Semantic Web Services, Rules, and E-Contracting: Overview and Relationship to AutoID

Benjamin Grosof
Douglas Drane Assistant Professor of Information Technologies, MIT Sloan School of Management
http://ebusiness.mit.edu/bgrosof

Slides presented at MIT Auto-ID Labs Web Services WAN SIG Launch Workshop, Mar. 9, 2004
http://autoidlabs.mit.edu; wswansig-info@autoidlabs.mit.edu
Outline of Talk

• I. Overview: Semantic Web Services (SWS) and Rules
 – Concepts, Today’s Scene, Visions
 – Applications, incl. B2B
 – End-to-end e-contracting, and policies
 – Strategy: adoption roadmap

• II. How does this apply to AutoID?
 – B2B Tasks; end-to-end e-contracting, and policies
 – SWS Research Directions

• Optional: More Details, esp. on e-contracting and rules
Quickie Bio of Presenter

• MIT professor since 2000
• 12 years at IBM T.J. Watson Research; 2 years at startups
• PhD Comp Sci, Stanford; BA Applied Math Econ/Mgmt, Harvard
• Semantic web services is main research area:
 – Rules as core technology
 – Business Applications, Implications, Strategy:
 • e-contracting/supply-chain; finance; trust; …
 – Overall knowledge representation, e-commerce, intelligent agents
• Co-Founder, Rule Markup Language Initiative – the leading emerging standards body in semantic web rules (http://www.ruleml.org)
• Core participant in Semantic Web Services Initiative – which coordinates world-wide SWS research and early standards (http://www.swsi.org)
 – Area Editor for Contracts & Negotiation, Language Committee
 – Co-Chair, Industrial Partners program (SWSIP)
Next Generation Web

Semantic Web Services

Semantic Web techniques Web Services techniques

Existing Web
Web Service -- definition

• (For purposes of this talk:)

• A procedure/method that is invoked through a Web protocol interface, typically with XML inputs and outputs
Semantic Web: concept, approach, pieces

- Shared semantics when interchange data \(\therefore\) knowledge
- Knowledge Representation (cf. AI, DB) as approach to semantics
 - Standardize KR syntax, with KR theory/techniques as backing
- Web-exposed Databases: SQL; XQuery (XML-data DB’s)
 - Challenge: share DB schemas via meta-data
- RDF: “Resource Description Framework” W3C proposed standard
 - Meta-data lower-level mechanics: unordered directed graphs (vs. ordered trees)
 - RDF-Schema extension: simple class/property hierarchy, domains/ranges
- Ontology = formally defined vocabulary & class hierarchy
 - OWL: “Ontologies Working Language” W3C proposed standard
 - Subsumes RDF-Schema and Entity-Relationship models
 - Based on Description Logic (DL) KR ~subset of First-Order Logic (FOL)
- Rules = if-then logical implications, facts ~subsumes SQL DB’s
 - RuleML: “Rule Markup Language” emerging standard
 - Based on Logic Programs (LP) KR ~extension of Horn FOL
Some Semantic Web Advantages for Biz

• Builds upon XML’s much greater capabilities (vs. HTML*) for **structured detailed descriptions** that can be processed **automatically**.
 – Eases application development effort for **assimilation of data in inter-enterprise interchange**

• Knowledge-Based E-Markets -- where Agents Communicate
 (Agent = knowledge-based application)
 – .∴ potential to **revolutionize interactivity in Web marketplaces**: B2B, …

• Reuse same knowledge for multiple purposes/tasks/app’s
 – Exploit declarative KR; Schemas

• * new version of HTML itself is now just a special case of XML
W3C Semantic Web “Stack”: Standardization Steps

Emerging Standards
pioneered in DARPA Agent Markup Language (DAML) program:

- RuleML
- OWL

[Diagram http://www.w3.org/DesignIssues/diagrams/sw-stack-2002.png is courtesy Tim Berners-Lee]
Semantic Web Services

