
Logic Programming with Defaults and

Argumentation Theories⋆

Hui Wan1 Benjamin Grosof2 Michael Kifer1 Paul Fodor1 Senlin Liang1

1 State University of New York at Stony Brook, USA
2 Vulcan, Inc., USA

Abstract. We define logic programs with defaults and argumentation
theories, a new framework that unifies most of the earlier proposals for
defeasible reasoning in logic programming. We present a model-theoretic
semantics and study its reducibility and well-behavior properties. We use
the framework as an elegant and flexible foundation to extend and im-
prove upon Generalized Courteous Logic Programs (GCLP) [19]—one of
the popular forms of defeasible reasoning. The extensions include higher-
order and object-oriented features of Hilog and F-Logic [7,21]. The im-
provements include much simpler, incremental reasoning algorithms and
more intuitive behavior. The framework and its Courteous family instan-
tiation were implemented as an extension to the FLORA-2 system.
Keywords: Defeasible reasoning, argumentation theory, well-founded mod-
els.

1 Introduction

Common-sense reasoning is one of the most important applications of logic pro-
gramming. Surprisingly, the ability to do such reasoning within logic program-
ming comes from a single, relatively simple device: default negation [8,15,16].
While this parsimony is convenient for theoretical studies, it is a major stum-
bling block for practical use of logic programming in common-sense reasoning:
default negation is too low-level a concept to be safely entrusted to a knowledge
engineer who is not a trained logician. Anecdotal evidence suggests that logicians
are also not doing much better when it comes to modeling concrete application
domains using default negation as a sole tool. These problems have been stimu-
lating search for higher-abstraction forms of logic programing, which equip the
knowledge engineer with frameworks and tools that are closer to the way humans
tend to think of and describe the various application domains. These frameworks
include object-oriented and higher-order concepts [21,7], inheritance and excep-
tions [32,22,34], and defeasible reasoning [3,5,6,10,11,12,17,19,25,27,31,33,35].

Defeasible reasoning in logic programming (LP) has been successfully used to
model a broad range of application domains and tasks, including: policies, reg-
ulations, and law; actions, change, and process causality; Web services; aspects

⋆ This work is part of the SILK (Semantic Inference on Large Knowledge) project
sponsored by Vulcan, Inc.

of inductive/scientific learning and natural language understanding. However,
there has been a bewildering multitude of formal approaches to defeasibility
based on a wide variety of intuitions about desired behavior and conceptualiza-
tion. The difficulties in agreeing on what is the “right” intuition are discussed
in [17,6] among others. On top of this, the formal machinery employed by the
different approaches is so diverse that there is little hope that more than a tiny
subset of the approaches could be directly integrated in a practical, scalable rea-
soning system. It is also often unclear how to extend most of these approaches
to include other popular LP frameworks, such as HiLog [7] and F-logic [21].

The present paper addresses these issues. First, we introduce a new general
framework for defeasible reasoning that abstracts the intuitions about defea-
sibility into what we call argumentation theories. Then we develop a simple
semantics for this framework and study its properties. The semantics is based
on well-founded models [15]; due to space limitations, stable models [16] will be
defined in an extended version of this paper. The relationship of this framework
to other proposals is discussed in Section 5. The short story is that, based on
our analysis, almost all approaches to defeasible reasoning in LP that we are
aware of can be simulated in our framework with a suitable choice of an argu-
mentation theory. This makes it possible to use different such theories in one
reasoning system. Second, we develop a family of useful argumentation theo-
ries one of which captures the essence of Generalized Courteous Logic Programs
(GCLP) [19]. This formulation provides a foundation to straightforwardly ex-
tend GCLP from predicate calculus-based LP to HiLog [7] and F-Logic [21], and
also to improve upon GCLP’s behavior and algorithms in several other signif-
icant ways, as detailed in Section 4. The usefulness of the HiLog and F-Logic
features is well recognized in the literature and industry, e.g., for meta-reasoning;
knowledge base translation and integration; modeling of agent’s beliefs, context,
and modality; knowledge provenance and navigational meta-data; and Seman-
tic Web data models. Third, we have implemented our framework and several
GCLP-style argumentation theories as an extension to FLORA-2.3 Adding other
such theories is straightforward.4

The rest of this paper is organized as follows. Section 2 illustrates GCLP-style
defeasible reasoning with an example. Section 3 introduces our framework for
defeasible reasoning with argumentation theories. Section 4 presents a family of
argumentation theories, which extend and improve GCLP in several significant
ways. Section 5 discusses related work, and Section 6 concludes the paper.

2 Motivating Example

The following example illustrates the basic ideas of defeasible reasoning. It uses
a stripped-down syntax of FLORA-2 and models part of a game, complete with
frame axioms, where blocks are moved from square to square on a board.

3 http://flora.sourceforge.net
4 FLORA-2 supports only argumentation theories with the well-founded semantics.

http://flora.sourceforge.net

// moving blk from ->to , if to is free; from becomes free

@move loc(?s+1,?blk,?to) ∧ neg loc(?s+1,?blk,?from) :-

move(?s,?blk,?from,?to), loc(?s,?blk,?from), not loc(?s,?,?to).

