WORKING PAPER - I DRAFT, e.g., lacks later sections !!

Version of December 19, 2005

The Production Logic Programs Approach,
in a Nutshell:
Foundationsfor Semantically

| nteroper able Web Rules

Benjamin Grosof
Massachusetts Institute of Technology,
Sloan School of Management,
50 Memorial Drive, Cambridge, MA 02142 USA,

bgrosof@mit.edu, http://ebusiness.mit.edu/bgrosof

Abstract

We overview our foundational work on a knowledge representation
(KR) approach of web rules that are semantically interoperable between
all four of the currently most commercially important families of rule
systems, including production rules, relational database management sys-
tems, event-condition-action rules, and Prolog. Called here Production
Logic Programs (PLP), the approach combines high degrees of expres-
siveness, scaleability, and incremental/modular implementability. Its KR
is based on declarative logic programs, extending Datalog with several
major web-izing and expressive features. These include, notably, a new
approach to actions and tests via procedural attachments — in the manner
of production rules but with declarative semantics. The PLP approach in-
cludes smoothly and powerfully combining rules with ontologies drawn
from the currently most commercially important kinds of web-shared se-
mantic ontologies.

The PLP approach has been piloted and evolved in a number of impor-
tant rule formats, tools, and efforts — including RuleML, SWRL, SWSL/SWSF,
WSML/WRL, and SweetRules. An advanced set of PLP capabilities have
already been implemented in open source and used to prototype a variety
of e-business application scenarios.

Contents

1 Introduction and Overview of the Production Logic Programs Approach 3

2 Production LP Extension of LP KR 5
3 Extensible Scope of Definition of “Production L ogic Programs’ 9
4 Production Rules. New KR Semantics and Interoperability via Transla-
tionto PLP 9
5 Trandating Highly Expressive PLP to Production Rules 13
6 Outline of Additional Sections Planned 15
7 Conclusions 16
8 Acknowledgements 16
9 References 16

1 Introduction and Overview of the Production Logic
Programs Approach

In this paper, we overview our foundational work on a knowledge representation (KR)
approach of semantically interoperable web rules. The approach is called here Pro-
duction Logic Programs (PLP).}

PLP combines high degrees of expressiveness, modularity, scaleability, and incre-
mental implementability. The PLP KR is based on declarative logic programs (LP),
extending Datalog? with several major web-izing and expressive features. The Pro-
duction LP extension of LP KR is distinguished in particular by adding procedural
attachments for actions and tests. It does so in a manner similar to production rules
(and event-condition-action rules) — but, unlike them, with a semantics that is disci-
plined and declarative. This inspires its name.

The PLP approach has a deep semantics that is independent of the inferencing con-

trol strategy, algorithms, and implementation — in particular independent of whether
rule chaining is forward versus backward in direction. This semantics is defined in
terms of what conclusions and triggered actions are sanctioned from a given set of
premises. The PLP approach includes bi-directional translations that create powerful
semantics-preserving interoperability of inferencing and rulebase merging among all
four of the currently most commercially important families of rule systems — produc-
tion rules, relational database management systems, event-condition-action rules, and
Prolog. (The translations are to and from a substantial subset of the expressiveness
of each rule system.) The PLP approach has been piloted and evolved in a number
of important rule formats, tools, and efforts — including RuleML (Rule Markup Lan-
guage) [Boley et al., 2005], SWRL (Semantic Web Rule Language) [Horrocks et al.,
2004],
SWSL/SWSF (Semantic Web Services Language / Framework) [Battle et al., 2005],
WRL/WSML (Web Rule Language / Web Services Modeling Language)[Angele et
al., 2005], and SweetRules (toolset) [Grosof et al., 2005], as well as the early IBM
CommonRules (toolset) [Grosof et al., 1999a] and EECOMS (supply chain collabo-
ration project) [CIIMPLEX, 1999].

PLP’s web-izing features include URI references for predicate etc. ontology,
inclusion merging of heterogeneous web-distributed rule and ontology knowledge-
bases, and markup syntax in XML and RDF.

One set of PLP’s expressive features revolve around modularity and nonmono-
tonicity. This includes, firstly, scoped default negation (a.k.a. well-founded negation-
as-failure). It further includes courteous prioritized conflict handling (cf. Courte-
ous extension of LP [Grosof, 2004]), which enables modular and robustly consistent
merging/updating of rulebases — a crucial aspect of scaleability for the web.

L1t supersumes previous work described in terms of the Situated Courteous Logic Programs (SCLP)
KR.
2more precisely: definite, equality-free, function-free, Horn logic programs

Another set of PLP’s expressive extensions revolve around “active-ness” of rules.
This includes procedural attachments for actions and tests/queries (similar to, and
generalizing, the Situated extension of LP [Grosof, 2004]). It further includes support
for incremental event-driven behavior.

The PLP approach includes smoothly and powerfully combining semantic ontolo-
gies with rules, so that rules can use web ontologies; rules can also themselves repre-
sent web ontologies. In particular, the predicates appearing in rules can be drawn from
the currently most commercially important kinds of web-shared semantic ontologies,
notably object-oriented (OO) and database schemas. These include RDFS/OWL De-
scription Logic (DL) ontologies [Bechhofer et al., 2004] via the Description Logic
Programs (DLP) approach [Grosof et al., 2003] and its extensions, Java/C++/UML
style class hierarchies that employ default inheritance, and additional kinds of non-
DL restricted First Order Logic (FOL) ontologies.

The PLP approach has attractive computational complexity, qualitatively similar
to that of relational databases. It is thus scaleable to very large size knowledge bases
(KB’s).

Many advanced capabilities of the PLP approach have been already been imple-
mented, via techniques that incrementally and modularly leverage previously existing
rule (and ontology) engines and languages.

