

Representing Agent Contracts with Exceptions

using XML Rules, Ontologies, and Process Descriptions

Benjamin N. Grosof 1 and Terrence C. Poon 2

1 MIT Sloan School of Management,
50 Memorial Drive, Cambridge, MA 02142, USA

bgrosof@mit.edu
 http://www.mit.edu/~bgrosof/

2 MIT Electrical Engineering and Computer Science Dept.

tpoon@alum.mit.edu

Abstract. SweetDeal is a rule-based approach to representation of business
contracts that enables software agents to create, evaluate, negotiate, and execute
contracts with substantial automation and modularity. It builds upon the situ-
ated courteous logic programs knowledge representation in RuleML, the emerg-
ing standard for Semantic Web XML rules. Here, we newly extend the Sweet-
Deal approach by also incorporating process knowledge descriptions whose
ontologies are represented in DAML+OIL, thereby enabling more complex
contracts with behavioral provisions, especially for handling exception condi-
tions (e.g., late delivery or non-payment) that might arise during the execution
of the contract. This provides a foundation for representing and automating
deals about services – in particular, about Web Services, so as to help search,
select, and compose them. Our system is also the first to combine emerging
Semantic Web standards for knowledge representation of rules (RuleML) with
ontologies (DAML+OIL) for a practical e-business application domain, and fur-
ther to do so with process knowledge. A prototype is running. We intend to
make the prototype publicly available.

1. Introduction

A key challenge in e-commerce is to specify the terms of the deal between buyers and
sellers, e.g., pricing and description of goods/services. In previous work [1] [2], we
have developed an approach that automates such business contracts by representing
and communicating them as modular logic-program rules. That approach, now called
SweetDeal, builds upon our situated courteous logic programs (SCLP) knowledge
representation in RuleML [3], the emerging standard for Semantic Web XML rules
that we (first author) co-lead. SweetDeal also builds upon our SweetRules prototype
system for rules inferencing and inter-operability in SCLP RuleML [4].

In this paper, we newly extend the SweetDeal approach by also incorporating pro-
cess knowledge descriptions whose ontologies are represented in DAML+OIL [5],
thereby enabling more complex contracts with behavioral provisions, especially for
handling exception conditions that might arise during the execution of the contract.

For example, a contract can first identify possible exceptions like late delivery or non-
payment. Next, it can specify handlers to find or fix these exceptions, such as con-
tingency payments, escrow services, prerequisite-violation detectors, and notifica-
tions. Our rule-based representation enables software agents in an electronic market-
place to create, evaluate, negotiate, and execute such complex contracts with
substantial automation, and to reuse the same (declarative) knowledge for multiple
purposes. In particular, our approach provides a foundation for representing and
automating deals about services – including about electronic services, e.g., Web Ser-
vices – so as to help search, select, and compose them. It thereby points the way to
how and why to combine Semantic Web techniques [6] with Web Services techniques
[7], a topic which the DAML-Services effort [8] has also been addressing (although
not yet much in terms of describing contractual deal aspects).

Our SweetDeal system is also the first to combine emerging Semantic Web stan-
dards for knowledge representation of rules (RuleML) with ontologies (DAML+OIL)
knowledge for a practical e-business application domain, and further to do so with
process knowledge. The process knowledge ontology (e.g., about exceptions and
handlers) is drawn from the MIT Process Handbook [9], a previously-existing reposi-
tory unique in its large content and frequent use by industry business process design-
ers. This is the first time that the MIT Process Handbook has been automated using
XML or powerful logical knowledge representation.

This paper is drawn from a larger effort on SweetDeal whose most recent portion
(second author’s masters thesis) defines and implements a software agent that creates
contract proposals in a semi-automated manner by combining modular contract provi-
sions from a queryable contract repository with process knowledge from a queryable
process repository. A prototype of the SweetDeal system is running, and further de-
velopment of it is in progress. We intend to make the prototype publicly available in
the near future.