@frax1 loc(?s+1,?blk,?pos) :- loc(?s,?blk,?pos). // frame axiom 1

@frax2 neg loc(?s+1,?blk,?pos) :- neg loc(?s,?blk,?pos). // frame axiom 2

@dloc neg loc(?s,?blk,?pos). // each location is free, by default

@state loc(0,block4,square7). // initial state

// no block can be in two places at once

opposes(loc(?s,?blk,?y),loc(?s,?blk,?z)) :- posn(?y), posn(?z), ?y != ?z.

// move-action beats frame axioms; move & init state beats default location

overrides(move,frax1). overrides(move,dloc).

overrides(move,frax2). overrides(frax1,dloc). overrides(state,dloc).

// facts

move(2,block4,square7,square3). // State 2: block4 moves square7->square3

posn(square1). posn(square2). posn(square16).

The example illustrates the Courteous flavor [19] of defeasible reasoning.
Here, some rules are labeled (e.g., @move, @frax1), and the predicate overrides
specifies that some rules (e.g., the ones labeled @move) defeat others (e.g., the
ones labeled @frax1 and @frax2). We distinguish between the classical-logic-like
explicit negation, neg , and default negation not . Literals L and negL are incom-
patible and cannot both appear in a consistent model. The predicate opposes
specifies additional incompatibilities. In our example, opposes says that no
block can be present in two different positions on the board in the same state.

We can now see how defeasible reasoning works. The rule labeled @dloc is
a “catch-case” low-priority default that says that all locations on the board
are free. Contrary to this default, the fact labeled @state says that block4 is at
square7 in state 0. This “defeats” the @dloc rule (due to overrides(state,dloc)),
so block4 is indeed at square7. Other squares are free unless the “catch-all”
default @dloc is overridden. Such overriding can occur due to the @move rule,
which specifies the effects of the move action. The @move rule also defeats the
frame persistence axioms, @frax1 and @frax2, which simply state that block lo-
cations persist from one state to another. Thus, in states 1 and 2 our block is still
at square7 and other squares are free. However, at state 2 a move occurs, and
the @move rule derives that block4 must be at square3 in state 3. Due to the
priorities specified via the predicate overrides, this latter derivation defeats the
derivations produced by the frame axioms and the default location fact @dloc.

3 Defeasible Reasoning with Argumentation Theories

Let L be a logic language with the usual connectives ∧ for conjunction and :-

for rule implication; and two negation operators: neg , for explicit negation, and
not for default negation. The alphabet of the language consists of: an infinite set
of variables, which are shown in the examples as alphanumeric symbols prefixed
with the question mark ?; and a set of constant symbols, which can appear
as individuals, function symbols, and predicates. Constants will be shown as
alphanumeric symbols that are not prefixed with a “?”.

We use the standard notion of terms in logic programming. Atomic for-

mulas, also called atoms, are quite general in form: they can be the atoms used
in ordinary logic programming; or the higher-order expressions of HiLog [7]; or
the frames of F-logic [21]. A literal has one of the following forms:

– An atomic formula.
– negA, where A is an atomic formula.
– notA, where A is an atom.
– not negA, where A is an atom.
– not notL and neg negL, where L is a literal; these are identified with L.

Let A denote an atom. Literals of the form A or negA (or literals that reduce to
these forms after elimination of double negation) are called not -free literals;
literals that reduce to the form notA are called not -literals.

Definition 1. A plain rule in a logic language L is an expression of the form

L :-Body (1)

where L, called the head of the rule, is a not -free literal in L, and Body, called
the body of the rule, is a conjunction of literals in L.5 As is common in logic
programming, we will often write A,B to represent the conjunction A ∧ B.
A labeled rule in L is an expression of the form @r ρ, where ρ is a plain rule
and r is a term, called the label of the rule. Thus, labeled rules have the form

@r L :-Body (2)

A rule label is not a rule identifier: several rules can have the same label. A
formula is a literal, a conjunction of literals, or a rule. Given a rule of the
form (2), the term

handle(r, L) (3)

is called the handle for that rule. Here handle is a binary function symbol
specifically reserved for representing rule handles. However, we do not make
further assumptions about this symbol. �

A logic program with defaults and argumentation theories (an lpda,
for short) in a logic language L is a set of labeled and plain rules in L.

In our theory, plain rules are considered to be definite statements about the
real world. In contrast, labeled rules are defeasible defaults: some (or even all)
instances of such rules can be “defeated” by other labeled rules in which case
inferences produced by the defeated rules might be “overridden” or “canceled.”

We will be often using variable-free expressions, which we call ground. Thus,
a ground term is a term that contains no variables, a ground literal is a
variable-free literal, and a ground rule is a rule that has no variables.

Lpda s are used in conjunction with argumentation theories. An argumen-
tation theory is a set of rules that defines conditions under which some rule
instances may be defeated or canceled by other rules.