These advanced capabilities of the PLP approach have been applied to prototype
a variety of application scenarios including business and trust policies, advertising
and e-contracting, business process monitoring and exception handling, ontological
translation and mediation, and intelligent information integration — in security, supply
chain, retailing, financial, biomedical, travel, and other domains [Grosof et al., 1999b]
[Grosof, 2004] [Grosof and Poon, 2004] [Bhansali and Grosof, 2005] [Li et al., 2003]
[Grosof and Dean, 2005].

Reference implementations of a variety of advanced PLP capabilities are available
in several open source tools. Many of these were first provided, and then furthermore
integrated as a suite, in the SweetRules V2 tool platform [Grosof et al., 2005], ini-
tially released in 2004. The Flora-2 system [Kifer and et al, 2005] contains a cluster
of several other complementary advanced PLP capabilities. The capabilities in Sweet-
Rules have been used to demonstrate, for example, effective semantic interoperability
between Jess production rules [Friedman-Hill and et al, 2004] and XSB Prolog [War-
ren, 2005] for expressively rich, active, prioritized rules — combined furthermore with
ontologies, e.g., in the Description Logic Programs subset [Grosof et al., 2003] of
OWL [Bechhofer et al., 2004].

There are a number of further PLP expressive features already developed to some
degree and anticipated to be developed further in future work. These include fea-
tures for Lloyd-Topor enhanced logical connectives and quantifiers [Lloyd, 1987],
data types, logical functions, integrity constraints, strong (a.k.a. “classical’’) negation,
Frame (F-Logic) syntax [Kifer et al., 1995] and Hilog higher-order syntax [Chen et
al., 1993], skolemization [Yang and Kifer, 2003], explicit equality, and reification

[Battle et al., 2005] (see especially SWSL document section 2). Also already de-
veloped to some degree and anticipated to be developed further in future work are
expressive features and translations for interoperability with XQuery XML DBMS
[Boag et al., 2005], SPARQL RDF DBMS [Prud’hommeaux and Seaborne, 2005],
and N3 rule systems (e.g., cwm) [Berners-Lee, 2005].

Many aspects of the Production LP approach have been developed and described
in previous papers, presentations, software tools, application scenario prototypes, and
emerging standards specifications. In this paper, we focus on describing several of
its new aspects that have not been previously described in detail or at all, and on
providing a relatively brief overview of the overall approach that incorporates those
new aspects.

2 Production LP Extension of LP KR

A new aspect of the Production LP approach, not previously described in papers, is
the Production LP extension of declarative LP knowledge representation. In this sec-
tion, we describe that in a medium level of detail.

A Production LP permits action and test expressions, i.e., situated atoms, to ap-
pear directly within a rule, in a manner fairly similar to production rules.

Actions and tests invoke external procedures, i.e., attached procedures (a.k.a.
aproc’s) that are external to the inferencing process/engine itself. Actions are called
for the sake of side effects. Tests are called to query information, and are side-effect-
free.

Terminology: The situated literals are said to be “external”, a.k.a. “non-local”,
since they are expressed in terms of aproc’s that are in the external environment. By
contrast, the non-situated literals are said to be “internal”, a.k.a., “local”. The non-
action literals are said to be “pure-belief”, or more briefly “pure”, since they represent
side-effect-free, truth-valued expressions.

An action or test expression appearing within a rule is an invocation call pattern
rather than an invocation itself. An action expression, a.k.a. an effector atom, may
appear only in the head of a rule. A test expression, a.k.a. a sensor atom, may appear
only in the body of a rule. During inferencing, an action invocation is triggered after
the body of the rule is determined to be satisfied. During inferencing, a test invocation
is triggered while the body of the rule is being checked for whether it is satisfied.

For example, consider a simple e-retailing rulebase RB1 consisting of the follow-
ing rules:

discountPercent(?customer, 7product, 25)
: — loyalty(”customer,Gold) and onSale(?product).

@sendEmail(?custAddr, “Cool stuff now on big sale!”)

: — discountPercent(?customer, 7product, 7d)
and prevPurchase(”customer, ?product)
and QcustomerDBEmailAddr0f(7customer, ?custAddr)
and QgreaterThanOrEqual(?d, 15).
together with the following facts:

onSale(SonyDVDPlayerl).

loyalty(JaneSmith, Gold).

prevPurchase(JaneSmith, SonyDVDPlayer1).

Here, “: —” is the (usual) LP implication connective, which can be read intuitively
as “if” and is sometimes elsewhere written as “«. The “@Q” prefix in “Qsend Email
syntactically indicates that “send Email” is the name of an external attached proce-
dure (aproc), rather than the name of a predicate. “send Email” appears ina rule head
and is an action aproc, a.k.a. an effector aproc, intended to be invoked for the sake of
its side-effect; invoking it results in the actual sending of an email. Likewise, the “@”
prefix indicates that “customer D BEmail AddrO f” and “greaterThanOr Equal”
are also aproc’s. However, they appear in a rule body and are test aproc’s, a.k.a. sen-
sor aproc’s, intended to be invoked for the sake of querying/obtaining information —
without any side effect. Obtaining information via such sensing is similar to accessing
a “virtual” knowledge base of facts. These facts are not part of the rulebase proper.

Suppose that accessible in this manner via the the sensor aproc’s are the (virtual)
sensed facts that:

customerDBEMailAddr0f(JaneSmith, jsmith5555@wahoo61.net’).
greaterThanOrEqual(25, 15).

Then the derived conclusions of the rulebase RB1 include:
discountPercent(JaneSmith, SonyDVDPlayer1, 25).

and the following action is sanctioned:
@sendEmail(’jsmith5555@wahoo61.net’,"Cool stuff now on big sale!”).

