
Combining different business rules technologies:
A rationalization

Isabelle Rouvellou, Lou Degenaro, Hoi Chan
IBM T. J. Watson Research Center

{rouvellou, degenaro, chan}@us.ibm.com
Kevin Rasmus

Country Companies Insurance
Benjamin N. Grosof

MIT Sloan School of Management
Bgrosof@mit.edu

http://www.mit.edu/~bgrosof/
Dave Ehnebuske, Barbara McKee

IBM Austin

Introduction

This paper discusses the very early stages of a project
being conducted at IBM research to explore how
different rule technologies might be combined or
enhanced to offer powerful business solutions.

People apply many meanings to the term “business
rules.” In its simplest form, a business rule is any
statement that can be put in the form of “if then”.
Business rules can be implemented in a computer
program by programming if-then statements in-line.
This is very efficient performance-wise, but you have to
know exactly what rules need to be place where. If the
rules change at a later time, there can be high costs of
maintenance. This approach also lends toward
inconsistency because people create or change rules
without a full understanding of all of the rules or how
they might interact.

Over the past 30 years, many patterns and technologies
have grown up around the development, management,
and execution of business rules. Some of these include
case-based reasoning, externalized/componentized

of these categories (i.e., they include hybrid
functionality).

Both technologies seem to have their own strength and
we are faced with the following questions:
? Are there ways to combine each technology to
make them more beneficial than they are being used
alone?
? Are there enhancements that can be done to further
leverage the rules technologies?

This paper will first provide some additional
information on CommonRules and ABR. It will then
explore these questions.

Common rules Overview

CommonRules has, as its foundation, a classic inference
engine structure. Rules are supplied in the form of if-
then. Data (i.e., facts) are provided to the system as
input or through database/file interfaces. The inference
engine determines the relationship between the supplied
rules and data, and arrives at decisions or conclusions.

dealing with the specific needs of individual partners.
BRML is based on declarative logic programs, and in
particular on an extended form of these called
Courteous Logic Programs [5].

To further enable the dynamic addition of rules,
CommonRules allows a flexible way of prioritized
conflict handling for rules, based on the Courteous
Logic Programs extension of logic programs. This
enables rules to be specified and maintained in a more
modular “common sense” style than usual.
Additionally, for the sake of greater control and
performance, CommonRules allows procedural
attachments to business objects, i.e., to associate belief
predicates with methods in general business objects in
order to test conditions in the “if” parts of the rules or
to perform actions after drawing conclusions.

ABR Overview

ABR (Accessible Business Rules) is a framework that
enables enterprises to develop distributed business
applications that systematically externalize the time-
and situation-variable parts of their business logic as
externally applied entities called “business rules”.

The ABR approach starts with extending the object
oriented analysis and design to include identifying the
rules and the points of variability in a business process
(i.e., points in a business process where the business
logic is time- and situation-variable) [6]. Where
benefits (reuse, reduced maintenance, consistency, etc.)
can be achieved, the rule is externalized (separated to
be managed separately and potentially more
dynamically) and the point of variability is, during
development, translated into a trigger point (i.e., a
piece of code in an object method that interfaces with
the ABR runtime to attach and execute business rules
dynamically during application execution). A trigger
point is the specific place from which externalized rules
will be fired. A trigger point’s primary job is to select
which rules will be fired, based on some criteria called
trigger point context. In all cases, the rules to be
selected can be changed over time using the

logic is performed). The trigger point, rule selection,
rule combination, data transformation, and
administration capabilities taken together form a
complete framework for externalizing and managing
business rules [7] [8].

ABR has been developed as an object oriented (OO)
framework and can easily be integrated with object
oriented applications. Typical OO applications define
different “object layers”-- each of which builds on what
went before. The lowest level objects directly reflect the
database data forming the relatively fined grained
object model that experience shows is natural for fully
capturing the required detail. As you move up the object
model toward the user, the level of abstraction increases
and business components are defined that are more
easily understood by a business person; but their state
data is only indirectly a reflection of data stored in the
database. By attaching ABR rules at various layers of
your application, you define them with various level of
abstraction [8].

Some of the More Pertinent Differences in
the Two Rule Approaches

As CommonRules and ABR are both hybrid approaches
and have considerable flexibility, the following
statements should be taken as generalizations rather
than strictly true.

1) CommonRules expects to handle a rapidly
changing rule base, including rules that are delivered
from outside parties specific to a single transaction.
ABR expects more “release oriented” rules where rules
become effective or expire based on date and time.
2) CommonRules expects rules to be built on the fly
and conflicts be dealt with by the rule system itself.
ABR’s administration system facilitates the
identification of conflicts and expects most or all
conflicts to be eliminated prior to release.
3) While both products support a “discovery” process
for determining what rules are needed, ABR is more
attuned to identifying rules during formal analysis and

require a few simple rules at any one point in the
process.
7) The performance dynamics vary between the two
products. A rule system must perform well to be found
useful by most business people. ABR is more oriented
towards static rules and as such sometimes has greater
performance.
8) The manner of specifying a rule varies between the
two approaches. As people vary in the way they express
themselves, they also vary in the way they feel most
comfortable in specifying rules.

