DAML Rules Update and Issues

Expressive Features and Abstract Syntax;
Use Cases & Scenarios, Requirements, and Tools;
RuleML & relationships to RDF, OWL, Query, and Services;
Description Logic Programs, Procedural Attachments, and Negation

Presentation for Rules Breakout sessions of DAML PI Meeting,
Apr. 8-10, 2003, Miami, FL, USA. http://www.daml.org

Benjamin Grosof*
MIT Sloan School of Management
bgrosof@mit.edu http://www.mit.edu/~bgrosof/

Thanks to Mike Dean* and Stefan Decker for agenda suggestions.
* co-leads of DAML Rules effort

4/14/2003 by Benjamin Grosof copyrights reserved
OUTLINE OF SLIDES

• Primer Presentation (15min), from Apr. 8, 2003
 – Introduction
 – Background on Description Logic Programs

• Main Breakout’s Presentations (totaling 1 hour), from April 9, 2003
 – except for part by Stefan Decker on Use Cases, and some other skimmed
documents – RuleML Working Note outline and RuleML abstract syntax
 excerpts by B. Grosof

• Outbrief Presentation (20min), from April 10, 2003

• Optional Slides
 – SweetDeal
 – Semantic Web Services
 – DLP Background
What is “DAML Rules”?

- Generally: new rules stuff specifically related to DAML program
 - e.g., OWL, DAML-Services, and their application scenarios
- Focus: RuleML (esp. since Oct ’02 PI Meeting)
 - Horn Logic Programs + extensions/restrictions = sub-languages
 - Webizing: URI’s for predicates etc., facilitate modules
 - Negation as failure, prioritized conflict handling, strong negation
 - “Reactivity”: Procedural attachments for actions, queries; events
- Language Expressive Features, Syntax; Tools; Use Cases, Scenarios
- Relationships to OWL and RDF and Query:
 - OWL/RDFS ontologies used or defined by Rules
 - Description Logic Programs semantics for ↔ OWL
 - RDF, OWL syntaxes for RuleML; unordered abstract syntax to bridge
 - Relationships to DQL, RDF Query approaches; expressiveness needed
- Use in Services, security
- Coordination with:
 - Joint Committee, RuleML Initiative, W3C, SWS Coalition, Oasis
 - (These are locus of most technical discussions on Rules, to date.)

4/14/2003 by Benjamin Grosof copyrights reserved
Top-Level Goals -- for overall Breakout

- Update all on latest relevant progress and news
 - e.g., there's lots on relationships to RDF, OWL, Query, W3C

- Share news generally from folks -- e.g., what tools using / making

- Discuss technical issues, e.g., relationships to RDF, OWL, Query, Services

- Set some near-term focus and plans for DAML Rules effort
Focus Areas -- for overall Breakout

• requirements, use cases, and language features
 – negation & defaults? procedural attachments? Major commercial systems all have them!
 – more use cases needed – where?

• relationship to RDF, OWL, Query
 – Syntax directions?: abstract syntax approach; “object-oriented” argument collections; RDF, OWL encodings; queries incl. path / graph expressions
 – Expressive focus?: Description LP for OWL; ~ Horn for RDF Query
 – Concepts of combinations?: E.g., also: pile of DL ∪ LP axioms.

• relationship to Services and security
 – procedural attachments/“reactivity” – how critical?
Breakout Agenda -- Schedule

1. 13:00-13:25 Overall Update on DAML Rules and RuleML
2. 13:25-13:50 Rules Use Cases and Requirements effort
3. 13:50-14:50 RuleML in relation to RDF, OWL, and Query
4. 15:00-15:30 Rules and Services
5. 15:30-16:00 Setting Focus and Plans
Coordination with other breakouts

- In Services breakout:
 - Rules in use cases & scenarios
 (9:00-10:00)

- In Query breakout:
 - Rules relationship to RDF Query approaches
 incl. DQL
 (sometime during 10:00 - 12:00)
Primer: DLP Background
Venn Diagram: Expressive Overlaps among KR’s