• Convergence of Semantic Web and Web Services
• Consensus definition and conceptualization still forming
• Semantic (Web Services):
 – Knowledge-based service descriptions, deals
 • Discovery/search, invocation, negotiation, selection, composition, execution, monitoring, verification
 – Integrated knowledge
• (Semantic Web) Services: e.g., infrastructural
 – Knowledge/info/DB integration
 – Inferencing and translation
SWS Language effort, on top of Current WS Standards Stack

“Wire” Protocols	Service Description
W3C WS Choreography Group | SWS Language
BPEL4WS (Microsoft, IBM, BEA) | -- automate Tasks of:
WSCL (HP)BPML (Most but Microsoft) | Discovery
WSC (Sun, BEA, Yahoo, ...) | Invocation
XLANG (Microsoft), WSFL (IBM), ... | Interoperation

SWS Initiative (SWSI)
- Deal Negotiation
- Composition
- Monitoring
- Verification

SOAP Blocks
SOAP/XMLP
XML
HTTP/SMTP
TCP/IP

Process
WSDL Extensions
WSDL
XML
Registry (UDDI)
Inspection

[Slide authors: Benjamin Grosof (MIT Sloan), Sheila McIlraith (Stanford), David Martin (SRI International), James Snell (IBM)]
Outline of Talk

• I. Overview: Semantic Web Services (SWS) and Rules
 – Concepts, Today’s Scene, Visions
 – Applications, incl. B2B
 – End-to-end e-contracting, and policies
 – Strategy: adoption roadmap

• II. How does this apply to AutoID?
 – B2B Tasks; end-to-end e-contracting, and policies
 – SWS Research Directions

• Optional: More Details, esp. on e-contracting and rules
B2B Tasks: Communication for Business Processes with Partners

- B2B business processes involving significant Communication with customers/suppliers/other-partners is overall a natural locus for future first impact of SWS.
- Customer Relationship Management (CRM)
 - sales leads and status
 - customer service info and support
- Supply Chain Management (SCM):
 - source selection
 - inventories and forecasts
 - problem resolution
 - transportation and shipping, distribution and logistics
- orders; payments, bill presentation
Some B2B Tasks (continued)

• bids, quotes, pricing, CONTRACTING; AUCTIONS; procurement
• authorization (vs. authentication) for credit or trust
• database-y: e.g.,
 – catalogs & their merging
 – policies
• inquiries and answers; live feedback
• notifications
• trails of biz processes and interactions
• ratings, 3rd party reviews, recommendations
• knowledge management with partners/mkt/society
Vision of Evolution: Agents in Knowledge-Based E-Markets

Coming soon to a world near you:…

- billions/trillions of agents (= k-b applications)
- …with smarts: knowledge gathering, reasoning, economic optimization
- …doing our bidding
 • but with some autonomy
- A 1st step: ability to communicate with sufficiently precise shared meaning… via the SEMANTIC WEB
Looks Simple To Start... then Gets Interestingly Precise

A Vision/Approach of what Web & Agents enable

- Web info/knowledge “behind the curtain”
 - ComfieCo.com
 - 5way Chair Blue
 - Operating Rules of MIT Sloan
- $140.
- VISA Europe

Signed, Benjamin

Receipt ID # K46239...

Web links
End-to-End E-Contracting Tasks

- Discovery, advertising, matchmaking
 - Search, sourcing, qualification/credit checking
- Negotiation, bargaining, auctions, selection, forming agreements, committing
 - Hypothetical reasoning, what-if’ing, valuation
- Performance/execution of agreement
 - Delivery, payment, shipping, receiving, notification
- Problem Resolution, Monitoring
 - Exception handling
SWS Tasks at higher layers of WS stack

Automation of:

- **Web service discovery**
 Find me a shipping service that will transport frozen vegetables from San Francisco to Tuktoyuktuk.