5 This is easy to generalize to allow Lloyd-Topor extensions [23].

Definition 2. Let L be a logic language. An argumentation theory is a set,
AT, of plain rules in L of the form (1). We also assume that the language
L includes a unary predicate, $defeatedAT, which may appear in the heads of
some rules in AT.6 When confusion does not arise, we will omit the subscript
AT.
An lpda P is said to be compatible with AT if $defeatedAT does not appear
in the rule heads in P. It is often useful to consider stronger compatibility re-
quirements, which impose additional syntactic restrictions on P. If CAT is such
a compatibility requirement then we will speak of CAT-compatible lpdas, i.e.,
lpdas that are compatible with AT and satisfy the condition CAT. �

Thus, an argumentation theory is an ordinary logic program whose rules
are not labeled. The rules AT will normally contain other predicates, besides
$defeatedAT, that are used to specify how the rules in P get defeated. For
instance, the argumentation theories described in Section 4 include the binary
predicates opposes and overrides. In our FLORA-2-based implementation, ar-
gumentation theories are meta-programs, as in Section 4, encoded using HiLog
[7]; we anticipate this would be common for other implementations of lpda s
as well. For the purpose of defining the semantics, we assume that the argu-
mentation theories are ground. A grounded version of AT with respect to a
compatible lpda P is obtained by appropriately instantiating the variables and
meta-predicates in AT. For instance, for the theories in Section 4 this means (i)
replacing the variables ?R with ground rule handles (see Definition 1) followed
by (ii) replacing the meta-statement body(?R, ?B), call(?B) in rule (12) with
bodies of the rules in P that have ?R as the handle (P may have more than one
rule with the same handle).

Note that the definitions and the subsequent theory permit different subsets
of the overall lpda to have different argumentation theories AT with different
$defeatedAT predicates.7

Definition 3. Let P be an lpda and AT an argumentation theory over language L.

– The Herbrand Universe of P, denoted UL, is the set of all ground terms
built using the constants and function symbols that appear in L. When con-
fusion does not arise, we will simply write U .

– The Herbrand Base of P, denoted BL (or simply B, when no ambiguity
arises), is the set of all ground not -free literals that can be constructed using
the predicates in L. �

3.1 The Well-founded Semantics

In this section, we extend the well-founded semantics for default negation [15]
to lpda s. Our development follows the general outline in [29]. The full version
of this paper also provides the stable model semantics [16].

6 We say “may” for the sake of generality. If $defeated does not occur in the head
of any rule then the semantics of lpda s reduce to ordinary logic programming.

7 Our FLORA-2 extension also supports multiple argumentation theories.

The following definition of partial interpretations is essentially from [15,29].
First, we assume that the language includes three special propositional constants,
t, f, and u, which stand for true, false, and undefined, respectively. We also
assume the existence of the following total order on these propositions: f < u < t.

Definition 4. A partial Herbrand interpretation, I, is simply a set of ground
literals. In addition: I must contain both t and not f; it may contain neither u
nor notu; and L, notL cannot both be in I, for any literal L.
An interpretation is inconsistent relative to an atom A if both A and negA

belong to I. Otherwise, I is consistent relative to A. An interpretation is
consistent if it is consistent relative to every atom and inconsistent if it is
inconsistent relative to some atom. An interpretation is total if, for every ground
not -free literal L (except u), either L or notL belongs to I.
We also define I+ = {L | L ∈ I is a not -free literal} and I− = {L | L ∈
I is a not -literal}. Thus, I = I+ ∪ I−. �

Models. Next we define satisfaction for ground formulas and lpda s.

Definition 5. Let I be a partial Herbrand interpretation, L a ground not -free
literal, and F , G ground formulas. Then I maps formulas to {t,f,u} as follows:

– If L is a not -free literal then I(L) = t iff L ∈ I, I(L) = f iff notL ∈ I,
and I(L) = u, otherwise.

– I(notL) =∼ I(L), where ∼ t = f, ∼ f = t, and ∼ u = u.
Note that the above two items together with Definition 4 imply that I(t) = t,
I(not t) = f; I(f) = f, I(not f) = t; and I(u) = I(notu) = u.

– I(F ∧ G) = min(I(F), I(G)).
– For a plain rule F :-G, define I(F :-G) = t if and only if I(F) ≥ I(G).
– For a labeled rule @r F :-G, we define I(@r F :-G) = t if and only if

I(F) ≥ min(I(G), I(not $defeated(handle(r, F)))).
Here handle(r, F) is the handle (Definition 1) for the rule @r F :-G. �

Definition 6. If I(F) = t, where I is an interpretation, then we write I |= F

and say that I is a model of F (or that satisfies F). An interpretation I is a
model of an lpda P if I |= R for every R ∈ P. �

Definition 7. Given an lpda P, an argumentation theory AT, and an inter-
pretation M, we say that M is a model of P with respect to the argumentation
theory AT, written as M |= (P,AT), if M |= P and M |= AT. �

Definition 8. Suppose that M1, and M2 are interpretations. We define M1 �
M2 if M+

1 ⊆ M+
2 and M−

1 ⊇ M−

2 . The minimal models with respect to � are
called the least models of (P,AT). �

Well-founded models. We now define a special kind of models for lpda s,
called the well-founded models. These models are first defined as limits of trans-
finite sequences of partial interpretations and then we show that they correspond
to the ordinary well-founded models of certain normal logic programs that are
obtained by a transformation from lpda s.

The quotient operator is defined analogously to [29], but with changes to
adapt this concept to logic programs with defaults and argumentation theories.

Definition 9. Let Q be a set of rules, which can include labeled as well as plain
rules, and let J be a partial Herbrand interpretation for Q. We define the lpda

quotient of Q by J, written as
Q

J
, by the following sequence of steps:

1. Replace every not -literal in the body of Q by its truth value in J.
2. Replace every labeled rule of the form @r L :-Body in Q, such that

J($defeated(handle(r, L))) = t with the rule L :-Body, f.
(Rule handles were introduced in Definition 1.)