- First-Order Logic
- Description Logic
- Horn Logic Programs
- Description Logic Programs
- Logic Programs
 - (Negation As Failure)
 - (Procedural Attachments)

4/14/2003 by Benjamin Grosof, copyrights reserved
updated Overview of DLP Features

• DLP captures a complete subset of DL, containing RDFS plus more
• RDFS subset of DL permits the following statements:
 – Subclass, Domain, Range, Subproperty (also SameClass, SameProperty)
 – instance of class, instance of property
• DLP also completely captures following DL statements beyond RDFS:
 – Using the Intersection connective (conjunction) in class descriptions
 – Stating that a property (or inverse) P is Transitive or Symmetric.
 – (Some other stuff)
 – “OWL Feather”
• DLP can largely but partially capture: most other DL features.
 – Use skolemization, explicit equality, integrity constraints.
• Translation simpler to define from DL ⇒ LP than DL ⇐ LP.
• Bridge easily to Relational DBMS (SQL) – which is LP-based.
 – Scaleability of LP/DB engines >> DL engines, as |instances| ↑.
LP as a superset of DLP

• “Full” LP, including with non-monotonicity and procedural attachments, can thus be viewed as including an “ontology sub-language”, namely the DLP subset of DL.
Key aim: import DL ontologies into LP rulebase.

⇒ Consistency of the result/merge is an issue.

Ways to achieve robustness:
- 1. Use DLP for ontologies, rather than full DL.
- 2. Exploit LP’s nonmonotonic expressiveness:
 - Negation as failure; or more generally:
 - Courteous LP’s prioritized conflict handling
Hybrid DL+LP Task Scenarios/Use-Cases

• 1. Service descriptions combining LP rules and DL ontologies

• 2. Rules for knowledge translation: e.g.,
 – translating/merging ontologies (or rules)
PART I. SLIDES FOLLOW
Part I. Overall Update -- Outline

- **Intro:** Goals, Focus, Agenda
- **Description Logic Programs:** expressiveness ↑; papers; tool
- **RuleML language features:** Working Note outline (Boley, Grosof, & Tabet)
- **Rules Uses Cases & Requirements draft** (Decker, Dean, & McGuinness)
- relationship to Query in RDF, incl. DQL
 - survey draft (Prud’hommeaux & Grosof)
 - use cases drafts (Miller, Reggiori & Seaborne)
- **RDF/OWL syntax for RuleML:**
 - abstract syntax, object-oriented argument collections, minimizing order
- **W3C News:** on Query & Rules, e.g. Plenary Mar ‘03, www-rdf-rules
- **News:** RuleML tools, scenarios
- **Upcoming:** ISWC Rules Workshop (deadline 6/15)
• DLP captures a complete subset of DL, containing RDFS plus more
• RDFS subset of DL permits the following statements:
 – Subclass, Domain, Range, Subproperty (also SameClass, SameProperty)
 – instance of class, instance of property
• DLP also completely captures following DL statements beyond RDFS:
 – Using the Intersection connective (conjunction) in class descriptions
 – Stating that a property (or inverse) P is Transitive or Symmetric.
 – (Some other stuff:) disjunction or existential in subclass expression, universal in superclass expression.
 – “OWL Feather” – subset of OWL Lite
• DLP can largely but partially capture: most other DL features:
 – Cardinality, existential in superclass, universal in subclass, functionality of property (or inverse).
 – But NOT: (general) negation, disjunction in superclass
 – Use skolemization, explicit equality, integrity constraints.
• Translation simpler to define from DL ⇒ LP than DL ⇐ LP.
• Bridge easily to Relational DBMS (SQL) – which is LP-based.
 – ‘Scaleability of LP/DB engines >> DL engines’, as |instances| ↑.
more details on Overall Update

• Description Logic Programs:
 – Follow-on working paper [Volz, Motik, Horrocks, & Grosof] on more expressiveness, SweetOnto translator tool for OWL to RuleML and DB
 – SweetOnto tool to be available publicly in ?May

