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Abstract

We address the goal of making Delegation Logic
(DL) into a practically implementableand tractabletrust-
mangementsystem.DL [22] is a logic-basedknowledg
representation(i.e., language) for authorizationin large-
scale open,distributedsystems.

As introducedin [22], DL inferencingis computation-
ally intractableand highly impractical to implement. We
introducea new version of Delggation Logic that remedies
thesedifficulties. To achievethis, weimposea syntacticre-
striction and redefinethe semanticssomevhat. e show
that, for this revisedversion of DL, inferencingis compu-
tationally tractableunderthe samecommonlymetrestric-
tions for which Ordinary Logic Programs(OLP) inferenc-
ing is tractable(e.g., Datalog and boundedhumberof log-
ical variablesper rule). We give an implementatiorarchi-
tecture for this versionof DL; it usesa delegationcompiler
fromDL to OLP and canmodularlyexploit a variety of ex-
isting OLP inferenceengines As proof of conceptwe have
implementea large expressivesubsedf this versionof DL,
usingthis architecture.

*This paperappearsn Proceeding®f the IEEE 2000 Symposiumon
SecurityandPrivagy. TheexpandedRresearcltiReportversionof this paper
givesadditionaldetails,including sampleoutputof theimplementation.

1 Intr oduction

In today's Internet therearealargeandgrowing number
of scenarioghatrequireauthorizatiordecisions By anau-
thorizationdecision,we meanonein which oneparty sub-
mits a request possiblysupportedoy one or morecreden-
tials, thatmustcomply with anotherparty’s policiesif it is
to begranted.Scenarioshatrequireauthorizatiordecisions
includeelectroniccommercehealthcare[2, 7], contentad-
vising [28], mobile-codeexecution[12], public-key infras-
tructure[9, 30, 19, 11, 27], andprivacy protection[24, 23].

Authorizationin Internetservicesds significantlydiffer-
ent from authorizationin centralizedsystemsor even in
distributed systemsthat are closedor relatively small. In
theseolder settings,authorizationof a requestis divided
into authentication(*“who madethe request?”) and ac-
cesscontwol (“is the requesterauthorizedto perform the
action?”). The goal of a growing body of work on trust
management[6, 8, 11, 10, 5, 22] is to find a more ex-
pressve and “distributed” approachto authorization. The
trust-managemenapproachsupportscredentialsthat en-
dow public keys with more thanjust identitiesor “distin-
guishednames’of key holders.e.g., with agreed-upotiau-
thorizations”[11], with variousattributesof key-holders,
or with fully programmable&‘capabilities” [6, 8, 10, 22)].
The “authorization” problemconsistsof decidingwhether
thesecredentialsprove that a requesttomplieswith a pol-
icy. Identity informationis just onekind of credentialand
it maybenecessarandsufiicientfor someapplicationsut
notfor others.



Trustmanagemenadoptsa “peer model” of authoriza-
tion. Every entity canbe an authorizer a third-party cre-
dential issuer or a requester If an entity controls some
resourceghat otherswant to use, it is the authorizerfor
theseuses. It is the ultimate sourceof authority over us-
ageof theseresourcesandit maintainslocal policiesthat
determinewhatusesareto be allowed. An entity canalso
sene asa third-partycredentialissuer;if anauthorizerde-
ferstrustto it in a policy, thenthesecredentialscan play
arole in authorizationdecisions.Whenan entity wantsto
useresourceshatotherentitiescontrol, it playstherole of
arequester

A major challengein authorizationand trust manage-
mentis to provide an approachthatfacilitatesspecification
of authorizatiorpolicies,especiallythatcanbe understood
and modified by peoplewho are expertin a businessdo-
mainratherthanin programming Expressie corvenience,
and separatinghe policy specificationsemanticfrom the
choiceanddetailsof implementationiechniquearethusde-
sirabledesiderata.

In [22], we proposedhelogic-basedanguageDL (Del-
egationLogic) asa trust-managemergngine. DL differs
from otherproposedrust-managememngined6, 8, 11, 5]
in providing a notion of “credentialsproving thata request
complieswith apolicy” thatis notentirelyad hoc, rather it
is basedbnmodel-theoretisemanticgthusabstractedway
from choiceanddetailsof implementation)andis smoothly
extensibleexpressiely to non-monotonicitynegation,and
prioritized conflict handling. Specifically DL startswith
the notion of proof embodiedin Datalogdefinite ordinary
logic programs[20]. (For a review of standardconcepts
andresultsin logic programming,see,e.g., [4].) “Ordi-
nary” logic programgLP’s) corresponcessentiallyto pure
Prolog,but without the limitation to Prolog’s particularin-
ferencingprocedure.(They are also sometimeknown as
“normal” LP’s or “general’LP’s.) “Definite” meanswith-
out negation. “Datalog” meanswithout (logical) function
symbolsof morethanzeroarity.

Other notablefeaturesof DL include explicit linguis-
tic supportfor delegationdepthand for a wide variety of
comple principals(e.g., k-out-of-n thresholds). The de-
sign of DL was influencedby earlier work on trust man-
agement[6, 8, 10, 5], public-key infrastructurepropos-
als[11, 25, 28, 30|, logic-basedapproacheso authentica-
tion andacces<ontrolin distributedsystemd1, 21], and
logic programmingand knowledgerepresentation.For a
morethorough,but still high-level, introductionto DL and
its relationshipto previous work, seesectionsl, 2, and 6
of [22].

In [22], we definedthe syntaxandsemanticof a mono-
tonic versionof DL: D1LP (Delegation Logic Programs
versionl). However, asintroducedn [22], D1LP’s seman-

1«Arity” meansnumberof parameters.

ticsis definedby atransformatiorinto OrdinaryLP (OLP)
that is computationallyintractable: exponentialin output
sizeaswell asin time. Moreover, thesemantiaconstruction
thererequiresmary iterationsthat eachinterlearessucha
transformatiorphasewith anothermphaseof completeOLP
inferencing.We obsenethatthis makestheD1LPinferenc-
ing in [22] computationallyintractableandhighly impracti-
calto implement.

In this paper we addresghe goal of makingDelegation
Logic into a practicallyimplementableandtractabletrust-
managemengngine.We introducea new versionof D1LP
thatremedieghe above difficulties, preseresthe previous
versionsattractvefeaturesandhassomeextraadvantages.
To achieve this, we imposea syntacticrestrictionand re-
definethe semanticsomavhat. Evenwith the restriction,
the formalism hassignificantexpressve power. We shov
that, for this new versionof D1LP, the transformationinto
OLP is computationallytractable(worst-casepolynomial-
time) and only needsto be doneonce. We shaw that, for
this new versionof D1LP, inferencingis thuscomputation-
ally tractableunderthe samecommonly-metrestrictions
for which OLP inferencingis tractable(e.g., Datalogand
boundedhumberof logical variablesperrule). We give an
implementatiorarchitecturdor this versionthatusesa del-
egation compilerfrom DL to OLP andcanmodularly ex-
ploit a variety of existing OLP inferenceengines.As proof
of concept,we have implementeda large expressve sub-
setof this new versionof DL, usingthis architecture;we
describehatimplementatiorbriefly.

Beforegoinginto thedetailsof thenew versionof D1LP,
wefirst briefly explainhow DL canbeusedin authorization
systems.

Entities in authorizationscenariosare representedy
principalsin DL. They canissuepolicies, credentialsand
requests.Policiesand credentialsarerepresentedby rules
in DL. Requestarerepresentethy queries.Policiesdiffer
from credentialsn thatthey areusedby their authors.

Whenan authorizergetsa requesthatcorrespondso a
DL query @ alongwith somecredentialghat supportthis
requestthe authorizercreatesa DL program(rule-set) P
that containsall the credentialsand the authorizers local
policies. DL's semanticglefinesa unique minimal model
for P. Thereis a proof procedureio answerQ relative to
truthin P’sminimalmodel.Notethatthisreasoninds done
from the authorizers point of view. The authorizeris the
trustroot. In DL, thesymbol“Local " refersto thecurrent
trustroot.

In this paper we definethe syntaxand semanticof the
revisedversionof D1LP. We alsogive aninferencingpro-
cedurefor (revised) D1LP andprove that suchinferencing
is tractable.

The rest of the paperis organizedas follows. In sec-
tion 2, we give thesyntaxof therevisedversionof D1LP In



section3, we give someexampleof policiesandinferences
in D1LP In section4, we definethe semanticdor it by a
transformatiorirom aD1LP programinto anOLP program.
D1LP inferencingis accomplishedy the combinationof
transformationplus OLP inferencing. Tractability results
aregivenin section5. In section6, we describeour imple-
mentatiorandits architecturgéhatcombinesacompilerim-
plementingthe transformatiorwith a pluggableOLP infer-
encingengine.ln section7, we discusghe tractability mo-
tivation behindthe main expressie restrictionin this new
versionof D1LP In section8, we give discussiorincluding
currentandfuture work. We concludewith a summaryin
section9.