3. Replace every labeled rule (@r L :-Body) ∈ Q such that
J($defeated(handle(r, L))) = u with the rule L :-Body, u.

4. Remove all labels from the remaining labeled rules.

The resulting set of rules is the lpda quotient
Q

J
. �

In the next definition, LPM(Q) denotes the least partial model of a not -free
lpda Q. As in [29], LPM(Q) is computed iteratively, by making all possible
derivations using the rules in Q starting with the empty partial interpretation.

Definition 10. The well-founded model of an lpda P with respect to the
argumentation theory AT, written as WFM(P,AT), is defined as the limit of
the following transfinite induction. Initially, I0 is the empty set. Suppose Im has
already been defined for every m < k, where k is an ordinal. Then:

– Ik = LPM(
P ∪ AT

Ik−1

), if k is a non-limit ordinal.

– Ik = ∪i<kIi, if k is a limit ordinal. �

According to the next theorem, this limit exists. The theorem also shows that
lpda s reduce to and can be implemented using ordinary logic programming
systems that support the well-founded semantics (e.g., XSB).

Theorem 1 (Reduction). The transfinite sequence 〈I0, I1, . . .〉 of interpre-
tations in Definition 10 has a (unique) limit. It is reached for some (possibly
transfinite) ordinal, α, such that Iα = Iα+1. This limit, WFM(P,AT), is a
least model of (P,AT). Furthermore, WFM(P,AT) coincides with the well-
founded model of the ordinary logic program P ′ ∪ AT, where P ′ is obtained
from P by changing every labeled rule (@r L :- Body) ∈ P to the plain rule
L :- Body, not $defeated(handle(r, L)). �

3.2 Well-behaved Argumentation Theories

So far, argumentation theories were defined in a very general way. However,
not all such theories are practically useful. This section introduces a number
of well-behavior properties that are useful for argumentation theories to abide.
These conditions involve both the argumentation theories themselves and their
associated compatibility requirements (see Definition 2).

Definition 11. An argumentation theory AT with a compatibility requirement
CAT ensures consistency relative to an atom A if for every CAT-compatible
lpda P, the well-founded model of (P,AT) is consistent relative to A (see Defi-
nition 4). We say that (AT,CAT) ensures consistency, if it ensures consistency
for all atoms. �

Definition 12. Consider an argumentation theory AT with a compatibility re-
quirement CAT. Let us further assume that AT uses a binary predicate opposes,
which is defined on rule handles. Literals L1 and L2 are said to oppose each

other in a partial interpretation I of an lpda P iff opposes(handle(r1, L1),
handle(r2, L2)) is true in I for all pairs of rules of the form @r1 L1 :- · · · and
@r2 L2 :- · · · in P (i.e., rules having L1 and L2 in the head).
We say that AT ensures strong consistency if, for every CAT-compatible
lpda P, the well-founded model M of (P,AT) has the following property:

If any pair of literals, L1 and L2, oppose each other in M, then L1 and
L2 cannot both be true in M. �

Definition 13. Consider an argumentation theory AT with a compatibility con-
dition CAT. Let us further assume that AT uses two binary predicates, overrides
and opposes, whose arguments are rule handles. We say that AT has the over-

riding property if, for every CAT-compatible lpda P, the following rule is true
in the well-founded model of (P,AT):

$defeated(handle(r2, L2)) :- Body1 ∧ Body2

∧overrides(handle(r1, L1), handle(r2, L2))
∧opposes(handle(r1, L1), handle(r2, L2))
∧ not $defeated(handle(r1, L1))

(4)

for all pairs of rules of the form (@ri Li :-Bodyi) ∈ P, i = 1, 2. �

Next we develop a family of argumentation theories that obeys these properties.

4 Courteous Argumentation Theories

We now develop a family of particularly interesting argumentation theories, de-
noted AT C , which subsumes generalized courteous logic programs (GCLP) [19].
Some members of this family correspond to different earlier versions of courteous
logic programs [18,19]; others improve upon these previous versions by eliminat-
ing certain cases of controversial behavior. The properties of these argumentation
theories are discussed at the end of this section.

Apart from the standard predicate $defeated, the argumentation theories
in the AT C family use two other predicates: opposes and overrides, which
are normally defined by the user. Argumentation theories might include addi-
tional axioms, such as symmetry for opposes or transitivity for overrides. The
opposes and overrides predicates are expected to be specified over rule han-
dles; they may occur as facts and in the heads of rules. Other predicates in AT C

represent concepts used to argue that certain rules must or must not be defeated.
The variables ?R and ?S are expected to range over rule handles.
Definition of defeasibility. These rules define what it means for a rule to be
defeated or to defeat another rule. A rule is defeated if it is refuted or rebutted
by some other rule, provided that the latter rule is not compromised. A rule can
also be defeated if it is disqualified for some other reason.

$defeated(?R) :- $defeats(?S, ?R), not $compromised(?S).
$defeated(?R) :- $disqualified(?R).
$defeats(?R, ?S) :- $refutes(?R, ?S) or $rebuts(?R, ?S).

(5)

The predicates $refutes and $rebuts will be defined shortly. The predicates
$compromised and $disqualified can mean different things depending on the
intended theory of argumentation. Here are some of the possibilities:

– No rule is compromised or disqualified. Lpdas with this argumentation theory
are equivalent to the original courteous logic programs (GCLP).

$compromised(?X) :- false.