• relationship to Query in RDF, incl. DQL
 – survey draft (Prud’hommeaux & Grosof)
 • Horn fundamental expressiveness seems to suffice ?
 • Path/graph expressions required in syntax?
 – use cases drafts (Miller, Reggiori & Seaborne)
 • Lessons?
more details on Overall Update, continued

- RuleML language features; Working Note outline (Boley, Grosof, & Tabet)

- (see file ruleml-working-note-summary-040803.txt)
more details on Overall Update, continued

- **W3C News:** lot of interest in Query & Rules, e.g.
 - W3C Plenary Mar ’03 discussions at Semantic Web Architecture sessions
 - Many different systems already
 - www-rdf-rules as interest group that combines
 - Joint Committee archives public
 - RuleML / DAML Rules technical discussion mainly on Joint Committee and/or www-rdf-rules mailing lists
 - **Issue:** focus of potential new Working Group
 - **Plan:** RuleML Working Note, Rules Use Cases, WG Charter
more details on Overall Update, continued

• News: RuleML tools, implemented scenarios
 – Several new tools available now or soon
 • Editors, translators, inference engines
 • XSB, Jess, OWL, SQL, KIF
 – New implemented application scenarios:
 • financial knowledge integration (ECOIN)
 – See www.ruleml.org and www.daml.org/rules
 and ebusiness.mit.edu/bgrosof
Breakout Agenda -- Schedule

1. 13:00-13:25 Overall Update on DAML Rules and RuleML

2. 13:25-13:50 Rules Use Cases and Requirements effort

3. 13:50-14:50 RuleML in relation to RDF, OWL, and Query

10-min BREAK

4. 15:00-15:30 Rules and Services

5. 15:30-16:00 Setting Focus and Plans
PART I. DISCUSSION

• all share their news
 – how DAML'ers are using rules now

• agenda refinement
• E.g., in OO app’s, DB’s, workflows.

• Relational databases, SQL: Views, queries, facts are all rules.
 • SQL99 even has recursive rules.
• Production rules (OPS5 heritage): e.g.,
• Event-Condition-Action rules (loose family), cf.:
 – business process automation / workflow tools.
 – active databases; publish-subscribe.
• Prolog, e.g., XSB: “logic programs” as a full programming language.
• (Lesser: other knowledge-based systems.)
PART II. SLIDES

• Presentation by Stefan Decker on Use Cases effort by him and collaborators

• See separate file(s)
Breakout Agenda -- Schedule

1. 13:00-13:25 Overall Update on DAML Rules and RuleML
2. 13:25-13:50 Rules Use Cases and Requirements effort
3. 13:50-14:50 RuleML in relation to RDF, OWL, and Query

10-min BREAK

4. 15:00-15:30 Rules and Services

5. 15:30-16:00 Setting Focus and Plans
PART III.

Suggested Discussion Focus

• Relationships to OWL and RDF and Query:
 – OWL/RDFS ontologies used or defined by Rules
 – Description Logic Programs semantics for \leftrightarrow OWL
 – RDF, OWL syntaxes for RuleML
 • unordered abstract syntax to bridge
 – Relationships to DQL, RDF Query approaches; expressiveness needed:
 • Horn enough for RDF Query?
 • Path/graph expression syntax needed for RDF Query?
 • Lessons from RDF Query use cases?
PART III. Agenda

- 1350-1415 background presentation
 - *proposed ABSTRACT SYNTAX for RuleML: approach, examples
 - encoding RuleML syntax in RDF or OWL
 - unorderedness in RDF/OWL vs. orderedness in XML-S, commercial systems
 - object-oriented argument collections in RuleML
 - List of other topics, in prep for discussion
 - rules on top of ontologies, e.g., in SweetDeal
 - Description Logic Programs
 - RDF triples as facts in rules
 - relationship to RDF Query Systems and to DQL
 - querying remote systems via procedural attachments
 - mixing of RuleML encoded in RDF/OWL with use by rules of OWL ontologies
 - Rules expressive features: which and where are useful
 - scenarios of usage of rules together with RDF Query, DQL