2 Syntaxof therevisedD1LP

In this sectionwe give thesyntaxof therevisedD1LP. It
differsfrom the previousversionin [22] in severalregards,
but overallis quite similar.

The mainrestrictionimposedin this new versionis the
following: A delegateeappearingin a rule body, or in a
guery mustbe a principal, a conjunctionof principals,or
a principal variable. Thatis, sucha delgyateeis not per
mitted to containa disjunction,nor to containa threshold
structurgwhichis implicitly disjunctivein nature).We call
this the “ conjunctive-delgatee-qeries’ expressie restric-
tion. This restrictionis imposedto ensureractability, asis
discussedn section?.

The revised D1LP includesseveral expressve general-
izationsfrom the previousversionaswell. We foundthese
expressve generalizationsiseful in the courseof design-
ing the compileranddevelopingexamples.And we believe
thesegeneralizationamake the revised version of D1LP
moreusefulin practice.They arediscusse@swe introduce
themin the overall syntaxwhich we give next.

1. The alphabetof D1LP consistsof threedisjoint sets,
the constants the variables and the predicate sym-
bols Variablesstartwith ‘?’. The setof principalsis
a subsenf the constants.The setof principalsshould
be distinguishabldrom otherconstantsWhena vari-
ableappearsn certainpositions.e.g., asanissuerit is
calledaprincipal variableandcanonly beinstantiated
to aprincipal. A termis eitheravariableor a constant.

Notethatwe prohibit function symbolswith non-zero
arity: Thisis the Datalog restriction. This restriction
helpsenablefinitenessof the semanticsand of com-
putinginferenceqa.k.a.entailments).

2. A baseatomtakestheform:
pred(ty, ..., tpn)
wherepred is apredicateandeacht; is aterm.

A baseatomencodesa trust belief, a securityaction,
etc. For example, “isBusinessky (keyBob, Bob);
“purchase(?M?Price); and“goodCredit(?X)"areall
baseatoms.

3. A directstatementakestheform:
X says ba
where X is eithera principal or a principal variable,
“says " is a keyword, and ba is a baseatom. X is
calledtheissuerof this statement.

Sucha direct statemenencodeghatthe issuerX be-
lieves, supports,or requeststhe baseatom ba. For
example, “keyBob says goodCredit(Carl), “keyCA
saysisKey(keyBob, Bob); and “keyTom says pur-
chase(computeR000)” aredirectstatements.

4. A staticunweightedhresholdstructuretakestheform:
threshold  (k, [A41,..., A,))
where“threshold " is akeyword, k is a positive in-
teger, the A;’s areprincipals,and A; # A;, fori # j.
We call k thethresholdvalug and“[A4;, ... , A,]" the
thresholdpool (notethatit is a setnotabag).

For example,“threshold(2,[cardA, cardB,cardC])" is
a staticunweightedhresholdstructure.This threshold
structuresupportsabaseatomba if atleasttwo princi-
palsamonghethresholdbool“[cardA, cardB,cardC]”
supportba.

k-out-of-n thresholdfunctionsare commonin mary
existing authorizationsystems.e.g., PolicyMaker [6,
8], KeyNote [5], SPKI/SDSI[11, 27], and Delega-
tion Networks[3]. Suchthresholdstructuresntroduce
fault toleranceand aid flexibility in joint authoriza-
tion. A staticunweightedhresholdstructuresxpresses
suchthresholdingfor explicit caseswvherethe thresh-
old valueandthresholdpool areexplicit constants.

5. A staticweightedthresholdstructuretakesthe form:
threshold (&, [(A1,w1),..., (An, wy)])
where k and the A;’s are the sameas above, and
the w;’'s are positive integers. The w;’s are called
weights Theset“[(A1, w1),. .., (An, w,)]" is called
aprincipal-weightpair set(abbreviatedP-W se).

Weightedthresholdstructuresenablethe assignment
of different weights to different principals in the
thresholdpool. Sucha thresholdstructuresupportsa
baseatom ba if the sum of all the weights of those
principalsthatsupportba is greatetthanor equalto .

6. A dynamicunweightedthresholdstructuretakes the
form:

threshold  (k, ?X, Prin says pred(...7X ...))

2Theissueris calledthe “subject” in [22]. Here,we changedt to “is-
suer”in orderto conformto existing terminology e.g., thatof SPKI.



wherek is aninteger, ?X is a principal variable,and
“Prin sayspred(...?7X ...)" is adirectstatementn
whichthevariable? X occurs(oneor moretimes).

Sucha thresholdstructurehas a dynamicthreshold
poolthatis the setof all principalsA suchthat” Prin
sayspred(... A...)" istrue,i.e., suchthattheexpres-
sion“ Prin sayspred(...?X ...)” becomegruewhen
A is substitutedor 7 X throughouthatexpressior(for
eachappearancthereof 7.X).

This syntaxis slightly more generalthanthe one in
[22], in which the predicatepred is restrictedto be
a unary predicate. The new syntaxallows multiple-
arity predicates.It is more corvenientand morelike
thecorventionPrologusedor built-in predicatese.g.,
setof in Prolog.

Staticthresholdstructuredbecomeincorvenientwhen
thethresholdpoolis verylarge,changewery often,or

both. For example,considera policy that delegatesa

certainright to arny two employeesof a large depart-
ment of a compary. Use of a dynamic unweighted
thresholdstructureyieldsasimpleandclearpolicy and
enableghe compary to changethe employeesin the

departmentvithout changingthis policy.

. A thresholdstructuee is one of the above threekinds
of thresholdstructures.

The versionof D1LP in [22] hasa fourth kind: dy-
namicweightedhresholdstructues They makeit dif-
ficult to achieve tractability. Although the difficulties
canbe overcomeby imposinglimits on the maximal
weightsallowed, we choseto leave themout in this
paperin orderto simplify the presentation.

. A principal structue is constructedfrom principals
and thresholdstructuresusing “,” (conjunction),”;”

(disjunction),andparentheses.
For example:

(threshold(1, ?X, comA says accountant(?X)),
threshold(1, 7Y, comA says manager(?Y)))

is a principal structurethat representshe conjunction
of atleastoneaccountanandatleastonemanagerc-
cordingto comA.

. A delggationstatementakestheform:

X delegates  ba”d to PS
whereX is either a principal or a principal variable,
delegates andto arekeywords,ba is abaseatom,
d is eitherapositive integeror theasterisksymbol“ x”,
andPS is aprincipalstructureor a principalvariable.

X is calledtheissuer d is calledthe delegationdepth
(“+” meansunlimited, or infinite, depth),and PS is
calledthe delegatee For example,

10.

11.

Bob delegates goodCredit(?X)" 1 to Carl
is adelggationstatementlt meanghatBob trusts(be-
lieves) Carl aboutwhethersomeonehasgood credit.
Thatis, if Carlsaysthatsomeonédiasgoodcredit,then
Bob believesit. Thistransfeability of beliefis theba-
sic meaningof adelggationin DL.

Delegationdepthis usedto control re-deleyation. If
we have thefollowing statements:

Alice delegates goodCredit(?X)" 2 to Bob
Bob delegates goodCredit(?X)" 1 to Carl
Carl delegates goodCredit(?X)" 1 to David
Carl says goodCredit(Jack)
David says goodCredit(John)
thenonecaninfer in our DL semanticgsection4):
Alice delegates goodCredit(?X)" 1 to Carl
Alice says goodCredit(Jack)
Bob says goodCredit(Jack)
Carl says goodCredit(John)
but not:
Bob delegates goodCredit(?X)" 1 to David
Bob says goodCredit(John)

This is becauseilice delegatesto Bob with depth2,
but Bob only delggatesto Carlwith depthl.

DL useshothintegerdepthandinfinite depthto control
re-delgyation. SPKI designerschoseto useboolean
control. Therationalefor this choiceis documentedn

section4.1of [11]. Wethink thatit is still unclearhow

re-delegation should be handledin practice,and, in

particular it is not clearwhethertherationalegivenin

[11] will beborneoutin practicaluseof re-deleation.
We chooseto useDL’s approachmainly becaussét is

more expressve. Re-delgatability being “true” and
“false”in the SPKlapproaclcanberepresenteth DL

by depth« and1, respectiely, but integerdepthsother
than1 or x cannotberepresenteth SPKI. We conjec-
turethatdelegationdepthssuchas2 and3 mightprove
usefulandnaturalin mary practicalpolicies.

A speaksfor statementakesthe form:

Y speaks for X on ba
whereX andY areeitherprincipalsor principal vari-
ables,andba is abaseatom.

The above speaksfor statemenintuitively meanghat
Y haseveryright that X haswith respecto the base
atomba, or, in otherwords, Y is at leastas power-
ful as X with respectto ba. This is intuitively sim-
ilar to a delegation from X to Y, but the depthis
treateddifferently thanin a delggationandthe issuer
of a speaksfor statementis alwaysleft implicit. We
will discussspeaksfor statementg moredetailatthe
endof this section.

