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Abstract

We address the goal of making Delegation Logic
(DL) into a practically implementableand tractabletrust-
managementsystem.DL [22] is a logic-basedknowledge
representation(i.e., language) for authorizationin large-
scale, open,distributedsystems.

As introducedin [22], DL inferencingis computation-
ally intractableand highly impractical to implement. We
introducea new versionof DelegationLogic that remedies
thesedifficulties.To achievethis,weimposea syntacticre-
striction and redefinethe semanticssomewhat. We show
that, for this revisedversion of DL, inferencingis compu-
tationally tractableunderthe samecommonlymetrestric-
tions for which Ordinary Logic Programs(OLP) inferenc-
ing is tractable(e.g., Datalog andboundednumberof log-
ical variablesper rule). We givean implementationarchi-
tecture for this versionof DL; it usesa delegationcompiler
fromDL to OLP andcanmodularlyexploit a varietyof ex-
istingOLP inferenceengines.Asproof of concept,wehave
implementeda largeexpressivesubsetof thisversionof DL,
usingthis architecture.

�
This paperappearsin Proceedingsof the IEEE 2000Symposiumon

SecurityandPrivacy. TheexpandedResearchReportversionof thispaper
givesadditionaldetails,includingsampleoutputof theimplementation.

1 Intr oduction

In today’sInternet,therearealargeandgrowing number
of scenariosthatrequireauthorizationdecisions.By anau-
thorizationdecision,we meanonein which onepartysub-
mits a request, possiblysupportedby oneor morecreden-
tials, thatmustcomplywith anotherparty’s policiesif it is
to begranted.Scenariosthatrequireauthorizationdecisions
includeelectroniccommerce,healthcare[2, 7], contentad-
vising [28], mobile-codeexecution[12], public-key infras-
tructure[9, 30, 19, 11, 27], andprivacy protection[24, 23].

Authorizationin Internetservicesis significantlydiffer-
ent from authorizationin centralizedsystemsor even in
distributedsystemsthat are closedor relatively small. In
theseolder settings,authorizationof a requestis divided
into authentication(“who madethe request?”) and ac-
cesscontrol (“is the requesterauthorizedto perform the
action?”). The goal of a growing body of work on trust
management[6, 8, 11, 10, 5, 22] is to find a more ex-
pressive and“distributed” approachto authorization. The
trust-managementapproachsupportscredentialsthat en-
dow public keys with more than just identitiesor “distin-
guishednames”of key holders,e.g., with agreed-upon“au-
thorizations” [11], with variousattributesof key-holders,
or with fully programmable“capabilities” [6, 8, 10, 22].
The “authorization”problemconsistsof decidingwhether
thesecredentialsprove that a requestcomplieswith a pol-
icy. Identity informationis just onekind of credential,and
it maybenecessaryandsufficient for someapplicationsbut
not for others.



Trust managementadoptsa “peer model” of authoriza-
tion. Every entity canbe an authorizer, a third-partycre-
dential issuer, or a requester. If an entity controlssome
resourcesthat otherswant to use, it is the authorizerfor
theseuses. It is the ultimate sourceof authority over us-
ageof theseresources,andit maintainslocal policiesthat
determinewhat usesareto be allowed. An entity canalso
serve asa third-partycredentialissuer;if anauthorizerde-
fers trust to it in a policy, then thesecredentialscanplay
a role in authorizationdecisions.Whenan entity wantsto
useresourcesthatotherentitiescontrol, it playstherole of
a requester.

A major challengein authorizationand trust manage-
mentis to provide anapproachthat facilitatesspecification
of authorizationpolicies,especiallythatcanbeunderstood
andmodified by peoplewho are expert in a businessdo-
mainratherthanin programming.Expressiveconvenience,
andseparatingthe policy specificationsemanticsfrom the
choiceanddetailsof implementationtechnique,arethusde-
sirabledesiderata.

In [22], we proposedthelogic-basedlanguageDL (Del-
egationLogic) asa trust-managementengine. DL differs
from otherproposedtrust-managementengines[6, 8, 11, 5]
in providing a notionof “credentialsproving thata request
complieswith apolicy” thatis notentirelyadhoc; rather, it
isbasedonmodel-theoreticsemantics(thusabstractedaway
fromchoiceanddetailsof implementation),andissmoothly
extensibleexpressively to non-monotonicity, negation,and
prioritized conflict handling. Specifically, DL startswith
the notion of proof embodiedin Datalogdefiniteordinary
logic programs[20]. (For a review of standardconcepts
and resultsin logic programming,see,e.g., [4].) “Ordi-
nary” logic programs(LP’s) correspondessentiallyto pure
Prolog,but without the limitation to Prolog’s particularin-
ferencingprocedure.(They arealsosometimesknown as
“normal” LP’s or “general”LP’s.) “Definite” meanswith-
out negation. “Datalog” meanswithout (logical) function
symbolsof morethanzeroarity.1

Other notablefeaturesof DL include explicit linguis-
tic supportfor delegationdepthand for a wide variety of
complex principals(e.g.,

�
-out-of-� thresholds).The de-

sign of DL was influencedby earlier work on trust man-
agement[6, 8, 10, 5], public-key infrastructurepropos-
als [11, 25, 28, 30], logic-basedapproachesto authentica-
tion andaccesscontrol in distributedsystems[1, 21], and
logic programmingand knowledgerepresentation.For a
morethorough,but still high-level, introductionto DL and
its relationshipto previous work, seesections1, 2, and6
of [22].

In [22], we definedthesyntaxandsemanticsof a mono-
tonic version of DL: D1LP (Delegation Logic Programs
version1). However, asintroducedin [22], D1LP’s seman-

1“Arity” meansnumberof parameters.

tics is definedby a transformationinto OrdinaryLP (OLP)
that is computationallyintractable: exponentialin output
sizeaswell asin time. Moreover, thesemanticconstruction
thererequiresmany iterationsthat eachinterleavessucha
transformationphasewith anotherphaseof completeOLP
inferencing.WeobservethatthismakestheD1LPinferenc-
ing in [22] computationallyintractableandhighly impracti-
cal to implement.

In this paper, we addressthegoalof makingDelegation
Logic into a practically implementableandtractabletrust-
managementengine.We introducea new versionof D1LP
that remediestheabove difficulties,preservesthe previous
version’sattractivefeatures,andhassomeextraadvantages.
To achieve this, we imposea syntacticrestrictionand re-
definethe semanticssomewhat. Even with the restriction,
the formalismhassignificantexpressive power. We show
that, for this new versionof D1LP, the transformationinto
OLP is computationallytractable(worst-casepolynomial-
time) andonly needsto be doneonce. We show that, for
this new versionof D1LP, inferencingis thuscomputation-
ally tractableunder the samecommonly-metrestrictions
for which OLP inferencingis tractable(e.g., Datalogand
boundednumberof logical variablesper rule). We give an
implementationarchitecturefor thisversionthatusesa del-
egation compiler from DL to OLP andcanmodularlyex-
ploit a varietyof existing OLP inferenceengines.As proof
of concept,we have implementeda large expressive sub-
setof this new versionof DL, using this architecture;we
describethatimplementationbriefly.

Beforegoinginto thedetailsof thenew versionof D1LP,
wefirst briefly explainhow DL canbeusedin authorization
systems.

Entities in authorizationscenariosare representedby
principalsin DL. They canissuepolicies,credentials,and
requests.Policiesandcredentialsarerepresentedby rules
in DL. Requestsarerepresentedby queries.Policiesdiffer
from credentialsin thatthey areusedby their authors.

Whenanauthorizergetsa requestthatcorrespondsto a
DL query � alongwith somecredentialsthat supportthis
request,the authorizercreatesa DL program(rule-set) �
that containsall the credentialsand the authorizer’s local
policies. DL’s semanticsdefinesa uniqueminimal model
for � . Thereis a proof procedureto answer� relative to
truthin � ’sminimalmodel.Notethatthisreasoningis done
from the authorizer’s point of view. The authorizeris the
trustroot. In DL, thesymbol“Local ” refersto thecurrent
trustroot.

In this paper, we definethesyntaxandsemanticsof the
revisedversionof D1LP. We alsogive an inferencingpro-
cedurefor (revised)D1LP andprove that suchinferencing
is tractable.

The rest of the paperis organizedas follows. In sec-
tion 2, wegivethesyntaxof therevisedversionof D1LP. In
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section3, wegivesomeexamplesof policiesandinferences
in D1LP. In section4, we definethe semanticsfor it by a
transformationfrom aD1LPprograminto anOLPprogram.
D1LP inferencingis accomplishedby the combinationof
transformationplus OLP inferencing. Tractability results
aregivenin section5. In section6, we describeour imple-
mentationandits architecturethatcombinesacompilerim-
plementingthetransformationwith a pluggableOLP infer-
encingengine.In section7, we discussthetractabilitymo-
tivation behindthe main expressive restrictionin this new
versionof D1LP. In section8, wegivediscussionincluding
currentandfuture work. We concludewith a summaryin
section9.

2 Syntaxof the revisedD1LP

In thissection,wegivethesyntaxof therevisedD1LP. It
differsfrom thepreviousversionin [22] in severalregards,
but overall is quitesimilar.

The main restrictionimposedin this new versionis the
following: A delegateeappearingin a rule body, or in a
query, mustbe a principal, a conjunctionof principals,or
a principal variable. That is, sucha delegateeis not per-
mitted to containa disjunction,nor to containa threshold
structure(which is implicitly disjunctivein nature).Wecall
this the “conjunctive-delegatee-queries” expressive restric-
tion. This restrictionis imposedto ensuretractability, asis
discussedin section7.

The revisedD1LP includesseveral expressive general-
izationsfrom thepreviousversionaswell. We foundthese
expressive generalizationsuseful in the courseof design-
ing thecompileranddevelopingexamples.And we believe
thesegeneralizationsmake the revised version of D1LP
moreusefulin practice.They arediscussedasweintroduce
themin theoverall syntaxwhich we givenext.

1. The alphabetof D1LP consistsof threedisjoint sets,
the constants, the variables, and the predicatesym-
bols. Variablesstartwith ‘?’. Thesetof principals is
a subsetof theconstants.Thesetof principalsshould
bedistinguishablefrom otherconstants.Whena vari-
ableappearsin certainpositions,e.g., asanissuer, it is
calledaprincipal variableandcanonly beinstantiated
to aprincipal.A term is eitheravariableor aconstant.

Notethatwe prohibit functionsymbolswith non-zero
arity: This is the Datalog restriction. This restriction
helpsenablefinitenessof the semanticsandof com-
putinginferences(a.k.a.entailments).

2. A baseatomtakestheform:���
	���
��������������������
where���
	�� is apredicateandeach��� is a term.

A baseatomencodesa trust belief, a securityaction,
etc. For example, “isBusinessKey (keyBob, Bob),”
“purchase(?M,?Price),” and“goodCredit(?X)”areall
baseatoms.