- 1415-1450 discussion

4/14/2003 by Benjamin Grosof copyrights reserved
PART III. Intro to Abstract Syntax for RuleML, continued

• Address need for syntax specification to interoperate between current XML-Schema/DTD spec and:
 – RDF encoding
 – OWL encoding
 – Human-oriented concise string syntax, e.g., Prolog-y or Lisp-y style
 – Alternatives within XML-S, DTD, OWL wrt “Abstract Syntax for RuleML”
PART III. Intro to GBNF

• Challenge: unordered (OWL, RDF) vs. ordered (XML-S)
• Challenge: represent contents vs. macro expansion

• New meta-syntax: GBNF “Generalized BNF for XML” or “Grosof BNF”
 – Unordered concatenation AND ordered concat.
 – Containment statements AND macro statements
 – Spirit of semi-structured databases, plus schema info
 • Treat attributes as elements; treat their defaults as pre-processing macro
PART III. Intro to Abstract Syntax for RuleML, continued

• Various Expressive Features
• Object-oriented style
 – Unordered yet unambiguous children as contents
 – “roled lists”: Argument collections for a predicate/atom or function/term
 • with named user-defined “roles”, similar to columns of a DB relation
 – AND tuples
 – Nestably
• Quite concise.
PART III. Presentation on Abstract Syntax for RuleML

- wrt “Abstract Syntax for RuleML”:
 - see file of working draft by B. Grosof:
 - ruleml-abstract-syntax-032803-excerpts.txt
PART III. Presentation on OWL Syntax for RuleML

- DAML+OIL syntax for RuleML (“DamlRuleML”) since Apr ‘02 exists already

- DamlRuleML draft was specified and translator was implemented to (XML-DTD) RuleML and to Jess, as part of SweetJess work

- See paper “SweetJess: Translating DamlRuleML to Jess”
 Also available at http://ebusiness.mit.edu/bgrosof
Translating a Rule from (Daml)RuleML to Jess

```xml
<ruleml:imp>
  <ruleml:_rlab>
    <ruleml:ind>steadySpender</ruleml:ind>
  </ruleml:_rlab>
  <ruleml:_body>
    <ruleml:andb>
      <ruleml:atom>
        <ruleml:_opr>
          <ruleml:rel>shopper</ruleml:rel>
        </ruleml:_opr>
        <ruleml:var>Cust</ruleml:var>
      </ruleml:atom>
      <ruleml:atom>
        <ruleml:_opr>
          <ruleml:rel>spendingHistory</ruleml:rel>
        </ruleml:_opr>
        <ruleml:tup>
          <ruleml:var>Cust</ruleml:var>
          <ruleml:ind>loyal</ruleml:ind>
        </ruleml:tup>
      </ruleml:atom>
    </ruleml:andb>
  </ruleml:_body>
</ruleml:imp>
```
Continued: Translating a Rule from (Daml)RuleML to Jess

Equivalent in JESS:
(defrule steadySpender
 (shopper ?Cust)
 (spendingHistory ?Cust loyal)
=>
 (assert (giveDiscount percent5 ?Cust)))
PART III. More Topics

- rules on top of ontologies, e.g., in SweetDeal
- Description Logic Programs
- RDF triples as facts in rules
- relationship to RDF Query Systems and to DQL
- querying remote systems via procedural attachments
- mixing of RuleML encoded in RDF/OWL with use by rules of OWL ontologies
- rules expressive features: which and where are useful
- scenarios of usage of rules together with RDF Query, DQL
Breakout Agenda -- Schedule