$disqualified(?X) :- false.
(6)

– A rule is compromised if it is defeated, and it is disqualified if it transitively
defeats itself.8 This choice has been the main one we have experimented with
recently for practical use cases using our FLORA-2 extension.

$compromised(?R) :- $refuted(?R), $defeated(?R).
$disqualified(?X) :- $defeats

∗
(?X, ?X).

(7)

Here $defeats∗ denotes the transitive closure of $defeats.
– Another reasonable choice is

$compromised(?R) :- $defeated(?R).
$disqualified(?X) :- $defeats

∗
(?X, ?X).

(8)

Definitions for $refutes and $rebuts. Refutation of a rule, r, means that a
higher-priority rule implies a conclusion that is incompatible with the conclusion
implied by r. It is defined as follows:

$refutes(?R, ?S) :- $conflict(?R, ?S), overrides(?R, ?S).
$refuted(?R) :- $refutes(?R2, ?R).

(9)

Rebuttal means that a pair of rules assert conflicting conclusions, but neither
derivation can be discarded or considered “more important” than the other. This
intuition can be expressed in several different (not necessarily equivalent) ways.
We have been experimenting with the following definitions (where (11) together
with (6) defines the original GCLP):

$rebuts(?R, ?S) :- $conflict(?R, ?S), not $compromised(?R). (10)

$rebuts(?R, ?S) :- $conflict(?R, ?S), not $compromised(?R), (11)

not $refuted(?R), not $refuted(?S).

8 Note that we do not require that the predicate $defeats is transitively closed.

Definition of candidacy and conflict. A candidate rule-instance is one whose
body is true in the knowledge base:

$candidate(?R) :- body(?R, ?B), call(?B). (12)

Here body is a meta-predicate that binds ?B to the body of a rule with handle
?R. The call meta-predicate takes the body of a rule and poses it as a query to
the knowledge base. We note that these meta-predicates can be represented as
object-level predicates in HiLog [7]. We omit reviewing here the main aspects of
HiLog for reasons of space and focus.

Conflicting rules are now defined as follows: two rule handles are in conflict
if they are both candidates and are in opposition to each other.

$conflict(?R, ?S) :- $candidate(?R), $candidate(?S),opposes(?R, ?S). (13)

Background theory for mutual exclusion. The predicate opposes is normally
defined within the user knowledge base by a set of facts and rules. In addition,
our argumentation theories require opposes to be symmetric and such that
every literal must oppose its explicit negation (neg):

opposes(?R, ?S) :- opposes(?S, ?R).
opposes(handle(?L1, ?H), handle(?L2, neg ?H)).

(14)

We say that an argumentation theory belongs to the AT C family if it includes
the rules (5), (9), and (12)–(14); plus either (6) or (7) or (8); and either (10)
or (11). Let AT be an argumentation theory in AT C and let the compatibility
requirement be as follows. An lpda P is compatible with AT iff:

– The set of the atoms that appear in the heads of plain (non-defeasible) rules
and in the heads of labeled (defeasible) rules in P are disjoint.

– The $-predicates defined by AT C ($defeated, $compromised, $refuted,
etc.) do not occur in the heads of the program rules (i.e., they are defined
only by the rules in AT).

Theorem 2 (Well-behavior). Let AT be an argumentation theory in AT C

with the above compatibility requirement. Then AT satisfies the properties of
well-behaved theories of Section 3.2; namely:

1. AT ensures consistency for the atoms that occur in the heads of labeled rules.
2. Suppose there is no literal A for which both A and negA appear in the heads

of plain rules in P. Then AT ensures consistency (for all atoms).
3. If opposes(handle(..., L1), handle(..., L2)) is true only when neither L1 nor

L2 occurs in the heads of plain rules, then AT ensures strong consistency.
4. AT has the overriding property. �

Consider an argumentation theory, denoted ATGCLP , that consists of the rules
(5) – (6), (9), (11) – (14) and the following compatibility requirement. An lpda

P is compatible with ATGCLP iff:

– P contains only labeled rules.

– The $-predicates defined by ATGCLP ($defeated, $refuted, etc.) do not
occur in the heads of the program rules.

Theorem 3 (GCLP as LPDA). Consider ATGCLP and a compatible lpda

P. Let P ′ be the program obtained from P using the GCLP transformation of
[19].9 Then the restrictions of the well-founded models of (P, ATGCLP) and of
P ′ to the predicates mentioned in P coincide. �

This result says that the original GCLP is essentially equivalent to LPDA with
the argumentation theory ATGCLP . The new formulation of GCLP has many
benefits. First, it is not limited to ordinary logic programs: it extends straight-
forwardly to HiLog [7], F-logic [21], and other forms of logic programming. Sec-
ond, lpda s are inherently incremental: adding new knowledge does not require
changes to the already existing knowledge. In contrast, in the original approach,
adding new rules or facts meant that the GCLP transformation had to be re-
applied from scratch. It was substantial effort to find an equivalent incremental
transformation [13]. Third, the new formulation generalizes GCLP by allowing
non-defeasible rules.

Also, importantly, the new framework lets us use different argumentation
theories, while the original approach had one or two built into fairly complex
transformations, often making it hard to see through the complexity and to
experiment. In contrast, the new approach separates the argumentation theory
from program transformation, makes it much easier to see the rationale behind
the different parts of the argumentation theories, greatly simplifies the imple-
mentation, and enables various optimizations and improvements.