2. SweetRules, RuleML, SweetDeal: More Background

SweetDeal is part of our larger effort SWEET, acronym for “Semantic WEb Enabling
Technology”, and is prototyped on top of SweetRules. Our earlier SweetRules proto-
type was the first to implement SCLP RuleML inferencing and also was the first to
implement translation of (SCLP) RuleML to and from multiple heterogeneous rule
systems. SweetRules enables bi-directional translation from SCLP RuleML to: XSB,
a Prolog rule system [10]; Smodels, a forward logic-program rule engine [11]; the
IBM CommonRules rule engine, a forward SCLP system [12]; and Knowledge Inter-
change Format (KIF, a.k.a. “CommonLogic”), an emerging industry standard for
knowledge interchange in classical logic [13].1 The latest component of SweetRules
is SweetJess [14], currently being prototyped, which aims to enable bi-directional
translation to Jess, a popular open-source forward production-rule system in Java
[15].

1 SweetRules is built in Java. It uses XSLT [22] and components of the IBM CommonRules li-

brary.

The SCLP case of RuleML is expressively powerful. The courteous extension of
logic programs enables prioritized conflict handling and thereby facilitates modularity
in specification, modification, merging, and updating. The situated extension of logic
programs enables procedural attachments for “sensing” (testing rule antecedents) and
“effecting” (performing actions triggered by conclusions). Merging and modification
is important specifically for automated (“agent”) contracts, because contracts are of-
ten assembled from reusable provisions, from multiple organizational sources, and
then tweaked. Updating is important because a contract is often treated as a template
to be filled in. For example, before an on-line auction is held a contract template is
provided for the good/service being auctioned. Then when the auction closes, the
template is filled in with the winning price and the winner’s name, address, and pay-
ment method. Indeed, in [2] we show how to use SCLP to represent contracts in this
dynamically updated manner, for a real auction server – U. Michigan’s AuctionBot –
and the semi-realistic domain of a Trading Agent Competition about travel packages.
More generally, the design of SCLP as a knowledge representation (KR) grew out of
a detailed requirements analysis [1] for rules in automated contracts and business
policies. The RuleML standards effort is being pursued in informal cooperation with
the World Wide Web Consortium’s Semantic Web Activity, which has now included
rules in its charter along with ontologies, and with the DARPA Agent Markup Lan-
guage Program (DAML) [16].

3. Overview of the rest of the paper

In se ction 3, we review the MIT Process Handbook (PH) [9] [17], and Klein et al’s
extension of it to treat exception conditions in contracts [18]. In section 4, we newly
show how to represent the Process Handbook’s process ontology (including about ex-
ceptions) in DAML+OIL, giving some examples. In section 5, we discuss the inabil-
ity of DAML+OIL, however, to represent default (i.e., non-monotonic) inheritance --
which the PH ontology employs in the general case, just as does C++ and many other
object-oriented (OO) systems. (Elsewhere, we will detail how the courteous exten-
sion to logic programs provides an alternative knowledge representation tool for
properly treating such default inheritance.) In section 6, we describe our develop-
ment of an additional ontology specifically about contracts, again giving examples in
DAML+OIL. This contract ontology extends and complements the PH process on-
tology. In section 7, we newly give an approach to using DAML+OIL ontology as
the predicates etc. of RuleML rules. In section 8, we newly show how to use the
DAML+OIL process ontology, including about contracts and exceptions, as the
predicates etc. of RuleML rules, where a ruleset represents part or all of a (draft or fi-
nal) contract with exceptions and exception handlers. We illustrate by giving a long-
ish example of such a contract ruleset whose rule-based contingency provisions in-
clude detecting and penalizing late delivery exceptions, thus providing means to deter
or adjudicate a late delivery. In section 9, we give conclusions and briefly discuss the
larger SweetDeal effort. In section 10, we wind up with some discussion including of
future work.