• **1. 13:00-13:25** Overall Update on DAML Rules and RuleML

• **2. 13:25-13:50** Rules Use Cases and Requirements

• **3. 13:50-14:50** RuleML in relation to RDF, OWL, and Query

• **10-min BREAK**

• **4. 15:00-15:30** Rules and Services

• **5. 15:30-16:00** Setting Focus and Plans
PART IV. Background – Outline

• Rule-based Semantic Web Services
 – Motivate procedural attachments, e.g., for actions in business processes

• Situated Logic Programs, as declarative abstraction of usual kinds of procedural attachments
Rule-based Semantic Web Services

- Rules/LP in appropriate combination with DL as KR, for RSWS
 - DL good for categorizing: a service overall, its inputs, its outputs

- Rules to describe service process models
 - rules good for representing:
 - preconditions and postconditions, their contingent relationships
 - contingent behavior/features of the service more generally,
 - e.g., exceptions/problems
 - familiarity and naturalness of rules to software/knowledge engineers

- Rules to specify deals about services: cf. e-contracting.
Rule-based Semantic Web Services

• Rules often good to **executably specify** service process models
 – e.g., **business process automation using procedural attachments** to perform side-effectful/state-changing **actions** ("effectors" triggered by drawing of conclusions)
 – e.g., **rules obtain info via procedural attachments** ("sensors" test rule conditions)
 – e.g., rules for knowledge translation or inferencing
 – e.g., info services exposing relational DBs

• **Infrastructural**: rule system functionality as services:
 – e.g., inferencing, translation
Application Scenarios for Rule-based Semantic Web Services

- SweetDeal [Grosof & Poon 2002] configurable reusable e-contracts:
 - LP rules about agent contracts with exception handling
 - … on top of DL ontologies about business processes;
 - a scenario motivating DLP

- Other:
 - Trust management / authorization (Delegation Logic) [Li, Grosof, & Feigenbaum 2000]
 - Financial knowledge integration (ECOIN) [Firat, Madnick, & Grosof 2002]
 - Privacy policies (P3P APPEL)
 - Business policies, more generally
Flavors of Rules Commercially Most Important today in E-Business

- E.g., in OO app’s, DB’s, workflows.

- Relational databases, SQL: Views, queries, facts are all rules.
 - SQL99 even has recursive rules.

- Production rules (OPS5 heritage): e.g.,

- Event-Condition-Action rules (loose family), cf.:
 - business process automation / workflow tools.
 - active databases; publish-subscribe.

- Prolog, e.g., XSB: “logic programs” as a full programming language.
- (Lesser: other knowledge-based systems.)
Heavy Reliance on *Procedural Attachments* in Currently Commercially Important Rule Families

• E.g., in OO app’s, DB’s, workflows.

• Relational databases, SQL: Built-in sensors, e.g., for arithmetic, comparisons, aggregations. Sometimes effectors: active rules / triggers.

• Production rules (OPS5 heritage): e.g., Jess
 – Pluggable (and built-in) sensors and effectors.

• Event-Condition-Action rules:
 – Pluggable (and built-in) sensors and effectors.

• Prolog: e.g., XSB.
 – Built-in sensors and effectors. More recent systems: more pluggability of the built-in attached procedures.
Situated LP’s: Overview

- Point of departure: LP’s are pure-belief representation, but most practical rule systems want to invoke external procedures.
- Situated LP’s feature a semantically-clean kind of procedural attachments. I.e., they hook beliefs to drive procedural API’s outside the rule engine.
- Procedural attachments for sensing (queries) when testing an antecedent condition or for effecting (actions) upon concluding a consequent condition. Attached procedure is invoked when testing or concluding in inferencing.
- Sensor or effector link statement specifies an association from a predicate to a procedural call pattern, e.g., a method. A link is specified as part of the representation. I.e., a SLP is a conduct set that includes links as well as rules.
Situated LP’s: Overview (cont.’d)

- phoneNumberOfPredicate ::s:: BoeingBluePagesClass.getPhoneMethod .
 ex. sensor link
- shouldSendPagePredicate ::e:: ATTPagerClass.goPageMethod .
 ex. effector link
- Sensor procedure may require some arguments to be ground, i.e., bound; in general it has a specified binding-signature.
- Enable dynamic or remote invocation/loading of the attached procedures (exploit Java goodness).