Above, for brevity’s sake, we did not use webized names (resolving to URI’s etc.)
for the names of predicates and aproc’s and individual constants, and did not give re-
alistically elaborated details in the specification of the aproc’s in regard to their inter-
face/signature. Such webized names and aproc details are relatively straightforward to
add, for example in the manner of RuleML/SWSL - including its experimental exten-
sions in SweetRules V2.1 — particularly the prefix declarations in [SWSL V1.0 report:
section 2.2 “Basic Definitions”] and the presentation/markup syntax for WSDL and
Java aproc’s in SweetRules V2.1.

In the general case, a sensor/test aproc may require some of its arguments to be
bound at the time it is called. A separate kind of statement is used to specify these:
a sensor binding pattern statement that specifies a binding mode (FREE vs. BOUND)
for each argument/parameter of the sensor aproc. A binding pattern statement is a
kind of pragmatic validation constraint. For example:

bindreq greaterThanOrEqual (BOUND, BOUND).
bindreq customerDBEmailAddrOf (BOUND, FREE).

Here, the first statement specifies that greaterThanOrEqual must have both of
its arguments bound (i.e., instantiated) at the time it is invoked. The second statement
specifies that customerDBEmailAddrOf must have its first argument (the cus-
tomer name) be bound, while its second argument (the customer email address) can
be a free variable. This allows the query of customerDBemailAddrOf to return
the customer email address for a given customer name, not simply to check that a
given customer email address corresponds to a given customer name.

Several available binding patterns may be specified for a given sensor aproc, by
giving multiple binding pattern statements about it. A call to the sensor aproc must
be at least as instantiated as one of the available binding patterns specified (via those
statements) for that aproc. This validation requirement is called br-safety or sensor-
safety. For example, adding

bindreq customerDBEmailAddr0f (FREE, BOUND).

specifies that the customer name can be returned for a given customer email address,
as well as vice versa.

Implicitly, every sensor aproc has the all-bound binding pattern, in which every
argument’s binding mode is BOUND. All-bound is the most restrictive binding pattern.
Conversely, the least restrictive binding pattern is all-free, in which every argument’s
binding mode is FREE.

All arguments to an effector aproc must be bound at the time of its call.

Production LP (PLP) generalizes the previous concept of Situated LP. PLP permits
also an alternative style of specifying actions and tests, in which an effector (respec-
tively, sensor) statement associates a predicate with an effector (respectively, sensor)
aproc. That alternative style was emphasized in most previous work on Situated LP.

Production LP constitutes an expressive extension of LP. It can be combined with
many other expressive extensions — i.e., expressive features — of LP in a largely
or completely orthogonal (i.e., independent) manner. These other features include
scoped default negation (a.k.a. well-founded negation-as-failure), Lloyd-Topor en-
hanced logical connectives and quantifiers, Courteous, etc.

The semantics of the Production extension of LP are defined as a relatively nat-

ural extension of the usual (well-founded) semantics of LP [Van Gelder et al., 1991]
[Przymusinski, 1994], without the Production feature.®

The fact-form information available via the set of sensor aproc’s is viewed as a
supplementary virtual knowledge base: the sensor KB. That sensor KB has a well
founded model that assigns a truth value to each sensor atom.

A truth value is one of {true, false, undefined}. This kind of truth value is
as usual in the well-founded semantics of LP. The false truth value means default
negation, i.e., intuitively not believed rather than classically false. The unde fined
truth value indicates an ambiguous status, i.e., intuitively not believed and ambiguous.
(The need for, i.e., the presence of, this third truth value unde fined arises in certain
cases of cyclic dependence through negation that are intuitively ill-defined.)

The sensor KB is merged with a given PLP’s rules, and their entailed ground-
literal conclusions are drawn in the usual (well-founded) semantic manner to deter-
mine the well founded model (WFM) of the PLP. Any rule whose head is an action
atom and whose body is satisfied for a given instantiation of the rule’s variables gen-
erates an entailed — i.e., sanctioned — instance of that action corresponding to that
instantiation. A given PLP thus derives not only a set of ground conclusion beliefs
(as usual for declarative LP), but also a set of sanctioned action calls. The PLP spec-
ifies an episode of not only pure-belief inferencing, but also of action. The episode
is said to be an episode of inferencing+action, a.k.a. situated entailment or situated
inferencing. The semantics of a PLP is defined as an abstract function that takes the
sensor KB as input and generates a set of sanctioned conclusion beliefs and actions.
Formally, the semantics of the PLP consists of:

e a mapping function that, for each WFM of the sensor literals, maps that into a
WFM of all the (PLP’s) ground literals

The ground literals of the PLP include not only the non-situated literals (as usual in
declarative LP) but also the situated literals (effector literals and sensor literals). The
well founded model, as usual, consists of a truth value (true, false, or unde fined)
for each ground literal. The sensor-literals part of the resulting WFM is just the same
as the WFM of the input sensor KB.

As part of the definition — and thus semantics — of Production LP, the behavior of
aproc’s is disciplined, i.e., restricted in three regards.

1. side-effect-free sensors: As mentioned earlier, sensor aproc’s must be side-
effect-free; they just return information.

2. episode-static aproc’s: During a given episode of inferencing/entailment, the
timing of sensing and effecting calls does not matter. I.e., one can ignore exactly
when, and in what sequence, the sensor and effector calls are invoked during
the episode.

3Note that it is also possible to define a variant of Production LP semantics in terms of the
stable/answer-set style of semantics for LP [Gelfond and Lifschitz, 1988]. We omit details about
that here, however.

3. engine-safe aproc’s: Effector aproc’s (side effects) are prohibited from mod-
ifying any of: the episode’s rulebase premises; the episode’s sensor KB; the
behavior (including state) of any rule processing engine that is performing the
episode’s situated entailment/inferencing. l.e., the effector aproc’s are engine-
safe.

