. A semi-positive LP can be viewed as a *pair* of Horn LPs:
 - a **lower-bound** LP (in which u is replaced by f)
 - an **upper-bound** LP (in which u is replaced by t)

A semi-positive LP’s least partial model (LPM) is simple to compute, by taking the least fixed points of the lower-bound and upper-bound.

Copyright 2010 by Vulcan Inc., Benjamin Grosof, Mike Dean, and Michael Kifer. All Rights Reserved.
The WFM of P = the iteration until quiescence of:

- a) Take the quotient of P w.r.t. the previous iteration’s interp
- b) Find the least partial model (LPM) of that quotient rulebase.

- Observation: The above is an “outer loop” iteration that contains an “inner loop” iteration of least fixed point (LFP), within LPM in b)
Computing Well Founded Semantics for LP

• Always exactly one set of conclusions (entailed ground atoms)
• **Tractable** to compute all conclusions, for broad cases:
 • $O(n^2)$ for Propositional case of Normal LP
 • $O(n^{2v+2})$ for VB Datalog case ($v = \text{max } \# \text{ vars per rule}$)
 • NAF only moderately increases computational complexity compared to Horn (frequently linear, at worst quadratic)
• **By contrast, for Stable Semantics:**
 • *There may be* zero, or one, or a few, or very many **alternative conclusion sets**
 • Intractable even for Propositional case
• Proof procedures are known that handle the non-stratified general case
 • backward-direction: notably, SLS-resolution
 • Fairly mature wrt performance, e.g., tabling refinements
 • forward-direction
 • Reuse insights from backward-direction. Restrict to function-free.
 • Fairly mature wrt performance. Room to improve: esp. for updating.
Some Implementations of Unstratified LP

• Well Founded:
 – XSB (research / commercial; open source)
 – Ontoprise (commercial)
 – Intellidimension (commercial)
 – SweetRules (research; open source)
 – SILK (research / commercial)

• Answer Set Programs:
 – Smodels (research)
 – DLV (research / commercial)
 – Clasp (research)

• There are a number of others, esp. research
Negation-As-Failure Implementations: Current Limitations in Many Systems

• Practice in Prolog and other currently commercially important (CCI) rule systems is often “sloppy” (incomplete / cut-corners) relative to canonical semantics for NAF
 – in cases of recursive rules, WFS algorithms required are more complex
 – ongoing diffusion of WFS theory & algorithms, beginning in Prologs

• Current implemented OLP inferencing systems often do not handle the fully general case in a semantically clean and complete fashion.
 – Many are still based on older algorithms that preceded WFS theory/algorithms

• Other CCI rule systems’ implementations of NAF are often “ad hoc”
 – Lacked understanding/attention to semantics, when developed
Outline of Part B. Concepts & Foundations

1. Overview of Logical Knowledge Representations
 - Logic Programs (LP) and its relationship to First Order Logic (FOL)
 - Rule-based Ontologies: Description Logic, Description LP
2. SILK’s Hyper LP: Putting it all together
3. Basics: Horn Case; Functions
4. F-Logic, Frame Syntax, Object Oriented Style
5. HiLog, Higher-Order Syntax, Reification, Meta-Reasoning
6. W3C Rule Interchange Format (RIF): Dialects, Framework
 - Rules in W3C Web Ontology Language (OWL-RL); via RIF
7. Nonmonotonic LP: Defaults, Negation, Priorities, FOL Interchange
 - Semantics for Default Negation
 - Courteous LP, Argumentation Theories
 - Omni-directional Rules, FOL-Soundness, Remedying FOL’s Fragility
8. Procedural Attachments to Actions, Queries, Built-ins, and Events
 - Production/Situated LP, Production Rules
Ubiquity of Priorities in Commercially Important Rules -- and Ontologies

- Updating in relational databases
 - more recent fact \textit{overrides} less recent fact
- Static rule ordering in Prolog
 - rule earlier in file \textit{overrides} rule later in file
- Dynamic rule ordering in production rule systems (OPS5)
 - “meta-”rules can specify agenda of rule-firing sequence
- Event-Condition-Action rule systems rule ordering
 - often static or dynamic, in manner above
- Exceptions in default inheritance in object-oriented/frame systems
 - subclass’s property value \textit{overrides} superclass’s property value, e.g., method redefinitions
- All lack Declarative KR Semantics
Defeasible Reasoning

- **Rules can be true by default but may be defeated**
 - A form of commonsense reasoning

- **Application domains:**
 - policies, regulations, and law
 - actions, change, and process causality
 - Web services
 - inductive/scientific learning
 - natural language understanding
 - ...

- **Existing approaches:**
 - Courteous Logic Programs (Grosof, 1997)
 - The main approach used **commercially** (IBM Common Rules, 1999)
 - Defeasible logic (Nute, 1994) [similar to Courteous LP]
 - “Prioritized defaults” (Gelfond & Son, 1997)
 - Preferred answer sets (Brewka & Eiter, 2000)
 - Compiling preferences (Delgrande et al., 2003)
 - ...

Semantical KR Approaches to Prioritized LP

The currently most important for Semantic Web are:

1. **Courteous LP**
 - KR extension to Ordinary LP
 - In RuleML, since 2001
 - Commercially implemented and applied
 - IBM CommonRules, since 1999

2. **Defeasible Logic**
 - Closely related to Courteous LP
 - Less general wrt typical patterns of prioritized conflict handling needed in e-business applications
 - In progress: theoretical unification with Courteous LP
Courteous LP: the What

- Updating/merging of rule sets: is crucial, often generates conflict.
- **Courteous** LP’s feature prioritized handling of conflicts.
- Specify scope of conflict via a set of **exclusion** constraints
 - Each is a **preventive** spirit integrity constraint on a set of competing literals
 - It says that not all of the competing literals can be entailed as true.
 - \(\text{opposes}(p, q) \approx (\bot \equiv p \text{ and } q) \) // Case of 2 competing literals
 - \(\text{opposes} \) (\(\text{discount}(?\text{product},"5\%") \), \(\text{discount}(?\text{product},"10\%") \));
 - \(\text{opposes}(\text{loyalCustomer}(?\text{cust},?\text{store}), \text{premiereCustomer}(?\text{cust},?\text{store})) \);
- Permit **strong negation of atoms:** (NB: a.k.a. (quasi-) **classical** negation.)
 - \(\neg p \) means \(p \) has truth value \(false \). \(\neg p \) is also written as: \(\text{neg } p \) in ASCII.
 - implicitly, for every atom \(p \): \(\text{opposes}(p, \neg p) \);
- **Priorities** between rules: partially-ordered.
 - Represent priorities via reserved predicate that compares **rule tags**:
 - \(\text{overrides}(\text{rule1}, \text{rule2}) \) means \(\text{rule1} \) is higher-priority than \(\text{rule2} \).
 - Each rule optionally has a rule tag whose form is a functional term.
 - \(\text{overrides} \) **can be reasoned about**, just like any other predicate.
Priorities are available and useful