A headstatementis a direct statementa delegation



statementor a speaksfor statement.

12. A body statemenis a body direct statementa body
delegationstatementor a speaksfor statement.

13. A bodydirect statements more generalthana direct
statemenin thatit permitstheissuerto bea principal
structure.

For example thefollowing is abodydirectstatement;
threshold(2, [cardA, cardB, cardC])
says accountGood(?X)

14. A body delggation statementis more generalthan a
delegationstatementn thatit allows the issuerto be
a principal structurebut lessgeneralin that it obeys
the conjunctive-delgatee-queriesestriction Its del-
egateemust be a principal, a principal variable,or a
conjunctionof principals.

The notionsof body direct statementaindbody dele-
gationstatementarenew relative to the previousver
sionof D1LP. Thesebody statementganonly appear
in thebodyof arule.

15. A bodyformulais constructedrom body statements
using“,” (conjunction),”;” (disjunction),and paren-
theses.

16. A clause also known as a rule, takes the form:
H if F.
whereH is aheadstatemenand F' is abodyformula.
H is calledthe headof the clauseand F' is calledthe
body of the clause. The body may be empty; if it is,
the“if " partof the clausemay be omitted. A clause
with anemptybodyis alsocalleda fact

Terminology: Theissuerof the headstatements also
saidto betheissuerof therule.

17. A programis afinite setof clausesThisis alsoknown
asalogic program(LP) or asarule set

18. A querytakestheform: “ F'?” whereF' is a body for-
mula.

As usual,anexpressior(e.g., term,baseatom,statement,
clause,or program)is calledgroundif it doesnot contain
ary variables.

Although DL's syntax expressesheliefs from multiple
principals thereis alwaysa single,distinguishedsiewpoint
in DL: thatof theprincipalwhois doingreasoningandmak-
ing decisions,i.e., the currenttrustroot “Local " Every
DL rule or statemenis implicitly regardedas a belief of
Local .

Example 1: Determining credit status

The following is an example D1LP programaboutdeter
mining creditstatus.

Alice delegates order(?M, 7P)" 1 to ?X
if Alice says goodCredit(?X).
Alice delegates goodCredit(?X)" 2 to Bob.

Bob says goodCredit(?X)
if threshold(2,[cardA,cardB,cardC])
says accountGood(?X).
cardC says accountGood(Carl).
cardC says accountGood(David).
cardA says accountGood(Carl).
cardB says accountGood(Ed).

Thefirsttwo rulesareAlice’s policies.Alice allows any-
onewho is believedto have goodcreditto make an ordet
Alice trustsBob in determiningwho hasgoodcredit. The
third rule is from Bob: Bob believesthat a principal has
goodcreditif two out of threeparticularcredit-cardcompa-
niescertify thatthis principalhasanaccounin goodstand-
ing. Therestof the rulesarefactsaboutaccountsn good
standing.

Fromtheserules(policiesandfacts),it isinferrable(con-
cluded)accordingto the DL semanticgsectiond) that

Alice says goodCredit(Carl).
Alice delegates order(?M, ?P)" 1 to Carl.

but notthat

Alice says goodCredit(David).
Alice says goodCredit(Ed).

Discussionof Speaksfor statements

Thespeaksfor statement B speaks _for A on ba” is
similar to the delegationstatement' A delegates  ba”™
to B.” Themaindifferences thatconclusionsiravn from
aspeaksfor statemention’t consumeary delegationdepth.
Also, theissuerof a speaksfor statements alwaysimplic-
itly the principal“Local ”, i.e, thetrustroot.

For example,giventhefollowing:

Alice delegates goodCredit(?X)" 1 to CBI.
keyCB1 speaks_for CB1 on goodCredit(?X).
keyCB1 says goodCredit(Carl).

thenonecanconcludethat” Alice says goodCredit(Carl).”
Butif onechangeghe secondstatemento

CB1 delegates goodCredit(?X)" * to keyCBI.
then one can no longer concludethat “ Alice says good-
Credit(Carl),” becauselice only delegatesto CB1 with
depthl.

Onemainreasonfor having speaksfor statementss to
handle delggationsto principals that can not malke (i.e.,
sign)statementdirectly, e.g., distinguishechamesn X.509
or localnamesn SPKI/SDSI.



In examplel, thereis a credentialissuedby Bob about
goodCredit(?X). In mary scenariosBobis anameandcan
notissuestatementsthe credentials mostlik ely signedby
apublic key of Bob. Let us call this key keyBob. Assume
that Alice alsoknows thatkeyBob is Bob’s public key for
businesgpurposeeg.g., Alice hasthefollowing statement:

Alice says isBusinessKey(keyBob, Bob).

Thenby addingthefollowing statementthetrustroot Alice
canderive thesameconclusionsasin examplel.  7Key
speaks_for 7X on goodCredit(?Y)

if Local says isBusinessKey(?Key, 7X).
Usingthis speaksfor statementAlice candelegatesto the
nameof a businessand separatehis delegation from the
binding of keys with thenames.

DL's speaksfor notion is similar to the speaksfor no-
tionin [1, 21]. However, therearetwo differences.First,
DL's speakdfor relationis definedon a perbase-atonba-
sis. Principal B may speakfor principal A with respecto
onething but not another In [1, 21], if B speaksfor A,
then B speakdor A with respecto everything.Secondjn
DL, theissuerof aspeaksfor statemenits alwaysimplicitly
theprincipal“Local . Butin [1, 21], “ B speakdor A" is
trueif A saysso.Thisis morelike DL's delegationrelation-
shipin which A delegatesto B if A saysso. However, the
speakdor relationin [1, 21] is unrestrictediftransitive, i.e.,
it hasno ability to restrict(i.e., to control) re-delgation;it
is thusdifferentfrom the delegationrelationin DL.

The speaksdfor relation can model the relationshipbe-
tweena groupandits membersor betweerthe subjectfield
andthe namefield in a SPKI/SDSI4-tuple.

3 MoreExamples

In this section,we shav several further examplesof the
useof D1LPto represenauthorizatiorpoliciesandcreden-
tialsin differentapplications.

Example 2: Using multiple certification systems
Thefollowing exampleis modifiedfrom anexamplein [22].

Alice delegates isSiteKey (7K, 7S)"3

to (XRCA,(YRCA;ZRCA)).
Alice delegates isSiteKey(7K,?S)"*

to threshold(1, ?X, Alice says trustedFriend(?X)).
Alice says trustedFriend(Bob).
Bob delegates isSiteKey(?K, 7S)"1 to ZRCA

if Bob says belongsTo(?S, orga).
Bob delegates belongsTo(?S, orga)”1 to orgaKey.
YRCA delegates isSiteKey(7K,?S)"1 to YCAL.
YCAL1 says isSiteKey(LKey, LSite).
ZRCA says isSiteKey(MKey, MSite).
orgaKey says belongsTo(MSite, orga).

In thisexample XRCA, YRCA, andZRCA arerootkeys of

threepublic key certificatesystems.They all have at most
threelevelsof certificateauthorities.Thefirst rule saysthat,
for Alice to acceptabindingbetweerapublickey andasite,
the binding mustbe certifiedby systemX andat leastone
of systemY andsystemZ. The secondrule saysthatAlice

trustsaryonewhois a “trustedfriend” (unconditionally)on

binding public keys with sites.Thethird rule saysthatBob

is a trustedfriend of Alice. The fourth rule saysthat Bob

thinkscertificationby system? is enoughif thesitebelongs
to a specificorganizationorga. Thefifth rule saysthatBob

truststhe public key orgaKey to certify thata site belongs
to the organization. The restof the rules are somefacts.
Fromtheaboverulesplusthefacts,it is a conclusionthat

Alice says isSiteKey(MKey,MSite)

— this follows from Alice’s trust of Bob — but it is not a
conclusionthat

Alice says isSiteKey(LKey,LSite) — becausét is nota
conclusiorthat

XRCA says isSiteKey(LKey,LSite)

Example 3: Accessingmedicalrecords

Thisis anexampleof controllingaccess$o medicalrecords.
It is baseconanexamplein [18]. HM is ahospitalthatcon-
trolsthemedicalrecordsof somepatientsjt only authorizes
thoseprincipalsthatare physicianf a givenpatientto ac-
cessthe medicalrecordof that patient. HM trustsary hos-
pital it knowsto certify thata principalis the physicianof a
patient. HM knows somehospitalsby itself; furthermorejt
believesthata principalis a hospitalif two known hospitals
certify thatthis principalis ahospital. Thefollowing D1LP
programrepresentshis policy andincludessomefacts.