3. MIT Process Handbook (PH)

In this section, we review the MIT Process Handbook (PH) [9] [17], and Klein et al’s
extension of it to treat exception conditions in contracts [18].

The MIT Process Handbook (PH) is a previously-existing knowledge repository of
business process knowledge. It is primarily textual and oriented to human-readability
although with some useful automation for knowledge management using taxonomic
structure. Among automated repositories of business process knowledge, it is unique
(to our knowledge) in having a large amount of content and having been frequently
used practically by industry business process designers from many different compa-
nies. Previous to our work in SweetDeal, however, its content had never been auto-
mated in XML, nor had that content ever been represented in any kind of powerful
logical knowledge representation – the closest was its use of a fairly conventional Ob-
ject-Oriented (OO) style of taxonomic hierarchy, as a tool to organize its content for
retrieval and browsing.

The Handbook describes and classifies major business processes using the organ-
izational concepts of decomposition, dependencies, and specialization. The Handbook
models each process as a collection of activities that can be decomposed into sub-
activities, which may themselves be processes. In turn, coordination is modeled as the
management of dependencies that represent flows of control, data, or material be-
tween activities. Each dependency is managed by a coordination mechanism, which is
the process that controls its resource flow.

Finally, processes are arranged into a generalization-specialization taxonomy, with
generic processes at the top and increasingly specialized processes underneath. Each
specialization automatically inherits the properties of its parents, except where it ex-
plicitly adds or changes a property. This is similar to taxonomic class hierarchies hav-
ing default inheritance2, such as in many Object-Oriented (OO) programming lan-
guages, knowledge representations (KR’s) and information modeling systems. Note
that the taxonomy is not a tree, as an entity may have multiple parents. In general,
there thus is multiple inheritance. For example, BuyAsALargeBusiness is a subclass
of both Buy and ManageEntity. The figure below shows a part of the taxonomy with
some of the specializations for the “Sell” process. Note the first generation of chil-
dren of “Sell” are questions; these are classes used as intermediate categories, analo-
gous to virtual classes (or pure interfaces) in OO programming languages. Since
there is multiple inheritance, it is easy to provide several such “cross-cutting” dimen-
sions of categories along which to organize the hierarchy.

2 a.k.a. “inheritance with exceptions”, a.k.a. “non-monotonic inheritance”

Figure 1: Some specializations of “Sell” in the MIT Process Handbook.

Exception Conditions

The terms of any contract establish a set of commitments between the parties involved
for the execution of that contract. When a contract is executed, these commitments are
sometimes violated. Often contracts, or the laws or automation upon which they rely,
specify how such violation situations should be handled.

Building upon the Process Handbook, Klein et al [18] consider these violations to
be coordination failures – called “exceptions” – and introduces the concept of excep-
tion handlers, which are processes that manage particular exceptions. We in turn
build upon Klein et al’s approach. When an exception occurs during contract execu-
tion, an exception handler associated with that exception may be invoked.

Figure 2: Some exceptions in the MIT Process Handbook.

For example, in a given contract (agreement), company A agrees to pay $50 per unit
for 100 units of company B’s product, and B agrees to deliver within 15 days (com-
mitments). However, due to unforeseen circumstances, when the contract is actually
performed, B only manages to deliver in 20 days (exception). As a result, B pays
$1000 to A as compensation for the delay (exception handler).

There are four classes of exception handlers in [18]. For an exception that has not

occurred yet, one can use:

• Exception anticipation processes, which identify situations where the exception is
likely to occur.

• Exception avoidance processes, which decrease or eliminate the likelihood of the
exception.

For an exception that has already occurred, one can use:

• Exception detection processes, which detect when the exception has actually oc-

curred.
• Exception resolution processes, which resolve the exception once it has occurred.