- Priority information is naturally available and useful. E.g.,
 - **recency**: higher priority for more recent updates
 - **specificity**: higher priority for more specific cases (e.g., exceptional cases, sub-cases, inheritance)
 - **causality**: higher priority for causal effects (direct or indirect) of actions than for inertial persistence of state (“frame problem”)
 - **authority**: higher priority for more authoritative sources (e.g., legal regulations, organizational imperatives)
 - **reliability**: higher priority for more reliable sources (e.g., security certificates, via-delegation, assumptions, observational data).
 - **closed world**: lowest priority for catch-cases

- Many practical rule systems employ priorities of some kind, often implicit. E.g.,
 - rule sequencing in Prolog and production rules
 - Courteous LP subsumes this as a special case (totally-ordered priorities)
 - Also Courteous LP enables: merging, more flexible & principled treatment
Courteous LP: Advantages

- **Facilitate updating and merging, modularity and locality in specification.**
- **Expressive:** strong negation, exclusions, partially-ordered prioritization, reasoning to infer prioritization.
- **Guarantee consistent, unique set of conclusions.**
 - **Exclusion is enforced.** E.g., never conclude discount is both 5% and that it is 10%, nor conclude both p and ¬p.
- **Scalable & Efficient:** low computational overhead beyond ordinary LPs.
 - **Tractable** given reasonable restrictions (VB Datalog):
 - extra cost is equivalent to increasing v to (v+2) in Ordinary LP, worst-case.
 - By contrast, more expressive prioritized rule representations (e.g., Prioritized Default Logic) add NP-hard overhead.
- **Modular software engineering:**
 - **Transform:** CLP → OLP. Via simple “argumentation theory” approach.
 - Add-on to variety of OLP rule systems, with modest effort.
EECOMS Example of Conflicting Rules: Ordering Lead Time

• Vendor’s rules that prescribe how buyer must place or modify an order:
• A) 14 days ahead if the buyer is a qualified customer.
• B) 30 days ahead if the ordered item is a minor part.
• C) 2 days ahead if the ordered item’s item-type is backlogged at the vendor, the order is a modification to reduce the quantity of the item, and the buyer is a qualified customer.
• D) 45 days ahead if the buyer is a walk-in customer.

• Suppose more than one of the above applies to the current order? Conflict!
• Helpful Approach: precedence between the rules.
 – E.g., D is a catch-case: A > D , B > D , C > D
• Often only partial order of precedence is justified.
 – E.g., C > A , but no precedence wrt B vs. A, nor wrt C vs. B.
Ordering Lead Time Example in LP with Courteous Defaults

@prefCust orderModifNotice(?Order,14days) :-
 preferredCustomerOf(?Buyer,SupplierCo), purchaseOrder(?Order,?Buyer,SellerCo) ;

@smallStuff orderModifNotice(?Order,30days) :-
 minorPart(?Buyer,?Seller,?Order), purchaseOrder(?Order,?Buyer,SupplierCo) ;

@reduceTight orderModifNotice(?Order,2days) :-
 preferredCustomerOf(?Buyer,SupplierCo) and
 orderModifType(?Order,reduce) and
 orderItemIsInBacklog(?Order) and
 purchaseOrder(?Order,?Buyer,SupplierCo) ;

silk:overrides(reduceTight, prefCust) ; // reduceTight has higher priority than prefCust

// The below exclusion constraint specifies that orderModifNotice is unique, for a given order.
silk:opposes(orderModifNotice(?Order,?X), orderModifNotice(?Order,?Y)) :- ?X != ?Y ;

• Rule D, and prioritization about it, were omitted above for sake of brevity.
• Above rules are represented in Logic Programs KR, using the Courteous defaults feature
• Notation:
 – “:-” means “if”. “@…” declares a rule tag. “?” prefixes a logical variable.
 – “overrides” predicate specifies prioritization ordering.
 – An exclusion constraint specifies what constitutes a conflict.
 – “!=” means ≠. “silk:” is a namespace prefix.
Courteous LP Semantics: Prioritized argumentation in an exclusion locale.

Conclusions from exclusion-locales previous to this exclusion-locale \(\{p_1, p_2\} \)

\((p_1 \text{ and } p_2 \text{ are each a ground classically-signed literal.}) \)

- Run Rules for \(p_1, p_2 \)
 - Set of Candidates for \(p_1, p_2 \):
 - Team for \(p_1 \), ..., Team for \(p_k \)
 - Prioritized Refutation
 - Set of Unrefuted Candidates for \(p_1, p_2 \):
 - Team for \(p_1 \), Team for \(p_2 \)
 - Skepticism
- Conclude Winning Side if any: at most one of \(\{p_1, p_2\} \)
Argumentation Theories approach to Defaults in LP

- Combines Courteous + HiLog, and generalizes
- New approach to defaults: “argumentation theories”
 - Meta-rules, in the LP itself, that specify when rules ought to be defeated
- Extends straightforwardly to combine with other key features
 - E.g., Frame syntax, external Actions
- Significant other improvements on previous Courteous
 - Eliminates a complex transformation
 - Much simpler to implement
 - 20-30 background rules instead of 1000’s of lines of code
 - Much faster when updating the premises
 - More flexible control of edge-case behaviors
 - Much simpler to analyze theoretically
LPDA Approach, Continued

• More Advantages
 – 1st way to generalize defeasible LP, notably Courteous, to HiLog higher-order and F-Logic frames
 – Well-developed model theory, reducible to normal LP
 – Reducibility results
 – Well behavior results, e.g., guarantees of consistency
 – Unifies almost all previous defeasible LP approaches
 • Each reformulated as an argumentation theory
 • E.g., Defeasible Logic (see Wan, Kifer, and Grosof RR-2010 paper)
 – Cleaner, more flexible and extensible semantics
 • Enables smooth and powerful integration of features
 • Applies both to well founded LP (WFS) and to Answer Set Programs (ASP)
 – Leverages most previous LP algorithms & optimizations

• Implemented in SILK via an extension of FLORA-2
LPDA Framework

- Logic Programs with Defaults and Argumentation theories

LPDA program

- strict rules (non-defeasible statements)
- tagged rules (defeasible statements)

Decides when a tagged rule is defeated

Candidate Argumentation Theories
$\text{defeated}(?R) \ :- \ \$\text{defeats}(?S, \ ?R);$

$\text{defeats}(?R, \ ?S) \ :- \ \$\text{refutes}(?R, \ ?S) \ or \ \$\text{rebuts}(?R, \ ?S);$

$\text{refutes}(?R, \ ?S) \ :- \ \$\text{conflict}(?R, \ ?S), \ \text{overrides}(?R, \ ?S);$

$\text{refuted}(?R) \ :- \ \$\text{refutes}(?R2, \ ?R);$

$\text{rebuts}(?R, \ ?S) \ :- \ \$\text{conflict}(?R, \ ?S),$
\hspace{2cm} \text{naf} \ \$\text{refuted}(?R), \ \text{naf} \ \$\text{refuted}(?S);$