- Overall: cleanly separate out the procedural semantics as a declarative extension of the pure-belief declarative semantics. Easily separate chaining from action.
SweetJess: Translating an Effector Statement

<damlRuleML:effe>
 <damlRuleML:_opr>
 <damlRuleML:rel>giveDiscount</damlRuleML:rel>
 </damlRuleML:_opr>
 <damlRuleML:_aproc>
 <damlRuleML:jproc>
 <damlRuleML:meth>setCustomerDiscount</damlRuleML:meth>
 <damlRuleML:clas>orderMgmt.dynamicPricing</damlRuleML:clas>
 <damlRuleML:path>com.widgetsRUs.orderMgmt</damlRuleML:path>
 </damlRuleML:jproc>
 </damlRuleML:_aproc>
</damlRuleML:effe>

Associates with predicate P: an attached procedure A that is side-effectful.
- Drawing a conclusion about P triggers an action performed by A.

jproc = Java attached procedure.
meth, clas, path = its methodname, classname, pathname.

Equivalent in JESS: key portion is:
(defrule effect_giveDiscount_1
 (giveDiscount ?percentage ?customer)
 =>
 (effector setCustomerDiscount orderMgmt.dynamicPricing
 (create$?percentage ?customer)))

4/14/2003 by Benjamin Grosof copyrights reserved
Overview: Semantics of Situated Logic Programs

- Definitional: complete inferencing+action occurs during an “episode” – intuitively, run all the rules (including invoking effectors and sensors as go), then done.
- Effectors can be viewed as all operating/invoked after complete inferencing has been performed.
 - Independent of inferencing control.
- But often intuitively less appropriate if only doing backward inferencing.
 - Separates pure-belief conclusion from action.
Overview: Semantics of Situated LP, continued

- Sensors can be viewed as accessing a virtual knowledge base (of facts). Their results simply augment the local set of facts. These can be saved (i.e., cached) during the episode.
 - Independent of inferencing control.
- The sensor attached procedure could be a remote powerful DB or KB system, a web service, or simply some humble procedure.
- Likewise, an effector attached procedure could be a remote web service, or some humble procedure. An interesting case for SW is when it performs updating of a DB or KB, e.g., “delivers an event”.

4/14/2003 by Benjamin Grosof copyrights reserved
Overview of Semantics of Situated LP, continued

- **Conditions:**
 - **Effectors have only side effects:** they do not affect operation of the (episode’s) inferencing+action engine itself, nor change the (episode’s) knowledge base.
 - **Sensors are purely informational:** they do not have side effects (i.e., any such can be ignored).
 - **Timelessness of sensor and effector calls:** their results are not dependent on when they are invoked, during a given inferencing episode.
 - **“Sensor-safeness”:** Each rule ensures sufficient (variable) bindings are available to satisfy the binding signature of each sensor associated with any of its body literals – such bindings come from the other, non-sensor literals in the rule body. During overall “testing” of a rule body, sensors needing such bindings can be viewed as invoked after the other literals have been “tested”.

4/14/2003 by Benjamin Grosof copyrights reserved
Overview: Semantics of Situated LP, Continued

• Generalizations possible:
 – permit multiple sensors or effectors per predicate.
 – sense functions (or terms) not just predicates.
 – permit sensor priority – i.e, specify the prioritization of the facts that result from a particular sensor.

 – associate sensing with atoms/literals (or terms), but this is reducible to sensing predicates (or functions) – by rewriting of the rules.

• Challenge: error handling info returned from attached procedures
Example: Notifying a Customer when their Order is Modified

- See extended version of B. Grosof WITS-2001 conference paper
 - "Representing E-Business Rules on the Semantic Web: Situated Courteous Logic Programs in RuleML"
 - Available at http://ebusiness.mit.edu/bgrosof
PART V. Agenda Topics for Discussion

• Is LP Rules + Common Logic the right focus for “Rules” for
 – DAML?
 – Semantic Web?
 – Semantic Web Services?