HM says authorized(?X, read(medRec(?Y)))
if HM says inRole(?X, physician(?Y)).
HM delegates inRole(?X, physician(?Y))"1
to threshold(1,7Z, HM says inRole(?Z hospital)).
HM delegates inRole(7H, hospital) "1
to threshold(2,7Z, HM says inRole(?Z,hospital)).
HM says inRole(HC, hospital).
HM says inRole(HB, hospital).
HB says inRole(HA, hospital).
HC says inRole(HA, hospital).
HA says inRole(Alice, physician(Peter)).

In this example,HM initially believesthatHB andHC
arehospitals.BecauséhothHB andHC certify that HA is
alsoahospital HM believesit. BecausdHA saysthatAlice
is the physicianof Peter it is a conclusionthat“HM says
authorized(Aliceread(medRec(Peter)).

Example 4: Controlling delegation



SupposéghatAlice wantsto delegateto Bob theright to ac-
cesssomethingandallows Bob to furtherdelegatethisright
aslong asthe principalsto which Bob delegatesaremem-
bersof someorganizationorga , wherethis membership
mustbecertifiedby Carl. Alice doesnotwantto controlthe
depthof Bob’s delggation,but shewantsto restrictthe del-
egationto bewithin a certaindomain— the organizations
members.In D1LP, Alice canrepresenthis policy by the
following two delegationstatements.

Alice delegates access™* to (Bob,tmpKey).
tmpKey delegates access”1
to threshold(1,?X,Carl says member(?X,orga)).

Here,tmpKey is anew “dummy” principal createdby Al-
ice3 Alice canfirst generatea new pair of public-private
keys astmpKey, thensign the secondstatementvith the
new privatekey andusethenew publickey in thefirst state-
ment. After signingthe secondstatementAlice canthrow
the new secretkey away andnot worry aboutkeepingit in
asafeplace.

Accordingto this policy, Alice will delegateto a princi-
palif bothBobandtmpKey delegateto it. Bob candelegate
freely. But tmpKey only delegatesto thoseprincipalscer
tified by Carlto be a membeyandtmpKey doesnot allow
re-delegyation. Thereforethis achiezestheintendedpolicy.

Supposdurtherthatwe have

Carl says member(David,orga).
Bob delegates access™2 to David.
Bob delegates access™2 to John.

Thenthedelegation“Alice delegatesaccess1 to David” is
aconclusionbut “Alice delegatesaccess1 to John”is not
aconclusion.

4 Semantics

In this section,we give the formal semanticof the re-
visedD1LP.

4.1 Overview

The semanticof D1LP definesa minimal modelfor ev-
ery D1LP programP andananswerto every query( rela-
tiveto P.

The D1LP program@P is first transformed(essentially
compiled)into a definite OLP O in a sorted(typed) OLP
languageLOp. This transformationis definedin sucha
mannerthat it correspondsstraightforvardly to an algo-
rithm. Accordingto the usualsemanticof OLP, this OLP

3Note that this is a differentkind/useof “dummy” principal thanthe
“dummy” principalsemplo/ed in the definition of the semanticof dele-
gation,discussedh section4 andsection?.

O hasaminimal model M thatis asetof entailedground
conclusionsxpressedn OLP.

Theminimal D1LP modelof P, denotedoy Mp, is ob-
tained by reverse-transforming//» backinto D1LP syn-
tax. Mp is a setof entailedgroundconclusionsxpressed
in D1LP. The reversetransformationis definedin sucha
mannerthat it too correspondstraightforvardly to an al-
gorithm. This inferencingprocedureo computethe entire
model Mp is called exhaustive(forward) inferencing. It
is usefulwhenonewantsto checkall the conclusionof a
program.

Asin OLP, onedoesnotalwayswantto performexhaus-
tive inferencing. For example,one may wish to answera
particularquery Q. In section4.6, we give a query an-
sweringprocedurethat avoids computingthe entire mini-
mal D1LP model.Queryanswerings alsocalledbadkward
inferencing.

Themostcomplex andinnovative partof our redefinition
of D1LP semanticss the definition of a tractabletransfor
mationfrom P to ©. We now specify the detailsof that
transformation.

In specifyingthetransformatiorandcalculatingthe size
of O, we usethe following notation. N is the size of P.
By “size; we meanthe numberof symbols,i.e., variables,
constantspredicatesymbols,keywords, logical operators,
etc D is thelargestfinite delegationdepthusedin P. Be-
causat is difficult to imagineanauthorizatiordecisionthat
distinguishesetweendepth,say 12 and13, we expect D
to beavery smallinteger, e.g.,, 3to 5. Forary d € [0..D],
we definethatd < *. We alsodefine[0..x] = [0..D] U {x}
and[x..x] = {x}. Fordy,ds € [0..%],

* ifdlz*,ordgz*,
dl ®d2 = ord; +dy > D
dy +do otherwise

We continuespecifying the transformationin the next
threesubsectiondjrst shaving how to transformaprogram
‘P withoutthresholdstructuresthenshowving how to handle
thresholdstructuresaswell.

4.2 Transformation Without Threshold Struc-
tures

As mentionedin the beginning of section4.1, the lan-
guageLOp is sorted,i.e., typed. In a sortedLP language,
eachvariablehasa sort (type), and eachfunction symbol
hasatypesignature Thetype signatureof a givenfunction
symbol func specifies firstly, the type of eachof func's
arguments. The signaturespecifies,secondly the type of
func's“returnvalue’ i.e., thetype of arny termof theform
fune(...). Variablesof one sort can only be instantiated

to termsof the samesort. Thereare simpletechniquego



translatgorogramdrom asortedanguageo aunsortedan-
guage.See€[20] for astandardeference.

Thesymbolsof LO» includeall the constant®f P plus
a bunchof new predicateandfunction symbolsintroduced
by the transformation. The languageLO» hasonly two
sorts.All thevariablesandconstantsomingfrom P arein
onesort. All the termsintroducedduring the transforma-
tion arein the othersort. All thevariablesn £LO» actually
comefrom P, i.e., appearedn P, becausehe transforma-
tion doesnot introduceany new variables,aswe will see
soon. Therefore,all the variablesin LOp arein the first
sort.

Therearetwo predicatedn the languageLOp: holds
anddelegates. The predicateholds, usedto representi-
rect statementshat are madein P or derivedin the infer-
enceprocesstakesthreeparameters:

holds(issuer, ba,len)

The domainof issuer is Principals, a setthat contains
all principalsin P, plussomedummyprincipalsintroduced
duringthe bodytransformationwhich we will definesoon.
The domainof ba is the setof all groundbaseatomsin
PInst (groundinstantiationof ). The domainof len is
[1..«]. Notethatbaseatomsin P areusedastermshere.
For eachpredicatesymbolin P, we addto LOp a new
function symbol that hasthe samenameasthat predicate
symbol. Thefield len storeshe numberof delegationsteps
this conclusionhasgonethrough. A ‘«’ in the field len
meanghatit hasgonethroughmorestepsthanwe needto
keeptrack of, i.e., the numberof stepsis greaterthanthe
maximalintegerdelegationdepthD.

The predicatedelegates, usedto representdelegation
statementshat are madein P or derivedin the inference
processtakesfive parameters:

delegates(issuer, ba, dep, dele, len)

Here, dep standsfor depthand dele standsfor delgyatee.
The domainsof issuer andba arethe sameasthey arein
holds; the domainof dep is [1..x]; the domainof dele is
Principals, the sameasthe issuer field; the domainof
len is [0..x]. Notethatthe len field of a delegates atom
canbe0; thiswill bethecasefor “speaksfor” statements.

Function PSFormula:

We now definea function PS Formula. It takestwo pa-
rametersanissuerPS andanatomof eitherthe predicate
holds or the predicatedelegates without the issuer field.
TheissuerP.S canbeeitheraprincipalvariableor a princi-
pal structure.The function P.S Formula is definedasfol-
lows:

PSFormula((PS1, PS2), At) =
(PSFormula(PS1, At), PSFormula(PS2, At))

PSFormula((PS1; PS2), At) =
(PSFormula(PS1, At); PSFormula(PS1, At))

PSFormula(X, holds(ba,l)) = holds(X, ba,l))

PSFormula(X, delegates(ba, dep, dele, 1)) =

delegates(X, ba, dep, dele, 1))

whereX is eithera principalvariableor a single
principal.
Thefunction PS Formula transformsstatementshathave
comple principal structuresas issuersto equivalent for-
mula of statementsvhoseissuersare either principalsor
principal variables. This function enablesody statements
to bemoregenerathanheadstatements.

For now, PS Formula simply returnsaformula. When
we startto dealwith thresholdstructuresn sectionst.3and
4.4, PS Formula will have sideeffectsaswell asreturning
aformula;it will generatesomeadditionalrulesandintro-
ducesomenew constants.

Finally, we candefinethe transformation.lIt is divided
into two steps:bodytransformationand headtransforma-
tion.

Transformation 7: Body transformation

Transformation/ both changegulesin P and constructs
somenew rules. Theresultof changingP is calledP;. The
setof new rulesis calledPgd.

Transformation doesthe following to the bodyof each
rulein P.