$\text{candidate}(?R) \ :- \ \text{body}(?R, \ ?B), \ \text{call}(?B);$

$\text{conflict}(?R, \ ?S) \ :- \ \$\text{candidate}(?R), \ \$\text{candidate}(?S),$
\hspace{4cm} \text{opposes}(?R, \ ?S);$

\text{opposes}(?R, \ ?S) \ :- \ \text{opposes}(?S, \ ?R).$

\text{opposes}(?L1, ?L2) \ :- \ \text{head}(?L1, \ ?H), \ \text{head}(?L2, \ \text{neg} \ ?H);
Outline of Part B. Concepts & Foundations

1. Overview of Logical Knowledge Representations
 - Logic Programs (LP) and its relationship to First Order Logic (FOL)
 - Rule-based Ontologies: Description Logic, Description LP
2. SILK’s Hyper LP: Putting it all together
3. Basics: Horn Case; Functions
4. F-Logic, Frame Syntax, Object Oriented Style
5. HiLog, Higher-Order Syntax, Reification, Meta-Reasoning
6. W3C Rule Interchange Format (RIF): Dialects, Framework
 - Rules in W3C Web Ontology Language (OWL-RL); via RIF
7. Nonmonotonic LP: Defaults, Negation, Priorities, FOL Interchange
 - Semantics for Default Negation
 - Courteous LP, Argumentation Theories
 - Omni-directional Rules, FOL-Soundness, Remedying FOL’s Fragility
8. Procedural Attachments to Actions, Queries, Built-ins, and Events
 - Production/Situated LP, Production Rules
Omni-directional Rules: Clausal case

- Hyper LP introduces the concept of an omni-directional ("omni") rule. Basic case is clausal:
 - @G F; where F has the syntactic form of a FOL clause
 - The prioritization tag (@G) is optional. Outer universal quantification is implicit.
 - E.g., @hi wet(lawn, nextMorning(?night)) or neg occur(rain, ?night);

- A clausal hyper rule is transformed, i.e., directionalized, from @G L1 or L2 or … or Lk; where each Li is an atom or the neg of an atom into a set of k directed rules, one for each choice of head literal:
 @G L1 :- neg L2 and neg L3 and … and neg Lk;
 @G L2 :- neg L1 and neg L3 and … and neg Lk;
 …
 @G Lk :- neg L1 and neg L2 and … and neg Lk-1;

- This is called the set of directional variant rules.

- (NB: In a sophisticated Courteous variant, the directionalization transformation also outputs an exclusion statement that better handles multi-way conflicts.)

- Still no reasoning by cases!!! Cf. unit/linear resolution strategy in FOL.
Examples of Directionalization

- \(\text{@hi wet(lawn, nextMorning(?night))} \leq\Rightarrow \text{Occur(rain, ?night)} \); /* Causal */
 is transformed into:
 - \(\text{@hi Wet(lawn, nextMorning(?night)) : - Occur(rain, ?night)} \);
 - \(\text{@hi neg Occur(rain, ?night) : - neg Wet(lawn, nextMorning(?night))} \);

- \(\text{neg (Cat(?x) and Bird(?x))} \); /* OWL-DL disjoint classes */
 is transformed into:
 - \(\text{neg Cat(?x) : - Bird(?x)} \);
 - \(\text{neg Bird(?x) : - Cat(?x)} \);

- \(\text{neg Approved(?p)} \leq\Rightarrow \text{neg Validated(?p)} \); /* SBVR: Car Rental Constraint */
 is transformed into:
 - \(\text{neg Approved(?p) : - neg Validated(?p)} \);
 - \(\text{Validated(?p) : - Approved(?p)} \);

- \(\text{mtg(3p) or mtg(4p) or mtg(5p)} \); /* Scheduling: Joe’s meeting time */
 is transformed into:
 - \(\text{mtg(5p) : - neg mtg(3p) and neg mtg(4p)} \);
 - \(\text{mtg(4p) : - neg mtg(3p) and neg mtg(5p)} \);
 - \(\text{mtg(3p) : - neg mtg(4p) and neg mtg(5p)} \);
Omni-directional Rules: General case

• Permit the formula F to:
 – Be a universal formula (reduces to clauses)
 – Use Skolemization … Thus be “nearly full” FOL form
 – Use HiLog and Frame features

• Permit a rule body too
 – $@G \ F : \ B$
 – Adds B to the body of each directional variant rule
 – Special case: F is a literal

• Omni-directionality raises the KR abstraction level
 – Hide directionality (:-) as well as NAF (naf)
 – Use instead: neg (strong negation), $<=$ (strong/material implication), and defeasibility (Courteous)

• Implemented in SILK [V2.2 first demo’d at SemTech-2010]
Current and Future Directions for Omnis

• Special treatment for certain expressive constructs
 • External actions are head-only. External queries and aggregates are body-only.

• Value in KA tasks and domains

• Optimize

• Multi-way conflicts: nuances of edge-case behavior

• Existentials

• Extensibility towards “reasoning by cases” in FOL and ASP

• Other study & theory
 • Closed-world
Hypermon Mapping between Hyper LP and FOL

- Hyper LP has a tight relationship to FOL, akin to that for Horn LP
- We can define this relationship via a hypermonotonic mapping T
 - Consists of a pair of mappings ($T1$, $T2$), one for each interchange direction
- $T1$ maps a hyper rule into a universal FOL axiom:
 - Replace $\neg -$ by \Leftarrow, and ignore the tag
 - E.g., $\neg G F \neg -$ \Rightarrow $F \Leftarrow B$
 - NB: Some non-onerous expressive restrictions apply (current work)
- $T1$ maps a (true) Hyper LP conclusion into a FOL axiom with same formula
- $T2$ maps a universal FOL axiom into an omni rule with same formula
- Then from FOL viewpoint, entailment in Hyper LP is sound and incomplete
- ... Even though Hyper LP is nonmonotonic!!!
- Thus (restricted) Hyper LP is FOL-Sound w.r.t. the interchange mapping T
- The incompleteness is desirable when there is conflict
 - Conflict-free case: Sound Hyper LP reasoning is sound w.r.t. FOL
 - But incomplete – lacks reasoning by cases
 - Conflict-ful case: Hyper LP reasoning is usefully selective unlike FOL
Interchange of Hyper LP ↔ FOL

- Omnis are a natural source/target for interchange with FOL
- There is a (bi-)mapping T that’s useful for such interchange. Its essence is:

 \[
 \begin{array}{|c|c|}
 \hline
 \text{Hyper LP} & \text{FOL} \\
 @G E ; & \leftarrow E ; \\
 @G F :- B ; & \rightarrow F <= B ; \\
 \hline
 \end{array}
 \]

 (E, F, and B are formulas. Certain restrictions apply: the formulas must be universal. The prioritization tag G is a term.)