- **Web service invocation**
 Buy me “Harry Potter and the Philosopher’s Stone” at www.amazon.com

- **Web service deals, i.e., contracts, and their negotiation**
 Propose a price with shipping details for used Dell laptops to Sue Smith.

- **Web service selection, composition and interoperation**
 Make the travel arrangements for my WWW11 conference.

[Modification of slide also by Sheila McIlraith (Stanford) and David Martin (SRI International)]
SWS Tasks at higher layers of WS stack, continued

• Web service execution monitoring and problem resolution
 Has my book been shipped yet? … [NO!] Obtain recourse.

• Web service simulation and verification
 Suppose we had to cancel the order after 2 days?

• Web service executably specified at “knowledge level”
 The service is performed by running the contract ruleset through a rule engine.

[Modification of slide also by Sheila McIlraith (Stanford) and David Martin (SRI International)]
New Research Application Scenarios for Rule-based Semantic Web Services

- **SweetDeal** [Grosof & Poon WWW-2003] configurable reusable e-contracts:
 - Represents modular modification of proposals, service provisions
 - **LP rules** as KR. E.g., prices, late delivery exception handling.
 - **On top of DL ontologies** about business processes from MIT Process Handbook
 - Evolved from EECOMS pilot on agent-based manufacturing SCM
 ($51M NIST ATP 1996-2000 IBM, Boeing, TRW, Vitria, others)

- **Financial knowledge integration** (ECOIN) [Firat, Madnick, & Grosof 2002]
 - Maps between contexts using LP rules, equational ontologies, SQL DB’s.

- **Business Policies**:
 - **Trust management** (Delegation Logic) [Li, Grosof, & Feigenbaum 2003]:
What’s Doable Today in rule-based agent contracting, based on our approach to rule representation (“SweetDeal”)

- **Communicate:** with deep shared semantics
 - XML, inter-operable with same sanctioned inferences
 - \Leftrightarrow heterogeneous rule systems / rule-based agents
- **Execute contract provisions:**
 - infer; ebiz actions; authorize; ...
- **Modify easily:** contingent provisions
 - default rules; modularity; exceptions, overriding
- **Reason about the contract/proposal**
 - hypotheticals, test, evaluate; tractably
 - (also need “solo” decision making/support by each agent)
Approach:

Rule-based Contracts for E-commerce

- Rules as way to specify (part of) business processes, policies, products: as (part of) contract terms.
- Complete or partial contract.
 - As default rules. Update, e.g., in negotiation.
- Rules provide high level of conceptual abstraction.
 - easier for non-programmers to understand, specify, dynamically modify & merge. E.g.,
 - by multiple authors, cross-enterprise, cross-application.
- Executable. Integrate with other rule-based business processes.
Examples of Contract Provisions
Well-Represented by Rules
in Automated Deal Making

• Product descriptions
 – Product catalogs: properties, conditional on other properties.
• Pricing dependent upon: delivery-date, quantity, group memberships, umbrella contract provisions
• Terms & conditions: refund/cancellation timelines/deposits, lateness/quality penalties, ordering lead time, shipping, creditworthiness, biz-partner qualification, service provisions
• Trust
 – Creditworthiness, authorization, required signatures
• Buyer Requirements (RFQ, RFP) wrt the above
• Seller Capabilities (Sourcing, Qualification) wrt the above
SW Early Adoption Candidates: High-Level View

- “Death. Taxes. Integration.”
- Application/Info Integration:
 - Intra-enterprise
 - EAI, M&A; XML infrastructure trend
 - Inter-enterprise
 - E-Commerce: procurement, SCM
 - Combo
 - Business partners, extranet trend
SWS Adoption Roadmap: Strategy Considerations