This discipline on the procedural attachments ensures that the semantics of Pro-
duction LP is declarative in the KR sense, i.e., independent of the (situated) inferenc-
ing control strategy, algorithm, and implementation.

(Another aspect of aproc discipline in PLP, as in production rules typically, is that
side-effect-ful aproc’s are not called during the checking of rule bodies as they are in
Prolog; the behavior of that is highly control-strategy-dependent in Prolog.)

3 Extensible Scope of Definition of “Production Logic
Programs’

A second new aspect of the Production LP approach is to define what that is from a
KR viewpoint, in a manner similar to how LP is defined from a KR viewpoint. In this
section, we do so.

Previous declarative LP theory and practice includes a number of expressive fea-
tures beyond basic (definite, equality-free) function-free Horn LP. The term (declara-
tive) “logic programs” denotes some KR within that space of generalizations. Many
of these generalizations/features — e.g., default negation (a.k.a., negation-as-failure),
Lloyd-Topor, Courteous, Situated, Frame, Hilog, integrity constraints, explicit equal-
ity, skolemization, reification, etc. — are orthogonal (i.e., independent/modular) rela-
tive to each other. And most of these generalizations/features are orthogonal to adding
action and test expressions within rules cf. the earlier described Production LP KR
extension. Moreover, one can anticipate that in future there will continue to be more
KR generalizations/features developed for LP overall. (Likewise, there are interesting
KR specializations/restrictions for LP, not just generalizations/features.)

We adopt a similar style, and thus say that “production logic programs” denotes
some KR within that space of generalizations, such that action and test expressions
are included. Hence, we will often speak of the “PLP approach” since it is not a single
KR but rather a space of KR’s.

4 Production Rules: New KR Semantics and Interop-
erability via Trandation to PLP

In this section, we describe in medium detail a third new aspect of the Production LP
approach: its formulation of a new declarative KR semantics for (a substantial subset

9

of the expressiveness of) production rules, via translation to the Production LP KR
and thence to other rule systems that interoperate via the Production LP KR, notably
Prolog and RDBMS systems, e.g., XSB. The translation enables interoperability and
KB merging among all these systems.

This third aspect has been previously partially described in papers and presenta-
tions about SweetRules/SweetJess, as well as its open source code and documentation.
These used the Situated extension of LP KR, rather than the Production extension of
LP KR, and lacked all but a sketchy treatment of the theory guaranteeing the semantic
equivalence of the translations.

There is an extensive literature on declarative logic programs including a number
of expressive extensions. This provides well defined KR semantics (based on mod-
els) for Prologs and relational database management systems (RDBMS), and associ-
ated KR theory. This theory includes theory about semantics-preserving translation
— and thus semantic interoperability — between different Prolog and RDBMS lan-
guages/systems, that captures a very substantial subset of the expressiveness of those
languages/systems.

However, previous to our work on Production Logic Programs, including Sweet-
Jess [Grosof et al., 2002] [Grosof et al., 2005] (see especially the SweetJess com-
ponent of SweetRules), there was not a similar style of declarative KR semantics
formulated for production rules. Nor was there a theory of semantics-preserving
translation between production rule languages/systems and Prolog or RDBMS lan-
guages/systems. Thus there was not theory available to support substantial semantic
interoperability between one production rule language/system and another production
rule language/system, nor between production rule languages/systems and Prolog or
RDBMS languages/systems.

The same holds for event-condition-action (ECA) rules —i.e., when in the previous
paragraph “production rule” is replaced everywhere by “event-condition-action rule”.
ECA rules are expressively fairly similar to production rules. They differ mainly
by providing specialized expressiveness and control mechanisms for certain kinds of
conditions, and for incremental update-driven behavior.

Particularly vital to a semantic formulation of production rules, yet previously
lacking, are to give a semantic treatment (in the manner of declarative KR) of two
aspects:

1. their procedural attachments for actions and tests; and

2. their basic rule-processing cycle, which is defined as a high-level procedure
involving working memory, pattern matching, activation, agenda maintenance,
firing, etc.

The PLP approach provides a declarative KR semantic formulation for a very
substantial subset of production rules expressiveness, and the theory for semantic in-

10

teroperability between production rule languages/systems and Prolog/RDBMS lan-
guages/systems, as well as between different production rule languages/systems.

To achieve this, the PLP approach includes not only a newly generalized LP KR
but also new associated theory about semantics-preserving translation between pro-
duction rules and Prolog/RDBMS.

Next, we describe the semantics-preserving translation of production rules to and
from the PLP KR. Of course, the best one can hope for is translation and interoper-
ability with an expressively restricted subset of production rules.

Also, what exactly is “production rules”, anyway? To our knowledge, there is
no generally-accepted precise definition. As a first step towards defining translation,
it is thus necessary to define a restricted production rule system whose details are
abstracted away from the particulars of individual production rule languages/systems,
I.e., CLIPS, Jess, etc. Note that we consider for now only the forward-chaining/forward-
direction kind of rules in production rule systems; many production rule systems also
have a kind of goal-driven backward-/mixed- direction kind of rules as well.

Accordingly, we define such an abstract core production rule system (PR1), which
includes a language, a knowledge base, and an engine. This is relatively straightfor-
ward, and a bit tedious, so in this section we omit most details and just cover some
highlights. See our separate paper for full details of the definition [Grosof, 2005].