1. Replacesachbodydirectstatement
AS says ba
with “ PSFormula(AS, holds(ba, %)),
where AS is a principal structureor a principal vari-
able.

This transformationstep addsthe length « to body
statementand usesP.S Formula to deal with com-
plex issuers. Intuitively, a direct statement' A says
ba" in the body of a rule is true if we canprove that
A supportthe baseatomba eitherdirectly or through
delegation. Thelengthx meanghatwe do notrequire
that the conclusionis drawvn within a certainnumber
of delegationsteps.

2. Replacesachbodydelegationstatement
AS delegates ba"d to B
with “ PSFormula(AS, delegates(ba, d, B, %)),
where AS is a principal structureor a principal vari-
ableand B is aprincipalor a principalvariable.

This stepis similar to step1., but it is for delegation
statements.

3. Replacezachspeakdor statement
B speaks for A on ba
with “delegates(A, ba, x, B,0).



This meanghat speaksfor statementsrespecialdel-
egationsthatalwayshave depth* andlengthO.

4. Replaceeachbodydelegationstatement
AS delegates ba"d to (Bi,...,By)
with “ PSFormula(AS, delegates(ba, d, Bpew, %)),
whereBy, . .. , B, areprincipals,andB,,,, is anewly
createdprincipal.

For eachB;, i = 1..n, addthefollowing factto P§d<:
delegates(B;, ba, *, Bpew, 0).

Thistransformatiorenabledractableinferenceof del-
egations that have conjunctsof principals as dele-
gatees. Rememberthat the dele field of the pred-
icate delegates is requiredto be a principal, rather
than a conjunctionof principals, asin [22]. Here,
we introducea dummy principal By, to represent
the principal structure* (B, ..., By)." That Bpew
is equvalentto “ (B, ... , B,)" isfully characterized
by the relationshipghat B,,.., speakdor every prin-
cipalin “(By,...,By).” Thenew facts“delegates
(B;, ba, *, Brew,0)" areintroducedfor this purpose.
Thesefactsareaddedto P4 insteadof P, because
they do not needfurtherprocessingincludingthemin
thefinal outputprograma is sufiicient.

Let Principals bethesetof all principalsin P; U P{dd,

Transformation I1: Headtransformation

Theinputto Transformation/ I is P,. The transformation
changegule headsin P;; the resultis called P;. Trans-
formationII alsoconstructssomenew rules;the setof the
new rulesis calledPg?d.

For eachrule R in P;, oneof the following two casesap-
plies:

Caseone: When R's headis a direct statement A says
ba,” dothefollowing two steps.

1. Holds headtranslation:
ReplaceR’s headwith “holds(A, ba, 1).”

2. Holds length-weakening meta-rule:
For eachlen € [1..D], addthefollowing rule:
holds(A,ba,len® 1) if holds(A,ba,len).
This meta-rulestateghat,if somethingcanbederived
with smallerlength,thenit canalsobe inferredwhen
largerlengthis allowed.

Casetwo: WhenR’'sheadis notadirectstatementi.e., it is
eithera delegationstatemenbr a speaksfor statementdo
thefollowing steps.
Sub-casea: If R’sheadis adelegationstatement:
A delegates ba"d to BS,
i.e., a depthd delegationfrom A to BS: let il be 1, and
Bnew be B if Bisasingleprincipalor aprincipalvariable;

otherwiselet B,,.., be a newly createdprincipal (dummy
principal).

Sub-caseb: If R’'sheadis aspeaksfor statement:
B speaks for A on ba:
letd bex; Il be0, and B,,.,, be B.

For both sub-casesdothefollowing.

3. Delegatesheadtranslation:
ReplaceR’s headwith
delegates(A, ba, d, Bpew, ).

4. Holds propagationmeta-rule:
For eachlen € [1..d], addthefollowing rule:
holds(A, ba,len @ Il)
if delegates(A,ba,d, Bpew, ),

PSFormula(BS, holds(ba,len)).
This meta-rulepropagatedirect statementghrough
delegationasfollows: If thedelegationin R’s headis
true(by I1.3, it istruewhenthebodyof R is true)and
thedelegateeBS supportssomethingwithin len dele-
gationstepsthentheissuerA supportghe samething
within len @ [l steps,wherell is 1 if R’'s headis a
delggationand0 if R’'s headis aspeaksfor statement.

5. Holds length-weakening meta-rule:
For eachlen € [d @ 1..D], addthefollowing rule:
holds(A,ba,len @ 1) if  holds(A,ba,len).
This meta-ruleis the sameas1.2. It appearsagain,
becausét is alsoneededor casetwo.

6. Selfdelegationmeta-rule:
For eachC € Principals, for eachdep € [1..x], and
for eachlen € [0..x], addthefollowing fact:
delegates(C, ba, dep, C, len).
This meta-rulestateshat eachprincipal delegatesun-
conditionallyto itself.

7. Delegatedength-weakening meta-rule:
For eachC € Principals, for eachdep € [1..d], and
for eachlen € [0..D], addthefollowing rule:
delegates(A, ba, dep, C,len & 1)
if delegates(A,ba,dep,C,len).

Thismeta-rulestateghatary delegationthatis derived
within a certainlength can also be derived within a
largerlength.

8. Delegatedepth-weakening meta-rule:
For eachC € Principals, for eachlen € [0..x], and
for eachdep € [1..D], addthefollowing rule:
delegates(A, ba, dep, C,len)
if delegates(A,ba,dep @ 1,C,len).

This meta-rulestatesthat a smallerdepthdelegation
canbederivedif acorrespondindargerdepthdelega-
tion is derived.



9. Delegationchaining meta-rule:
For eachC' € Principals, for eachdep € [1..d], and
for eachlen € [0..d © dep], addthefollowing rule:
delegates(A, ba, min(d © len, dep), C,ll & len)
if delegates(A,ba,d, Bpew, ),
PSFormula(BS,delegates(ba, dep, C,len)).
where for ary d1,d2 € [0..D]: “x © x = %]
“x0dl = *,""dled2 = dl1—d2;" and“dlex = —=x."

This is the mostcomplex andthe mostexpensve (in
termsof the sizeof the new rulesadded)meta-rule.lt
chainstwo delegationsto derive a new one. The de-
rived delegation’s depthis boundedboth by the depth
of the seconddelegationin the chain and the depth
of thefirst delegationminusthe numberof delegation
stepsusedto derive the seconddelegation.

The above meta-rulesmay seemunnecessarilgompli-
cated especiallyin theway they dealwith lengthanddele-
gationdepth.They aresobecauseve areavoidingintroduc-
ing new variablesin the transformationthis is essentiain
ensuringtractability. In fact,we excludedynamicweighted
thresholdstructuresn this versionof D1LP preciselybe-
causehey requireintroducingnew variables.

Theresultof thetransformationis:

O =Py U Prdd y pgdd,

It is straightforvardto shav by acountingargumenthat
thesizeof O is O(N3D?), whereN is thesizeof P and D
is the maximalinteger depthusedin P. Eachrule in P can
produceO(N D?) new rulesin O, andeachnew rule may
have asizethatis O(N) timesthe sizeof the original rule.
A moredetailedcountingargumentis asfollows.

Our counting agumentfocuseson the ratio |O|/|P|,
whichwe call the growthfactor.

Note that |PSFormula(BS, At)|/|At] = O(|BS]).
Clearly, |BS| < N. Therefore,the growth factor of
PSFormulais O(N).

In Transformation/, a body statementis replacedby
theresultof a corresponding”S F'ormula call. Therefore,
|P1]/|P| = O(N). If the body statemenhasa conjunc-
tive delegatee,the programP{% has one additional fact
for eachprincipal in the delggatee. Becausehere are at
mostN principalsin ary delegateeandeachadditionalfact
hassize linear in the size of the original body statement,
[PE4] /[Pl = O(N).

In Transformation/I, if a rule hasa direct statement
in the head,up to D new rules are added,eachof which
hassizelinearin the size of the original head. Therefore,
|Pgdd|/|P| = O(D). The sizeof P, remainsunchanged
from Py, so|P.|/|P| = O(N).

In Transformation/ /, if arule R hasa delggationstate-
mentor a speaksfor statemenin the head,several meta-
rulesapply; eachaddsa setof rulesto Pg4<, but the sizeof
P> remainunchangedrom P,. Transformation//.9 (the

delegationchainingmeta-rule)generateshe largestset of
rules.It addsO(| Principals| D?) transformedulesfor the
rule R. Recallthat Principals is the setof all principals
in P, U P44, Becauseat mostonenew principalis intro-
ducedper statemenin P, |Principals| = O(N). Each
transformedule may use PS Formula to changepartsof
it. Therefore the growth factorfor transformation/7.9 is
O(N2D?).

Because&) = P, U Pl UPgdd |0|/|P| = O(N?D?).
Of this N2D? growth factor one N comesfrom the size
of Principals, which is likely to bethe orderof |P|. The
other N comesfrom the boundon the sizeof oneprincipal
structurethis usuallywill be muchsmallerthan|P|.