Figure 3: Some exception handlers in the MIT Process Handbook.3

[18] extends the MIT Process Handbook with an exception taxonomy. Every process
may be associated via hasException links to its potential exceptions (zero or more),
which are the characteristic ways in which its commitments may be violated. hasEx-
ception should be understood as “has potential exception”. Similar to the process
taxonomy, exceptions are arranged in a specialization hierarchy, with generic excep-
tions on top and more specialized exceptions underneath. In turn, each exception is
associated (via an isHandledBy link) to the processes (exception handlers) that can be
used to deal with that exception. Since handlers are processes, they may have their
own characteristic exceptions.
 Following the general style of (default, multiple) inheritance in the MIT Process
Handbook, the exceptions associated with a process are inherited by the specializa-
tions of that process unless explicitly overridden. Similarly, the handlers for an excep-
tion are inherited by the specializations of that exception, unless overridden.

4. Representing the PH Process Ontology in DAML+OIL

In this section, we newly show how to represent the Process Handbook’s process on-
tology (including about exceptions) in DAML+OIL, giving some examples. This on-

3 Track MBTF is a typo in the MIT Process Handbook. It should be Track MTBF (mean time

between failures) instead.

tology is given a URI of http://xmlcontracting.org/pr.daml, where “pr” stands for
“process”. We have registered the xmlcontracting.org domain name and are in the
process of setting up the web site. For the current full version of this ontology, and
pointer to the xmlcontracting.org site when it is indeed up, please see the first author’s
website.

We begin with some DAML+OIL headers:

<?xml version="1.0" ?>
<rdf:RDF
 xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:daml="http://www.daml.org/2001/03/daml+oil#"
 xmlns ="http://xmlcontracting.org/pr.daml#" >
<daml:Ontology rdf:about="">
 <daml:imports rdf:resource="http://www.daml.org/2001/03/daml+oil"/>
</daml:Ontology>

Next we define some main concepts in the MIT Process Handbook as top-level
classes:

<daml:Class rdf:ID="Process">
 <rdfs:comment>A process</rdfs:comment>
</daml:Class>

<daml:Class rdf:ID="CoordinationMechanism">
 <rdfs:comment>A process that manages activities between multiple
agents</rdfs:comment>
</daml:Class>

<daml:Class rdf:ID="Exception">
 <rdfs:comment>A violation of an inter-agent commitment</rdfs:comment>
</daml:Class>

<daml:Class rdf:ID="ExceptionHandler">
 <rdfs:subClassOf rdf:resource="#Process"/>
 <rdfs:comment>A process that helps to manage a particular
exception</rdfs:comment>
</daml:Class>

Then we define the relations between concepts as object properties:

<daml:ObjectProperty rdf:ID="hasException">
 <rdfs:comment>Has a potential exception</rdfs:comment>
 <rdfs:domain rdf:resource="#Process" />
 <rdfs:range rdf:resource="#Exception" />
</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="isHandledBy">
 <rdfs:comment>Can potentially be handled, in some way or aspect,
by</rdfs:comment>
 <rdfs:domain rdf:resource="#Exception" />
 <rdfs:range rdf:resource="#ExceptionHandler" />
</daml:ObjectProperty>

Specializations are expressed as subclasses4:

<daml:Class rdf:ID="SystemCommitmentViolation">
 <rdfs:subClassOf rdf:resource="#Exception"/>
 <rdfs:comment>
Violation of a commitment made by the system operator to create an
environment well-suited to the task at hand.
 </rdfs:comment>
</daml:Class>

<daml:Class rdf:ID="AgentCommitmentViolation">
 <rdfs:subClassOf rdf:resource="#Exception"/>
 <rdfs:comment>
Violation of a commitment that an agents makes to other agents.
 </rdfs:comment>
</daml:Class>

The Process Handbook expects each specialization to inherit the properties of its par-
ent. The DAML+OIL semantics provide this automatically since it entails monotonic
(strict) inheritance of such properties.