The rules are restricted to have in the head (i.e., RHS) only atoms that are either
an assert of a fact or an action whose side effects are external to the KB and
engine process. The agenda control strategy (ACS) is defined as a partial ordering
over the set of potential activations, i.e., over the set of ground instances of the (KB’s)
production rules. The rules in PR1 are restricted to be definite, i.e., to have a non-
empty head. As usual in current commercial production rule languages (e.g., Jess),
PR1 rules are also restricted to be head-safe, negation-safe, sensor-safe, free of logical
functions (sometimes a.k.a. the Datalog restriction); and sensor aproc’s are always
all-bound. Head-safe means that every logical variable appearing in the head/RHS of
a rule also appears in the body/LHS of that rule. Negation-safe means that, within a
rule, every logical variable appearing in a (body) negated atom (i.e., in a not’d atom)
also appears in a non-negated atom in that rule’s body.

PR1 production rules correspond straightforwardly to production rules in Jess (or
CLIPS, which is quite similar), i.e., can be translated straightforwardly to and from
Jess (or CLIPS).

In syntactic form, the PR1 rules correspond expressively to PLP rules in a straight-
forward manner. The key to the translation theory is to show that the PR1 engine
process corresponds to the semantic construction of PLP, under suitable restrictions.

The theory consists of several major steps, starting from more restricted rules and
proceeding to expressively generalize.

The first step of the theory treats the case of (definite, equality-free, function-free)
Horn-form rules, without actions or tests or explicit equality. (Horn-form means there

11

is a single atom in the head, and a conjuction (and) of zero or more atoms in the
body.) The insight here is that the engine process then iterates in a manner similar to
(although differently sequenced from) the semantic construction of (definite, equality-
free, function-free) Horn LP, resulting in a set of conclusions that is the same as
the LP minimal model. The production rule system’s behavior corresponds to doing
exhaustive forward-direction inferencing in LP.

The second step of the theory adds actions and tests. The insight here is that PR1
then behaves similarly to the semantic construction of Production LP’s treatment of
actions and tests. Equality in the body is added also, handled in a manner similar to
tests.

The third step of the theory adds negation. The insight here is that the behavior
of negation (not) in production rules corresponds to the behavior of scoped default
negation (a.k.a. well-founded negation-as-failure) in (Production) LP — but only under
the restriction that agenda control strategy is stratified in the sense well studied in the
theory of LP (particularly, in the well understood semantics of negation in LP).

Interestingly, the understanding of stratification of negation and its desirability
was developed in the LP literature only in about 1985, several years after the ba-
sic “DNA” of production rule systems (including OPS5 and the Rete algorithm) was
formed in the early 1980’s. Our translation theory enables the “retrofitting” of pro-
duction rules to incorporate these insights about the desirable semantics for negation —
including intuitive behavior and algorithmic techniques — based on the understanding
of stratification.

The fourth step of the theory adds enhanced logical connectives and quantifiers, in
roughly the manner of Lloyd-Topor, including: or, and, and exists in the body;
nesting of all these and not in the body; and and in the head. This is defined via
transformations that reduce to the case without these, in a manner that is similar, but
not identical, to the usual Lloyd-Topor (treatment of) logical connectives and quanti-
fiers in LP. One main difference from Lloyd-Topor is in regard to the or connective
when the rule has an action head; production rules behavior (e.g., in Jess) is defined as
generating a set of “subrules”, one per OR branch. This subrule generation may lead
in worst case to an exponential blowup in the size/number of rules in the correspond-
ing PLP, when multiple or’s nested within and’s. The other main difference from
Lloyd-Topor is in regard to the exists connective, which is a kind of twice-nested
not.

The above translation from (somewhat restricted) PR1 production rules to PLP
is highly scaleable. The computational complexity of translation is tractable (i.e.,
worst-case polynomial-time), when the appearance of the or connective is restricted
to prevent the potential blowup described above.

Production rules (situated) inferencing can even be done by translating to PLP,
then inferencing in PLP, then translating the conclusions back from PLP to produc-
tion rules. The next section describes translation from the corresponding case of PLP
back to production rules (PR1); that translation also has tractable computational com-

12

plexity.

The computational complexity of inferencing in the corresponding case of PLP
is tractable, given the VB and TA restrictions. VB means that there is a (constant)
bound on the number of distinct logical variables appearing in a rule. TA means that
the computational complexity of an aproc call is tractable. Both of these are quite
reasonable, non-onerous restrictions. VB is typically met in practice. TA is usually
met in practice. (One way to help ensure the TA restriction is to assume a (constant)
bound on the size of a situated atom.)

There are several additional expressive features of production rules that appear
relatively ripe for capturing via semantic translation to PLP.

Our current work on semantic translation of production rules to PLP includes
extending the abstract production rule system to include retracting and updating of
facts. Such retracting and updating of facts in production rule systems can arise from
rule heads. It can also arise from the surrounding programming language environment
(e.g., Java in the case of Jess) that provides facts and events that change those facts
(notably, “dynamic shadow facts”). E.g., after a manager issues a stock-clearance
notice, the price of various product items is marked down by twenty percent at the
beginning of each week. This expressiveness for specification of incremental behavior
is frequently used in applications of production rule systems and thus seems important
to capture. Our approach employs the Courteous feature of LP to represent such
retracting and updating in a modular and fairly natural fashion. The Courteous feature
includes integrity constraints, e.g., to specify that there is only one value of the price
per item. It also includes priorities, e.g., to specify that a rule or fact about the marked-
down price takes precedence over a rule or fact about the old higher value of the price.

Another aspect remaining for future work is to treat what Jess calls “connective,
predicate, and return-value constraint expressions”. These appear to reduce essen-
tially to and, or, not, and test expressions.

5 TrandatingHighly Expressive PL P to Production Rules

In this section, we describe briefly a fourth new aspect of the Production LP approach:
the semantic translation of highly expressive PLP to production rules (PR1).

The case of PLP that corresponds closely syntactically to PR1 can be translated to
PR1. (Note that, as mentioned earlier, PLP behaves differently than the syntactically
corresponding PR1 for the case when there are oxr in rules with action heads. How-
ever, that case of PLP can still be translated fairly straightforwardly to PR1, and vice
versa.)