• Layering:
 – What focus nearer-term
 – Can view Common Logic / FOL as point in RuleML’s expressiveness lattice (hierarchy) of sub-languages?

• Combining rules with OWL:
 – RuleML (or CommonLogic) on top of OWL ontologies
 – Description LP
 – Object-oriented syntax
 – Abstract syntax

• Use Cases and Application Scenarios
PART V. Agenda Topics for Discussion

- Situated LP notion – useful?
- “Anarchic” scaleaability – challenge for non-monotonicity? For monotonicity?
 - Examples: view definitions in SQL, travel agent rulebase that you hand a set of sources
- Pairwise agent exchange vs. publishing
 - Message passing vs. Webpage-posting
- Implicit, vs. explicit persistently named, specification of rest of KB; explicit assumptions about use of nonmon rulebases
- Overall monotonicity of \{KB entails p\} relation.
Breakout Agenda -- Schedule

1. 13:00-13:25 Overall Update on DAML Rules and RuleML
2. 13:25-13:50 Rules Use Cases and Requirements effort
3. 13:50-14:50 RuleML in relation to RDF, OWL, and Query
4. 15:00-15:30 Rules and Services
5. 15:30-16:00 Setting Focus and Plans
OUTBRIEF SLIDES FOLLOW
What is “DAML Rules”?

- **Generally**: new rules stuff specifically related to DAML program
 - e.g., OWL, DAML-Services, and their application scenarios
- **Focus**: RuleML (esp. since Oct ’02 PI Meeting)
 - Horn Logic Programs + extensions/restrictions = sub-languages
 - Webizing: URI’s for predicates etc., facilitate modules
 - Negation as failure, prioritized conflict handling, strong negation
 - “Reactivity”: Procedural attachments for actions, queries; events
- **Language Expressive Features, Syntax; Tools; Use Cases, Scenarios**
- **Relationships to OWL and RDF and Query**:
 - OWL/RDFS ontologies used or defined by Rules
 - Description Logic Programs semantics for \leftrightarrow OWL
 - RDF, OWL syntaxes for RuleML; unordered abstract syntax to bridge
 - Relationships to DQL, RDF Query approaches; expressiveness needed
- **Use in Services, security**
- **Coordination with**:
 - Joint Committee, RuleML Initiative, W3C, SWS Coalition, Oasis
 - *(These are locus of most technical discussions on Rules, to date.)*
Breakout Agenda -- Schedule

1. 13:00-13:25 Overall Update on DAML Rules and RuleML
2. 13:25-13:50 Rules Use Cases and Requirements effort
3. 13:50-14:50 RuleML in relation to RDF, OWL, and Query
4. 15:00-15:30 Rules and Services
5. 15:30-16:00 Setting Focus and Plans
Focus Areas -- for overall Breakout

• requirements, use cases, and language features
 – negation & defaults? procedural attachments? Major commercial systems all have them!
 – more use cases needed – where?

• relationship to RDF, OWL, Query
 – Syntax directions?: abstract syntax approach; “object-oriented” argument collections; RDF, OWL encodings; queries incl. path / graph expressions
 – Expressive focus?: Description LP for OWL; ~ Horn for RDF Query
 – Concepts of combinations?: E.g., also: pile of DL \cup LP axioms.