A case in point is the following example of controversial behavior exhibited
by the original GCLP in an “edge case.”

@a p. @b q. @c s.

overrides(handle(a,?),handle(c,?)). opposes(handle(?,p),handle(?,s)).
overrides(handle(c,?),handle(b,?)). opposes(handle(?,q),handle(?,s)).

Here GCLP sanctions the model {p, not q, not s}. However, one might feel
that the intended model should instead be {p, q, not s} because c is defeated
and thus should not defeat b. Modifying the argumentation theory ATGCLP is
much easier than examining and modifying the complex transformation of the
original GCLP. The alternative intuition about desired defeasibility behavior in
the above “edge case” example can be expressed by replacing the rules (6) with
(7) in the argumentation theory ATGCLP .

As further illustration, we show how GCLP can be used in conjunction with
HiLog’s higher-order syntax and F-logic’s object-oriented syntax. The example
also illustrates the use of rule labels with variables.

9 We are glossing over the minor detail that the syntax of lpda s is slightly different
from the syntax of GCLP used in [19].

@perm(?t) ?p(?usr) :- ?adm[states(?t)->?p(?usr)], ?adm[controls->?p].

overrides(handle(perm(?t1),?),handle(perm(?t2),?)) :- ?t1 > ?t2.

Bob[states(2008)->neg print(Al)]. Bob[states(2009)->print(Al)].

Bob[controls->{print(?), neg print(?)}].

Here the first rule says that if an administrator, ?adm, has stated at time ?t that
the user ?usr has a privilege, ?p, and if that administrator controls this type of
privileges, then the privilege is granted. Privileges can be positive (e.g., print) or
negative (e.g., neg print). This rule is defeasible and its label is non-ground. The
head of the rule is a HiLog literal, because of the higher-order variable ?p, while
the body has a combination of F-logic and HiLog features. The second rule is
non-defeasible. It says that later pronouncements override earlier ones. The facts
on line 3 say that the administrator Bob has issued conflicting statements about
whether the user Al is allowed to print or not. The last fact says that Bob controls
the printing privilege as well as its revocation. With the ATGCLP argumentation
theory, the above lpda sanctions the conclusion print(Al), as expected. It is
worth pointing out here that modifying the original GCLP transformation [19]
to handle this kind of programs is not a trivial matter.

5 Comparison with Other Work

The last two decades saw a great number of approaches to defeasible reasoning
in logic programming. Most of these are based on Reiter’s Default Logic [30],
stable models [16], and only a few [19,24] use the well-founded semantics [15].
None of the works surveyed here uses the notion of argumentation theories, but
[17,10,12] have goals similar to ours. Due to the sheer size of the literature on
defeasible reasoning, it is not feasible to do justice to all prior work in this
section. Therefore, we will focus on the more closely related work and refer the
reader to a recent survey [9] for a broader discussion of the literature, including
the works that we were unable to mention.

General frameworks [17,10,12]. The closest, in spirit, to our work are the logic of
prioritized defaults by Gelfond and Son [17], the meta-interpretation approach
of [12], and ordered logic programs of Delgrande, Schaub, and Tompits [10].

The logic of prioritized defaults [17] does not use the notion of argumentation
theories, but it is made clear that the meaning of the various theories of defaults
may differ from one application domain to another. This is analogous to allow-
ing argumentation theories to vary. However, Gelfond and Son developed their
language as a meta-theory, whose semantics is given by meta-interpreters. What
we call an “argumentation theory” is built into meta-interpreters in [17], and
no independent model theory is given. In contrast, our approach distills all the
differences between the different default theories to the notion of an argumen-
tation theory with a simple interface to the user-provided domain description,
the predicate $defeated. This allows us to define model-theoretic semantics,
including the well-founded and stable models, to unify the theories of Courteous
Logic Programming, Defeasible Logic, Prioritized Defaults, and more. This also

allows us to focus on the development of powerful argumentation theories, which
have the expected behavior on all known “benchmarks” that we are aware of
from the literature. The following is one such example.

@d1 neg flies :- penguin. overrides(d1,d2). bird.

@d2 flies :- bird. overrides(d2,d3). swims.

@d3 penguin :- bird, swims. overrides(d1,d3).

This example was discussed in [5,17] as a case where a seemingly correct domain
description yields the unintended model {swims, bird, penguin, flies} in-
stead of the expected model {swims, bird, penguin, neg flies}. Gelfond
and Son [17] argue that this happens because the above domain description is
“unclear” and requires a clarification in the form of the statement opposes(d2, d3).
In our opinion, however, requiring such additional domain-specific particulars is
undue engineering burden. Like [5], we believe that the above domain descrip-
tion is sufficient by itself and, together with any of the argumentation theories
of Section 4, this lpda has the expected behavior in our framework.

Like Gelfond and Son’s work, Leone et. al. [12] set out to unify approaches
to defeasible reasoning. Specifically, they present an adaptable meta-interpreter,
which can be made to simulate the approaches described in [6,33] among others.

Delgrande et. al. [10] propose a framework of ordered logic programming,
which can use a variety of preference handling strategies. For each strategy, this
approach devises a transformation from ordered logic programs to ordinary logic
programs. Each transformation is custom-made for the particular preference-
handling strategy, and the approach was illustrated by showing transformations
for several strategies, including two described in earlier works [33,12].