- W.r.t. T: Hyper LP is sound and incomplete from FOL viewpoint
- When there is conflict, Hyper LP reasoning is usefully selective unlike FOL
- Usage 1: Import clausal/universal FOL into Hyper LP
 - Can give prioritization to the imported rules
 - E.g., based on source authority, recency, reliability
- Usage 2: Import Hyper LP conclusions into FOL
 - E.g., in conflict-free case. Hyper LP there lacks “reasoning by cases”
- Greatly generalizes well-known special case for definite Horn LP
 - Handles negation (neg) and attendant conflicts
 - Can cover “nearly full”* FOL, OWL, Common Logic, SBVR

* via skolemization
Remedying FOL Semantics’ Lack of Scalability

- **Hyper LP handles conflict robustly – get consistent conclusions**
 - Whereas FOL is a “Bubble” – it’s **perfectly brittle semantically** in face of contradictions from quality problems or merging conflicts.
 - Any contradiction is totally contagious – the conclusions all become garbage

 E.g., OWL beyond the RL subset suffers this problem. So does Common Logic. (Technically, RIF-BLD and RDF(S) are defined via FOL semantics too, although their typical implementations are essentially LP.)

A KB with a million or billion axioms formed by merging from multiple Web sources, is unlikely to have **zero** KB/KA conflicts from:

- Human knowledge entry/editing
- Implicit context, cross-source ontology interpretation
- Updating cross-source
- Source trustworthiness

- **Hyper LP’s approach provides a **critical** advantage for KB scalability**
 - **semantically, as well as computationally**
Extreme sensitivity to conflict limits its scalability in # of axioms and # of merges

Left:
http://www.dailymail.co.uk/sciencetech/article-1199149/Super-slow-motion-pictures-soap-bubble-bursting-stunning-detail.html

Above:
http://img.dailymail.co.uk/i/pix/2007/11_03/BubblePA_468x585.jpg
KR Conflict Handling – A Key to Scalability

BEFORE

KR: Classical Logic
(FOL, OWL)

Contradictory conflict is globally contagious, invalidates all results.

Knowledge integration involving conflict is labor-intensive, slow, costly.

AFTER

KR: LP with Defaults
(Courteous-style)

Contradictory conflict is contained locally, indeed tamed to aid modularity.

Knowledge integration involving conflict is highly automated, faster, cheaper.
Outline of Part B. Concepts & Foundations

1. Overview of Logical Knowledge Representations
 - Logic Programs (LP) and its relationship to First Order Logic (FOL)
 - Rule-based Ontologies: Description Logic, Description LP
2. SILK’s Hyper LP: Putting it all together
3. Basics: Horn Case; Functions
4. F-Logic, Frame Syntax, Object Oriented Style
5. HiLog, Higher-Order Syntax, Reification, Meta-Reasoning
6. W3C Rule Interchange Format (RIF): Dialects, Framework
 - Rules in W3C Web Ontology Language (OWL-RL); via RIF
7. Nonmonotonic LP: Defaults, Negation, Priorities, FOL Interchange
 - Semantics for Default Negation
 - Courteous LP, Argumentation Theories
 - Omni-directional Rules, FOL-Soundness, Remedying FOL’s Fragility
8. Procedural Attachments to Actions, Queries, Built-ins, and Events
 - Production/Situated LP, Production Rules
Heavy Reliance on Procedural Attachments in Currently Commercially Important Rule Families

• E.g., in OO applications, DBs, workflows.

• Relational databases, SQL: Built-in sensors, e.g., for arithmetic, comparisons, aggregations. Sometimes effectors: active rules / triggers.

• Production rules (OPS5 heritage): e.g., Jess
 – Pluggable (and built-in) sensors and effectors

• Event-Condition-Action rules:
 – Pluggable (and built-in) sensors and effectors

• Prolog: e.g., XSB.
 – Built-in sensors and effectors. More recent systems: more pluggability of the built-in attached procedures.
Additional Motivations in Semantic Web for Procedural Attachments

• Query over the web

• Represent services

• Shared ontology of basic built-in purely-informational operations on XML Schema datatypes
 – E.g., addition, concatenation
 – E.g., in RuleML & SWRL, N3.

• Hook rules to web services, generally
Procedural attachments historically viewed in KR theory as … well … *procedural* ;-) … rather than declarative.

- Not much theoretical attention

Needed for Semantic Web: a *declarative* KR approach to them

Production LP is probably the most important approach today

- E.g., SILK, RuleML, SweetRules, IBM Common Rules, predecessors
 - Formerly called *Situated* LP
- Provides disciplined expressive abstraction for two broad, often-used categories of procedural attachments:
 - External Queries: Purely-informational Tests – permitted in rule bodies
 - Side-effectful External Actions – permitted in rule heads
- Makes restrictions: assumptions become explicit
- Declarative semantic guarantees, interoperability
- Embodies primarily *analytical insight*, initially
- Provides also: *expressive generalizations, algorithms/techniques*
Ex. Action Rule for Toxic Discharge

silk:action(sendEmail(?ContactEmail, ?Message, ?Time))

:-
 occurs(polluted(?River),?Time) and
 emergencyContact(?River,?ContactEmail,?Message) ;

// NB: draft syntax modified from version at RuleML-2009 demo
Production LP: Overview II

- Point of departure: LPs are pure-belief representations, but most practical rule systems want to invoke external procedures.
- **Production/Situated** LP’s feature a semantically-clean kind of **procedural attachments**. I.e., they *hook* beliefs to drive procedural APIs outside (a.k.a. “external” to) the rule engine.
- Procedural attachments perform
 - external queries (“sensing”) when testing a body atom
 - external actions (“effecting”) upon concluding a head atom
 The attached procedure is invoked during inferencing.
- A procedural attachment associates an “internal” predicate/atom with an “external” procedural call pattern, e.g., a Java method. Such associations are specified as part of the extended KR.
Production LP: Overview III

- `phoneNumberOf(?person,?num) :- BoeingBluePages.getPhoneMethod(?person,?num);` // internal predicate/fact inferred based on external query that invokes attached procedure
- `ATTMobile.sendTextMethod(?num,?string) :- shouldSendTextMsg(?num,?string);` // external action that invokes attached procedure is inferred based on internal conclusion fact

- Specify **binding-signature** for each sensing attached procedure
 - For each argument ?xi: whether ?xi is an input (“bound”) vs. an output arg.
 - Simplest signature is that all args are input args
 - OK to declare multiple binding signatures per sensing attached procedure.
- Also specify **datatypes** of arguments in attached procedures signatures

- Attached procedures can be invoked/loaded remotely (e.g., Java, web services)

- Overall: cleanly separate out the procedural semantics as a declarative extension of the pure-belief declarative semantics. Easily separate chaining from action. (Declarative = Independent of inferencing control.)
Production LP: Overview IV

- PLP is KR for Hooking Rules to Services
 - With ontologies
 - Esp. Web services
 - Declaratively
- Rules use services
 - E.g., to query, message, act with side-effects
- Rules constitute services executably
 - E.g., workflow-y business processes
Definitional: complete inferencing+action occurs during an “episode” – intuitively, run all the rules (including invoking effectors and sensors as we go), then done

Effectors can be viewed as all operating/invoked after complete inferencing has been performed

– Independent of inferencing control
– Separates pure-belief conclusion from action
Sensors can be viewed as accessing a virtual knowledge base (of facts). Their results simply augment the local set of facts. These can be saved (i.e., cached) during the episode.

