Rules in XML: The RuleML Initiative

Harold Boley DFKI http://www.dfki.uni-kl.de/~boley
Benjamin Grosof MIT Sloan http://www.mit.edu/~bgrosof
Said Tabet Nisus Inc. http://people.ne.mediaone.net/stabet

http://www.dfki.uni-kl.de/ruleml
Rules on the Web have become mainstream topic
 - identified as a Design Issue of the Semantic Web

Rules for inferencing in:
 - business rules, e-commerce, Agents, K-b systems, workflow, database queries and triggers

Rules for transformation in:
 - (XML) document translation
Overall Goals

- Provide a basis for a standardized rule markup approach, with **declarative** knowledge representation (KR) semantics
 - Aid integration of heterogeneous rule systems and applications, via shared rule markup language
 - Start with **commercially important** flavors of rules
- **Start simple** with a kernel KR, then add extensions incrementally.
- Become an industry standard (e.g. via W3C)
Technical Approach of RuleML

- Start with: **Datalog Logic Programs** with rules labeled *as kernel*
 - similar to Business Rules Markup Language *(IBM CommonRules)*
- Add extensions/restrictions, creating a family of DTD’s organized as a generalization-specialization hierarchy (lattice)
 - URI’s; RDF triple is a fact *(NB: other relnsh’s to RDF too!)*
 - negation-as-failure (well-founded semantics); classical negation
 - prioritized conflict handling cf. Courteous Logic Programs
 - procedural attachments: actions, queries
 - logical functions; user-defined functions
 - 1st-order logic type expressiveness cf. Lloyd LP’s, DAML+OIL, KIF
 - more: equivalence/rewriting rules; ... temporal, Bayesian, fuzzy, ...
- define DTD’s modularly, using XML entities (~macros)
Webizing Rule KR

- URIs for logical vocabulary and knowledge subsets
- labels for rules/rulebases, import/export
- headers: meta-data describes doc's expressive class
- procedural attachments using Web protocols; queries or actions via CGI/servlets/SOAP/…

Other practical mechanics:
- build on existing W3C standards: namespaces, …
- share mechanisms with RDF/RDFS, DAML+OIL
- use ontologies for rules, and rules for ontologies
 - ontology tags in: rulebase, predicate symbol, …
Further Directions

- move to XML Schema based rather than DTD based
- additional XML syntaxes: RDF; surface/"style-sheeted"
- more KR’s: KIF/classical, Notation 3, Bayesian, fuzzy, rewriting, temporal, …

- provide Rule mechanism to emerging W3C standards:
 - Semantic Web / RDF, P3P, …
Building the Future (TimBL)

- Dublin Core element set
- KR data
- Ontology support
- KR rules
- Proof
- Web of Trust
- RDF Schema
- RDF syntax in XML
- Resource Description Framework: basic ER-like model
- Namespaces
- XML-Schema
- XML - Structured documents
- Universal Resource Identifiers
- (Unicode)
Relevant Other Efforts in W3C and Markup

- RDF, RDFS, DAML(+OIL), Semantic Web
- P3P privacy policies: APPEL rules
- XML Query

Others:
- XSLT
- MathML
- Predictive Model Markup Language (rules from data mining)
Overview of Current Status

- Technical: Strawman: Initial DTD family V0.7 released 1/31/01
 - Datalog LP with URI’s; some extensions/restrictions
 - Goal: give feel, start getting feedback

- Organizers: Harold Boley, Benjamin Grosof, Said Tabet
 - also authored the Strawman

- Participants: many interested; some actively giving feedback;
 - evolving towards more formal organization

- Website: http://www.dfki.de/ruleml
RuleML Participants

- **Agent Frameworks** (Leon Sterling, Department of Computer Science and Software Engineering, University of Melbourne, Australia)
- **BRML/DAML-RULES** (Benjamin Grososf, MIT Sloan School of Management, USA)
- **Euler** (Jos De Roo, AGFA, Belgium)
- **Jess** (Ernest Friedman-Hill, Distributed Systems Research, Sandia National Labs, USA)
- **FLIP** (Jose Hernandez-Orallo, DSIC, Politechnical University of Valencia, Spain)
- **PDDL: Planning Domain Definition Language** (Drew V. McDermott, Department of Computer Science, Yale University, USA)
- **Protege-2000** (Mark Musen, Stanford Medical Informatics, USA)
- **RBML: Rule Base Markup Language** (Chris Roberts, Sun Microsystems, USA)
- **RFML** (Harold Boley, DFKI, Germany)
- **URML** (David Ash, Real Time Agents Inc.; Prabhakar Bhogaraju, MindBox; Said Tabet, Nisus; USA)
- **XRML** (Jae Kyu Lee, KAIST, Korea)
- **Rules XML Schema** (Carlos Morales, Blaze Software, USA)
RuleML Participants (Industry)