When and How to Combine the
Two Technologies

Next we identify some business situations or patterns
where using a combination of the two approaches/
products appears to be valuable.

Innovative Options to Use the Two Approaches
Together

1) At most points in a business process, only a few
straightforward rules apply (ex. edits for the date field
or the selection of which interest rate calculation
applies). However, at a few very specific points, things
can get very complex. The somewhat obvious response
here is use ABR for the majority of the rules and use
CommonRules when things get complex. Since ABR
can wrap a CommonRules rule group as a single ABR
Business Rule, it is easy for ABR to act as the trigger
for CommonRules.
2) If different portions of a business process address
different groups, each of these groups may be
predisposed to a type of rule representation. For
example, marketing may prefer CommonRules
representation where accounting may prefer ABR ..
Each product can be coupled to the portion of the
process they best support.
3) Some portions of a business process may have well
defined, tightly controlled, self-consistent rules that
change at specific points in time. Other portions of the
system may have highly dynamic rules where the
conflicts are allowed. ABR addresses the first situation

encoding can then be exploited to get better
performance when the prioritized rule set will not be
changing often.

Use the Approaches/Products at Different Points in
the Application Life Cycle

1) Some projects utilize a formal analysis and design
approach. Other projects might utilize an iterative
prototyping approach. Both rules approaches can be
utilized in either of these project approaches. However,
ABR expects a certain level of patterned design to be
present. In the case of a project where you are making it
up as you go, you may choose to start by capturing rules
in CommonRules. At the point in the project where the
architecture firms up, you may then wish to shift
appropriate rules over to ABR.
2) If the rules for a project are not well understood,
you may want to start with CommonRules to discover
the interaction between rules. As rules interaction
becomes clear, you may want to move rules to ABR to
improve performance, reduce complexity, etc. The
courteous compiler can help enable this move.
3) If an application starts of with ABR rules and over
time the rate of rule change increases, or the complexity
increases, or the need for dynamic behavior increases,
you may want to shift rules to CommonRules.

Where Rule Systems Might be Enhanced

Data mining

1) Similar to the concept of case-based reasoning, you
can analyze data to derive rules that can be
implemented in either of these products. A promising
area for this is personalization for web sites. You can
analyze the navigational patterns of customers to derive
rules that might better customize the experience of
similar customer types.
2) Conversely, you can data-mine the rules themselves
looking for patterns that aren’t obvious from the rules
themselves. This might lead to simplification of rules or
improvements in performance.

This specific rules situation could be optimized and
made particularly easy to use.
2) Businesses often have rule patterns that are specific
to their company. The APIs for rule creation and
administration can be externalized so a company can
write front-ends specific to their rules patterns.

Authoring of Rules.

1) As stated earlier, people have preferences for how
they state their rules. Furthermore, rules systems have
differences in the level of ambiguity they will tolerate in
rules. Many people who are comfortable in stating rules
verbally become uncomfortable when forced to use
specific rule syntax. A conversational natural-language
system seems a possible way to facilitate development
by business people. Here, the system interacts with the
person to refine rules and arrive at a tolerated level of
completeness and ambiguity.
2) Alternatively, UML (Unified Modeling Language)
is commonly employed to model and specify a system.
If currently availabl constructs or extensions of the
UML language could be used for capturing rules, then a
tool could extract rules from the model and implement
them using a rules product. Many developers would
find this convenient.

Conclusion

Rules products vary in their strengths and weaknesses.
Combining rules approaches/products can leverage
their strengths and minimize their weaknesses. We
discussed several ways to synergistically combine two
approaches/products with which we are familiar:
CommonRules and Accessible Business Rules.
Additionally, we believe there are still many
opportunities to improve rule system functionality and
enhance their business benefits. We hope these
opportunities will be further explored, to the benefit of
all.

References

Logic Programs in XML" (Nov. 3, 1999), in
Proceedings of the 1st ACM Conference on Electronic
Commerce (EC-99), edited by Michael P. Wellman,
ACM Press.
[5] B. Grosof: “Prioritized Conflict Handling for
Logic Programs", in the proceedings of the
International Symposium on Logic Programming
(ILPS-97), edited by Jan Maluszynski, MIT Press,
Cambridge, MA, USA, pages 197-211.
[6] I. Rouvellou, L. Degenaro, D. Ehnebuske, B.
McKee, K. Rasmus: “Extending Business Objects with
Business Rules”, in the proceedings of the 33rd
International Conference on Technology of Object-
Oriented Languages and Systems (TOOLS 2000
Europe) http://www.research.ibm.com/AEM/
abr_tools2000.html
[7] I. Rouvellou, L. Degenaro, D. Ehnebuske, B.
McKee, K. Rasmus: “Externalizing Business Rules
from Enterprise Applications: An Experience Report”
in the Oopsla’99 Companion
[8] I. Rouvellou, I. Simmonds, D. Ehnebuske, B.
McKee, K. Rasmus: “Business Objects and Business
Rules” in “Business Object Design and Implementation:
Oopsla '96, Oopsla '97, and Oopsla '98 Workshop
Proceedings” Springer, ISBN: 1-85233-108-9.