- Independent of inferencing control

The sensor attached procedure could be a remote powerful DB or KB system, a web service, or simply some humble procedure. Likewise, an effector attached procedure could be a remote web service, or some humble procedure. An interesting case for SW is when it performs updating of a DB or KB, e.g., “delivers an event”.

Terminology:

- *Situated Inferencing* = inferencing with sensing and effecting, i.e., inferencing+action
Conditions (can view as restrictions or assumptions):

– **Effectors have only side effects:** they do not affect operation of the (episode’s) inferencing+action engine itself, nor change the (episode’s) knowledge base.

– **Sensors are purely informational:** they do not have side effects (i.e., any such can be ignored).

– **Timelessness of sensor and effector calls:** their results are not dependent on when they are invoked, during a given inferencing episode.

– **“Sensor-safeness”:** Each rule ensures sufficient (variable) bindings are available to satisfy the binding signature of each sensor associated with any of its body literals – such bindings come from the other, non-sensor literals in the rule body. During overall “testing” of a rule body, sensors needing such bindings can be viewed as being invoked after the other literals have been “tested.”
“Event” is a set of facts/rules, constituting an update to KB.

An interesting kind of thing to do with a Production LP is to update its premises, and perform incremental inferencing+action.

- new PLP $P2 = (\text{update } U2) \cup (\text{previous } P1)$
- Incremental inferencing+action is defined as:
 - Generate the inferences that are novel
 \[\text{NovelConclusions} = \text{Conclusions}(P2) - \text{Conclusions}(P1) \]
 - Perform the external actions (effecting) associated with NovelConclusions

Extension to PLP:
- An event delivery channel is an attached procedure that delivers events as updates
 - Listening to such a channel can be viewed as a persistent external query
The most complicated aspect of implementing the Production feature of LP is to ensure sensor-safeness, i.e., that sensing is attempted only after sufficient bindings are available (for a given atom being tested/queried, in a given rule).

This is roughly similar to implementing safe negation (NAF) in Normal LP, but somewhat more complicated conceptually and algorithmically.

It is more similar to some of the techniques developed in bottom-up evaluation, magic sets, relational database tabling, etc., of OLP’s where binding signatures (a.k.a. “modes”) are considered.
Production Rules (PR)

• Big sector commercially
 – Jess semi-open Java tool, popular among researchers
 – Drools open source Java tool, got popular in last 3 yrs
• PR2LP, LP2PR: via SweetRules approach (2002, 2005)
 – Horn: fairly simple; several systems implement it now
 – External actions and queries: use PLP restrictions
 – NAF: use insights of stratification and well-founded semantics & proof theory, PR salience and modules
• ECA (Event-Condition Action rules) are similar to PR
• RIF-PRD (Production Rules Dialect)
 – procedural operational semantics, leverages RIF-Core (subset of RIF-BLD)
• OMG Production Rules Representation: meta-model
Outline of Part B. Concepts & Foundations

1. Overview of Logical Knowledge Representations
 - Logic Programs (LP) and its relationship to First Order Logic (FOL)
 - Rule-based Ontologies: Description Logic, Description LP
2. SILK’s Hyper LP: Putting it all together
3. Basics: Horn Case; Functions
4. F-Logic, Frame Syntax, Object Oriented Style
5. HiLog, Higher-Order Syntax, Reification, Meta-Reasoning
6. W3C Rule Interchange Format (RIF): Dialects, Framework
 - Rules in W3C Web Ontology Language (OWL-RL); via RIF
7. Nonmonotonic LP: Defaults, Negation, Priorities, FOL Interchange
 - Semantics for Default Negation
 - Courteous LP, Argumentation Theories
 - Omni-directional Rules, FOL-Soundness, Remedying FOL’s Fragility
8. Procedural Attachments to Actions, Queries, Built-ins, and Events
 - Production/Situated LP, Production Rules
Two styles with quite different semantics:

1. **Alarm**: Rule that detects a violation
 - Typical: the rule reports/notifies that constraint is violated
 - Other rules infer resulting actions to take
 - E.g., many BRMS, SILK

...**VERSUS**...

2. **Model-cutting**: Rule that forces global contradiction when axiom is violated
 - Typical: no model, lose all useful entailments!!
 - E.g., FOL
Lloyd-Topor Expressive Features

- Via the Lloyd-Topor transformation, it is straightforward to extend the expressiveness of LP with additional FOL-type connectives and quantifiers, as syntactic sugar: [Lloyd 1987]
 - $\forall,\exists,\forall,\leftarrow$ in body; \land,\forall,\leftarrow in head
 - Freely nested within body or within head
 - Negation is freely nested in body, too
 - \textit{Stays tractable!}
- Disallowed: \lor,\exists in head (these are disjunctive)
- Some features are monotonic (do not rely on NAF):
 - \forall,\exists in body; \land,\forall,\leftarrow in head
 - These can be applied as syntactic sugar to Horn LP
- Other features are nonmonotonic (do rely on NAF):
 - \forall,\leftarrow in body
- Many rule systems and languages support a subset of Lloyd-Topor features
 - E.g., RIF, RuleML, SILK, Prolog, Jess, CommonRules
Default Inheritance cf. OO

- **Ubiquitous** in object-oriented languages & applications
- Defaults naturally increase reuse, modularity
- OWL and FOL cannot represent defaults (they are monotonic)
- Requirement for semantic web service process ontologies
 - Need to jibe with mainstream web service development methodologies, based on Java/C#/C++ etc.

Approach: Represent OO default-inheritance ontologies using nonmon LP rules

1. [Grosof & Bernstein 2003] **Courteous Inheritance** approach
 - Transforms inheritance into Courteous LP (in RuleML, using SweetRules)
 - Represents MIT Process Handbook (ancestor of PSL)
 - 5,000 business process activities; 38,000 properties/values
 - Linear-size transform (n + constant).