• Expect see beginning in a lot of B2B interoperability or heterogeneous-info-integration intensive (e.g., finance, travel)
 – Actually, probably 1st intra-enterprise, e.g., EAI
• Reduce costs of communication in procurement, operations, customer service, supply chain ordering and logistics
 – increase speed, creates value, increases dynamism
 – macro effects create
 • stability sometimes (e.g., supply chain reactions due to lag; other negative feedbacks)
 • volatility sometimes (e.g., perhaps financial market swings)
 – increase flexibility, decrease lock-in
• Agility in business processes, supply chains
Outline of Talk

• I. Overview: Semantic Web Services (SWS) and Rules
 – Concepts, Today’s Scene, Visions
 – Applications, incl. B2B
 – End-to-end e-contracting, and policies
 – Strategy: adoption roadmap

• II. How does this apply to AutoID?
 – B2B Tasks; end-to-end e-contracting, and policies
 – SWS Research Directions

• Optional: More Details, esp. on e-contracting and rules
AutoID in B2B Tasks: Communication for Business Processes with Partners

- B2B business processes involving significant Communication with customers/suppliers/other-partners is overall a natural locus for future first impact of SWS.
 - Green underlined stuff seems especially relevant to AutoID

- Customer Relationship Management (CRM)
 - sales leads and status
 - customer service info and support

- Supply Chain Management (SCM):
 - source selection
 - inventories and forecasts
 - problem resolution
 - transportation and shipping, distribution and logistics

- orders; payments, bill presentation
AutoID in Some B2B Tasks (continued)

- bids, quotes, pricing, CONTRACTING; AUCTIONS; procurement
- authorization (vs. authentication) for credit or trust
- database-y: e.g.,
 - catalogs & their merging
- policies
- inquiries and answers; live feedback
- notifications
- trails of biz processes and interactions
- ratings, 3rd party reviews, recommendations
- knowledge management with partners/mkt/society
Some more Thoughts on AutoID and SWS

• AutoID needs infrastructure that provides abstraction layers above basic logistics and networked data, and integrates into e-commerce generally
 – Info about goods/objects
 – Info about services surrounding those goods
 – Business processes, their automation

• End-to-end Contracting is at the heart of e-commerce, SCM, CRM
 – Can view as one big business process, composed of many smaller ones
Some more Thoughts on AutoID and SWS, continued

• Policies are at the heart of contracts. E.g.,
 – Pricing
 – Lead time for ordering, shipping
 – Exceptions, returns, problem resolution
 – Authorization for access, transactions.

• Rules often good for representing policies. E.g., in RuleML, SweetDeal

• Need business process ontologies, too.
SWS Research Directions

• Requirements Analysis
• Fundamental KR theory, techniques, tools:
 – Recent: Courteous LP, Situated LP, Description LP
 – More: nonmon OO ontologies, multi-agent nonmon, equational ontologies, context mappings, …
• Fundamental theory of semantic descriptions of services
• Web Services / Business Processes Knowledge Bases:
 – MIT Process Handbook as candidate nucleus for shared business process ontology for SWS
• Open Process Handbook Initiative: an open-source version, is in progress. (http://ccs.mit.edu/ph)
SWS Research Directions, continued

- Standards: Rules (RuleML/DAML), SWS (SWSI); W3C; Oasis; (also OAG, OMG, others); incl. wrt e-commerce (e.g., ebXML, EDI), vertical industries, horizontal tasks
- Applications: e-contracting, finance, trust mgm., travel
- Fundamental theory for e-contracting
 - Interoperable business objects, policies (e.g., trust), business processes, 3rd-party services
- Strategy wrt SWS uses, adoption, markets
Opportunities for Auto-ID Focus wrt SWS Research Directions

- Usage Scenarios – e.g., driven by sponsors
 - Tasks, business processes, vertical-industry domains
 - Combine selected technologies and standards

- Shared Business Process Semantics in support of those
Outline of Talk

• I. Overview: Semantic Web Services (SWS) and Rules
 – Concepts, Today’s Scene, Visions
 – Applications, incl. B2B
 – End-to-end e-contracting, and policies
 – Strategy: adoption roadmap

• II. How does this apply to AutoID?
 – B2B Tasks; end-to-end e-contracting, and policies
 – SWS Research Directions

• Optional: More Details, esp. on e-contracting and rules
Optional Slides with More Details, esp. on rules and e-contracting, FOLLOW
Contract Rules
during Negotiation

Contracting parties NEGOTIATE via shared rules.