Unlike our approach, Delgrande’s framework does not come with a unifying
model-theoretic semantics. Instead, the definition of preferred answer sets differs
from one preference-handling strategy to another. One of the more important
conceptual differences between our work and [10] has to do with the nature of
the variable parts of the two approaches. In our case, the variable part is the
argumentation theory, which is a set of definitions for concepts that a human
reasoner might use to argue why certain conclusions are to be defeated. In case
of [10], the variable part is the transformation, which encodes a fairly low-level
mechanism: the order of rule applications required to generate the preferred
answer set.10 Finally, we note that each program transformation in [10] needs a
compiler that contains hundreds of lines of Prolog code. Our approach requires
no new software, and each argumentation theory typically contains 20-30 rules.

Defeasible Logic [25]. Defeasible Logic is related to lpda s in a number of ways.
On one hand, [1] shows that a not -free subset of GCLP (which is a special case
of lpda s) can be represented as a defeasible logic theory. On the other hand,
it can be shown that Defeasible Logic programs with non-contradictory strict
rules can be represented as lpda s with suitable argumentation theories both
under the well-founded semantics [24] and under the stable model semantics

10 Note that argumentation theories can also encode rule application orderings.

[2].11 Apart from the ability to choose argumentation theories, lpda s generalize
Defeasible Logic in other ways. For instance, Defeasible Logic does not deal with
general conflicts, i.e., situations where the opposing rules have heads that are
not negations of each other. In addition, lpda s can use the full power of rules
to define the prioritization ordering, while Defeasible Logic requires that this
ordering is specified in advance.

Other logics of prioritized defaults. Many other formalizations of prioritized
defaults, including [3,5,6,11,31,33,34,35], have been developed over the years.
In these formalisms, priorities can be assigned either to atoms (e.g., [31]) or
to rules ([3,5,6] and others), and the details vary widely. For example, most
proposals specify priorities explicitly, but some (e.g., [11]) assign them implicitly,
via the notion of specificity (rule r1 is more specific than r2 if the body of r1

entails the body of r2). For yet others, the mechanism for implicit prioritization
is instead derived from the structure of class hierarchies [34]. In most cases,
these proposals use stable models instead of the well-founded models used in
the present work. However, as mentioned earlier, stable models for lpdas can
be defined and, based on our analysis, most of the above approaches can be
simulated within our framework by choosing suitable argumentation theories.
Only Sakama and Inoue’s approach [31] bucks the trend. The key difficulty in
capturing this formalism is the way in which it defines preferences over answer
sets: in [31], preferences are derived from a priority relation over atoms, while
all other approaches define priorities over rules only.

Argumentation theories. A significant body of work is dedicated to development
of argumentation theories. These include papers like [4,14,26], which use this
term in a different sense than we do and are not closely related,12 as well as more
closely related works [27,28,20]. The focus of the latter works is development of
the actual concepts that argumentation theories operate with. For instance, [27]
uses Default Logic [30] to formalize the notions of defeat, defensible arguments,
etc. Our work is more general in the sense that we do not stick to a particular
argumentation theory and our FLORA-2-based implementation makes it easy
to use different such theories. However, concrete argumentation theories used in
our framework might embody notions analogous to those in [27]. For instance,
the theory of Section 4 uses the notions of defeated and defensible (rebutted, in
our terminology) arguments, although those notions are not exactly the ones
developed in [27].

11 Stable models for lpda s will be defined in the full version of this paper.
12 By arguments these works mean proofs or sets of supporting statements, not rules

that define the notion of defeasibility. The focus of [4] is non-monotonic logic in
general, while [14] is a procedural approach to defeasible rules. It is unclear whether
this approach can be captured as an argumentation theory in our framework.

6 Conclusions

We presented a novel approach that unifies most of the earlier work on defeasible
reasoning in logic programming (LP). The primary advantages of the approach
are:

– Generalization of Courteous and other previous defeasible LP approaches to
include HiLog-style higher-order and F-logic style object-oriented features.

– Much simpler implementation for Courteous and other previous defeasible
LP approaches. Such an implementation is easy in a system with sufficient
degree of introspection, like FLORA-2: contrast 20-30 rules per argumenta-
tion theory (e.g., Section 4) versus thousands of lines of code (e.g., [19,10]).

– Unification of almost all previous defeasible LP approaches within one theory
and the ability to combine multiple such in one system.

– Improvements on original GCLP, including a direct model theory, simpler
and faster incremental updating, and better control over edge case behavior.

References

1. G. Antoniou, D. Billington, G. Governatori, and M.J. Maher. Representation
results for defeasible logic. ACM Trans. Comput. Log., 2(2):255–287, 2001.

2. G. Antoniou and M.J. Maher. Embedding defeasible logic into logic programs. In
Int’l Conference on Logic Programming, pages 393–404, 2002.

3. F. Baader and B. Hollunder. Priorities on defaults with prerequisites, and their
application in treating specificity in terminological default logic. Journal of Auto-
mated Reasoning, 15(1):41–68, 1995.

4. A. Bondarenko, P.M. Dung., R.A. Kowalski, and F. Toni. An abstract,
argumentation-theoretic approach to default reasoning. Artificial Intelligence,
93(1-2):63–101, 1997.

5. G. Brewka and T. Eiter. Preferred answer sets for extended logic programs. Arti-
ficial Intelligence, 109:297–356, 1999.