3. A directstatementtakestheform: 
says !�"

where
 

is eithera principal or a principal variable,
“says ” is a keyword, and !#" is a baseatom.

 
is

calledthe issuerof this statement.2

Sucha direct statementencodesthat the issuer
 

be-
lieves, supports,or requeststhe baseatom !�" . For
example, “keyBob says goodCredit(Carl),” “keyCA
says isKey(keyBob, Bob),” and “keyTom sayspur-
chase(computer, 2000)”aredirectstatements.

4. A staticunweightedthresholdstructuretakestheform:
threshold (

�
, $&% � ���#����� % �(' )

where“ threshold ” is akeyword,
�

is a positive in-
teger, the % � ’s areprincipals,and % �*)+ %-, , for . )+0/ .
We call

�
thethresholdvalue, and“ $1% ���#���#�2� % � ' ” the

thresholdpool (notethatit is a setnot abag).

For example,“threshold(2,[cardA,cardB,cardC])” is
astaticunweightedthresholdstructure.This threshold
structuresupportsabaseatom !�" if at leasttwo princi-
palsamongthethresholdpool“[cardA, cardB,cardC]”
support!�" .�
-out-of-� thresholdfunctionsare commonin many

existing authorizationsystems,e.g., PolicyMaker [6,
8], KeyNote [5], SPKI/SDSI [11, 27], and Delega-
tion Networks[3]. Suchthresholdstructuresintroduce
fault toleranceand aid flexibility in joint authoriza-
tion. A staticunweightedthresholdstructureexpresses
suchthresholdingfor explicit caseswherethe thresh-
old valueandthresholdpoolareexplicit constants.

5. A staticweightedthresholdstructuretakestheform:
threshold (

�
, $ 
 % � ��3 � �4�#���#�2��
 % � ��3 � � ' )

where
�

and the % � ’s are the sameas above, and
the 35� ’s are positive integers. The 35� ’s are called
weights. Theset“ $ 
 % �6��37�������#�#�8��
 % �9��35�2� ' ” is called
a principal-weightpair set(abbreviatedP-Wset).

Weightedthresholdstructuresenablethe assignment
of different weights to different principals in the
thresholdpool. Sucha thresholdstructuresupportsa
baseatom !�" if the sum of all the weightsof those
principalsthatsupport!�" is greaterthanor equalto

�
.

6. A dynamicunweightedthresholdstructuretakes the
form:

threshold (
�
, :  , � � .;� says ���
	���
4�#�#� :  �#��� ))

2Theissueris calledthe“subject” in [22]. Here,we changedit to “is-
suer”in orderto conformto existing terminology, e.g., thatof SPKI.
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where
�

is an integer, :  is a principal variable,and
“ � � .<� says���
	��=
����#� :  ���#��� ” is a direct statementin
which thevariable :  occurs(oneor moretimes).

Such a thresholdstructurehas a dynamicthreshold
pool that is thesetof all principals % suchthat“ � � .<�
says���=	��=
����#� % �#�#� )” is true,i.e., suchthattheexpres-
sion“ � � .<� says���
	���
4�#�#� :  �#��� )” becomestruewhen% is substitutedfor :  throughoutthatexpression(for
eachappearancethereof :  ).

This syntax is slightly more generalthan the one in
[22], in which the predicate���
	�� is restrictedto be
a unary predicate. The new syntaxallows multiple-
arity predicates.It is moreconvenientandmore like
theconventionPrologusesfor built-in predicates,e.g.,
setof in Prolog.

Staticthresholdstructuresbecomeinconvenientwhen
thethresholdpool is very large,changesveryoften,or
both. For example,considera policy that delegatesa
certainright to any two employeesof a large depart-
ment of a company. Use of a dynamicunweighted
thresholdstructureyieldsasimpleandclearpolicy and
enablesthe company to changethe employeesin the
departmentwithoutchangingthis policy.

7. A thresholdstructure is oneof the above threekinds
of thresholdstructures.

The versionof D1LP in [22] hasa fourth kind: dy-
namicweightedthresholdstructures. They makeit dif-
ficult to achieve tractability. Although the difficulties
canbe overcomeby imposinglimits on the maximal
weightsallowed, we choseto leave them out in this
paperin orderto simplify thepresentation.

8. A principal structure is constructedfrom principals
and thresholdstructuresusing “,” (conjunction), “;”
(disjunction),andparentheses.

For example:
?>A@
BAC�DA@FE�G�HI
KJ�L :KM L�N#E�OQPRDASUT�DVS�N�N#E�WFX(>AS�X�>�
 :AM �K�AL>K@
B�C#D�@
E�G�HI
AJ�L :AY L=N#E�OQPZD�SUT(D[OQS�X
S�\�C#BU
 :AY �A�K�
is a principalstructurethat representstheconjunction
of at leastoneaccountantandat leastonemanagerac-
cordingto N#E�OQP .

9. A delegationstatementtakestheform: 
delegates !�" ˆ � to �*]

whereX is either a principal or a principal variable,
delegates andto arekeywords, !#" is abaseatom,� is eitherapositiveintegeror theasterisksymbol“ � ”,
and �*] is aprincipalstructureor a principalvariable. 

is calledthe issuer, � is calledthedelegationdepth
(“ � ” meansunlimited, or infinite, depth),and �*] is
calledthedelegatee. For example,

^ E�_`H
C#G�C#\�S�>AC#D[\�E�E�HIabB�C#H
c�>�
 :AM � ˆ J5>AEdabS�BAG
is adelegationstatement.It meansthatBob trusts(be-
lieves)Carl aboutwhethersomeonehasgoodcredit.
Thatis, if Carlsaysthatsomeonehasgoodcredit,then
Bobbelievesit. This transferability of belief is theba-
sicmeaningof a delegationin DL.

Delegationdepthis usedto control re-delegation. If
wehave thefollowing statements:PeG�c�N#C*H
C�G�C�\�S�>AC#DV\�E�E�HIabB�C#H
c�>�
 :AM � ˆ f >AE ^ E�_^ E�_`H
C#G�C#\�S�>AC#D[\�E�E�HIabB�C#H
c�>�
 :AM � ˆ J5>AEdabS�BAGabS�B�G�H
C�G�C�\�S�>AC#DV\�E�E�HIabB�C#H
c�>�
 :AM � ˆ J5>AEhg5SUi�c�HabS�B�G�D�SUT(DV\�E(E�HIabB�C#HFc�>�
?j(S�N6k2�glSUi(c�H`DASUT�DV\�E�E�HIabB�C#H
c�>�
mj�E�@
XI�
thenonecaninfer in our DL semantics(section4):PeG�c�N#C*H
C�G�C�\�S�>AC#DV\�E�E�HIabB�C#H
c�>�
 :AM � ˆ Jl>AEnabS�B�GPeG�c�N#C*D�SUT(DV\�E(E�HIabB�C#HFc�>�
?j(S�N6k2�^ E�_`DASUT�DV\�E�E�HIabB�C#H
c�>�
mj�S�N6k2�abS�B�G�D�SUT(DV\�E(E�HIabB�C#HFc�>�
?j(E�@
XI�
but not:^ E�_`H
C#G�C#\�S�>AC#D[\�E�E�HIabB�C#H
c�>�
 :AM � ˆ J5>AEoglSUi�c�H^ E�_`DASUT�DV\�E�E�HIabB�C#H
c�>�
mj�E�@
XI�
This is becauseAlice delegatesto Bob with depth f ,
but Bobonly delegatesto Carl with depth J .
DL usesbothintegerdepthandinfinitedepthto control
re-delegation. SPKI designerschoseto useboolean
control.Therationalefor thischoiceis documentedin
section4.1of [11]. Wethink thatit is still unclearhow
re-delegation shouldbe handledin practice,and, in
particular, it is not clearwhethertherationalegivenin
[11] will beborneout in practicaluseof re-delegation.
We chooseto useDL’s approach,mainly becauseit is
more expressive. Re-delegatability being “true” and
“f alse”in theSPKIapproachcanberepresentedin DL
by depth � and J , respectively, but integerdepthsother
than J or � cannotberepresentedin SPKI.We conjec-
turethatdelegationdepthssuchasf andp mightprove
usefulandnaturalin many practicalpolicies.

10. A speaksfor statementtakestheform:q
speaks for

 
on !�"

where
 

and
q

areeitherprincipalsor principalvari-
ables,and !�" is a baseatom.

Theabovespeaksfor statementintuitively meansthatq
hasevery right that

 
haswith respectto the base

atom !�" , or, in other words,
q

is at leastas power-
ful as

 
with respectto !#" . This is intuitively sim-

ilar to a delegation from
 

to
q

, but the depth is
treateddifferently than in a delegationandthe issuer
of a speaksfor statementis always left implicit. We
will discussspeaksfor statementsin moredetailat the
endof this section.

11. A headstatementis a direct statement,a delegation
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statement,or a speaksfor statement.

12. A bodystatementis a body direct statement,a body
delegationstatement,or a speaksfor statement.

13. A bodydirect statementis moregeneralthana direct
statementin that it permitsthe issuerto bea principal
structure.

For example,thefollowing is a bodydirectstatement:>K@
B�C#D�@
E�G�HI
 f L $ N#S�BAH
PQL(N#S�BAH ^ L�N#S�BAHba ' �DASUT�DVS�N�N#E�W
X�>�r-E�E�HI
 :AM �
14. A body delegation statementis more generalthan a

delegationstatementin that it allows the issuerto be
a principal structurebut lessgeneralin that it obeys
the conjunctive-delegatee-queriesrestriction: Its del-
egateemust be a principal, a principal variable,or a
conjunctionof principals.

Thenotionsof body direct statementsandbodydele-
gationstatementsarenew relative to thepreviousver-
sionof D1LP. Thesebodystatementscanonly appear
in thebodyof a rule.

15. A body formula is constructedfrom body statements
using “,” (conjunction),“;” (disjunction),andparen-
theses.

16. A clause, also known as a rule, takes the form:s
if t �

where
s

is a headstatementand t is a bodyformula.s
is calledtheheadof theclause,and t is calledthe

bodyof the clause.The body may be empty; if it is,
the “ if ” partof theclausemaybeomitted. A clause
with anemptybodyis alsocalleda fact.

Terminology:The issuerof theheadstatementis also
saidto betheissuerof therule.

17. A programis afinite setof clauses.This is alsoknown
asa logic program(LP) or asa rule set.

18. A querytakestheform: “ t ?” where t is a body for-
mula.

As usual,anexpression(e.g., term,baseatom,statement,
clause,or program)is calledground if it doesnot contain
any variables.

Although DL’s syntaxexpressesbeliefs from multiple
principals,thereis alwaysasingle,distinguishedviewpoint
in DL: thatof theprincipalwhois doingreasoningandmak-
ing decisions,i.e., the currenttrust root “Local .” Every
DL rule or statementis implicitly regardedas a belief of
Local .

Example1: Determining credit status

The following is an exampleD1LP programaboutdeter-
miningcreditstatus.