<table>
<thead>
<tr>
<th>Rules Engine Providers</th>
<th>Other Technology Providers</th>
<th>Users</th>
</tr>
</thead>
<tbody>
<tr>
<td>JESS, MindBox, WebMind, Ilog, Blaze, Allaire, Haley, …</td>
<td>Nokia, Ericsson, Phone.com, BEA, HP/Bluestone, IBM, SilverStream, ATG, Oracle, Broadvision, Blue Martini, …</td>
<td>go2Online, Tribune of Chicago, Advertising.com, Fidelity, Amazon, City Bank, Chase, …</td>
</tr>
</tbody>
</table>
Cooperation with Java Rule Engines Effort

One or more rule engines will be needed for executing RuleML modules. On 2000-11-15, the RuleML Initiative thus joined forces with the Java Specification Request JSR-000094 Java Rule Engine API.

This cooperation will enable a direct cross-fertilization between the complementary specifications of the open XML-based Rule Markup Language and of the Java runtime API for rule engines.
Flavors of Rules Commercially Most Important today in E-Business

- E.g., in OO app’s, DB’s, workflows.
- Relational databases, SQL: Views, queries, facts are all rules.
- Prolog. “logic programs” as a full programming language.
- Production rules (OPS5 heritage): e.g.,
 - Blaze, ILOG, Haley: rule-based Java/C++ objects.
- Event-Condition-Action rules (loose family), cf.:
 - business process automation / workflow tools.
 - active databases; publish-subscribe.
- (Lesser: other knowledge-based systems.)
Need to Go Beyond Classical/KIF

- Classical-logic/KIF has major limitations:
 - logically monotonic.
 - yet virtually all practical rule (and probability) systems are non-monotonic.
 - pure-belief, no procedural attachments.
 - yet most practical rule systems do invoke procedures external to the inference engine.

- Candidates to complement KIF exist:
 - logic programs, Bayes nets, ...
Example Domain: Rule-based Contracts for E-commerce

- Rules as way to specify (part of) business processes, policies, products: as (part of) contract terms.
- Complete or partial contract.
 - As default rules. Update, e.g., in negotiation.
- Rules provide high level of conceptual abstraction.
 - easier for non-programmers to understand, specify, dynamically modify & merge. E.g.,
 - by multiple authors, cross-enterprise, cross-application.
- Executable. Integrate with other rule-based business processes.
Criteria for
Contract Rule Representation

1. **High-level**: Agents reach common understanding; contract is easily modifiable, communicatable, executable.
2. Inter-operate: heterogeneous commercially important rule systems.
3. Expressive power, convenience, natural-ness.
 - ... but: computational tractability.
4. Modularity and locality in revision.
5. **Declarative** semantics.
 - essential feature in commercially important rule systems.
7. Prioritized conflict handling.
8. Ease of parsing.
9. Integration into Web-world software engineering.
10. **Procedural attachments**.
Ordinary Logic Programs as basic representation: Advantages

- **Declarative**: semantics is independent of inferencing procedure implementation, e.g., forward vs. backward chaining, sequencing of executing rules or conditions within rules.

- **Expressive**: relational expressions cf. SQL, large fragment of first-order logic, chaining, basic logical **non-monotonicity** (unlike first-order logic / ANSI-draft Knowledge Interchange Format).

- **Efficient**: computationally tractable given two reasonable restrictions:
 - 1. Datalog = no logical functions of non-zero arity.
 - 2. Bounded number v of logical variables per rule.
 - \(m = O(n^{(v+1)}) \), where \(n = \|LP\| \), \(m = \|\text{ground-instantiated LP}\| \).
 - Inferencing time is \(O(m) \) for broad case (stratified), \(O(m^2) \) generally (for well-founded semantics).
 - By contrast, first-order-logic inferencing is NP-hard.
Ordinary Logic Programs: Advantages (continued)

- **Widely deployed and familiar:**
 - relational DB’s, SQL
 - Prolog
 - knowledge-based systems and intelligent agents
 - (e.g., IBM’s Agent Building Environment)

- **Common core shared semantically by many rule systems:** e.g.,
 - relational DB’s, SQL
 - Prolog
 - production rules (OPS5 heritage)
 - Event-Condition-Action rules
 - first-order-logic
Larger Vision: rules in e-business overall

- Rules as an important aspect of coming world of Internet e-business: rule-based business processes for both B2B and B2C.
 - represent seller’s offerings of products & services, capabilities, bids; map offerings from multiple suppliers to common catalog.
 - represent buyer’s requests, interests, bids; → matchmaking.
 - represent business processes, e.g., sales help, customer help, procurement, authorization/trust, brokering, workflow.
 - high level of conceptual abstraction; easier for non-programmers to understand, specify, dynamically modify & merge.
 - executable but can treat as data, separate from code
 - potentially ubiquitous; already wide: e.g., SQL views, queries.
- Rules in communicating applications, e.g., embedded intelligent agents.