6. G. Brewka and T. Eiter. Prioritizing default logic. In Intellectics and Computa-
tional Logic – Papers in Honour of Wolfgang Bibel, pages 27–45. Kluwer Academic
Publishers, 2000.

7. W. Chen, M. Kifer, and D.S. Warren. HiLog: A foundation for higher-order logic
programming. Journal of Logic Programming, 15(3):187–230, February 1993.

8. K.L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic and
Data Bases, pages 292–322. Plenum Press, 1978.

9. J. Delgrande, T. Schaub, H. Tompits, and K. Wang. A classification and sur-
vey of preference handling approaches in nonmonotonic reasoning. Computational
Intelligence, 20(12):308–334, 2004.

10. J.P. Delgrande, T. Schaub, and H. Tompits. A framework for compiling preferences
in logic programs. Theory and Practice of Logic Programming, 2:129–187, 2003.

11. P.M. Dung and T.C. Son. An argument-based approach to reasoning with speci-
ficity. Artificial Intelligence, 133(1-2):35–85, 2001.

12. T. Eiter, W. Faber, N. Leone, and G. Pfeifer. Computing preferred answer sets
by meta-interpretation in answer set programming. Theory and Practice of Logic
Programming, 3(4):463–498, 2003.

13. S. Ganjugunte. Extending reasoning infrastructure for rules on the semantic web:
Well-founded negation, incremental courteous logic programs, and interoperability
tools in sweetrules. Master’s thesis, UMBC, 2005.

14. A.J. Garćıa and G.R. Simari. Defeasible logic programming: an argumentative
approach. Theory Practice of Logic Programming, 4(2):95–138, 2004.

15. A. Van Gelder, K.A. Ross, and J.S. Schlipf. The well-founded semantics for general
logic programs. Journal of the ACM, 38:620–650, 1991.

16. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
In Proceedings of ICLP/SLP, pages 1070–1080. MIT Press, 1988.

17. M. Gelfond and T.C. Son. Reasoning with prioritized defaults. In Third Inter-
national Workshop on Logic Programming and Knowledge Representation, volume
1471 of Lecture Notes in Computer Science, pages 164–223. Springer, 1997.

18. B.N. Grosof. Prioritized conflict handling for logic programs. In Int’l Logic Pro-
gramming Symposium, pages 197–211, October 1997.

19. B.N. Grosof. A courteous compiler from generalized courteous logic programs to
ordinary logic programs. Technical Report Supplementary Update Follow-On to
RC 21472, IBM, July 1999.

20. N.I. Karacapilidis, D. Papadias, and T.F. Gordon. An argumentation based frame-
work for defeasible and qualitative reasoning. In Advances in Artificial Intelligence.
XIIIth Brazilian Symposium on Artificial Intelligence, pages 1–10. Springer, 1996.

21. M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented and frame-
based languages. Journal of ACM, 42:741–843, July 1995.

22. L.V.S. Lakshmanan and K. Thirunarayan. Declarative frameworks for inheritance.
In J. Chomicki and G. Saake, editors, Logics for Databases and Information Sys-
tems, pages 357–388. Kluwer Academic Publishers, 1998.

23. J.W. Lloyd. Foundations of Logic Programming (Second Edition). Springer, 1987.
24. F. Maier and D. Nute. Relating defeasible logic to the well-founded semantics for

normal logic programs. In Int’l Workshop on Non-monotonic Reasoning, 2006.
25. D. Nute. Defeasible logic. In Handbook of logic in artificial intelligence and logic

programming, pages 353–395. Oxford University Press, 1994.
26. L.M. Pereira and A.M. Pinto. Reductio ad absurdum argumentation in normal

logic programs. In ArgNMR workshop at LPNMR, pages 96–113, 2007.
27. H. Prakken. An argumentation framework in default logic. Annals of Mathematics

and Artificial Intelligence, 9(1-2):93–132, 1993.
28. H. Prakken. A logical framework for modelling legal argument. In ICAIL ’93: 4th

Int’l Conf. on Artificial Intelligence and Law, pages 1–9. ACM, 1993.
29. T.C. Przymusinski. Well-founded and stationary models of logic programs. Annals

of Mathematics and Artificial Intelligence, 12:141–187, 1994.
30. R. Reiter. A logic for default reasoning. Artificial Intelligence, 13:81–132, 1980.
31. C. Sakama and K. Inoue. Prioritized logic programming and its application to

commonsense reasoning. Artificial Intelligence, 123(1-2):185–222, 2000.
32. D. S. Touretzky. The Mathematics of Inheritance Systems. Morgan-Kaufmann,

1986.
33. K. Wang, L. Zhou, and F. Lin. Alternating fixpoint theory for logic programs with

priority. In First Int’l Conference on Computational Logic (CL’00), number 1861
in Lecture Notes in Computer Science, pages 164–178. Springer, 2000.

34. G. Yang and M. Kifer. Inheritance in rule-based frame systems: Semantics and
inference. Journal on Data Semantics, 2800:69–97, 2003.

35. Y. Zhang, C.M. Wu, and Y. Bai. Implementing prioritized logic programming. AI
Communications, 14(4):183–196, 2001.

	Logic Programming with Defaults and Argumentation Theories
	Hui Wan Benjamin Grosof Michael Kifer Paul Fodor Senlin Liang