PeG�c�N#CuH
C#G�C#\�S�>AC#D[E�B�H
C�B�
 :Kv L :Kw � ˆ J5>KE :AMc�xyPeG�c�N�C*DASUT�DV\�E�E�HIabB�C#H
c�>�
 :AM �KzPeG�c�N#CuH
C#G�C#\�S�>AC#D[\�E�E�HIabB�C#H
c�>�
 :AM � ˆ f >AE ^ E�_Iz
^ E�_`DASUT�DV\�E�E�HIabB�C#H
c�>�
 :AM �c�xI>A@
BAC�DA@FE�G�HI
 f L $ N#S�BAH
PQL N�S�B�H ^ L N�S�B�HIa ' �D�SUT�D-S�N#N�E�W
X�>�r-E�E�HI
 :KM �KzN#S�BAHba{DASUT�DVS�N�N#E�W
X�>�r-E�E�HI
KabS�BAG��KzN#S�BAHba{DASUT�DVS�N�N#E�W
X�>�r-E�E�HI
?glSUi�c�HI�AzN#S�BAHFP|D�SUT�DVS�N#N�E�W
X�>�r-E(E�HI
AabS�B�G<�AzN#S�BAH ^ DASUT�DVS�N�N#E�WFX(>�r-E�E(Hb
?}~Hb�Kz
Thefirst two rulesareAlice’spolicies.Alice allowsany-

onewho is believed to have goodcredit to make an order.
Alice trustsBob in determiningwho hasgoodcredit. The
third rule is from Bob: Bob believes that a principal has
goodcreditif two outof threeparticularcredit-cardcompa-
niescertify thatthisprincipalhasanaccountin goodstand-
ing. The restof the rulesarefactsaboutaccountsin good
standing.

Fromtheserules(policiesandfacts),it is inferrable(con-
cluded)accordingto theDL semantics(section4) that

PeG�c�N#CuDASUT�D[\�E(E�HIabB�C#HFc�>�
KabS�B�G��KzPeG�c�N#CuH
C#G�C#\�S�>AC#D[E�B�H
C�B�
 :Kv L :Kw � ˆ J5>KEnabS�BAG�z
but not that

PeG�c�N#CuDASUT�D[\�E(E�HIabB�C#HFc�>�
?glSUi(c�HI�AzPeG�c�N#CuDASUT�D[\�E(E�HIabB�C#HFc�>�
?}~Hb�Kz
Discussionof Speaksfor statements

Thespeaksfor statement“ � speaks for % on !�" ” is
similar to the delegationstatement“ % delegates !#" ˆ �
to � .” Themaindifferenceis thatconclusionsdrawn from
aspeaksfor statementdon’t consumeany delegationdepth.
Also, theissuerof a speaksfor statementis alwaysimplic-
itly theprincipal“Local ”, i.e., thetrustroot.
For example,giventhefollowing:PeG�c�N�C*H
C#G�C#\�S�>AC#DV\�E�E�HIabB�C#H
c�>�
 :KM � ˆ J5>KE�a ^ J�zk�C�T�a ^ JeDA�9C#S�k�D x?E�B�a ^ J5E�X`\�E�E�HIabB�C#H
c�>�
 :AM �Kzk�C�T�a ^ JeDASUT�DV\�E�E�HIabB�C#H
c�>�
AabS�B�G<�Az
thenonecanconcludethat“ PeG�c�N�C�D�SUT(D8\�E�E�HIabBAC�H
c�>�
KabS�BAG�� .”
But if onechangesthesecondstatementtoa ^ JeHFC#G�C#\�S�>KC�D-\�E�E(HbabBAC�H
c�>�
 :AM � ˆ � >KEQk�C�T2a ^ J�z
then one can no longer concludethat “ PeG�c�N#CnD�SUT�D�\�E�E�H
�abBAC�H
c�>�
KabS�BAG�� ,” becauseAlice only delegatesto CB1 with
depth J .

Onemain reasonfor having speaksfor statementsis to
handledelegationsto principals that can not make (i.e.,
sign)statementsdirectly, e.g., distinguishednamesin X.509
or localnamesin SPKI/SDSI.
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In example1, thereis a credentialissuedby Bob about\�E�E�HIabBAC�H
c�>�
 :AM � . In many scenarios,Bobisanameandcan
not issuestatements;thecredentialis mostlikely signedby
a public key of Bob. Let uscall this key keyBob. Assume
that Alice alsoknows that keyBob is Bob’s public key for
businesspurpose,e.g., Alice hasthefollowing statement:PeG�c�N#C*D�SUT(DVc�D ^ W
D�c�X
C#D�DA�*C�T2
?k�C�T ^ E�_IL ^ E�_I�Kz
Thenby addingthefollowing statement,thetrustrootAlice
canderive thesameconclusionsasin example1. : �*C�TDA�9C#S�k(D x?E�B :AM E�X`\�E�E�HIabB�C#H
c�>�
 :AY �c�xb�8E�N#S�G�DASUT�DVc�D ^ W
D�c�XFC#D�DA�*C�T�
 : �*C#T(L :AM �Az
Usingthis speaksfor statement,Alice candelegatesto the
nameof a businessand separatethis delegation from the
bindingof keyswith thenames.

DL’s speaksfor notion is similar to the speaksfor no-
tion in [1, 21]. However, therearetwo differences.First,
DL’s speaksfor relationis definedon a per-base-atomba-
sis. Principal � mayspeakfor principal % with respectto
one thing but not another. In [1, 21], if � speaksfor % ,
then � speaksfor % with respectto everything.Second,in
DL, theissuerof aspeaksfor statementis alwaysimplicitly
theprincipal“Local ”. But in [1, 21], “ � speaksfor % ” is
trueif % saysso.This is morelikeDL’sdelegationrelation-
ship in which % delegatesto � if % saysso. However, the
speaksfor relationin [1, 21] is unrestrictedlytransitive,i.e.,
it hasno ability to restrict(i.e., to control) re-delegation;it
is thusdifferentfrom thedelegationrelationin DL.

The speaksfor relation can model the relationshipbe-
tweenagroupandits membersor betweenthesubjectfield
andthenamefield in aSPKI/SDSI4-tuple.

3 Mor eExamples

In this section,we show several furtherexamplesof the
useof D1LPto representauthorizationpoliciesandcreden-
tials in differentapplications.

Example2: Using multiple certification systems

Thefollowingexampleismodifiedfromanexamplein [22].

P5G�c�N#CuH
C�G�C�\�S�>AC#D[c�DA�Fc�>AC#�*C#T2
 : ��L : �I�A� p>KE�
 Me� abPQL�
 Ye� abPo��� � abPo�A�KzP5G�c�N#CuH
C�G�C�\�S�>AC#D[c�DA�Fc�>AC#�*C#T2
 : ��L : �I�K� �>AEQ>K@
B�C#D�@
E�G�HI
AJ�L :AM L(PeG�c�N#CuDASUT�D->KB�W
D�>KC#HF�FB�c�C�X
HI
 :AM �K�KzP5G�c�N#CuD�SUT(D[>ABAWFDA>AC#H
��BAc�C#X
Hb
 ^ E�_I�Az^ E�_`H
C�G�C�\�S�>AC#DVc�DA�
c�>KC��*C#T2
 : ��L : �I�A��J5>KEn� � abPc�x ^ E�_`D�SUT�DV_�C�G�E�X
\�D��IE�
 : �IL(E�BA\�S9�Kz^ E�_`H
C�G�C�\�S�>AC#DV_9C#G�E�X
\�DA�bE9
 : �bL�E�B�\�S��K��J�>KEQE�B�\�S��*C#T�zY5� abPRHFC#G�C#\�S�>KC�D-c�D��
c�>AC#�*C�T�
 : ��L : �I�A��J5>KE Y abPoJ�zY abPoJ5DASUT�DVc�DA�
c�>KC��*C#T2
?�I�*C#T2L(�8�Fc�>AC(�Kz� � abPZD�SUT(DVc�DA�Fc�>AC#�*C#T2
 v �*C#T2L v �
c�>KC��KzE�BA\�S��*C#TQD�SUT�D-_9C#G�E�XF\�D��IE�
 v �
c�>KC�L(E�B�\�S��Kz

In thisexample,XRCA, YRCA, andZRCA arerootkeysof
threepublic key certificatesystems.They all have at most
threelevelsof certificateauthorities.Thefirst rulesaysthat,
for Alice toacceptabindingbetweenapublickey andasite,
thebindingmustbecertifiedby systemX andat leastone
of systemY andsystemZ. Thesecondrule saysthatAlice
trustsanyonewhois a “trustedfriend” (unconditionally)on
bindingpublic keyswith sites.Thethird rule saysthatBob
is a trustedfriend of Alice. The fourth rule saysthat Bob
thinkscertificationby systemZ is enoughif thesitebelongs
to a specificorganizationE�B�\�S . Thefifth rule saysthatBob
truststhepublic key E�B�\�S��*C�T to certify thata sitebelongs
to the organization. The rest of the rules are somefacts.
Fromtheaboverulesplusthefacts,it is a conclusionthatPeG�c�N�C*DASUT�DVc�DA�
c�>KC��*C#T2
 v �*C#T(L v �
c�>KC��
— this follows from Alice’s trust of Bob — but it is not a
conclusionthatPeG�c�N�C*DASUT�DVc�DA�
c�>KC��*C#T2
?�I�*C#T�L �I�
c�>AC(� — becauseit is not a
conclusionthat

Me� abPRD�SUT(DVc�DA�Fc�>AC#�*C#T2
m�8�*C#T�L �I�
c�>KC(�
Example3: Accessingmedical records

This is anexampleof controllingaccessto medicalrecords.
It is basedonanexamplein [18]. HM is ahospitalthatcon-
trolsthemedicalrecordsof somepatients;it only authorizes
thoseprincipalsthatarephysiciansof a givenpatientto ac-
cessthemedicalrecordof thatpatient.HM trustsany hos-
pital it knowsto certify thataprincipalis thephysicianof a
patient.HM knowssomehospitalsby itself; furthermore,it
believesthataprincipalis ahospitalif two known hospitals
certify thatthisprincipalis ahospital.Thefollowing D1LP
programrepresentsthis policy andincludessomefacts.