4.3 Transformation with Static Thr eshold Struc-
tures

To handlestaticunweightedhresholdstructuresye add
a new functionsymbol“suth” to LOp; it standdor static
unweightedthresholdstructures. We also extend the do-
mainof theissuerfield for predicatesiolds anddelegates
to include terms of the form “suth(i,[Aq,...,A]))
wherei is an integer. Then we extend the definition of
PSFormula to includethefollowing:
PSFormula(threshold(k, [A1, ..., An]), holds(ba,l))
= holds(suth(k,[A1,... ,Ay]),ba,l)
anda similar definitionin which a delegatesatom
replacesheholdsatom.
Thefunctionof PS Formula, for callsof suchform, results
in side effects besidesreturningan atom: it addsthe fol-
lowing new rulesto P3??. Theserulesreasoraboutatoms
thathave issuersof theform “suth(i, [A1, ... , A,])” The
integeri is the remainingthresholdvaluethat needsto be
satisfied.

e Fori=ktol,forj =1ton — i, addtherule:
holds(suth(i, [Aj, Aji1,. .., Anl), ba,l)
if  holds(suth(i,[Ajt1,...,A4n]),ba,l).

e Fori=Fktol,forj =1ton— i+ 1, addtherule:
holds(suth(i, [Aj, Ajt1,. .., An]), ba,l)
if  holds(Aj,ba,l),

holds(suth(i — 1,[Aj41,... , Ayn]),ba,l).

e Forj = k + 1 ton, addthefact:
holds(suth(0,[A;j, ..., Ayn]),ba,l).

e Addthreeanalogousetsof rulesfor delegates. Here,
we omit the details.

Eachtime P.S Formula encounters staticunweighted
thresholdstructure, O(min(k, n)n) new rules are gener
ated, where k is the thresholdvalue, and n is the size
of the thresholdpool. Eachnew rule hassize linear in
the size of PSFormula’s input. The worst-casebound



for O(min(k,n)n) is O(N?). Thus, handlingstatic un-
weightedthresholdstructuresincreaseshe growth factor
of PSFormula from O(N) to O(N?). Thisincreaseshe
worst-casesizeof O from O(N3D?) to O(N*D?).

Static weighted thresholdstructuresare handledsim-
ilarly;
Handling them doesnt change the growth factor of
PSFormula, it is still O(N?). We omit the detailshere.

4.4 Transformation with Dynamic Threshold
Structures

To handledynamicthresholdstructuresye needalist of
all principalsin Principals, thesetof all principalsin 71 U
Ppdd Let M = | Principals| andlet Gy, Ga, . .. , G be
onesuchlist.

We introduce a new function symbol “duth,” which
standsfor dynamic unweightedthresholdstructure, and
extend the domainsof the issuerfield for the two pred-
icatesholds and delegates to include termsof the form
“duth(i, j, c),” wherei andj areintegers,andc is a nenly
introducedconstant. The integer i is similar to that in
suth. And the integer j is an index to the list of princi-
pals“[Gy,Ga, ... ,Gy]" Wealsoextendthedefinitionsof
PSFormula to includethefollowing:

PSFormula(threshold(k,?X,

Prin sayspred(...?X ...)), holds(ba,l))

= holds(duth(k,1,c),ba,l)

anda similar definitionfor delegates.
Each time PSFormula is called with a dynamic un-
weightedthresholdstructureargument,a new constantc
anda setof new rulesaregeneratedTheconstant: is used
to uniquelyidentify the dynamicthresholdpool definedby
“?X, Prinsayspred(... ?X ... ) Thenew rulesareas
follows.

1. Fori = kto1,forj =1to M — i, addtherule:
holds(duth(i, j, ¢), ba, )
if  holds(duth(i,j + 1,¢),ba,l).

2. Fori =ktol,forj =1to M — i+ 1, addtherule:
holds(duth(i, j, ¢), ba, )
if  holds(Prin,pred(...Gj...),*),
holds(Gy, ba, 1),
holds(duth(i — 1,7+ 1,¢),*)), ba, ).

3. Forj = k + 1 ton, addtherule:
holds(duth(0, j, ¢), ba,l).

4. Add ananalogousetof rulesfor delegates. Here,we
omit thedetails.

For eachdynamicthresholdstructure O (min (k, M) M)
rulesareadded wherek is thethresholdvalue. Recallthat
M = |Principals| = O(N). Thus,theworst-casegrowth

a new function symbol “swth” is introduced.

11

factorof PSFormula with dynamicthresholdstructures
is still O(N?), the sameasthatwith staticthresholdstruc-
tures. However, dynamicthresholdstructuresaremoreex-

pensvein practice becausé/ is typically muchlargerthan
n (recallthatn, usedn sectiord.3,wasthesizeof onestatic
thresholdpool).

4.5 ReverseTransformation of Conclusions

We next defineasimplereversetransformatiorthatmaps
an OLP modelof O to a D1LP modelof P. This reverse
transformations usefulif onewantsall the D1LP conclu-
sionsentailedby P.

e For eachatomof theform: holds(A, ba,len),
whereA is aprincipal,includethe D1LP-conclusion:
A says ba.

e Foreachatomof theform: delegates(A, ba, x, D, 0),
where A and D are principals, include the D1LP-
conclusion:

D speaks for A on ba.

e For eachatomof theform:

delegates(A, ba, dep, D, len),
where A and D areprincipals,andwherelen > 0, in-
cludethe D1LP-conclusion:

A delegates ba" depto D.
(Note that, becauseof the way the semantictrans-
formation is defined, there are no atomswith both
len = 0 anddep < x.)

Noticeherethatlengthis ignoredafterthe OLP conclusions
aredrawn.

4.6 Query answering

An answerto aD1LP query( is a setof variablebind-
ings thatmakes @ truerelative to 7. When( is ground,
the answeris just whether( is true. Although whether@
is truerelative to P is determinedy Mp, onecannotsim-
ply checkwhether@ is in Mp to answerit, becausehe
syntacticexpressvenessof a D1LP queryis considerably
greaterthanthatof a D1LP conclusion.A querymay have
a comple principal structureasissuer andit may have a
conjunctionof principalsasdelegatee.

Next, we give analgorithm to answerthe queryQ rela-
tiveto P, thatavoids exhaustve inferencing:

1. Transform(@) into an OLP query usingthe samepro-
cedureasthe one usedto transformrule-bodies,i.e.,
Transformation/ (seesection4.2). This transforma-
tion changes) into an OLP query@’ andgenerates
new setof OLP rules Q% (possiblyempty).

OouU Qadd_

2. FormaOLP program®’



3. Answerthe OLP query Q" with respectto ©’, using
somebackward OLP inferenceengine,e.g., Prolog.
Theresultingbindingsdirectly yield the answerto the
query(Q relatveto P.

5 Tractability Results;Algorithms

In thissectionwe give upperboundresultsontheworst-
casecomputationatompleity of the transformatiorfrom
D1LP to OLP (which is definedin the previous section)
andof overall D1LP inferencingusingthis approach.We
shav that the transformationis tractableand that, under
commonly-metrestrictions, overall D1LP inferencingis
alsotractable.

Theorem 1 (Tractable Transform Size)
Thesizeof theoutputprogram© is O(N*D?), whee N =
|P|, and D is the maximaldelegationdepthin P.

Proof. From the countingargumentsin the previous sec-
tion, it follows straightforvardly that|O|/|P| is O(N3 D?).
Therefore|O| = O(N*D?). |

We expectthat D will usuallybe muchsmallerthan vV,
e.g., lessthan10.

Next, we discusshow the complexity picturewill often
in practicebesignificantlybetterthantheworst-caséound
of O(N*D?). Overall, we obsere thatnot all rulesgrow
by thefactorof O(N3D?).

Considera rule R that doesnot containary threshold
structuresjet Sr bethesizeof the largestprincipal struc-
turein R. CertainlySp < |R| < N. Often, Sg will be
a small constant. If R's headis a direct statement,R’s
growthfactoris max(Sg, D). Otherwise R’'sgrowth factor
is“MSrD?” RecallthatM = |Principals| = O(N) and
Principals is thesetof all principalsin P; U P4, Often,
this “ M Sr.D?” factoris muchsmallerthanthe worst-case
factorO(N3D?).

Transformationof rules whose headscontain thresh-
old structuresis more expensve. Considersuch a rule
R. Let K be the largestthresholdvalue in R’s head;
let Lr be the size of the largestthresholdpool in R's
head. If R’'s headcontainsary dynamicthresholdstruc-
ture, Lr = |Principals| = M. The growth factor of
R is “min(Kr, Lr)LrM D?" which, in the worst case,
is N®D?. However, often, Kr will be a small constant.
Also, staticthresholdstructureswith smallthresholdpools
aremuchlessexpensve thandynamicones,becausdheir
L factoris muchsmaller Moreover, althoughM is typi-
cally of the sameorderof N, often,it will be significantly
smallerthan N. Also notethat having thresholdstructures
in onerule doesnt affect the growth factorof otherrules.
We expectthat, in mostscenariosrulesthat usethreshold

structureswill be relatively rare comparedo simplerules
andfacts.