Subtlety about Handler Exclusiveness:

Next we discuss a subtlety that arises about the exclusiveness of handler classes. In
response to this subtlety, we make use of the daml:hasClass restriction. Consider
the following fragment, which defines the exception ContractorDoesNotPay as a sub-
class of ContractorViolation and specifies an isHandledBy link to the exception
handler ProvideSafeExchangeProtocols.

<daml:Class rdf:ID="ContractorDoesNotPay">
 <rdfs:subClassOf rdf:resource="#ContractorViolation"/>
 <rdfs:subClassOf>
 <daml:Restriction>
 <daml:onProperty rdf:resource="#isHandledBy"/>
 <daml:hasClass rdf:resource="#ProvideSafeExchangeProtocols"/>
 </daml:Restriction>
 </rdfs:subClassOf>
</daml:Class>

Formally, the daml:Restriction element here defines an anonymous class of all
objects for which at least one value of the isHandledBy property is a member of the
class ProvideSafeExchangeProtocols. (This does not exclude that there are other val-
ues of the isHandledBy property that are not members of class ProvideSafeEx-
changeProtocols.) As a subclass of both ContractorViolation and this restriction,
ContractorDoesNotPay is a specialization of ContractorViolation that has at least one
instance that is handled by ProvideSafeExchangeProtocols.

Notice we use a daml:hasClass restriction here rather than a daml:toClass re-
striction 5 [5]. daml:toClass would require that the value of the isHandledBy

4 In Figure 2 (in Section 3), SystemCommitmentViolation and AgentCommitmentViolation are

shown as “Systemic” and “Agent”, respectively.

property for ContractorDoesNotPay must be of the class ProvideSafeExchangeProto-
cols. In other words, it would exclude the possibility for any other exception handler
class to handle the ContractorDoesNotPay exception. In contrast, daml:hasClass
leaves open this possibility. This matches the semantics of the isHandledBy link in the
MIT Process Handbook, which is that some instances of the ContractorDoesNotPay
exception are known to be aptly handled by some instances of the ProvideSafeEx-
changeProtocols handler. The Handbook takes the approach – which we endorse –
that it is typically desirable to treat a process repository as potentially extensible, i.e.,
open. Indeed, it often unrealistic to expect a repository to have an exhaustive listing
of all handlers for a given exception.

The Process Handbook is quite large (order of magnitude 10,000 classes). We
have (so far) represented in DAML+OIL a relevant fragment amounting to a small
percentage of its content. Only some of that fragment is shown in this paper, however.
For the full details, see the first author’s website.

5. Issue: Default Inheritance

In this section, we discuss the inability of DAML+OIL, however, to represent default
(i.e., non-monotonic) inheritance -- which the PH ontology employs in the general
case, just as do C++, Java, and many other object-oriented (OO) systems. (Else-
where, we will detail how the courteous extension to logic programs provides an al-
ternative knowledge representation tool for properly treating such default inheri-
tance.)

The Handbook allows overrides6, where a specialization explicitly omits a property
inherited from its generalization. This is impossible to express directly in
DAML+OIL, due to its monotonic class system. Consider the following naïve attempt
at omitting the isHandledBy ProvideSafeExchangeProtocols property from Special-
Nonpayment, a fictitious specialization of ContractorDoesNotPay:

5 The daml:toClass restriction is analogous to the universal (for-all) quantifier of predicate

logic, while the daml:hasClass restriction is analogous to the existential (there-exists) quan-
tifier of predicate logic.

6 Note this propery “overrides” in the Process Handbook is not the same concept as “overrides”
in courteous logic programs (CLP). The latter is a syntactically reserved predicate used to
specify the prioritization partial ordering among rules/rule-labels. (These two usages of
“overrides” are an unfortunate but coincidental case of collision/overloading in the technical
terminology.)