� v DASUT�DVS�W
>A@
E�B�c��#C#Hb
 :AM L�B�C#S�HI
?OQC�H � C#N�
 :AY �A�K�c�x � v D�SUT�DVc�X � E�G�C(
 :AM L��
@�T�DAc�N#c�S�XI
 :AY �K�Az� v H
C#G�C#\�S�>KC�D[c�X � E�G�C(
 :KM L��
@�T�DAc�N#c�S�Xb
 :AY �A�K��J>KEQ>A@
BAC�DA@FE�G�HI
KJ�L : �2L � v D�SUT�D[c�X � E�G�C(
 : �8L @
E�DA�Fc�>AS�G��K�Kz� v H
C#G�C#\�S�>KC�D[c�X � E�G�C(
 : � L�@
E�DA�
c�>KS�G<�A��J>KEQ>A@
BAC�DA@FE�G�HI
 f L : �2L � v D�SUT�D[c�X � E�G�C(
 : �8L @
E�DA�Fc�>AS�G��K�Kz� v DASUT�DVc�X � E�G�C(
 � a[L�@
E�DA�Fc�>AS�G��Kz� v DASUT�DVc�X � E�G�C(
 �e^ L�@
E�DA�
c�>KS�G<�Az�5^ D�SUT�D-c�X � E�G�C�
 � PoL�@
E�DA�Fc�>AS�G��Kz� ayD�SUT�DVc�X � E�G�C(
 � PoL�@FE�D��
c�>AS�G��Kz� PRDASUT�DVc�X � E�G�C(
mPeG�c�N�C(L��F@(T�D�c�N�c�S�XI
 w C�>KC�B��A�Kz
In this example,HM initially believesthat HB andHC

arehospitals.BecausebothHB andHC certify thatHA is
alsoahospital,HM believesit. BecauseHA saysthatAlice
is the physicianof Peter, it is a conclusionthat “HM says
authorized(Alice,read(medRec(Peter)).”

Example4: Controlling delegation
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SupposethatAlice wantsto delegateto Bob theright to ac-
cesssomethingandallowsBobto furtherdelegatethis right
aslong astheprincipalsto which Bob delegatesaremem-
bersof someorganizationorga , wherethis membership
mustbecertifiedby Carl. Alice doesnotwantto controlthe
depthof Bob’s delegation,but shewantsto restrictthedel-
egationto bewithin a certaindomain— theorganization’s
members.In D1LP, Alice canrepresentthis policy by the
following two delegationstatements.

P5G�c�N#CuH
C�G�C�\�S�>AC#D[S�N#N#C�DADU� � >KE�
 ^ E�_IL >KOQ�
�*C#T2�Az>AOo�F�*C#T�H
C�G�C�\�S�>KC#D[S�N#N�C#D�D���J>AEh>K@
B�C#D�@
E�G�HI
AJ�L :KM L�abS�BAG�D�SUT�D-OQC�O�_9C#BU
 :AM L E�B�\�S��K�Kz
Here,tmpKey is a new “dummy” principalcreatedby Al-
ice.3 Alice canfirst generatea new pair of public-private
keys as >KOQ�
�*C#T , thensign the secondstatementwith the
new privatekey andusethenew publickey in thefirst state-
ment. After signingthesecondstatement,Alice canthrow
thenew secretkey away andnot worry aboutkeepingit in
asafeplace.

Accordingto this policy, Alice will delegateto a princi-
pal if bothBobandtmpKey delegateto it. Bobcandelegate
freely. But tmpKey only delegatesto thoseprincipalscer-
tified by Carl to bea member, andtmpKey doesnot allow
re-delegation.Therefore,this achievestheintendedpolicy.

Supposefurtherthatwe have

abS�B�G�DASUT�DVOQC#O�_9C#BU
?glSUi�c�HbL E�BA\�S9�Kz^ E�_�HFC#G�C#\�S�>KC�D[S�N#N�C#D�D�� f >AEhg5SUi�c�HIz^ E�_�HFC#G�C#\�S�>KC�D[S�N#N�C#D�D�� f >AEhj�E�@
XIz
Thenthedelegation“Alice delegatesaccesŝ1 to David” is
a conclusion,but “Alice delegatesaccesŝ1 to John” is not
aconclusion.

4 Semantics

In this section,we give the formal semanticsof the re-
visedD1LP.

4.1 Overview

Thesemanticsof D1LPdefinesa minimalmodelfor ev-
ery D1LPprogram� andananswerto everyquery � rela-
tive to � .

The D1LP program � is first transformed(essentially,
compiled)into a definiteOLP � in a sorted(typed)OLP
language�l�5� . This transformationis definedin sucha
mannerthat it correspondsstraightforwardly to an algo-
rithm. Accordingto theusualsemanticsof OLP, this OLP

3Note that this is a different kind/useof “dummy” principal thanthe
“dummy” principalsemployed in the definition of the semanticsof dele-
gation,discussedin section4 andsection7.

� hasa minimal model ��� thatis a setof entailedground
conclusionsexpressedin OLP.

Theminimal D1LP modelof � , denotedby � � , is ob-
tainedby reverse-transforming� � back into D1LP syn-
tax. �n� is a setof entailedgroundconclusionsexpressed
in D1LP. The reversetransformationis definedin sucha
mannerthat it too correspondsstraightforwardly to an al-
gorithm. This inferencingprocedureto computethe entire
model �n� is called exhaustive(forward) inferencing. It
is usefulwhenonewantsto checkall theconclusionsof a
program.

As in OLP, onedoesnotalwayswantto performexhaus-
tive inferencing. For example,onemay wish to answera
particularquery � . In section4.6, we give a query an-
sweringprocedurethat avoids computingthe entiremini-
malD1LPmodel.Queryansweringis alsocalledbackward
inferencing.

Themostcomplex andinnovativepartof ourredefinition
of D1LP semanticsis thedefinitionof a tractabletransfor-
mation from � to � . We now specify the detailsof that
transformation.

In specifyingthetransformationandcalculatingthesize
of � , we usethe following notation. � is the sizeof � .
By “size,” we meanthenumberof symbols,i.e., variables,
constants,predicatesymbols,keywords,logical operators,
etc.   is the largestfinite delegationdepthusedin � . Be-
causeit is difficult to imagineanauthorizationdecisionthat
distinguishesbetweendepth,say, 12 and13, we expect  
to bea very small integer, e.g., 3 to 5. For any ��¡ $ ¢ ���   ' ,
we definethat �o£ � . We alsodefine $ ¢ ��� � ' + $ ¢ ���   '9¤d¥ ��¦
and $ � ��� � ' + ¥ ��¦ . For �=������§¨¡ $ ¢ ��� � ' ,

�=JV©�� f +
� if � � + � , or � § + � ,

or � ��ª � §¨«  � �~ª � § otherwise

We continuespecifying the transformationin the next
threesubsections,first showing how to transformaprogram� without thresholdstructures,thenshowing how to handle
thresholdstructuresaswell.

4.2 Transformation Without Thr eshold Struc-
tur es

As mentionedin the beginning of section4.1, the lan-
guage�u� � is sorted,i.e., typed. In a sortedLP language,
eachvariablehasa sort (type), andeachfunction symbol
hasa typesignature.Thetypesignatureof a givenfunction
symbol ¬(­9�~® specifies,firstly, the type of eachof ¬(­��~® ’s
arguments. The signaturespecifies,secondly, the type of¬(­��~® ’s “returnvalue,” i.e., thetypeof any termof theform¬(­��~® 
������?� . Variablesof one sort can only be instantiated
to termsof the samesort. Therearesimpletechniquesto
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translateprogramsfrom asortedlanguageto aunsortedlan-
guage.See[20] for astandardreference.

Thesymbolsof �l�l� includeall theconstantsof � plus
a bunchof new predicateandfunctionsymbolsintroduced
by the transformation. The language�u�l� hasonly two
sorts.All thevariablesandconstantscomingfrom � arein
onesort. All the termsintroducedduring the transforma-
tion arein theothersort. All thevariablesin �l� � actually
comefrom � , i.e., appearedin � , becausethe transforma-
tion doesnot introduceany new variables,aswe will see
soon. Therefore,all the variablesin �u� � are in the first
sort.

Thereare two predicatesin the language�u� � : ¯9°U± �(²
and ��	 ± 	A³ " �#	�² . The predicatē9°U± �(² , usedto representdi-
rect statementsthat aremadein � or derived in the infer-
enceprocess,takesthreeparameters:

¯�°U± ��²´
 . ²�² ­ 	A��� !�" � ± 	 � �
The domainof . ²�² ­ 	A� is � � .;�~®�. � "�± ² , a set that contains
all principalsin � , plussomedummyprincipalsintroduced
duringthebodytransformation,which wewill definesoon.
The domainof !�" is the set of all groundbaseatomsin�7µ ��¶4· (groundinstantiationof � ). The domainof ± 	 � is$ J´��� � ' . Note that baseatomsin � areusedas termshere.
For eachpredicatesymbol in � , we add to �l�l� a new
function symbol that hasthe samenameas that predicate
symbol.Thefield ± 	 � storesthenumberof delegationsteps
this conclusionhasgonethrough. A ‘ � ’ in the field ± 	 �
meansthat it hasgonethroughmorestepsthanwe needto
keeptrack of, i.e., the numberof stepsis greaterthanthe
maximalintegerdelegationdepth   .

The predicate��	 ± 	K³ " �#	�² , usedto representdelegation
statementsthat aremadein � or derived in the inference
process,takesfiveparameters:

��	 ± 	K³ " �#	�²U
 . ²�² ­ 	A��� !�" �#�(	A�9����	 ± 	�� ± 	 � �
Here, �(	A� standsfor depthand ��	 ± 	 standsfor delegatee.
Thedomainsof . ²�² ­ 	A� and !#" arethe sameasthey arein¯�°U± ��² ; the domainof ��	A� is $ JU��� � ' ; the domainof �(	 ± 	 is� � .<�~®<. � "(± ² , the sameas the . ²�² ­ 	A� field; the domainof± 	 � is $ ¢ ��� � ' . Note that the ± 	 � field of a �(	 ± 	A³ " �#	�² atom
canbe ¢ ; this will bethecasefor “speaksfor” statements.

Function PSFormula:

We now definea function �*]�t*° ��¸ ­¹±º" . It takestwo pa-
rameters:an issuer�*] andanatomof eitherthepredicate¯�°U± ��² or the predicate��	 ± 	K³ " �#	�² without the . ²�² ­ 	A� field.
Theissuer�*] canbeeitheraprincipalvariableor aprinci-
pal structure.The function �*]�t*° ��¸ ­¹±º" is definedasfol-
lows:

�*]�t*° ��¸ ­»±¼" 
K
 �*] JU� �*]2f �4� % ��� +
 �*]�t*° ��¸ ­¹±º" 
 �*] JU� % ���4� �*]�t*° ��¸ ­¹±º" 
 �*]2f � % ���A�

�*]�t*° ��¸ ­»±¼" 
A
 �*] J�� �*]2f ��� % ��� +
 �*]�t*° ��¸ ­¹±º" 
 �*] J´� % ���A� �*]�t*° ��¸ ­¹±º" 
 �*] J´� % ���A�
�*]�t*° ��¸ ­»±¼" 
  � ¯9°U± �(²´
 !�" � ± �K� + ¯9°U± �(²´
  � !�" � ± �K�
�*]�t*° ��¸ ­»±¼" 
  �#�(	 ± 	A³ " �#	�²´
 !�" ����	A�9����	 ± 	�� ± �A� +��	 ± 	K³ " �#	�²U
  � !#" ����	A���#�(	 ± 	�� ± �A�
where

 
is eithera principalvariableor a single

principal.