In the previous section,we describedhe transformation
by defining its output. We obsene that the transforma-
tion (plusthe reversetransformationcorrespondstraight-
forwardly to analgorithm for transformationandreverse
transformation) We obsene furtherthatthis algorithmfor
transformationtakes time linear in the size of the output
OLP.

Theorem 2 (Tractable Transform Time)
Computing© takestime O(N*D?). Thetransformation
fromD1LPto OLP is thuscomputationallytractable

Proof. Follows from theorem1l, alongwith the abore ob-
senationthatthetransformatiorfrom D1LP canbeimple-
mentedby an algorithmwhosetime is proportionalto the
outputsize. [ |

Next, we review somepreviously known resultsabout
OLP (see,e.g., [4] [20]). We saythata LP (eitherOLP or
D1LP)obeystheVB restrictionwhenit hasanupperbound
v onthe numberof (logical) variables.To indicatethatthe
perrule boundon the numberof variabless v, we alsosay
thatthe LP is VB(v). A factaboutLP’s is that: givena
sorteddefinite OLP programQ thatis VB(v), if the Her-
branduniversefor eachsort of variableis boundedby N,
thenthegroundinstantiatiorof O hassizeO(|O|N"V). This
is becauséor eachvariable thereareatmostO(NV) ground
termsthatcanbe usedto instantiatet. Thenfor eachrule,
thereareatmostO(N") waysto instantiatet. Anotherfact
aboutLP’s s that: for a definite OLP, exhaustve inferenc-
ing (i.e., computingits entiremodel)takestime (andspace)
thatis worst-casdinearin the size of its instantiatedver-
sion. Thisis a majorreasonwhy OLP inferencingis very
practical,e.g., asin SQL/RDBandProlog,andis oftendone
with theserestrictions(e.g., Datalogrestrictioncommonin
SQL/RDB).

A straightforvardalgorithm for computingthe minimal
D1LP modelof agivenD1LP programpP is: transformthe
D1LP P into the OLP O, thencomputethe minimal OLP
modelof O, thenreverse-transfornthis model. Thereare
a numberof existing proceduregor computinga minimal
OLP model,e.g., Smodelq26].

Theorem 3 (Tractable D1LP Infer encing)
Givena D1LP P that is VB(v), computingthe minimal
D1LP modelof P hastime compleity O(Nv*+4D?).

Proof. If P is VB(v), thenO is alsoVB(v), becausehe
transformatiorfrom P to O doesntintroduceary new vari-
ables. All (logical) variablesin O arein one sort; and
this sort hasa Herbranduniverseof size N — becausall
of the logical function symbolsin P have zero arity, i.e.,
they areall constantsTherefore the instantiatedsize of O



is O(|O|N?) = O(Nv+*D?). Then,computingthe min-
imal OLP model of O takestime O(Nv+*D?), andthe
size of this modelis O(N**%D?). The reversetransfor
mationtakestime linearin the sizeof this model. Socom-
putingthe minimal D1LP modelof P hastime complexity
O(NVT4D?). |

6 Implementation

Overall,ourimplementatiorarchitecturdor this version
of DL usesadelegationcompilerfrom DL to OLP thatim-
plementghesemanticatransformatiorwe gavefrom DL to
OLP. Earlier, we gave* notonly analgorithmfor this dele-
gationcompiler, but alsoanalgorithmfor usingthe delega-
tion compilerto computethe entire minimal D1LP model,
and (in section4.6) an algorithmfor usingthe delegation
compilerto answerD1LP queries(without computingthe
wholethe entireminimal D1LP model).

We have implementedjn Java, sucha delegationcom-
piler thatdoesthe transformatiorfrom D1LP to OLP (and
the reversetransformationback from OLP to D1LP) de-
scribedin Section4 anddoesexhaustive D1LP inferencing
by combiningthatcompilerwith a previously existing OLP
inferencingengine. The implementeccompilercangener
ateOLP in the syntacticformatsof a variety of OLP infer-
encingengineshothforwardreasoningnes(e.g., Smodels
[26]) andbackwardreasoningones(e.g., XSB [29], a vari-
antof Prolog).

The compiler and D1LP inferencing engine are inte-
gratedasanextensionto the previously existingIBM Com-
monRulessystem[17] [15], a Java library which among
its capabilitiesincludesa rule translationformat (“inter-
lingua”, encodedin XML) and sampletranslatorsto talk
to multiple OLP inferencingengines.The D1LP compiler
reuseslasseandcodefrom the CommonRulegore,espe-
cially for specificatiorandinferencing.

Theimplementations someavhatexpressvely restricted,
and slightly different syntactically from the version of
D1LP givenin this paper (It wasbasedon a preliminary
versionof the designin this paper)

We wereableto developthis implementatiorrapidly —
in afew person-weeksf codingeffort — by building upon
existing OLP systems|argely becausehe delegationcom-
piler approactprovidesgreatmodularityin the softwareen-
gineeringsense.

We have alsoimplementedthe compilerin XSB [29],
a Prolog-ariantlogic programmingsystemdeveloped at
SUNY Story Brook. This secondmplementatiorusesan
alternatve transformatiorthatis differentfrom (but similar
to) the onewe gave in sectiond4 andusedin thefirst (Java)

4atahighlevel of description

13

implementation. This alternatve transformatiorgenerates
anoutputprogramthathassizelinearin the sizeof thein-
put program,but it doesintroducenew variables. We call
this“ungroundedransformatiori,andthetransformatiorin
Section4 “groundedtransformatiori. Thisimplementation
canhandleeverythingin the syntaxdescribedn Section?2.
With ungroundedransformationijt canalsohandlethe dy-
namicweightedthresholdstructuresdefinedin [22]. This
implementatiorusesXSB’s inferenceengine,soit canan-
swerqueriesdirectly.

The expandedResearchReport version of this paper
gives additional details about implementation,including
sampleoutput.

7 Discussionof Syntax; Ensuring Computa-
tional Tractability

As we discussedhearthe beginning of section2, the
new versionof D1LP syntaxhasthe conjunctve-del@atee-
gueriesexpressve restriction,in orderto ensurethatit is
tractable unlike the versionin [22]. In therestof this sec-
tion, we discussn detail the tractability motivation for the
conjunctive-delgjatee-qeriesrestriction.

To understandhis changejt is necessaryirst to under
standwhy D1LP asdefinedin [22] is intractable.

In [22], D1LP’s semanticdefinesa minimal modelfor
eachD1LP programP: astheleastfixed point of anoper
ator Up. Theoperator¥p takesasinput aninterpretation
I of P. First, it transformsP to anordinarylogic program
(OLP) O7; this transformationdependsupon 7. Next, it
computesO!’s minimal OLP model. Then, it mapsthis
modelbackto a correspondindgnterpretationof P and fi-
nally returnsthis interpretation/. It is shovn in [22] that
thisiterationprocessalwaysterminatesandyieldsaunique
minimal model. We obsene herethat, unfortunately it is
very expensve computationally

Becausdhetransformatiorfrom D1LP to OLP depends
ontheinterpretation/, computingtheminimalmodelof one
D1LP programrequiresaniterative seriesof stepsuntil the
(least)fixed pointis reached Eachiterationstepincludesa
transformatiorphaseandan OLP inferencingphase Com-
puting the minimal D1LP model thus requiresbase-leel
OLP inferencingto be interleaved repeatedlywith trans-
forming. The obvious upperboundon the numberof it-
erationsneededo reachthe fixed point is the size of the
Herbrandbasewhichis normally quitelarge.

Furthermore,even one phaseof the transformationis
intractable. Even underthe commonly-metexpressve re-
strictionsthat ensurethat OLP is tractable(Datalog plus
boundednumberof logical variablesper rule), the trans-
formationphasecangeneratean OLP programwhosesize
is exponentiain thesizeof thestartingD1LP P. Thetrans-



formationphasealsoinstantiates?, whichis normallyquite
expensve.

The sourceof the exponentialgrowth in programsize
is the transformation(definedin [22] as part of the over-
all transformatiorfrom a D1LP to an OLP) from a princi-
pal structurethat containsdisjunctions(eitherexplicitly or
implicitly throughthresholdstructures}o its normalform,
whichis similar to the disjunctive normalform (DNF) of a
propositionalogical formula. The principal structure
((A115- - 5 A1n), (A1 5 Aon)y s (Amas oo 5 Amn))
containsm x n principalsand thus hassize O(m x n),
but its normal form hassize O(n™). The normal form
of thethresholdstructure‘threshold (&, [A41, ..., A,])"
hassize O((}})). Both normalforms are thus worst-case
exponentialin size.