Such translation, for a large subset of such PLP, has been implemented in Sweet-
Rules V2.1 as a translation to Jess from Situated LP (with similar essential expres-
siveness to the pertinent subset of Production LP). This uses, in part, a (tractable)
translation/transformation that reduces sensor and effector statements, to sensor and

13

effector atoms within rules.

A crucial aspect of translating from PLP with negation to PR1 is to ensure that
the agenda control strategy (ACS) in PR1 is stratified. An elegant way to specify
such stratification in the ACS is to assign appropriate salience to the production rules.
(Salience is an expressive feature of production rule systems.) A relatively simple
algorithm suffices to analyze the predicate dependency graph (PDG) of the PLP rules,
then determine a stratification partial ordering on the predicates and hence on the rules
(and detect if the stratified restriction is violated). Doing this has tractable computa-
tional complexity. SweetRules V2.1 implements this technique.

Furthermore, a number of useful PLP expressive features for which there is no di-
rect correspondent in production rules, can be translated into PR1 with KR semantics
preserved.

Webized (URI) names of predicates and individual constants can be translated
straightforwardly into (and then back out of) PR1. This has been implemented in
SweetRules V2.1.

Webized aproc’s are more complicated. In the case of Java/C++/C# aproc’s, this
asks for a standardized web-naming scheme for such methods; as far as we are aware,
there are none quite yet. In the case of WSDL aproc’s, this is easier; however, Jess
and other production rule systems are still in process of developing more direct mech-
anisms to support WSDL. SweetRules V2.1 implements (webized) WSDL effectors,
as well as a web-naming scheme for Java effectors and sensors, and supports these in
its translation to Jess.

The Courteous feature represents prioritized defaults and conflict handling en-
forcing consistency with respect to mutual-exclusion integrity constraints (e.g., that
something cannot be both a lion and a tiger, or that a given product cannot have two
different prices). It also represents strong negation, a.k.a. “limited classical”” negation,
e.g., policy rules about both what is permitted and what is prohibited. The Courte-
ous feature can be tractably expressively reduced, i.e., transformed, to just (default)
negation, with tractable computational complexity. This has been implemented in
SweetRules V2.1.

The rest of the Lloyd-Topor feature’s expressiveness for enhanced logical connec-
tives and quantifiers can also be tractably expressively reduced, i.e., transformed to
just (default) negation, with tractable computational complexity.

The general, i.e., non-stratified, case of negation is significantly more complex to
translate to production rules. SweetRules V2.1 implements a sophisticated, tractable
technique that does this, again translating to Jess. However, it exploits some of the
engine/control mechanisms of production rules that go beyond PR1 expressiveness,
such as “modules” (a kind of multiple cooperating rulebases and engine threads). The
technique is based on a novel bottom-up algorithm for computing the well-founded
model of a LP, and has several optimizations for production rule systems. In current
work, we are developing a new, second technique that after translation keeps within
PR1 expressiveness.

14

The computational complexity of the above expressive PLP (situated) inferenc-
ing (including the Courteous and general negation features, in particular) is tractable,
given the restriction to function-free, VB, and TA. As mentioned above, the computa-
tional complexity of the translation from such PLP to PR1 is tractable. And translation
from PR1 back to PLP is tractable, as mentioned in the last section. Thus (situated)
inferencing in such PLP can be performed via translating to production rules, then
doing inferencing in production rules, then translating the conclusions back to PLP.
(This is probably tractable, but requires a detailed tractability analysis of the overall
production rules engine algorithms not just Rete, the literature about which we have
not yet investigated.)

A number of additional expressive LP features, such as datatypes, reporting-style
integrity constraints, Frame syntax, Hilog, reification, can also be tractably reduced,
I.e., eliminated, by transformation to simpler LP, under suitable restrictions. These
additional features can thus be translated tractably to production rules. These may be
the basis for future further expressive expansion of the abstract production rule system
expressiveness beyond PR1.

6 Outline of Additional Sections Planned

Next, we give a brief outline of additional sections we plan to add to this document.

e Using Interoperability for Inferencing: semantic interoperability provides a
choice of inferencing engines, e.g., as SweetRules implements.

e Support in PLP for Incremental Event-Driven Behavior

e Integrating with Ontologies: several different ways to integrate ontologies
with PLP are already known, including: ontological URI-references to predi-
cates defined in background ontological knowledge bases, or import of ontolog-
ical knowledge translated into PLP. This is where such ontological knowledge
is defined in in rulebases, RDFS, OWL, FOL, or object-oriented/frame systems
that employ default inheritance.

e Inclusion Merging: of knowledge bases, in PLP form (e.g., after translation
into PLP from some other KR form)

e Markup: in XML, or in RDF

e Implementation Techniques and Tools: additional discussion, e.g., drawn
from SweetRules and Flora-2

e Application Scenarios

e BusinessValue Analysis

15

e Market Evolution Analysis

e Discussion and Future Work

7 Conclusions

For now, see section 1.

8 Acknowledgements

The author wishes to thank Said Tabet, Harold Boley, Mike Dean, Michael Kifer,
Shashidhara Ganjugunte, Hoi Y. Chan, Mahesh D. Gandhe, lan Horrocks, Sumit
Bhansali, Tim Finin, Peter Patel-Schneider, David Martin, Tim Berners-Lee, Abra-
ham Bernstein, Stefan Decker, Raphael Volz, Boris Motik, Mark Musen, Martin
O’Connor, Jos de Bruijn, Dieter Fensel, Tom Malone, Stuart Madnick, Sandro Hawke,
James Bryce Clark, Patrick Gannon, Eric Prud’hommeaux, Rudi Studer, Eric Miller,
Pat Hayes, and the participants in RuleML, SWSL, Joint Committee, WSML, and
EECOMS efforts, as well as participants in the (2005) W3C Workshop on Rules for
Interoperability, for collaborations and/or useful discussions on various aspects of
the PLP approach. Support for recent phases of this work was provided by awards
from DAML, the DARPA Agent Markup Language program. Thanks to DAML’s
very active program managers Mark Greaves, Murray Burke, and James Hendler for
their encouragement and useful discussions. Support for earlier phases of this work
was provided by IBM, an award from the NIST Advanced Technology Program, and
awards from the Center for eBusiness @ MIT Vision Fund.