Buyer, e.g., manufacturer

Business Logic

Rules
e.g., OPS5

Seller, e.g., supplier of parts

Business Logic

Rules
e.g., Prolog

Interchange

As part of XML documents
Exchange of *Rules Content* during Negotiation: example

Buyer, e.g., manufacturer Acme Inc.

- Req. For Proposal
- Proposal
- Counter-Proposal
- Final Offer
- Purchase Order
- Ack. Deal

Seller, e.g., supplier of parts Plastics Etc. Inc.
Negotiation Ex. Doc. Rules: Counter-Proposal from manufCo to supplierCo

- ...
 \(<\text{usualPrice}> \text{price}(\text{per_unit, ?PO, $60}) \leftarrow ... \)
- \(<\text{volumeDiscount}> \text{price}(\text{per_unit, ?PO, $51}) \leftarrow \)

 \[
 \text{purchaseOrder(?PO, supplierCo, ?AnyBuyer)} \land \\
 \text{quantity_ordered(?PO, ?Q)} \land (\text{?Q} \geq 5) \land (\text{?Q} \leq 1000) \land \\
 \text{shipping_date(?PO, ?D)} \land (\text{?D} \geq 28\text{Apr}00) \land (\text{?D} \leq 12\text{May}00)

 \text{overrides(volumeDiscount, usualPrice)}.
\]
- \(\bot \leftarrow \text{price}(\text{per_unit, ?PO, ?X}) \land \text{price}(\text{per_unit, ?PO, ?Y}) \ \text{GIVEN (}\text{?X} \neq \text{?Y}) \).
- \(<\text{aSpecialDeal}> \text{price}(\text{per_unit, ?PO, $48}) \leftarrow \)

 \[
 \text{purchaseOrder(?PO, supplierCo, manufCo)} \land \\
 \text{quantity_ordered(?PO, ?Q)} \land (\text{?Q} \geq 400) \land (\text{?Q} \leq 1000) \land \\
 \text{shipping_date(?PO, ?D)} \land (\text{?D} \geq 02\text{May}00) \land (\text{?D} \leq 12\text{May}00)

 \text{overrides(aSpecialDeal, volumeDiscount)}.

 \text{overrides(aSpecialDeal, usualPrice)}.
\]
- ...

Simply added rules!
Negotiation Example --

XML Encoding of Rules in RuleML

- `<rulebase>`
- `<imp>`
- `<_rlab>`usualPrice</_rlab>
- `<_head>`
- `<cslit>`
 - `<_opr>`<rel>price</rel></_opr>
 - `<ind>`per_unit</ind>
 - `<var>`PO</var>
 - `<ind>`$60</ind>
- `</cslit>`
- `</_head>`
- `<_body>` … (see next page) `</_body>`
- `</imp>`
- `...`
- `</rulebase>`
Negotiation Example --

XML Encoding of Rules in RuleML, Continued

- `<_body>`
- `<andb>`
- `<fclit>`
 - `<_opr><rel>purchaseOrder</rel></_opr>`
 - `<var>PO</var>`
 - `<ind>supplierCo</ind>`
 - `<var>AnyBuyer</var>`
- `</fclit>`
- `<fclit>`
- `...`
- `</fclit>`
- `...`
- `</andb>`
- `</_body>`
Commercial Implementation & Piloting

- **IBM CommonRules**: AlphaWorks Java library
 - implements rule-based capabilities:
 - XML inter-operability; prioritized conflict handling

- **Rule Markup Language**: nascent industry standards effort
 - XML Knowledge Representation (KR) → make the Web be “Semantic”
 - KR: **Situated Courteous Logic Programs in XML**

- **EECOMS industry consortium** including Boeing, Baan, TRW, Vitria, IBM, universities, small companies
 - $29Million 1998-2000; 50% funded by NIST ATP
 - application piloted
 - contracting & negotiation; authorization & trust
Flavors of Rules Commercially Most Important today in E-Business

• E.g., in OO app’s, DB’s, workflows.