<daml:Class rdf:ID="SpecialNonPaymentViolation">
 <rdfs:subClassOf rdf:resource="#ContractorDoesNotPay"/>
 <rdfs:subClassOf>
 <daml:Class>
 <daml:complementOf>
 <daml:Restriction>
 <daml:onProperty rdf:resource="#isHandledBy"/>
 <daml:hasClass rdf:resource="#ProvideSafeExchangeProtocols"/>
 </daml:Restriction>
 </daml:complementOf>
 </daml:Class>
 </rdfs:subClassOf>
</daml:Class>

Since SpecialNonpayment is a subclass of ContractorDoesNotPay, we would infer
that it could have the handler ProvideSafeExchangeProtocols. However, since it is the
subclass of the complement of all things that could have the handler ProvideSafeEx-
changeProtocols, we would infer that it could not have the handler ProvideSafeEx-
changeProtocols. These two statements contradict each other, implying that the Spe-
cialNonpayment class must be the empty set. If we defined an instance of
SpecialNonpayment, a logical inconsistency would result, since it is impossible for
such an instance to exist.

Pragmatically, this inability of DAML+OIL to represent overrides is not an imme-
diately critical problem in representing the PH ontology, since there are as yet only a
few places in the current content of the MIT Process Handbook where overrides is
used. Coping with this incapability of DAML+OIL about overrides is an important
area for future work, however, especially since DAML+OIL is becoming a more
widely accepted kind of tool.

6. Contract Ontology

In this section, we describe our development of an additional process ontology spe-
cifically about contracting concepts and relations, again giving examples in
DAML+OIL. This contract ontology extends and complements the PH process on-
tology. We give it the URI http://xmlcontracting.org/sd.daml, where “sd” stands for
“SweetDeal”. For the current file version of this ontology, and pointer to the xmlcon-
tracting.org site when it is indeed up, please see the first author’s website.

Again we begin with some DAML+OIL header statements. Notice that we import
the PH process ontology:

<?xml version=’1.0’ encoding=’ISO-8859-1’?>
<rdf:RDF
 xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:daml="http://www.daml.org/2001/03/daml+oil#"
 xmlns ="http://xmlcontracting.org/sd.daml#" >
<daml:Ontology rdf:about="">
 <daml:imports rdf:resource="http://www.daml.org/2001/03/daml+oil"/>
 <daml:imports rdf:resource="http://xmlcontracting.org/pr.daml"/>
</daml:Ontology>

We view a contract as a specification for one or more processes. Accordingly, we de-
fine the Contract class and a specFor relation that links a contract to its process(es):

<daml:Class rdf:ID="Contract">
 <rdfs:subClassOf>
 <daml:Restriction daml:minCardinality="1">
 <daml:onProperty rdf:resource="#specFor"/>
 </daml:Restriction>
 </rdfs:subClassOf>
</daml:Class>

<daml:ObjectProperty rdf:ID="specFor">
 <rdfs:domain rdf:resource="#Contract" />
 <rdfs:range rdf:resource="http://xmlcontracting.org/pr.daml#Process"
/>
</daml:ObjectProperty>

To represent the common special case of contracts that specify only one process, we
define ContractForOneProcess, using a daml:cardinality restriction to limit the
specFor relation to exactly one process:

<daml:Class rdf:ID="ContractForOneProcess">
 <rdfs:subClassOf rdf:resouce="#Contract"/>
 <rdfs:subClassOf>
 <daml:Restriction daml:cardinality="1">
 <daml:onProperty rdf:resource="#specFor"/>
 </daml:Restriction>
 </rdfs:subClassOf>
</daml:Class>

A contract represents the “terms and conditions” that the parties have agreed upon
(typically) before performing the contract. E.g., they have come to agreement during
a negotiation before their contract commitments actually come due. We define a sepa-
rate concept, ContractResult, to represent the state of how the contract was actually
carried out. For example, ContractResult could describe the actual shipping date, the
quality of the received goods, the amount of payment received, etc.