9 References

References

[Angele et al., 2005] Jurgen Angele, Harold Boley, Jos de Bruijn, Dieter Fensel, Pas-
cal Hitzler, Michael Kifer, Reto Krummenacher, Holger Lausen, Axel Polleres,
and Rudi (alphabetically) Studer. Web Rules Language, Version 1.0. Technical
report, Web Services Modeling Language (WSML) Working Group et al, Aug.
2005. Standards design specification and documentation. Available on the Web at:
http://www.wsmo.org/wsml/wrl/. Also an acknowledged member sub-
mission to the World Wide Web Consortium (W3C).

[Battle et al., 2005] Steve Battle, Abraham Bernstein, Harold Boley, Benjamin
Grosof, Michael Gruninger, Richard Hull, Michael Kifer, David Martin,

16

Sheila Mcllraith, Deborah McGuinness, Jianwen Su, and Said (alphabeti-
cally) Tabet. Semantic Web Services Framework, \ersion 1.0. Techni-
cal report, Semantic Web Services Initiative, May 2005. Standards de-
sign analysis, specifications, and documentation. Available on the Web at
http://www.daml.org/services/swsf/1.0/. Also an acknowledged
member submission to the World Wide Web Consortium (W3C).

[Bechhofer et al., 2004] Sean Bechhofer, Mike Dean, Frank van Harmelen, James
Hendler, lan Horrocks, Deborah L. McGuinness, Peter F. Patel-Schneider,
Guus Schreiber, and Lynn Andrea (alphabetically) Stein. OWL Web Ontol-
ogy Language Reference. Technical report, World Wide Web Consortium
(W3C), Feb. 2004. W3C standards Recommendation. Available on Web at:
http://www.w3.org/TR/owl-ref/.

[Berners-Lee, 2005] Tim Berners-Lee. Primer: Getting into RDF & Semantic Web
using N3, Aug. 2005. Working Paper. Version of Aug. 2005. Available on Web at:
http://www.w3.0rg/2000/10/swap/Primer/.

[Bhansali and Grosof, 2005] Sumit Bhansali and Benjamin N. Grosof. Extend-
ing the SweetDeal Approach for E-Procurement using SweetRules and RuleML.
In Proc. First International Conference on Rules and Rule Markup Languages
for the Semantic Web (RuleML-2005), pages 113-129. Springer-Verlag, 2005.
Lecture Notes in Computer Science LNCS 3791. Conference info available at:
http://2005.ruleml.org. Held 10-12 November 2005, Galway, Ireland.

[Boag et al., 2005] Scott Boag, Don Chamberlin, Mary F. Fernandez, Daniela Flo-
rescu, Jonathan Robie, and Jerome (alphabetically) Simeon. XQuery 1.0: An
XML Query Language. Technical report, World Wide Web Consortium (W3C),
Nov. 2005. W3C standards Candidate Recommendation. Available on Web at:
http://www.w3.0org/TR/xquery/.

[Boley et al., 2005] Harold Boley, Benjamin N. Grosof, Said Tabet, and et al (al-
phabetically). RuleML: The Rule Markup Initiative, Dec. 2005. Standards
design specifications and documentation. Version 0.9. Available on the Web at
http://www.ruleml.org. Revised from Version 0.7 of Jan. 2001.

[Chen et al., 1993] W. Chen, M. Kifer, and D.S. Warren. HiLog: A Foundation for
Higher-Order Logic Programming. Journal of Logic Programming, 15(3):187—-
230, Feb. 1993.

[CIIMPLEX, 1999] CIIMPLEX. EECOMS: Extended Enterprise coali-
tion for integrated COllaborative Manufacturing Systems, 1999. A
$29 Million Advanced Technology Program project of the U.S. Na-
tional Institute of Standards and Technology (NIST). By the CIlIM-
PLEX industry consortium, 1998-2000. Info available on the Web at:
http://www.research.ibm.com/rules/eecoms.html.

17

[Friedman-Hill and et al, 2004] Ernest Friedman-Hill and et al. Jess, 2004. Semi-
open source software and documentation. Version 6.1p8. Available on Web at:
http://herzberg.ca.sandia.gov/jess/.

[Gelfond and Lifschitz, 1988] Michael Gelfond and Vladimir Lifschitz. The Stable
Model Semantics for Logic Programming. In Proc. International Conference on
Logic Programming (ICLP-88), pages 1070-1080, 1988.

[Grosof and Dean, 2005] Benjamin N. Grosof and Mike Dean. Seman-
tic Web Rules with Ontologies, and their E-Service Applications,
Nov. 2005. Detailed slideset, including bibliography, of 3.5-hour

conference tutorial at the Fourth International Semantic Web Con-
ference (ISWC-2005), held Galway, Ireland. Available on Web at:
http://ebusiness.mit.edu/bgrosof /#ISWC2005RulesTutorial.

[Grosof and Poon, 2004] Benjamin N. Grosof and Terrence C. Poon. SweetDeal:
Representing Agent Contracts with Exceptions using Semantic Web Rules, On-
tologies, and Process Descriptions. International Journal of Electronic Commerce
(IJEC), 8(4):61-98, Jul. 2004. special issue on web e-commerce.