• Relational databases, SQL: Views, queries, facts are all rules.
 • SQL99 even has recursive rules.

• Production rules (OPS5 heritage): e.g.,
 – Blaze, ILOG, Haley: rule-based Java/C++ objects.

• Event-Condition-Action rules (loose family), cf.:
 – business process automation / workflow tools.
 – active databases; publish-subscribe.

• Prolog. “logic programs” as a full programming language.

• (Lesser: other knowledge-based systems.)
Using: MIT Process Handbook

- Our example scenario’s process ontologies are drawn partly from the MIT Process Handbook (PH) …
- A previously-existing repository of business process descriptions
- Uniquely large & well-used (by industry biz process designers) [Malone et al ‘95-]
- Includes taxonomic/hierarchical aspects, as a fraction
- Includes exception handling ontology [Klein et al 2002]

New here:
- **formalize** PH knowledge in XML Description Logic: DAML+OIL
 - (only a small fraction of its content, so far)
 - enables practical deep inferencing with the PH knowledge
 - … using Semantic Web tools (RuleML/LP and DAML+OIL/OWL/DL)

Previously PH content was only shallowly automated for inferencing
- Was NOT represented in Description Logic KR nor in XML (not Webized)
- (there was a partial PIF encoding, mapping to KIF)

2/15/2005 Copyright 2002-2004 by Benjamin Grosof. All Rights Reserved
Some Specializations of “Sell” in the MIT Process Handbook (PH)
Some Exceptions in the MIT Process Handbook

Diagram showing exceptions such as:
- Unmanaged dependencies
- Livelock (thrashing)
- Braess's paradox
- Resource poaching
- Someone else will do it
- Solution worsens problem
- Nice guys finish last
- Tragedy of the Commons
- Auctioneer violation
- Seller (subcontractor) violation
- Buyer (contractor) violation
- Host slow
- Host death
- Wrong time
- Wrong place
- Wrong thing
Some exception handlers in the MIT Process Handbook

[Diagram showing a specialization viewer with various exception handling tasks listed under 'Anticipate exception', 'Avoid exception', 'Detect exception', and 'Manage exception'. Tasks include detecting fraudulent reputation, maintaining reputation information, tracking MBTF, determining maximum resource, determining behavior outside normal, detecting requisite violation, detecting agent bidding a lot, receiving message from 'dead' agent, notifying about exception using pager, notifying about exception using mail, notifying about exception using email, preemptive reallocation, terminating bid loop, auctioneer swap, resell price and restart auction, and negotiating.]
Also Currently Being Developed in the world today

- Delegations between agents
- XML Ontologies (Vocabularies)
 - knowledge representation: infer with definitional knowledge
 - specific domain/industry vocabularies
- DARPA Agent Markup Language: ontologies, rules
- Industry Standards:
 - Web, incl. Web services
 - Agents, Business Processes, Workflow
 - E-Commerce: ebXML, ...
 - Industry-Specific
 - Legal XML
- Law: Electronic Signatures, ...
- Reusable Contract doc’s on Web: CommonAccord, our work, ...
Rule-based Semantic Web Services

- Rules/LP in appropriate combination with DL as KR, for RSWS
 - DL good for categorizing: a service overall, its inputs, its outputs

- Rules to describe service process models
 - rules good for representing:
 - preconditions and postconditions, their contingent relationships
 - contingent behavior/features of the service more generally,
 - e.g., exceptions/problems
 - familiarity and naturalness of rules to software/knowledge engineers