• relationship to Services and security
 – procedural attachments/“reactivity” – how critical?
Breakout Discussion I: Expressiveness Requirements

- Two kinds of rules are of interest:
 - 1. LP Rules / RuleML
 - 2. First-order logic / Common Logic
 - some like to call an implication a “rule”.
 - These have substantial overlap.
 - Common Logic aims to support a RuleML subset
- Rules on top of ontologies – is a vital requirement / usage
 - Description LP a good tool for semantic aspect of this
 - Syntax: URIref provides the basic capability
- Procedural attachments – are important
 - esp. for services, business processes, and “making the business case for rules”
 - e.g., query service calls upon another query service
 - Not well-understood how to do in First-order logic beyond LP
Breakout Discussion II: Situated Logic Programs

• Situated LP approach to procedural attachments in LP Rules:
 – Effectors for external side-effectful actions
 – Sensors for purely-informational external querying
 – Declarative semantics:
 • independence from inferencing control strategy
 – Much simpler than general planning or programming

 – Makes assumptions about attached procedures be more explicit
 • Interesting similarity to W3C’s normative principles for GET and POST for general Web
 – Interesting approach overall
 – More feedback requested
Breakout Discussion III: Syntax

• “Object-oriented” argument collections feature in RuleML:
 – Is useful (has a long history under various names)
 – … in Common Logic too
 – Interestingly:
 • can treat argument roles as part of ontology
 – Related also to enabling types for variables

• Abstract Syntax proposal for RuleML:
 – Terseness is appealing
 • (57 lines for nearly all current RuleML features.)
 – More feedback requested
Breakout Discussion IV: Use Cases

• Use Cases & Requirements effort is ongoing
 – Stefan Decker presented

• Kinds of uses of rules include:
 – Derivation
 – Reactive, Transformation, Integrity Constraints:
 • Build upon Derivation, may not require (much) more in terms of fundamental expressiveness

• More use cases wanted!!!!!!
Breakout Discussion V: Rules on the Web

- **Lots** of discussion!!
- Clarified issue of fundamental goals/uses:
 - 1. “Messaging”: Exchange of rules between a few parties or in limited/controlled context
 - 2. Vs. “Posting”: Fully public / very wide
 - Cf. vision of SW ontologies
 - These have different requirements emphases
 - Driven by different aims for reuse, composition, modification
 - Many felt: (2.) motivates desire for monotonicity
 - “Anarchic” scaleability as a goal
 - “This is Useful vs. “This is True”” – clash of intutions?
 - Use cases helpful! E.g., descriptive vs. prescriptive; merging, travel agents, e-contracting, DB integration, …
Breakout Discussion VI: Nonmonotonicity

• *Lots* of discussion!! … Actually got somewhere!!

• Meaning of asserting defaults: believed as premises

• Defaults’ usefulness often includes:
 – being prescriptive, e.g., in open-source spirit
 – facilitating reuse: simplifies modification often to be just merging/updating

• Rulebase includes facts – crisply defines scope of “world” being closed. (Non-fact) rules and facts may originate from multiple Web sources. Once provided, then semantic closure occurs.

• Nonmon with disjunction/(FOL-LP) is not well understood enough for practicality, yet.
Breakout Discussion VII: Nonmon., cont.’d

• Key requirement for reuse of defaults:
 – enough meta-knowledge about source and intended use context; e.g., reliability, reputation, etc.

• Prioritized default approach, cf. Courteous LP:
 – Many felt: is reasonable point of departure for rules on the Web, esp. when prioritized conflict handling is needed (e.g. Pat!!)
 – Can represent and infer meta-knowledge about sources, e.g.:
 • prioritization for merging/updating, based on authority, expertise, reliability, freshness, etc.
 – Paraconsistent: non-conflicting defaults go thru
 – Handles conflicts & keeps global consistency
 – Reduces tractably to normal LP (Horn + negation as failure)
Ongoing Discussion Venues

- daml-rules@daml.org DAML-Rules mailing list
- www.daml.org/rules DAML-Rules web page
- Joint Committee archives -- see www.daml.org/committee
 - public to read, but not to post
- www-rdf-rules W3C mailing list
- RuleML www.ruleml.org; & ebusiness.mit.edu/bgrosof
 - You can join as a participant, then get on its mailing list
- BOF on Query & Rules at WWW-2003 (eric@w3.org contact)
For OPTIONAL SLIDES: see separate file