<daml:Class rdf:ID="ContractResult"/>

<daml:ObjectProperty rdf:ID="result">
 <rdfs:domain rdf:resource="#Contract" />
 <rdfs:range rdf:resource="#ContractResult" />
</daml:ObjectProperty>

The process ontology provides the hasException relation to indicate that a process
could have a particular exception. How do we indicate that an exception has occurred
during contract execution? We define the exceptionOccurred relation on ContractRe-
sult to denote that the exception happened as the contract was being carried out:

<daml:ObjectProperty rdf:ID="exceptionOccurred">
 <daml:domain
rdf:resource="http://xmlcontracting.org/pr.daml#ContractResult"/>
 <daml:range
rdf:resource="http://xmlcontracting.org/pr.daml#Exception"/>

</daml:ObjectProperty>

Finally, we introduce some relations to specify the purpose that an exception handler
fulfills. A DetectException handler is intended to detect certain exception classes, an
AnticipateException handler is intended to anticipate certain exception classes, etc.
We want to identify exception classes, not exception instances. We thus make the
range be the class Class.7

<daml:ObjectProperty rdf:ID="detectsException">
 <daml:domain
rdf:resource="http://xmlcontracting.org/pr.daml#DetectException"/>
 <daml:range
rdf:resource="http://www.daml.org/2001/03/daml+oil#Class"/>
</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="anticipatesException">
 <daml:domain
rdf:resource="http://xmlcontracting.org/pr.daml#AnticipateException"/>
 <daml:range
rdf:resource="http://www.daml.org/2001/03/daml+oil#Class"/>
</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="avoidsException">
 <daml:domain
rdf:resource="http://xmlcontracting.org/pr.daml#AvoidException"/>
 <daml:range
rdf:resource="http://www.daml.org/2001/03/daml+oil#Class"/>
</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="resolvesException">
 <daml:domain
rdf:resource="http://xmlcontracting.org/pr.daml#ResolveException"/>
 <daml:range
rdf:resource="http://www.daml.org/2001/03/daml+oil#Class"/>
</daml:ObjectProperty>

There are a number of other interesting concepts and ontological statements about
contracts that we are developing in our SweetDeal Contract Ontology, but space pre-
vents us from detailing them further here.

7. Integrating DAML+OIL Ontologies Into RuleML Rules

In this section, we briefly describe the technical representational approach for the in-
tegration of the DAML+OIL ontologies into the RuleML rules, in which the RuleML
rules are specified “on top of” the DAML+OIL ontology. In the next section, we
give examples of RuleML contract rules that make use of DAML+OIL process on-
tologies.

7 This is based on the interpretation that an instance of class Class is a class, something which

we could not find explicitly addressed in the DAML+OIL reference manual. Also, ideally,
we would restrict the range to subclasses of Exception, but we did not see a straightforward
way to do this in the current version of DAML+OIL.

A DAML+OIL class is treated as a unary predicate. A DAML+OIL property is
treated as a binary predicate. Assertions about instances in a class are treated as rule
atoms (e.g., facts) in which the class predicate appears. Assertions about property
links between class instances are treated as rule atoms in which the property predicate
appears. RuleML permits a predicate symbol (or a logical function symbol) to be a
URI; we make heavy use of this capability since the names of DAML+OIL classes
are URI’s. To our knowledge, ours is the first published description and example of
such integration of DAML+OIL into RuleML, and one of the first two published de-
scriptions and examples of combination of DAML+OIL with a non-monotonic rule
KR -- the other being [19] which was done independently.8

A natural question arises: how to define formally the semantics of such integra-
tion, i.e., of the hybrid KR formed by combining LP rules on top of DL ontologies
(or, similarly, by combining Horn FOL rules on top of DL ontologies). One might
view this through the lens of the rule KR’s semantics and/or through the lens of the
ontology KR’s semantics. Knowledge specified in a set of premise rules R1 together
with a set of premise DL axioms O1 may entail knowledge O2 expressible in DL that
goes beyond what was entailed by O1 alone, and likewise may entail knowledge R2
expressible in LP that goes beyond what was entailed by R1 alone. It is also possible,
in general, for inconsistency to arise from the combination of R1 with O1, even
though each is consistent in itself. We do not have space or focus here to give more
details about the formal definition of this semantics, see elsewhere for that. A some-
what similar hybrid KR semantics and proof theory is addressed in [19].