Thefunction �*]�t*° ��¸ ­¹±º" transformsstatementsthathave
complex principal structuresas issuersto equivalent for-
mula of statementswhoseissuersare either principalsor
principal variables.This functionenablesbodystatements
to bemoregeneralthanheadstatements.

For now, �*]�t*° ��¸ ­»±¼" simply returnsa formula. When
westartto dealwith thresholdstructuresin sections4.3and
4.4, �*]~t*° ��¸ ­»±¼" will havesideeffectsaswell asreturning
a formula; it will generatesomeadditionalrulesandintro-
ducesomenew constants.

Finally, we candefinethe transformation.It is divided
into two steps:bodytransformationandheadtransforma-
tion.

Transformation ½ : Body transformation

Transformation½ both changesrules in � and constructs
somenew rules.Theresultof changing� is called� � . The
setof new rulesis called�7¾�¿6¿� .

Transformation½ doesthefollowing to thebodyof each
rule in � .

1. Replaceeachbodydirectstatement%e] says !�"
with “ �*]�t*° ��¸ ­¹±º" 
 %e] � ¯�°U± ��²´
 !�" � � �A� ,”
where %e] is a principal structureor a principal vari-
able.

This transformationstep addsthe length � to body
statementsanduses �*]�t*° ��¸ ­»±¼" to deal with com-
plex issuers. Intuitively, a direct statement“ % says!�" ” in the body of a rule is true if we canprove that% supportthebaseatom !#" eitherdirectly or through
delegation.Thelength � meansthatwe do not require
that the conclusionis drawn within a certainnumber
of delegationsteps.

2. Replaceeachbodydelegationstatement%e] delegates !�" ˆ � to �
with “ �*]�t*° ��¸ ­¹±º" 
 %e] ����	 ± 	K³ " �#	�²U
 !�" �#�(� � � � �A� ,”
where %e] is a principal structureor a principal vari-
ableand � is aprincipalor a principalvariable.

This stepis similar to step J´� , but it is for delegation
statements.

3. Replaceeachspeaksfor statement� speaks for % on !�"
with “ �(	 ± 	A³ " �#	�²´
 % � !�" � � � � � ¢ � .”
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This meansthatspeaksfor statementsarespecialdel-
egationsthatalwayshavedepth* andlength0.

4. Replaceeachbodydelegationstatement%e] delegates !�" ˆ � to 
 � �#�#���#��� � ���
with “ �*]�t*° ��¸ ­»±¼" 
 %e] ����	 ± 	A³ " �#	�²´
 !�" �#�(� � �´À4Á»� � �A� ,”
where� ���#���#�2� � � areprincipals,and � �´À4Á is anewly
createdprincipal.

For each� � , . + JU��� � , addthefollowing factto � ¾�¿6¿� :��	 ± 	K³ " �#	�²U
 � �;� !�" � � � � �´À4Á~� ¢ �4�
This transformationenablestractableinferenceof del-
egations that have conjunctsof principals as dele-
gatees. Rememberthat the ��	 ± 	 field of the pred-
icate �(	 ± 	A³ " �#	�² is requiredto be a principal, rather
than a conjunctionof principals, as in [22]. Here,
we introducea dummy principal � �´À4Á to represent
the principal structure“ 
 � �#�#�#����� � ��� .” That � �´À4Á
is equivalentto “ 
 � �6�#���#�2� � ��� ” is fully characterized
by the relationshipsthat � �´À4Á speaksfor every prin-
cipal in “ 
 � �#�#�#����� � ��� .” The new facts“ �(	 ± 	A³ " �#	�²
 � �4� !�" � � � � �´À4Á~� ¢ � ” are introducedfor this purpose.
Thesefactsareaddedto � ¾�¿6¿� insteadof � � , because
they do not needfurtherprocessing;includingthemin
thefinal outputprogram� is sufficient.

Let � � .;�~®�. � "�± ² bethesetof all principalsin � �¹¤ �7¾#¿6¿� .

Transformation ½(½ : Head transformation

The input to Transformation½(½ is � � . The transformation
changesrule headsin � � ; the result is called � § . Trans-
formation½(½ alsoconstructssomenew rules;thesetof the
new rulesis called�7¾#¿6¿§ .

For eachrule Â in � � , oneof the following two casesap-
plies:

Caseone: When Â ’s headis a direct statement“ % says!�" ,” do thefollowing two steps.

1. Holds headtranslation:
ReplaceÂ ’s headwith “ ¯�°U± ��²´
 % � !#" ��J��4� ”

2. Holds length-weakeningmeta-rule:
For each± 	 � ¡ $ J´���   ' , addthefollowing rule:¯�°U± ��²´
 % � !#" � ± 	 � ©ÃJ�� if ¯9°U± �(²´
 % � !�" � ± 	 � �4�
This meta-rulestatesthat,if somethingcanbederived
with smallerlength,thenit canalsobe inferredwhen
largerlengthis allowed.

Casetwo: When Â ’sheadis notadirectstatement,i.e., it is
eithera delegationstatementor a speaksfor statement,do
thefollowing steps.

Sub-casea: If Â ’sheadis a delegationstatement:% delegates !�" ˆ � to �7] ,
i.e., a depth-� delegation from % to �7] : let ±¼± be J , and� �´ÀKÁ be � if � is asingleprincipalor aprincipalvariable;

otherwiselet � �´À4Á be a newly createdprincipal (dummy
principal).

Sub-caseb: If Â ’s headis a speaksfor statement:� speaks for % on !�" :
let � be � ; ±º± be ¢ , and � �´À4Á be � .

For both sub-cases,do thefollowing.

3. Delegatesheadtranslation:
ReplaceÂ ’s headwith�(	 ± 	A³ " �#	�²´
 % � !�" �#�(� � �´À4Á�� ±¼± � .

4. Holds propagationmeta-rule:
For each± 	 � ¡ $ J´����� ' , addthefollowing rule:¯9°U± �(²U
 % � !�" � ± 	 � © ±º± �

if ��	 ± 	A³ " �#	�²´
 % � !#" ����� � ��À4Á � ±¼± � ,�*]�t*° ��¸ ­»±¼" 
 ��] � ¯�°U± ��²´
 !#" � ± 	 � �K� .
This meta-rulepropagatesdirect statementsthrough
delegationasfollows: If thedelegationin Â ’s headis
true(by ½�½ � p , it is truewhenthebodyof Â is true)and
thedelegatee��] supportssomethingwithin ± 	 � dele-
gationsteps,thentheissuer% supportsthesamething
within ± 	 � © ±º± steps,where ±¼± is J if Â ’s headis a
delegationand¢ if Â ’s headis aspeaksfor statement.

5. Holds length-weakeningmeta-rule:
For each± 	 � ¡ $ �l©ÄJ´���   ' , addthefollowing rule:¯9°U± �(²U
 % � !�" � ± 	 � ©ÄJ�� if ¯9°U± �(²´
 % � !�" � ± 	 � � .
This meta-ruleis the sameas ½(½ � f . It appearsagain,
becauseit is alsoneededfor casetwo.

6. Selfdelegationmeta-rule:
For eachÅ ¡ � � .;�~®�. � "�± ² , for each��	A��¡ $ J´��� � ' , and
for each± 	 � ¡ $ ¢ ��� � ' , addthefollowing fact:�(	 ± 	A³ " �#	�²´
 Å � !#" ����	A��� Å � ± 	 � � .
This meta-rulestatesthateachprincipaldelegatesun-
conditionallyto itself.

7. Delegateslength-weakeningmeta-rule:
For eachÅ ¡ � � .<�~®<. � "(± ² , for each�(	A��¡ $ JU����� ' , and
for each± 	 � ¡ $ ¢ ���   ' , addthefollowing rule:�(	 ± 	A³ " �#	�²´
 % � !�" �#�(	A�9� Å � ± 	 � ©ÃJ��

if ��	 ± 	A³ " �#	�²´
 % � !#" ����	A��� Å � ± 	 � � .
Thismeta-rulestatesthatany delegationthatis derived
within a certain length can also be derived within a
largerlength.

8. Delegatesdepth-weakeningmeta-rule:
For eachÅ ¡ � � .<�~®<. � "(± ² , for each± 	 � ¡ $ ¢ ��� � ' , and
for each�(	K��¡ $ JU���   ' , addthefollowing rule:�(	 ± 	A³ " �#	�²´
 % � !�" �#�(	A�9� Å � ± 	 � �

if ��	 ± 	A³ " �#	�²´
 % � !#" ����	A�¨©ÄJ´� Å � ± 	 � � .
This meta-rulestatesthat a smaller-depthdelegation
canbederivedif a correspondinglarger-depthdelega-
tion is derived.
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9. Delegationchaining meta-rule:
For eachÅ ¡ � � .<�~®<. � "�± ² , for each�(	A�n¡ $ JU����� ' , and
for each± 	 � ¡ $ ¢ �����lÆ0�(	A� ' , addthefollowing rule:��	 ± 	K³ " �#	�²U
 % � !�" �KOQc�X2
4�5Æ ± 	 � �#�(	A����� Å � ±º± © ± 	 � �

if �(	 ± 	A³ " �#	�²´
 % � !�" �#�(� � �´À4Á � ±¼± � ,�*]�t*° ��¸ ­¹±º" 
 ��] �#�(	 ± 	A³ " �#	�²´
 !�" �#�(	A�9� Å � ± 	 � �A� .
where for any �=JU��� f ¡ $ ¢ ���   ' : “ � Æ � + � ,”
“ � Æo�=J + � ,” “ ��J
Æ7� f + �=J=Ço� f ,” and“ ��J=Æ � + Ç � .”
This is the mostcomplex andthe mostexpensive (in
termsof thesizeof thenew rulesadded)meta-rule.It
chainstwo delegationsto derive a new one. The de-
riveddelegation’s depthis boundedbothby thedepth
of the seconddelegation in the chain and the depth
of thefirst delegationminusthenumberof delegation
stepsusedto derive theseconddelegation.

The above meta-rulesmay seemunnecessarilycompli-
cated,especiallyin theway they dealwith lengthanddele-
gationdepth.They aresobecauseweareavoidingintroduc-
ing new variablesin the transformation;this is essentialin
ensuringtractability. In fact,we excludedynamicweighted
thresholdstructuresin this versionof D1LP preciselybe-
causethey requireintroducingnew variables.

Theresultof thetransformationis:

� + � § ¤ �7¾�¿6¿� ¤ �7¾�¿6¿§ �
It is straightforwardto show by acountingargumentthat

thesizeof � is È 
 ��É(  § � , where � is thesizeof � and  
is themaximalintegerdepthusedin P. Eachrule in � can
produceÈ 
 ��  § � new rulesin � , andeachnew rule may
have a sizethat is È 
 � � timesthesizeof theoriginal rule.
A moredetailedcountingargumentis asfollows.

Our counting argument focuseson the ratio Ê��oÊ�Ë�Ê ��Ê ,
whichwe call thegrowthfactor.