Thesourceof thedependencentheinterpretatioris the
transformatiorof a dynamicthresholdstructureto its nor-
malform. Thethresholdpool of adynamicthresholdstruc-
ture is decidedby a direct statementand thusvariesfrom
interpretationto interpretation. This dependencenakesit
necessaryo iterateuntil theinterpretatiori‘'stabilizes; i.e.,
reachedixed point. This alsomeansthat answeringa sin-
gle D1LP queryrequirescomputingthe minimal model of
the whole D1LP program. This is undesirablydifferent
from mary otherknowledgerepresentationg.g., OLP. In
backward-reasonin@LP systemsuchasPrologandSQL,
answeringa query doesnot require suchinefficiently ex-
haustve computationof the whole OLP programs model,
i.e., of its whole setof conclusions.

Theargumentsn the previoustwo paragraphshow that
the sourceof theintractabilityis in thetransformatiorfrom
principalstructuredo theirnormalforms. Why is thistrans-
formation needed?lt is usedto supportreasoningabout
delegations,i.e., to concludea wealer delggation from a
strongemne.

Suchreasonings basedn theintuitive interpretatiorof
delegation:“A delggatesto B” meanghat"“if B sayssome-
thing, thenA agrees. Following thisinterpretation;A del-
egatesto (B;C)” is logically equivalentto the conjunction
of statement$A delegatesto B” and“A deleggateso C” By
contrast,'A delegategto (B,C)” is awealer delgyationthan
either“A delegatesto B” or A “delegatesto C” in thesense
that either of the lasttwo delegationsimplies the first, but
notthe corverse.

Note thatfor ary two differentsetsof principalsS; and
Sa, thedelggationfrom A to theconjunctionof S; is differ-
ent from the delegationfrom A to the conjunctionof S,.
The transformationin [22] generatesielegationsto con-
junctionsof principalsasconclusionsandtranslateslelega-
tionsto complex principalstructuresnto equivalentdelega-
tionsto conjunctionf principals.Thisrequiregransform-
ing principalstructuresnto normalformsandthusresultsin
worst-cas@&xponentialgrowth. Notethatthenumberof sets
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of principalsin a D1LP programis worst-casesxponential
in thesizeof the program.Sothe numberof all conclusions
is worst-casexponential.

To geta flavor of whatkind of inferenceD1LP in [22]
supportsseethefollowing example.

A delegates p~ 1 to (B,(C;D)).
A delegates p~ 1 to (C,D).
A says do_something
if A delegates p~ 1 to threshold(2,[B,C,D]).

Giventheabove D1LP program the semanticsn [22] con-
cludes“A saysdo_something. From the first fact, it con-
cludes‘A deleggatesp™ 1 to (B,C)” and“A delegatesp™ 1 to
(B,D).” Thesawo conclusiongogethemith thefact“A del-
egatey” 1to (C,D)” provethedelegation“A delggatesy™ 1
to threshold(2,[B,C,D]). Besidesheingexpensve, suchin-
ferencesrom strongerdelegationsto wealker onescan be
tricky anddifficult to understand.

To betractable the new versionof D1LP only generates
as delggation conclusions:delggationsto a single princi-
pal. Therefore,it canonly answerdirectly thosedelega-
tion queriesthathave a singleprincipalasdelegatee How-
ever, the new versionof D1LP permitsoneto have dele-
gationsto a conjunctionof principals: in rule bodiesor
gueries. Semanticallytheseare handledby introducinga
new “dummy” principal to representhe conjunction,and
thenmappedo single-principaljueries;seetransformation
| in section4.1for thedetails.

It is usefulto have suchdelegationsto conjunctionsof
principals. For example,whena requesis signedby mul-
tiple principals,one may needto determinewhetherthere
is adelggationfrom “Local " to the conjunctionof all the
signers.

Under this restrictionon delegation conclusionsin the
nev D1LP delegation queriesthat contain disjunctions
(among the delegatees)can not be answered. There-
fore, we forbid queriesor rule bodies(sincethey areim-
plicit queries)to have disjunctionwithin deleggatees:nei-
therexplicit disjunctionnorthresholdstructuress allowed,
becausethey contain implicit disjunction. This is the
conjunctive-delgjatee-qeries expressve restrictionwe de-
fined nearthe beginning of section2.

We conjecturethat this restrictionleavesD1LP with all
of the expressve power neededn practice. All the exam-
plesgivenin [22] arein therestrictedclasswe definehere.
In fact, we have not yet encountereda realistic example
whichrequiresdelggationquerieghat containdisjunctions,
i.e., which doesnot obey the conjunctive-delgyatee-gelies
restriction.



8 Discussion,Curr ent and Futur e Work

Our overall approachto semanticsvia transformation,
andour overall approactto implementatiorvia a compiler,
was inspired in part by previous work by one of us on
a similar transformation/compileapproachto prioritized
conflict handlingin logic programs: courteoudogic pro-
gramg13, 14, 15, 16] whicharetransformable/compileable
into OLP with negation-as-&ilure, and which are imple-
mentedin IBM CommonRuleg17]. Our implementation
alsoreusedclassesindcodefrom IBM CommonRules.

We gave animplementatiorarchitectureor this version
of DL; it usesa deleggation compilerfrom DL to OLP that
implementghesemanticatransformatiorwe gave from DL
to OLP. In particular we gave® not only an algorithm for
this delegationcompiler, but alsoanalgorithmfor usingthe
delegationcompilerto computethe entire minimal D1LP
model,and(in section4.6) analgorithmfor usingthedele-
gationcompilerto answerD1LP queries(without comput-
ing thewholethe entireminimal D1LP model).

There are several additional infrastructuralissues,be-
yond what we discussedn this paper that are practically
importantfor developingreal-world systemsasedon DL,
andwhich arethe subjectof currentandfuture work. Next,
we discusssomeof them.

One infrastructureissueis: what data structuresand
communicationprotocolsto usefor exchangingDL rules
between distributed applications/principals/Internet-sites.
An approachwe are currently exploring is to encodeDL
in XML syntax,in a mannetbuilding uponthe XML Busi-
nessRulesMarkup Languagefor OLP’s thatis supported
by IBM CommonRule%

However, therearework-aroundgo useDL evenin the
absencef sucha communicationinfrastructure.Oneway
is to first translatecertificatesfrom multiple public-key in-
frastructuresystemsinto DL “facts” and then write local
policiesto control the useof thesecertificates. For exam-
ple, theselocal policiesmay specifytrust of differentPKI
systemdor variouspurposesndto varyingdegreesand/or
how certificationfrom multiple systemss requiredto gain
sufficient confidencdor critical applications.

Anotherinfrastructurdssueis how anauthorizerobtains
all thenecessargredentialso make thedecision.Thereare
several possiblescenariogor how suchcredentialsshould
flow to theauthorizer Oneis thattherequestesubmitscre-
dentialstogethemwith its requestAnotheris thattheautho-
rizer askstherequestefor additionalcredentialgluringthe
evaluationof therequest.Yet anotheris thatthe authorizer
asksotherentitiesfor relevantcredentialguringthe evalu-
ationof therequestMix esof theabove arealsointeresting.

Satahighlevel of description
Shttp://wwwresearch.ibm.com/ruleahdhttp://alphavorks.ibm.com
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How to obtainrelevant credentialsdynamicallyduring DL
inferenceis atopic we areexploring.

Next, we briefly outline additionalareasof currentand
futurework. Thesenclude:fuller implementationapplica-
tions,especiallyin theareaof inter-enterprisee-commerce;
and expressve generalizatiorespeciallyto D2LP, the ex-
tension(sketchedin [22]) of D1LP that enablesnegation
andprioritized conflict handling. We believe thatour com-
piler approachwill extendto D2LP, by tractablycompiling
a D2LP into a courteoudogic program[13] [15], which is
in turn itself tractablycompilableinto an OLP. It compiles
into OLP with negation-as-&ilure, however, which is still
tractableunderthe samerestrictionswe discussecherein
connectiorwith ourtractabilityresultsin section5 (VB and
polynomial-sizeHerbranduniverse(e.g., Datalog)).

9 Conclusions

We made Delggation Logic (DL) into a tractableand
practicallyimplementabldrust-managemerstystemby in-
troducinga new versionof D1LP thatis syntacticallyre-
strictedfrom theversionin [22]. Its semanticss definedby
atractablepne-passransformationinto OLP. Thistransfor
mationled usdirectly to animplementatiorapproactbased
on compiling D1LP into OLP. The new versionof D1LP
alsohassomeexpressive advantagesaswell. Thetractabil-
ity andmodularityof implementationrmake thisnew version
of D1LP far more practicalthanthe previous version. We
implementeda large expressie fragmentof this new ver
sionof D1LP usingthis approach We wereableto do this
rapidly by building uponexisting OLP systems.

The expandedResearchReport version of this paper
givesadditionaldetails,including sampleoutputof theim-
plementation.
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