- Rules to specify deals about services: cf. e-contracting.
Rule-based Semantic Web Services

• Rules often good to **executably specify** service process models
 – e.g., business process automation using procedural attachments to perform side-effectful/state-changing actions ("effectors" triggered by drawing of conclusions)
 – e.g., rules obtain info via procedural attachments ("sensors" test rule conditions)
 – e.g., rules for knowledge translation or inferencing
 – e.g., info services exposing relational DBs

• **Infrastructural**: rule system functionality as services:
 – e.g., inferencing, translation
Analysis:
High-Level Requirements for SWS

• Support Biz-Process Communication
 – E.g., B2B SCM, CRM
 – E.g., e-contracts, financial info, trust management.

• Support SWS Tasks above current WS layers:
 – Discovery/search, invocation, deal negotiation, selection, composition, execution, monitoring, verification
New Analysis:
Key Technical Requirements for SWS

1. Combine rules with ontologies, from many web sources, with:
 - Rules on top of ontologies
 - Interoperability of heterogeneous rule and ontology systems
 - Power in inferencing
 - Consistency wrt inferencing
 - Scaleability of inferencing

2. Hook rules (with ontologies) up to web services
 - Ex. web services: enterprise applications, databases
 - Rules use services, e.g., to query, message, act with side-effects
 - Rules constitute services executably, e.g., workflow-y business processes
 - Rules describe services non-executably, e.g., for discovery, deal negotiation
 - On top of web service process models, coherently despite evolving messiness
3 Areas of New Fundamental KR Theory that enable Key Technical Requirements for SWS

- **1. Description Logic Programs:**
 KR to combine LP (RuleML) rules on top of DL (OWL) ontologies, with:
 - Power in inferencing (including for consistency)
 - Scaleability of inferencing

- **2. Situated Logic Programs:**
 KR to hook rules (with ontologies) up to (web) services
 - Rules use services, e.g., to query, message, act with side-effects
 - Rules constitute services executably, e.g., workflow-y business processes

- **3. Courteous Logic Programs:**
 KR to combine rules from many sources, with:
 - Prioritized conflict handling to enable consistency, modularity; scaleably
 - Interoperable syntax and semantics
Contributions to Early Standards Efforts: RuleML, SWSI

- RuleML Initiative
 - Co-Lead, Co-Founder
 - RuleML based largely on IBM CommonRules
 - Designed most key RuleML features
 - RuleML already has basic support for Description LP, Situated LP, Courteous LP

- Active in SWSI, esp. on Rules
 - Member of SWS Language committee
 - Co-chair Industrial Partners forum: several dozen companies
 - Technical challenge: representing service pre- / post-conditions, coherently on top of evolving messiness of WS process models (e.g., BPEL4WS)
Contracting 1-2-3

1. Find Contracting Opportunity
2. Negotiate Contract
3. Execute Contract Terms

DISCOVER NEGOTIATE EXECUTE

- Applies to any contracting, electronic or not.
- May iterate or interleave these steps.
- Boundaries not necessarily sharp.
SW Early Adopters: Areas by Industry or Task

• Early SW techniques already in use:
 – e-contracting, supply chain incl. procurement
 • manufacturing, e.g. computer/electronics (RosettaNet), automotive (Covisint),
 • EECOMS pilot (Boeing, IBM, TRW, Baan)
 • office supplies (OBI)
 • retailing: shopbots and salesbots: comparisons, recommendations
 • extensive standards activity: Oasis ebXML, XML eContracts, UN UBL, EDI
SW Early Adopters:
Areas by Industry or Task

- **Continued:** Early SW techniques already in use:
 - cyber goods:
 - financial services (rules; onto translation)
 - travel "agency", i.e.: tickets, packages (AI smarts for scheduling)
 - military intelligence (e.g., funded DAML)