Note that Ê��*]�t*° ��¸ ­»±¼" 
 ��] � % ��� Ê�Ë�Ê�% � Ê + È 
 Ê1�7]~Ê � .
Clearly, Ê���]~Ê £ � . Therefore, the growth factor of�*]�t*° ��¸ ­»±¼" is È 
 � � .

In Transformation½ , a body statementis replacedby
theresultof a corresponding�*]~t*° ��¸ ­»±¼" call. Therefore,Ê � � Ê�Ë�Ê ��Ê + È 
 � � . If the body statementhasa conjunc-
tive delegatee,the program � ¾#¿6¿� hasone additional fact
for eachprincipal in the delegatee. Becausethereare at
most � principalsin any delegateeandeachadditionalfact
hassize linear in the size of the original body statement,Ê �7¾�¿6¿� Ê�Ë�Ê ��Ê + È 
 � � .

In Transformation½�½ , if a rule hasa direct statement
in the head,up to   new rules areadded,eachof which
hassizelinear in the sizeof the original head. Therefore,Ê �7¾�¿6¿§ Ê�Ë�Ê ��Ê + È 
   � . The sizeof � § remainsunchanged
from � � , so Ê � § Ê1Ë(Ê ��Ê + È 
 � � .

In Transformation½(½ , if a rule Â hasa delegationstate-
mentor a speaksfor statementin the head,several meta-
rulesapply;eachaddsa setof rulesto �7¾�¿6¿§ , but thesizeof� § remainunchangedfrom � � . Transformation½�½ � Ì (the

delegationchainingmeta-rule)generatesthe largestsetof
rules.It addsÈ 
 Ê1� � .<�~®<. � "�± ² Ê�  § � transformedrulesfor the
rule Â . Recall that � � .<�~®<. � "�± ² is the setof all principals
in � �~¤ �7¾�¿6¿� . Becauseat mostonenew principal is intro-
ducedper statementin � , Ê�� � .<�~®<. � "�± ² Ê + È 
 � � . Each
transformedrule mayuse �*]~t*° ��¸ ­»±¼" to changepartsof
it. Therefore,the growth factorfor transformation½(½ � Ì isÈ 
 � §   § � .

Because� + � § ¤ �7¾�¿6¿� ¤ �7¾�¿6¿§ � Ê��oÊ1Ë(Ê ��Ê + È 
 � §   § � .
Of this � §   § growth factor, one � comesfrom the size
of � � .<�~®<. � "(± ² , which is likely to be theorderof Ê ��Ê . The
other � comesfrom theboundon thesizeof oneprincipal
structure;this usuallywill bemuchsmallerthan Ê ��Ê .
4.3 Transformation with Static Thr esholdStruc-

tur es

To handlestaticunweightedthresholdstructures,weadd
a new functionsymbol“ ² ­ � ¯ ” to �l� � ; it standsfor static
unweightedthresholdstructures. We also extend the do-
mainof theissuerfield for predicates̄9°U± �(² and �(	 ± 	A³ " �#	�²
to include terms of the form “ ² ­ � ¯ 
 . � $&% � �#���#��� % �(' � ,”
where . is an integer. Then we extend the definition of�*]�t*° ��¸ ­»±¼" to includethefollowing:�*]�t*° ��¸ ­»±¼" 
�� ¯ �
	�² ¯�°U± ��
 � � $1% � �#�#����� % ��' �4� ¯9°U± �(²´
 !�" � ± �K�+ ¯9°U± �(²´
�² ­ � ¯ 
 � � $1% � ���#���2� % �(' �4� !�" � ± �

anda similardefinitionin which adelegatesatom
replacestheholdsatom.

Thefunctionof �*]~t*° ��¸ ­»±¼" , for callsof suchform, results
in sideeffects besidesreturningan atom: it addsthe fol-
lowing new rulesto �7¾�¿6¿§ . Theserulesreasonaboutatoms
thathave issuersof theform “ ² ­ � ¯ 
 . � $1% ���#���#��� % � ' � .” The
integer . is the remainingthresholdvaluethat needsto be
satisfied.

Í For . + �
to J , for /�+ J to � Ç . , addtherule:¯9°U± �(²U
4² ­ � ¯ 
 . � $1%-, � %-,;Î �#�#���#�2� % � ' ��� !#" � ± �

if ¯�°U± ��²´
�² ­ � ¯ 
 . � $1%-,;Î �#�#���#��� % � ' �4� !�" � ± ���
Í For . + �

to J , for /�+ J to � Ç . ª J , addtherule:¯9°U± �(²U
4² ­ � ¯ 
 . � $1%-, � %-,;Î �#�#���#�2� % � ' ��� !#" � ± �
if ¯�°U± ��²´
 %V, � !�" � ± � ,¯�°U± ��²´
4² ­ � ¯ 
 . ÇÃJU� $&%V,;Î �����#���2� % � ' �4� !�" � ± ���

Í For /h+ � ª J to � , addthefact:¯9°U± �(²U
4² ­ � ¯ 
 ¢ � $1%-, �#���#��� % � ' ��� !#" � ± �4�
Í Add threeanalogoussetsof rulesfor ��	 ± 	K³ " �#	�² . Here,

weomit thedetails.

Eachtime �*]�t*° ��¸ ­»±¼" encountersa staticunweighted
thresholdstructure, È 
mOoc�X»
 � � � � � � new rules are gener-
ated, where

�
is the thresholdvalue, and � is the size

of the thresholdpool. Each new rule has size linear in
the size of �*]~t*° ��¸ ­»±¼" ’s input. The worst-casebound
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for È 
?OQc�Xb
 � � � � � � is È 
 � § � . Thus, handlingstatic un-
weightedthresholdstructuresincreasesthe growth factor
of �*]�t*° ��¸ ­¹±º" from È 
 � � to È 
 � § � . This increasesthe
worst-casesizeof � from È 
 ��É(  § � to È 
 ��Ï�  § � .

Static weighted thresholdstructuresare handledsim-
ilarly; a new function symbol “ ²K3e� ¯ ” is introduced.
Handling them doesn’t change the growth factor of�*]�t*° ��¸ ­»±¼" , it is still È 
 � § � . We omit thedetailshere.

4.4 Transformation with Dynamic Thr eshold
Structur es

To handledynamicthresholdstructures,weneedalist of
all principalsin � � .<�~®<. � "�± ² , thesetof all principalsin � � ¤�7¾�¿6¿� . Let � + Ê�� � .<�~®<. � "(± ² Ê andlet $1Ð ��� Ð §��#���#�2� ÐeÑ ' be
onesuchlist.

We introduce a new function symbol “ � ­ � ¯ ,” which
standsfor dynamic unweightedthresholdstructure,and
extend the domainsof the issuerfield for the two pred-
icates ¯9°U± �(² and �(	 ± 	A³ " �#	�² to include termsof the form
“ � ­ � ¯ 
 . � / � ® � ,” where. and / areintegers,and ® is a newly
introducedconstant. The integer . is similar to that in² ­ � ¯ . And the integer / is an index to the list of princi-
pals“ $1Ð � � Ð § ���#����� Ð Ñ ' .” Wealsoextendthedefinitionsof�*]�t*° ��¸ ­»±¼" to includethefollowing:�*]�t*° ��¸ ­»±¼" 
�� ¯ �
	�² ¯9°U± �=
 � � :  �� � .<� says���
	��=
��#��� :  ���#���A��� ¯�°U± ��²´
 !#" � ± �A�+ ¯9°U± �(²U
4� ­ � ¯ 
 � ��JU� ® ��� !#" � ± �

anda similardefinitionfor ��	 ± 	K³ " �#	�² .
Each time �*]~t*° ��¸ ­»±¼" is called with a dynamic un-
weightedthresholdstructureargument,a new constant ®
anda setof new rulesaregenerated.Theconstant® is used
to uniquelyidentify the dynamicthresholdpooldefinedby
“?X, Prin sayspred( ���#� ?X �#�#� ).” The new rulesareas
follows.

1. For . + �
to J , for /h+ J to � Ç . , addtherule:¯�°U± ��²´
4� ­ � ¯ 
 . � / � ® �4� !�" � ± �

if ¯9°U± �(²´
�� ­ � ¯ 
 . � / ª JU� ® ��� !#" � ± �4�
2. For . + �

to J , for /h+ J to � Ç . ª J , addtherule:¯�°U± ��²´
4� ­ � ¯ 
 . � / � ® �4� !�" � ± �
if ¯9°U± �(²´
 � � .<� �����=	��=
����#� Ðe, ���#���4� � ���¯�°U± ��²´
 Ðe, � !�" � ± � ,¯�°U± ��²´
�� ­ � ¯ 
 . ÇÄJ´� / ª J´� ® �4� � �A��� !�" � ± �4�

3. For /h+ � ª J to � , addtherule:¯�°U± ��²´
4� ­ � ¯ 
 ¢ � / � ® ��� !�" � ± ���
4. Add ananalogoussetof rulesfor �(	 ± 	A³ " �#	�² . Here,we

omit thedetails.

For eachdynamicthresholdstructure,È 
mOoc�X»
 � � � � � �
rulesareadded,where

�
is thethresholdvalue.Recallthat� + Ê1� � .<�~®<. � "�± ² Ê + È 
 � � . Thus,theworst-casegrowth

factor of �*]�t*° ��¸ ­»±¼" with dynamicthresholdstructures
is still È 
 � § � , thesameasthatwith staticthresholdstruc-
tures.However, dynamicthresholdstructuresaremoreex-
pensivein practice,because� is typically muchlargerthan� (recallthat� , usedin section4.3,wasthesizeof onestatic
thresholdpool).

4.5 ReverseTransformation of Conclusions

Wenext defineasimplereversetransformationthatmaps
an OLP modelof � to a D1LP modelof � . This reverse
transformationis usefulif onewantsall theD1LP conclu-
sionsentailedby � .

Í For eachatomof theform: ¯9°U± �(²U
 % � !�" � ± 	 � � ,
where % is aprincipal,includetheD1LP-conclusion:% says !�" .

Í For eachatomof theform: ��	 ± 	A³ " �#	�²´
 % � !#" � � �   � ¢ � ,
where % and   are principals, include the D1LP-
conclusion:  speaks for % on !�" .

Í For eachatomof theform:�(	 ± 	A³ " �#	�²´
 % � !�" �#�(	A�9�   � ± 	 � � ,
where % and   areprincipals,andwhere ± 	 � « ¢ , in-
cludetheD1LP-conclusion:% delegates !#" ˆ �(	A� to   .
(Note that, becauseof the way the semantictrans-
formation is defined, there are no atomswith both± 	 � + ¢ and ��	A��£ � .)

Noticeherethatlengthis ignoredaftertheOLPconclusions
aredrawn.

4.6 Query answering

An answerto a D1LP query � is a setof variablebind-
ings that makes � true relative to � . When � is ground,
the answeris just whether � is true. Although whether �
is truerelative to � is determinedby � � , onecannot sim-
ply checkwhether � is in � � to answerit, becausethe
syntacticexpressivenessof a D1LP query is considerably
greaterthanthatof a D1LP conclusion.A querymayhave
a complex principal structureas issuer, and it may have a
conjunctionof principalsasdelegatee.