[Grosof et al., 1999a] Benjamin N. Grosof, Hoi Y. Chan, and et al. IBM Com-
monRules, Version 1.0, Jul. 1999. Software and documentation. Available on IBM
AlphaWorks. Current version (V3.3+) and some past versions available on Web at:
http://www.alphaworks.ibm.com/tech/commonrules

[Grosof et al., 1999b] Benjamin N. Grosof, Yannis Labrou, and Hoi Y. Chan. A
Declarative Approach to Business Rules in Contracts: Courteous Logic Programs
in XML. In Michael P. Wellman, editor, Proceedings of the 1st ACM Conference
on Electronic Commerce (EC-99). ACM Press, 1999. Held in Denver, CO.

[Grosof et al., 2002] Benjamin N. Grosof, Mahesh D. Gandhe, and Timothy W.
Finin. SweetJess: Translating DamlRuleML to Jess. In Proc. Interna-
tional Workshop on Rule Markup Languages for Business Rules on the Seman-
tic Web, 2002. (http://tmitwww.tm.tue.nl/staff/gwagner/RuleML-BR-SW.html)
Held 14 June 2002, Sardinia (Italy) in conjunction with the First International
Semantic Web Conference (ISWC-2002). Extended and updated Working Pa-
per of May 2003 available at first author’s website. Prototype available via
http://www.daml.umbc.edu/sweetjess.

[Grosof et al., 2003] Benjamin N. Grosof, lan Horrocks, Raphael Volz, and Stefan
Decker. Description Logic Programs: Combining Logic Programs with Descrip-
tion Logic. In Proceedings of the 12th International Conference on the World Wide
Web (WWW-2003). ACM Press, 2003. (http://mwww.www?2003.0rg) Held May 20—
23, 2003, Budapest, Hungary.

18

[Grosof et al., 2005] Benjamin N. Grosof, Mike Dean, Shashidhara Ganjugunte, Said
Tabet, Chitravanu Neogy, Dave Kolas, and et al. SweetRules: Tools for Seman-
tic Web Rules and Ontologies, including Translation, Inferencing, Analysis, and
Authoring, Apr. 2005. Open-source software, documentation, and samples. Ver-
sion 2.1. Available on the SemWebCentral open source software repository, at
http://sweetrules.projects.semwebcentral.org. Revised from
Version 2.0 of Nov. 2004.

[Grosof, 2004] Benjamin N. Grosof. Representing E-Commerce Rules Via Situated
Courteous Logic Programs in RuleML. Electronic Commerce Research and Ap-
plications (ECRA), 3(1):2-20, Apr. 2004. special issue on semantic web and e-
commerce.

[Grosof, 2005] Benjamin N. Grosof. Defining an Abstract Core Production Rule
System, Dec. 2005. Working Paper. Version of Dec. 2005. Available on Web at:
http://ebusiness.mit.edu/bgrosof/#ACPRS.

[Horrocks et al., 2004] lan Horrocks, Peter Patel-Schneider, Harold Boley, Said
Tabet, Benjamin Grosof, and Mike Dean. SWRL: A Semantic Web
Rules Language Combining OWL and RuleML, Version 0.6. Techni-
cal report, Joint US/EU ad hoc Agent Markup Language Committee, Apr.
2004. Standards proposal research report. Available on the Web at
http://www.daml.org/2004/04/swrl/. Committee was chaired by
Mike Dean and co-led by Benjamin Grosof. Revised from Version 0.5 of Nov.
2003. Also an acknowledged member submission to the World Wide Web Consor-
tium (W3C).

[Kifer and et al, 2005] Michael Kifer and et al. FLORA-2: An Object-Oriented
Knowledge Base Language, May 2005. Open-source software, documentation,
and samples. Version 0.94. Available on the SourceForge open source software
repository, at http://flora.sourceforge.net.

[Kifer et al., 1995] M. Kifer, G. Lausen, and J. Wu. Logical Foundations of Object-
Oriented and Frame-Based Languages. Journal of ACM, 42:741-843, 1995.

[Li et al., 2003] Ninghui Li, Benjamin N. Grosof, and Joan Feigenbaum. Delegation
Logic: A Logic-based Approach to Distributed Authorization. ACM Transactions
on Information Systems Security (TISSEC), 6(1), Feb. 2003.

[Lloyd, 1987] J. W. Lloyd. Foundations of Logic Programming, second edition.
Springer, Berlin, Germany, 1987.

[Prud’hommeaux and Seaborne, 2005] Eric Prud’hommeaux and Andy (alphabeti-
cally) Seaborne. SPARQL Query Language for RDF. Technical report, World
Wide Web Consortium (W3C), Nov. 2005. W3C standards Working Draft. Avail-
able on Web at: http://www.w3.org/TR/rdf -spargl-query/.

19

[Przymusinski, 1994] Teodor Przymusinski. Well Founded and Stationary Semantics
of Logic Programs. Annals of Mathematics and Artificial Intelligence, 12:141-187,
1994.

[Van Gelder et al., 1991] Allen Van Gelder, Kenneth A. Ross, and John S. Schlipf.
The Well-Founded Semantics for General Logic Programs. Journal of ACM,
38(3):620-650, Jul. 1991.

[Warren, 2005] D.S. et al Warren. XSB, Mar. 2005. Open source software and docu-
mentation. Version 2.7.1. A Logic Programming and Deductive Database System.
Available on Web at: http://xsb.sourceforge.net.

[Yang and Kifer, 2003] Guizhen Yang and Michael Kifer. Reasoning about Anony-
mous Resources and Meta Statements on the Semantic Web. Journal on Data
Semantics, pages 69-98, Sep. 2003. Lecture Notes in Computer Science 2800,
Springer Verlag.

20