2. [Yang & Kifer, 2006] approach
 - Transform inheritance into essentially Normal LP (using FLORA-2)
Additional Expressive Features in Rules & LP, e.g., SILK

• Explicit equality (and equivalence) reasoning
 – In head of non-fact rules, therefore derived
 – Interaction with nonmonotonicity
 – Key characteristic: substitutivity of equals for equals
 – Related to Herbrand aspect of LP semantics
• Existentials, skolemization
 – RDF blank-nodes, anonymous individuals [Yang & Kifer]
 – Related to Herbrand aspect of LP semantics
• Aggregation (operate on entailed lists): count, total, min, max, etc.
 – Depends on nonmonotonicity, stratification
• Datatypes – they are basic but fairly straightforward
• “Constraints” (e.g., equation/inequality systems)
 – Commonly: via external query/assert to specialized solver
• Also: Reasoning within the KR about the results of side-effectful actions
 – E.g., Transaction Logic [Kifer et al], Golog [Reiter, Lin, et al]
 • These are research-world, not commercial, today
Outline of Part B. Concepts & Foundations

1. Overview of Logical Knowledge Representations
 - Logic Programs (LP) and its relationship to First Order Logic (FOL)
 - Rule-based Ontologies: Description Logic, Description LP
2. SILK’s Hyper LP: Putting it all together
3. Basics: Horn Case; Functions
4. F-Logic, Frame Syntax, Object Oriented Style
5. HiLog, Higher-Order Syntax, Reification, Meta-Reasoning
6. W3C Rule Interchange Format (RIF): Dialects, Framework
 - Rules in W3C Web Ontology Language (OWL-RL); via RIF
7. Nonmonotonic LP: Defaults, Negation, Priorities, FOL Interchange
 - Semantics for Default Negation
 - Courteous LP, Argumentation Theories
 - Omni-directional Rules, FOL-Soundness, Remedying FOL’s Fragility
8. Procedural Attachments to Actions, Queries, Built-ins, and Events
 - Production/Situated LP, Production Rules
PART C. SLIDES

FOLLOW
Outline of Part C. Conclusions & Directions

1. More about Tools
2. … incl. SILK
3. Conclusions
4. Directions for Future research

Appendix: References and Resources

(General Discussion)
More about Tools

1. Rule systems designed to work with RDF/OWL:
 Commercial-world: Jena

 • Jena SW suite has rule (and RDF/OWL) capabilities
 • Open source, popular, Java
 • Basic Horn-ish
 • Supports forward, backward, and mixed direction inferencing
 • Operates directly on RDF/OWL statements, without copying in/out
 • Works well with RDF(S). Suite includes OWL capabilities
 • Rules are used to implement RDFS and OWL reasoners
More about Tools

1. Rule systems designed to work with RDF/OWL/RIF, continued:

 Commercial-world: Oracle; IBM; other

 • Oracle has rule capabilities in semantic tech suite, as part of its flagship database platform
 • Oracle Spatial RDF, now in its 3rd production release, motivated and implements OWL-RL. It also supports user-defined rules using its own rule syntax.
 • Also has production-rule type products, including recently acquired Haley Ltd. – a leader in NL KA – and Ruleburst
 • In development: support for W3C RIF-BLD (Basic Logic Dialect)

 • Various others do too, e.g., Ontotext, Ontoprise, VIStology
 • IBM (e.g., Ilog unit)
 • In development: support for W3C RIF-BLD
1. Rule systems designed to work with RDF/OWL, continued:
 Research-world: SweetRules; cwm; others

- SweetRules has semantic translator from DLP subset of OWL to LP Rules in RuleML and SWRL. Open source, Java. Not maintained.
- Cwm implements N3: RDF + rules. N3 is a popular syntax for RDF. Semantically hazy in some regards, but overlaps a lot with LP. Open source, Python.
- SweetRules pioneered design and implementation of fully semantic interoperability of nonmon LP with Jess production rules, and generally supports Courteous Production LP
- KAON2 implements primarily monotonic rules in FOL & LP
- Numerous others
 - Protege 3 and 4, Pellet, KAON2, and others support SWRL
 - OWLJessKB was an early tool employing Jess to support a subset of OWL DL
 - Several systems combine SWRL with Jess, cf. SweetRules approach
2. Prolog and Production Rule systems

- XSB: semantic, Prolog, full WFS negation, fast, C with available Java front end (Interprolog)
- Jess: production rules, popular, Java, free for non-commercial use but not open source
- YAP and SWI open source Prologs are on a development trajectory towards WFS and SW

- Benchmarking: OpenRuleBench
 - Open source tools for benchmarking rule systems
 - XSB, OntoBroker, YAP Prolog, DLV all did well
 - http://openrulebench.semwebcentral.org
3. Advanced Expressiveness

- FLORA-2: open source, built in/on XSB Prolog, has HiLog, Frame, reification, skolemization features
- SILK: extends FLORA-2 with Courteous defaults, attached procedures, hypermonotonic translation, APIs. Partly in Java. Planned release to be free for non-commercial use.
- IBM CommonRules (1999) supports Courteous Defaults and Production-LP style external actions. Cheap or free, Java.

4. Basic Rules in Semantic Wikis

- Semantic MediaWiki+ (SMW+) is a leading Semantic Wiki. It extends the software Wikipedia runs. Open source, PHP. Developed mainly by Vulcan/Ontoprise. Adds RDF and lightweight RDFS/OWL ontologies.
- Has “Simple Rules” and querying features: basic Horn LP.
5. Some Available Large Rule Bases

- **OpenCyc / ResearchCyc**
 - Open source / free for non-commercial use
 - ~ 1 Million / 3 Million axioms. Large 25 year effort.
 - Idiosyncratic semantically, but overlaps with LP
 - ReCyc: translation to SILK is in development (by Vulcan with Cycorp/SRI)

- **Open Process Handbook**
 - 5,000 business processes, each with ~10 axioms
 - Lots of text and links too. 15 year effort.
 - Translatable to Courteous LP, via approach along lines of SweetPH approach [A. Bernstein, B. Grosof 2003-2005 reports] http://www.mit.edu/~bgrosof/#SweetPH

- **OpenMind – collaborative commonsense KB**
 - Open source. ~1 Million axioms. Built by Web users.
 - Lacks declarative semantics
 - http://openmind.media.mit.edu
Outline of Part C. Conclusions & Directions

1. More about Tools

2. … incl. SILK

3. Conclusions

4. Directions for Future research

Appendix: References and Resources

(General Discussion)
SILK Architecture today (V2.2)

- **API Functionality**
 - Higher-order defaults reasoning, combines many other advanced KR features
 - SILK and external KR language support integrated tightly with reasoning engine

- **UI Functionality**
 - Graphical, tabular
 - For Knowledge Engineers

- **Future Items**
 - **UI**: SME-friendlier, English (NL)
 - **KR**: probabilistic, parallelization, more interchange KRs

- **Test Sets Focus**
 - Defaults, Process
 - Biology (1st yr college)

External Knowledge & Reasoners

- **KB #1**
- **KB #n**
- **Engine #1**
- **Engine #m**

KR Languages
- SILK, RIF-SILK
- RIF-BLD, OWL-RL
- SPARQL, RDF(S)
- SQL, Cyc, AURA

API & Language

- **Language**
 - Interoperability
 - Parsing & Serialization
 - Abstract Syntax

- **Engine**
 - Querying
 - Updating
 - Actions

Advanced

- Authoring
- Explanation (Eclipse)

Basic

- Instant Message
- Command Line

FLORA-2 Engine

- XSB (InterProlog and ODBC interfaces)