Next, we giveanalgorithm to answerthequery � rela-
tive to � , thatavoidsexhaustive inferencing:

1. Transform � into an OLP query, usingthe samepro-
cedureas the oneusedto transformrule-bodies,i.e.,
Transformation½ (seesection4.2). This transforma-
tion changes� into anOLP query ��Ò andgeneratesa
new setof OLPrules Óu¾�¿6¿ (possiblyempty).

2. Forma OLP program�5Ò + � ¤ Óu¾�¿6¿ .
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3. Answer the OLP query ��Ò with respectto �5Ò , using
somebackward OLP inferenceengine,e.g., Prolog.
Theresultingbindingsdirectly yield theanswerto the
query � relative to � .

5 Tractability Results;Algorithms

In thissection,wegiveupper-boundresultsontheworst-
casecomputationalcomplexity of the transformationfrom
D1LP to OLP (which is definedin the previous section)
andof overall D1LP inferencingusingthis approach.We
show that the transformationis tractableand that, under
commonly-metrestrictions, overall D1LP inferencing is
alsotractable.

Theorem1 (Tractable Transform Size)
Thesizeof theoutputprogram � is È 
 ��Ï�  § � , where � +
Ê ��Ê , and   is themaximaldelegationdepthin � .

Proof. From the countingargumentsin the previous sec-
tion, it followsstraightforwardlythat Ê��7Ê�Ë�Ê ��Ê is È 
 ��É(  § � .
Therefore,Ê��7Ê + È 
 ��Ï(  § � .

We expectthat   will usuallybemuchsmallerthan � ,
e.g., lessthan10.

Next, we discusshow the complexity picturewill often
in practicebesignificantlybetterthantheworst-casebound
of È 
 ��Ï(  § � . Overall, we observe that not all rulesgrow
by thefactorof È 
 ��É(  § � .

Considera rule Â that doesnot containany threshold
structures;let ]�Ô be thesizeof the largestprincipal struc-
ture in Â . Certainly ]�Ô £ Ê1Â*Ê £ � . Often, ]9Ô will be
a small constant. If Â ’s headis a direct statement,Â ’s
growth factoris OQS�Õ�
 ]�Ô �   � . Otherwise,Â ’sgrowth factor
is “ �R] Ô   § .” Recallthat � + Ê�� � .;�~®�. � "�± ² Ê + È 
 � � and� � .<�~®<. � "(± ² is thesetof all principalsin � �b¤ �7¾�¿6¿� . Often,
this “ �R] Ô   § ” factoris muchsmallerthantheworst-case
factor È 
 ��É�  § � .

Transformationof rules whose headscontain thresh-
old structuresis more expensive. Considersuch a ruleÂ . Let Ö7Ô be the largest thresholdvalue in Â ’s head;
let ×bÔ be the size of the largest thresholdpool in Â ’s
head. If Â ’s headcontainsany dynamicthresholdstruc-
ture, ×bÔ + Ê�� � .<�~®<. � "�± ² Ê + � . The growth factor ofÂ is “ OQc�Xb
 Ö7Ô � ×bÔ � ×¹Ô~�R  § ,” which, in the worst case,
is � É   § . However, often, Ö7Ô will be a small constant.
Also, staticthresholdstructureswith small thresholdpools
aremuchlessexpensive thandynamicones,becausetheir× Ô factoris muchsmaller. Moreover, although� is typi-
cally of thesameorderof � , often, it will besignificantly
smallerthan � . Also notethathaving thresholdstructures
in onerule doesn’t affect the growth factorof otherrules.
We expectthat, in mostscenarios,rulesthat usethreshold

structureswill be relatively rarecomparedto simplerules
andfacts.

In theprevioussection,we describedthetransformation
by defining its output. We observe that the transforma-
tion (plusthereversetransformation)correspondsstraight-
forwardly to an algorithm for transformation(andreverse
transformation).We observe further that this algorithmfor
transformationtakes time linear in the size of the output
OLP.

Theorem2 (Tractable Transform Time)
Computing � takes time È 
 ��Ï(  § � . The transformation

fromD1LP to OLP is thuscomputationallytractable.

Proof. Follows from theorem1, alongwith the above ob-
servationthat thetransformationfrom D1LP canbeimple-
mentedby an algorithmwhosetime is proportionalto the
outputsize.

Next, we review somepreviously known resultsabout
OLP (see,e.g., [4] [20]). We saythata LP (eitherOLP or
D1LP)obeystheVB restrictionwhenit hasanupperboundØ on thenumberof (logical) variables.To indicatethat the
per-ruleboundon thenumberof variablesis Ø , we alsosay
that the LP is VB( Ø ). A fact aboutLP’s is that: given a
sorteddefiniteOLP program � that is VB( Ø ), if the Her-
branduniversefor eachsort of variableis boundedby � ,
thenthegroundinstantiationof � hassize È 
 Ê��7Ê���Ù � . This
is becausefor eachvariable,thereareatmost È 
 � � ground
termsthatcanbeusedto instantiateit. Thenfor eachrule,
thereareatmost È 
 � Ù � waysto instantiateit. Anotherfact
aboutLP’s is that: for a definiteOLP, exhaustive inferenc-
ing (i.e., computingits entiremodel)takestime(andspace)
that is worst-caselinear in the sizeof its instantiatedver-
sion. This is a major reasonwhy OLP inferencingis very
practical,e.g., asin SQL/RDBandProlog,andis oftendone
with theserestrictions(e.g., Datalogrestrictioncommonin
SQL/RDB).

A straightforwardalgorithm for computingtheminimal
D1LP modelof a givenD1LP program� is: transformthe
D1LP � into the OLP � , thencomputethe minimal OLP
modelof � , thenreverse-transformthis model. Thereare
a numberof existing proceduresfor computinga minimal
OLPmodel,e.g., Smodels[26].

Theorem3 (Tractable D1LP Infer encing)
Given a D1LP � that is VB(Ø ), computingthe minimal
D1LPmodelof � hastimecomplexity È 
 ��Ù Î Ï(  § � .
Proof. If � is VB( Ø ), then � is alsoVB( Ø ), becausethe
transformationfrom � to � doesn’t introduceany new vari-
ables. All (logical) variablesin � are in one sort; and
this sort hasa Herbranduniverseof size � – becauseall
of the logical function symbolsin � have zero arity, i.e.,
they areall constants.Therefore,theinstantiatedsizeof �
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is È 
 Ê��oÊ1��Ù � + È 
 �`Ù Î Ï�  § � . Then,computingthe min-
imal OLP model of � takes time È 
 ��Ù Î Ï(  § � , and the
size of this model is È 
 ��Ù Î Ï(  § � . The reversetransfor-
mationtakestime linear in thesizeof this model.Socom-
putingtheminimal D1LP modelof � hastime complexityÈ 
 ��Ù Î Ï(  § � .

6 Implementation

Overall,our implementationarchitecturefor thisversion
of DL usesadelegationcompilerfrom DL to OLPthatim-
plementsthesemanticaltransformationwegavefrom DL to
OLP. Earlier, we gave4 not only analgorithmfor this dele-
gationcompiler, but alsoanalgorithmfor usingthedelega-
tion compilerto computethe entireminimal D1LP model,
and(in section4.6) an algorithmfor using the delegation
compiler to answerD1LP queries(without computingthe
wholetheentireminimal D1LPmodel).

We have implemented,in Java, sucha delegationcom-
piler thatdoesthe transformationfrom D1LP to OLP (and
the reversetransformationback from OLP to D1LP) de-
scribedin Section4 anddoesexhaustiveD1LP inferencing
by combiningthatcompilerwith apreviouslyexistingOLP
inferencingengine.The implementedcompilercangener-
ateOLP in thesyntacticformatsof a varietyof OLP infer-
encingengines,bothforwardreasoningones(e.g., Smodels
[26]) andbackwardreasoningones(e.g., XSB [29], a vari-
antof Prolog).

The compiler and D1LP inferencingengine are inte-
gratedasanextensionto thepreviouslyexisting IBM Com-
monRulessystem[17] [15], a Java library which among
its capabilitiesincludesa rule translationformat (“inter-
lingua”, encodedin XML) and sampletranslatorsto talk
to multiple OLP inferencingengines.The D1LP compiler
reusesclassesandcodefrom theCommonRulescore,espe-
cially for specificationandinferencing.

Theimplementationis somewhatexpressively restricted,
and slightly different syntactically, from the version of
D1LP given in this paper. (It wasbasedon a preliminary
versionof thedesignin thispaper.)

We wereableto developthis implementationrapidly —
in a few person-weeksof codingeffort — by building upon
existing OLP systems,largely becausethedelegationcom-
piler approachprovidesgreatmodularityin thesoftwareen-
gineeringsense.

We have also implementedthe compiler in XSB [29],
a Prolog-variant logic programmingsystemdeveloped at
SUNY Stony Brook. This secondimplementationusesan
alternativetransformationthatis differentfrom (but similar
to) theonewe gave in section4 andusedin thefirst (Java)

4at ahigh level of description

implementation.This alternative transformationgenerates
anoutputprogramthathassizelinear in thesizeof the in-
put program,but it doesintroducenew variables.We call
this“ungroundedtransformation,” andthetransformationin
Section4 “groundedtransformation.” This implementation
canhandleeverythingin thesyntaxdescribedin Section2.
With ungroundedtransformation,it canalsohandlethedy-
namicweightedthresholdstructuresdefinedin [22]. This
implementationusesXSB’s inferenceengine,so it canan-
swerqueriesdirectly.

The expandedResearchReport version of this paper
gives additional details about implementation,including
sampleoutput.

7 Discussionof Syntax; Ensuring Computa-
tional Tractability

As we discussednear the beginning of section2, the
new versionof D1LPsyntaxhastheconjunctive-delegatee-
queriesexpressive restriction,in order to ensurethat it is
tractable,unlike theversionin [22]. In therestof this sec-
tion, we discussin detail the tractabilitymotivationfor the
conjunctive-delegatee-queriesrestriction.

To understandthis change,it is necessaryfirst to under-
standwhy D1LPasdefinedin [22] is intractable.

In [22], D1LP’s semanticsdefinesa minimal modelfor
eachD1LP program� : asthe leastfixedpoint of anoper-
ator Ú-� . TheoperatorÚ-� takesasinput an interpretation½ of � . First, it transforms� to anordinarylogic program
(OLP) �lµ ; this transformationdependsupon ½ . Next, it
computes�uµ ’s minimal OLP model. Then, it mapsthis
modelbackto a correspondinginterpretationof � andfi-
nally returnsthis interpretationÛ . It is shown in [22] that
this iterationprocessalwaysterminatesandyieldsa unique
minimal model. We observe herethat, unfortunately, it is
veryexpensivecomputationally.