Engine #1

11/4/2010

Copyright 2010 by Vulcan Inc., Benjamin Grosof, Mike Dean, and Michael Kifer. All Rights Reserved.
Semantic Rules KR: Features Comparison

<table>
<thead>
<tr>
<th>Level ("generation")</th>
<th>Groups of features</th>
<th>SILK 2.2</th>
<th>FLORA-2</th>
<th>RIF-BLD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1G. Basic</td>
<td>ie: Horn, chaining, external queries, built-ins (Level Summary)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>2G. Advanced</td>
<td>(Level Summary)</td>
<td>The Most</td>
<td>lots</td>
<td>some</td>
</tr>
<tr>
<td>Equality</td>
<td>(derived via non-fact rules)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Functions</td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Convenience Package: Frames, integrity constraints, skolemization</td>
<td>Y</td>
<td>Y</td>
<td>R. frames</td>
<td></td>
</tr>
<tr>
<td>Closed-World: unstratified NAF, aggregates, Lloyd-Topor</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Higher-Order</td>
<td>(incl. reification)</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Actions (external)</td>
<td>(via procedural attachments)</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Base Defaults</td>
<td>(prioritized, cf. Courteous)</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Webized syntax</td>
<td>(URI names and XML/RDF KBs)</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>3G. Hyper</td>
<td>(Level Summary)</td>
<td>Pioneer</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Higher-Order Defaults</td>
<td>(incl. handle multi-way conflict)</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>FOL-Sound</td>
<td>(when interchange non-Horn clauses ↔ FOL)</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Other Misc.</td>
<td></td>
<td>(NA)</td>
<td>(NA)</td>
<td>(NA)</td>
</tr>
<tr>
<td>Other Expressive</td>
<td></td>
<td>Developing</td>
<td>Inheritance</td>
<td>-</td>
</tr>
<tr>
<td>Reasoner Efficiency</td>
<td>(upper-tier on OpenRuleBench)</td>
<td>good</td>
<td>good</td>
<td>NA (standard)</td>
</tr>
</tbody>
</table>

- Summarizes detailed analysis of 40 KR expressive features, 17 systems.
- Notes: R. = Restricted
Features Comparison – More Systems & Stds

<table>
<thead>
<tr>
<th>Level</th>
<th>Groups of Features</th>
<th>SILK 2.2</th>
<th>FLORA-2</th>
<th>RIF-BLD</th>
<th>Jena</th>
<th>Onto-broker</th>
<th>Jess</th>
<th>IBM C.R.</th>
<th>DLV</th>
<th>SQL</th>
<th>SPA-RQL</th>
<th>Common Logic</th>
<th>OWL2 RL</th>
<th>OWL2 DL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic</td>
<td>Horn chain. etc.</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>R.</td>
<td>R.</td>
<td>Y</td>
<td>R.</td>
<td>R.</td>
</tr>
<tr>
<td>Advanced</td>
<td>(Level summary)</td>
<td>Most</td>
<td>lots</td>
<td>some</td>
</tr>
<tr>
<td>Equality</td>
<td></td>
<td>Y</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Functions</td>
<td></td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frames etc.</td>
<td></td>
<td>Y</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Closed-World</td>
<td></td>
<td>Y</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Higher-Order</td>
<td></td>
<td>Y</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actions</td>
<td></td>
<td>Y</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base Defaults</td>
<td></td>
<td>Y</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Webized</td>
<td></td>
<td>Y</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyper</td>
<td>(Level summary)</td>
<td>1st</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-O. Defaults</td>
<td></td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOL-Sound</td>
<td></td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Misc.</td>
<td></td>
<td>NA</td>
</tr>
<tr>
<td>Other Expres.</td>
<td>Dev.</td>
<td>Inherit-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R.</td>
<td>R.</td>
<td>classical</td>
<td></td>
</tr>
<tr>
<td>Efficiency</td>
<td></td>
<td>good</td>
<td>good</td>
<td>NA</td>
<td>fair</td>
<td>good</td>
<td>fair</td>
<td>poor</td>
<td>good</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

- Summarizes detailed analysis of 40 KR expressive features, 17 systems.
- Notes: Dev. = Developing, R. = Restricted; C.R. = CommonRules; disju. = disjunctive.
Background on Systems and Standards:

- Jess is a representative commercial production rule (PR) system. PR was shown 5-7 years ago to have a semantic subset (based on the SweetRules translation). The currently most commercially important business rule management systems (BRMS) are based on PR or similar event-condition-action (ECA) action rules.

- W3C Rule Interchange Format (RIF)’s Basic Logic Dialect (BLD) is its main semantic part. There is also a framework for extensions. RIF is based largely on RuleML, except for RIF’s Production Rule Dialect (PRD).

- W3C OWL 2 RL is OWL’s Rules subset (based on Description LP).

- Jena is a popular open-source semantic web toolkit, incl. for rules.

- OntoBroker is a commercial forward-chaining LP system.

- IBM Common Rules (C.R.) introduced the base defaults feature.

- Common Logic (CL) is an ISO standard for FOL (classical logic), used also by OMG’s Semantics of Business Vocabulary and Rules (SBVR) standard.

- DLV is a disjunctive LP system, by U. Calabria (it supports disjunction in rule heads)
Potential Applications in Business and Government

• **Horizontal**
 - Policies and policy-based workflows
 - Monitor, report, react, handle exceptions, execute, enforce, customize
 - Trust: confidentiality, authorization, compliance, governance
 - Ontology mapping/mediation and knowledge integration
 - Perspective: the mappings themselves constitute ontological knowledge. E.g., a dictionary.

• **Vertical**
 - E-commerce: shopping & advertising, contracts, customer care, catalogs
 - Defense: intelligence, operations
 - Financial: reporting, regulatory compliance
 - Biomed: pharma, e-science, clinical records and guidance, insurance
 - Mobile: personalize communication

• **Many use cases in RIF, RuleML, SWSL documents & prototypes**
 - E.g., employ defaults or other features not yet well supported commercially
SILK DEMOS

• If time allows, SHOW HERE: RuleML-2010/SemTech-2010 DEMO
 • Default rules in SILK GUI: edit, query, explain; exploiting omni-directionality
 • Business policies about ad placements in news

• ISWC-2010 official demo + poster (in demo+poster session)
 • “A SILK Graphical UI for Defeasible Reasoning, with a Biology Causal Process Example”

• Also: Demo’d at ISWC-2009 and RuleML-2009 conferences
 • Scenario of environmental watchdog group’s monitoring workflow
 • Recognize toxic discharge into Ohio River watershed from sharp decline in fish count
 • Alert news media, government agencies, citizens social network
 • Reactive: standing queries trigger external actions upon update events
 • Load imported RDF(S) and RIF-BLD
 • Externally query SPARQL, and Excel via ODBC
 • This demo won an award at RuleML-2009, essentially for best system

• Aim to make videos of demos and post on SILK website.
 • Some already there
Outline of Part C. Conclusions & Directions