Becausethetransformationfrom D1LP to OLP depends
ontheinterpretation½ , computingtheminimalmodelof one
D1LP programrequiresaniterativeseriesof stepsuntil the
(least)fixedpoint is reached.Eachiterationstepincludesa
transformationphaseandanOLP inferencingphase.Com-
puting the minimal D1LP model thus requiresbase-level
OLP inferencingto be interleaved repeatedlywith trans-
forming. The obvious upperboundon the numberof it-
erationsneededto reachthe fixed point is the size of the
Herbrandbase,which is normallyquitelarge.

Furthermore,even one phaseof the transformationis
intractable. Even underthe commonly-metexpressive re-
strictions that ensurethat OLP is tractable(Datalogplus
boundednumberof logical variablesper rule), the trans-
formationphasecangenerateanOLP programwhosesize
is exponentialin thesizeof thestartingD1LP � . Thetrans-
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formationphasealsoinstantiates� , whichis normallyquite
expensive.

The sourceof the exponentialgrowth in programsize
is the transformation(definedin [22] as part of the over-
all transformationfrom a D1LP to anOLP) from a princi-
pal structurethatcontainsdisjunctions(eitherexplicitly or
implicitly throughthresholdstructures)to its normalform,
which is similar to thedisjunctive normalform (DNF) of a
propositionallogical formula.Theprincipalstructure
K
 % �A� �6���#�8� % �;� ����
 % §U� �6�#���8� % §Ü� �4�#���#����
 %-Ý � �6�#���8� %VÝ � �K�
containşßÞ � principalsand thus hassize È 
�¸àÞ � � ,
but its normal form has size È 
 � Ý � . The normal form
of thethresholdstructure“ threshold 
 � � $&% � �#�#���2� % �(' � ”
hassize È 
 � á � . Both normal forms are thus worst-case
exponentialin size.

Thesourceof thedependenceontheinterpretationis the
transformationof a dynamicthresholdstructureto its nor-
mal form. Thethresholdpoolof adynamicthresholdstruc-
ture is decidedby a direct statementandthusvariesfrom
interpretationto interpretation.This dependencemakesit
necessaryto iterateuntil theinterpretation“stabilizes,” i.e.,
reachesfixedpoint. This alsomeansthatansweringa sin-
gle D1LP queryrequirescomputingthe minimal modelof
the whole D1LP program. This is undesirablydifferent
from many otherknowledgerepresentations,e.g., OLP. In
backward-reasoningOLPsystemssuchasPrologandSQL,
answeringa query doesnot requiresuchinefficiently ex-
haustive computationof the whole OLP program’s model,
i.e., of its wholesetof conclusions.

Theargumentsin theprevioustwo paragraphsshow that
thesourceof theintractabilityis in thetransformationfrom
principalstructuresto theirnormalforms.Why is thistrans-
formation needed?It is usedto supportreasoningabout
delegations,i.e., to concludea weaker delegation from a
strongerone.

Suchreasoningis basedon theintuitive interpretationof
delegation:“A delegatesto B” meansthat“if B sayssome-
thing,thenA agrees.” Following this interpretation,“A del-
egatesto (B;C)” is logically equivalentto the conjunction
of statements“A delegatesto B” and“A delegatesto C.” By
contrast,“A delegatesto (B,C)” is aweakerdelegationthan
either“A delegatesto B” or A “delegatesto C” in thesense
that eitherof the last two delegationsimplies the first, but
not theconverse.

Note that for any two differentsetsof principalsâ � andâ § , thedelegationfrom % to theconjunctionof â � is differ-
ent from the delegation from % to the conjunctionof â § .
The transformationin [22] generatesdelegationsto con-
junctionsof principalsasconclusionsandtranslatesdelega-
tionsto complex principalstructuresinto equivalentdelega-
tionsto conjunctionsof principals.Thisrequirestransform-
ingprincipalstructuresintonormalformsandthusresultsin
worst-caseexponentialgrowth. Notethatthenumberof sets

of principalsin a D1LP programis worst-caseexponential
in thesizeof theprogram.Sothenumberof all conclusions
is worst-caseexponential.

To get a flavor of what kind of inferenceD1LP in [22]
supports,seethefollowing example.PRH
C#G�C#\�S�>AC#DV� ˆ Jl>KEn
 ^ L�
Ka[� gh�K�KzPRH
C#G�C#\�S�>AC#DV� ˆ Jl>KEn
Aa[L gh�KzPRDASUT�DVH
E DAE�OoC�>K@
c�X
\c�xbPRH
C�G�C�\�S�>AC#D[� ˆ J5>AEo>A@
B�C#D�@
E�G�HI
 f L $ ^ L�a[L g ' �Az
GiventheaboveD1LPprogram,thesemanticsin [22] con-
cludes“A saysdo something.” From the first fact, it con-
cludes“A delegatespˆ 1 to (B,C)” and“A delegatespˆ 1 to
(B,D).” Thesetwo conclusionstogetherwith thefact“A del-
egatespˆ 1 to (C,D)” provethedelegation“A delegatespˆ 1
to threshold(2,[B,C,D]).” Besidesbeingexpensive,suchin-
ferencesfrom strongerdelegationsto weaker onescanbe
tricky anddifficult to understand.

To betractable,thenew versionof D1LPonly generates
as delegationconclusions:delegationsto a single princi-
pal. Therefore,it can only answerdirectly thosedelega-
tion queriesthathave a singleprincipalasdelegatee.How-
ever, the new versionof D1LP permitsone to have dele-
gationsto a conjunctionof principals: in rule bodiesor
queries. Semantically, thesearehandledby introducinga
new “dummy” principal to representthe conjunction,and
thenmappedto single-principalqueries;seetransformation
I in section4.1for thedetails.

It is useful to have suchdelegationsto conjunctionsof
principals. For example,whena requestis signedby mul-
tiple principals,onemay needto determinewhetherthere
is a delegationfrom “Local ” to theconjunctionof all the
signers.

Under this restrictionon delegation conclusionsin the
new D1LP, delegation queries that contain disjunctions
(among the delegatees)can not be answered. There-
fore, we forbid queriesor rule bodies(sincethey are im-
plicit queries)to have disjunctionwithin delegatees:nei-
therexplicit disjunctionnor thresholdstructuresis allowed,
becausethey contain implicit disjunction. This is the
conjunctive-delegatee-queriesexpressive restrictionwe de-
finednearthebeginningof section2.

We conjecturethat this restrictionleavesD1LP with all
of the expressive power neededin practice.All the exam-
plesgivenin [22] arein therestrictedclasswe definehere.
In fact, we have not yet encountereda realistic example
which requiresdelegationqueriesthatcontaindisjunctions,
i.e., which doesnot obey theconjunctive-delegatee-queries
restriction.
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8 Discussion,Curr ent and Future Work

Our overall approachto semanticsvia transformation,
andouroverall approachto implementationvia a compiler,
was inspired in part by previous work by one of us on
a similar transformation/compilerapproachto prioritized
conflict handlingin logic programs:courteouslogic pro-
grams[13, 14, 15, 16] whicharetransformable/compileable
into OLP with negation-as-failure, and which are imple-
mentedin IBM CommonRules[17]. Our implementation
alsoreusedclassesandcodefrom IBM CommonRules.

We gave animplementationarchitecturefor this version
of DL; it usesa delegationcompiler from DL to OLP that
implementsthesemanticaltransformationwegavefrom DL
to OLP. In particular, we gave5 not only an algorithm for
thisdelegationcompiler, but alsoanalgorithmfor usingthe
delegationcompiler to computethe entire minimal D1LP
model,and(in section4.6)analgorithmfor usingthedele-
gationcompilerto answerD1LP queries(without comput-
ing thewholetheentireminimal D1LPmodel).

There are several additional infrastructuralissues,be-
yond what we discussedin this paper, that arepractically
importantfor developingreal-world systemsbasedon DL,
andwhich arethesubjectof currentandfuturework. Next,
wediscusssomeof them.

One infrastructureissue is: what data structuresand
communicationprotocolsto usefor exchangingDL rules
between distributed applications/principals/Internet-sites.
An approachwe are currently exploring is to encodeDL
in XML syntax,in a mannerbuilding upontheXML Busi-
nessRulesMarkup Languagefor OLP’s that is supported
by IBM CommonRules6.

However, therearework-aroundsto useDL even in the
absenceof sucha communicationinfrastructure.Oneway
is to first translatecertificatesfrom multiple public-key in-
frastructuresystemsinto DL “f acts” and then write local
policiesto control the useof thesecertificates.For exam-
ple, theselocal policiesmay specifytrust of differentPKI
systemsfor variouspurposesandto varyingdegrees,and/or
how certificationfrom multiple systemsis requiredto gain
sufficientconfidencefor critical applications.

Anotherinfrastructureissueis how anauthorizerobtains
all thenecessarycredentialsto makethedecision.Thereare
several possiblescenariosfor how suchcredentialsshould
flow to theauthorizer. Oneis thattherequestersubmitscre-
dentialstogetherwith its request.Anotheris thattheautho-
rizeraskstherequesterfor additionalcredentialsduringthe
evaluationof therequest.Yet anotheris that theauthorizer
asksotherentitiesfor relevantcredentialsduringtheevalu-
ationof therequest.Mixesof theabovearealsointeresting.

5at ahigh level of description
6http://www.research.ibm.com/rules/andhttp://alphaworks.ibm.com

How to obtainrelevantcredentialsdynamicallyduringDL
inferenceis a topic we areexploring.

Next, we briefly outline additionalareasof currentand
futurework. Theseinclude:fuller implementation;applica-
tions,especiallyin theareaof inter-enterprisee-commerce;
and expressive generalizationespeciallyto D2LP, the ex-
tension(sketchedin [22]) of D1LP that enablesnegation
andprioritizedconflict handling.We believe thatour com-
piler approachwill extendto D2LP, by tractablycompiling
a D2LP into a courteouslogic program[13] [15], which is
in turn itself tractablycompilableinto anOLP. It compiles
into OLP with negation-as-failure, however, which is still
tractableunderthe samerestrictionswe discussedherein
connectionwith our tractabilityresultsin section5 (VB and
polynomial-sizeHerbranduniverse(e.g., Datalog)).

9 Conclusions

We madeDelegation Logic (DL) into a tractableand
practicallyimplementabletrust-managementsystemby in-
troducinga new versionof D1LP that is syntacticallyre-
strictedfrom theversionin [22]. Its semanticsis definedby
atractable,one-passtransformationintoOLP. Thistransfor-
mationledusdirectly to animplementationapproachbased
on compiling D1LP into OLP. The new versionof D1LP
alsohassomeexpressiveadvantagesaswell. Thetractabil-
ity andmodularityof implementationmakethisnew version
of D1LP far morepracticalthanthe previousversion. We
implementeda large expressive fragmentof this new ver-
sionof D1LP usingthis approach.We wereableto do this
rapidlyby building uponexisting OLPsystems.

The expandedResearchReport version of this paper
givesadditionaldetails,includingsampleoutputof theim-
plementation.
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