1. More about Tools

2. … incl. SILK

3. Conclusions

4. Directions for Future research

Appendix: References and Resources

(General Discussion)
1. Theme: Centrality to Web
 - More than most people realize, LP Rules are central to the Web, both current and future
 - Relational, XML, and RDF databases/querying is LP
 - Thriving commercial business rules market sector, based on production rules / event-condition-action rules, is moving to the Web, and translates largely to LP
 - Often used for ontologies: represent, implement, map
 - Semantic tech and semantic web is largely already LP-based
Overall Conclusions, continued

2. Theme: Incremental Evolution
 - LP Rules, and Semantic Web overall, is incremental technologically wrt relational and Web DBMS

3. Theme on KR expressiveness: Reducibility
 - LP feature extensions built up in layers
 - E.g., Lloyd-Topor, HiLog, Frame syntax, Courteous Defaults, and Hyper Rules each reduce tractably to Normal LP
Overall Conclusions, cont.’d more

- W3C rules standards already: RIF, OWL-RL
- Expressive rules coming soon: RIF-SILK
- Defeasibility, higher-order – without sacrificing tractability
- Reactiveness – without sacrificing semantics
- Hyper LP more suitable than FOL as foundation in many aspects
- Many applications in services engineering
SILK’s Hyper LP – Conclusions

• Radically extends the KR power of W3C OWL, SPARQL, and RIF – and of SQL
 – Defaults and robust conflict handling – *cope with knowledge quality and context*
 – Higher-order and flexible meta-reasoning – *elevate meta-data to meta-knowledge*
 – Actions and events, cf. production rules and process models – *activate knowledge*

• Redefines the KR playing field for Semantic Web, business rules, and rule-based process management
 – Defaults and Higher-Order – yet retain computational web scalability
 – Escape from FOL Bubble – yet retain grade-AAA model-theoretic semantics
 – Hope: be like advance of the Relational model in DBMS

• Implementation Theme: “Transforming Knowledge”
 – Composes a set of KR transformations for …
 – Expressive extensions – language and semantics
 – Translations between KRs/syntaxes, for interchange
 – Reuse of previous algorithms and implementations
BRMS Industry Roadmap: facing disruption

• Semantic rules is a prospectively truly disruptive innovation for the existing business rules management systems (BRMS) industry sector

 – Strategic analysis of evolving market dynamics and what players should do about it
 • Done with a Management professor hat on
Key Directions for Future Research

1. Expressiveness
 - Relationship between FOL and Default LP
 - Distributed, Disjunction, Probabilistic, Abduction, Fuzzy
 - Induction
 - Misc. smaller issues: equality, aggregation, “constraints”, ...

2. Reasoning performance
 - Forward-direction, truth maintenance, termination
 - Parallelization (tremendous opportunities)

3. Knowledge acquisition and UI
 - Explanation
 - Limited natural language
 - Business users / Subject Matter Experts (SMEs)
 - Collaboration

4. Applications and Tools
 - Build. Experiment.
Key Directions for Future Research, cont’d

5. XBRL – Align & Integrate with Semantic Web, LP
6. Bridge to legacy forms of structured knowledge
 ➢ Production and ECA rules (extend known techniques)
 ➢ Ontologies, e.g., E-R, UML, mappings
 ➢ Tool Integration, incl. KA UI

❖ (1.) More Details:
 i. Induction
 ➢ Progress is largely gated by: Reasoning performance, Probabilistic
 ii. Equality and “Constraints”
 ➢ Use of specialized solvers, e.g., equations, inequalities
 ➢ Procedural attachments for functions.
 ➢ Efficiency in substitutivity for inequality
 ➢ Non-Herbrand
 iii. Aggregation:
 ➢ Unstratified
ADDITIONAL REFERENCES & RESOURCES FOLLOW
References & Resources I: Standards on Rules and Ontologies

- http://www.ruleml.org RuleML *Includes links to some tools and examples.*
- http://www.w3.org/Submission/2004/SUBM-SWRL-20010521 SWRL
 - http://www.daml.org/committee Joint Committee. Besides SWRL this includes:
 - http://www.w3.org/Submission/2005/SUBM-SWRL-FOL-20050411/ SWRL-FOL
 - http://www.ruleml.org/fol FOL RuleML (also see RuleML above)
 - http://www.daml.org/rules DAML Rules
- http://www.swsi.org Semantic Web Services Initiative. Especially:
 - Semantic Web Services Language (SWSL), incl. SWSL-Rules and SWSL-FOL and overall requirements/tasks addressed
- http://cl.tamu.edu Common Logic (successor to Knowledge Interchange Format)

Also: Object Management Group (OMG) has efforts on rules and ontologies (cooperating with RuleML and W3C)

Also: JSR94 Java API effort on Rules (cooperating with RuleML)
References & Resources II: Standards on Rules and Ontologies

- http://www.w3.org World Wide Web Consortium, esp.:
 - ../2005/rules/ Rule Interchange Format
 - ../2007/owl/ OWL 2 – see esp. OWL RL Profile
 - ../2001/sw/ Semantic Web Activity, incl RDF, OWL, SPARQL, and RIF
 - ../2002/ws/ Web Services Activity, incl. SOAP and WSDL
 - www-rdf-rules@w3.org Rules discussion mailing list
 - www-sws-ig@w3.org Semantic Web Services discussion mailing list
 - P3P privacy policies
 - XQuery XML database query

- http://www.oasis-open.org Oasis, esp. on web policy & web services:
 - XACML XML access control policies
 - ebXML e-business communication in XML
 - Legal XML
 - BPEL4WS Business Processes as Web Services
 - Web Services Security
Refs & Resources III: LP with Negation

Resources IV: More Key LP Theory

References & Resources V: Misc. on Rules and Ontologies

Resources VI: DL Safe SWRL rules

- OWLED's DL Safe SWRL Rules Task Force [1] [2], whose proposals have already been implemented in Pellet and KAON2.
References & Resources VII: Misc. on Rules and Ontologies

References & Resources VIII: More Courteous and Situated

Resources IX: Misc. Papers

- "Financial Information Integration in the Presence of Equational Ontological Conflicts", by A. Firat et al., WITS 2002 conf.
Resources X: SILK

• SILK project page: http://silk.semwebcentral.org/
 – RR-2009 keynote slideset, by B. Grosof
 – Also:
 • SemTech-2010 invited talk slideset, by B. Grosof
Resources XI: Misc. Presentations

• SemTech-2010 Rules Track, coorganized by RuleML:
 http://semtech2010.semanticuniverse.com/rules
 – Presentations about RIF, SILK, Oracle, IBM, others
 – Abstracts available on webpage above
 – For slides, see SemTech-2010 conference materials,
 or contact authors
Thank You

Disclaimer: The preceding slides represent the views of the authors only. All brands, logos and products are trademarks or registered trademarks of their respective companies.
END OF ALL SLIDES

Disclaimer: The preceding slides represent the views of the authors only. All brands, logos and products are trademarks or registered trademarks of their respective companies.