8. RuleML Contracts with Exceptions using the Process and
Contract Ontologies

In this section, we newly show how to use the DAML+OIL process ontology, includ-
ing about contracts and exceptions, as the predicates etc. of RuleML rules, where a
ruleset represents part or all of a (draft or final) contract that has exceptions and ex-
ception handlers. We illustrate by giving a long-ish example of such a contract rule-
set whose rule-based contingency provisions include detecting and penalizing late de-
livery exceptions, thus providing means to deter or adjudicate a late delivery.

RuleML, like most XML, is fairly verbose. For ease of human-readability, as well
as to save paper space, we give our RuleML examples in a Prolog-like syntax that
maps straightforwardly to RuleML. More precisely, this syntax is IBM Common-
Rules V3.0 “SCLPfile” format, extended to support URI’s as logical predicate (and
function) symbols and to support names for rule subsets (i.e., “modules”) . “<-
“ stands for implication, i.e., “if”. “;” ends a rule statement. The prefix “?” indicates a
logical variable. “//” prefixes a comment line. “<…>” encloses a rule label (name) or
rule module label. “{…}” encloses a rules module. Rule labels identify rules for edit-
ing and prioritized conflict handling, for example to facilitate the modular modifica-

8 We have described this approach verbally in communal design discussions about DAML and

about RuleML since when those discussions began in summer 2000. The overall goal of
rules on top of ontologies has, indeed, been a communal goal in those discussions since then.

tion of contract provisions. Module labels are used to manage the merging of multiple
rule modules to form a contract.

In the examples below, DAML+OIL classes and properties, taken from the PH
process ontology and contract (process) ontology, are used as predicate symbols.

Notice that we do not show namespace qualification of the predicate names. This is
because the current QName (“qualified” name) syntactic mechanism only works for
XML element names but not for attribute or text values. (In RuleML a predicate name
is a text value.) For instance, with daml defined as
http://www.daml.org/2001/03/daml+oil#, daml:Class serves as shorthand
for http://www.daml.org/2001/03/daml+oil#Class in element names, but
the same syntax cannot be used for values. One workaround approach is to use XML
entities. If we define an XML entity sd to be
http://xmlcontracting.org/sd.daml#, then &sd;Contract expands to
http://xmlcontracting.org/sd.daml#Contract in attribute or text values.
This issue is a subject of active discussion currently in the RDF and Semantic Web
standards efforts.

Let’s begin with an example draft contract co123 where Acme is purchasing 100

units of plastic product #425 from Plastics Etc. at $50 per unit. Acme requires Plastics
Etc. to ship the product no later than three days after the order is placed 9. We specify
this draft contract as the following rulebase (i.e., set of rules):

http://xmlcontracting.org/sd.daml#Contract(co123);
http://xmlcontracting.org/sd.daml#specFor(co123,co123_process);
http://xmlcontracting.org/sd.daml#BuyWithBilateralNegotiation(
 co123_process);
http://xmlcontracting.org/sd.daml#result(co123,co123_res);

buyer(co123,acme);
seller(co123,plastics_etc);
product(co123,plastic425);
shippingDate(co123,3); // i.e. 3 days after the order is placed

price(co123,50);
quantity(co123,100);
// base payment = price * quantity
payment(?R,base,?Payment) <-
 http://xmlcontracting.org/sd.daml#result(co123,?R) AND
 price(co123,?P) AND quantity(co123,?Q) AND
 Multiply(?P,?Q,?Payment) ;

Continuing our example, suppose the seller wants to include a contract provision to
penalize late delivery – so as to reassure the buyer. First we add some rules to declare
that this contract has an exception instance e1 that is an instance of the LateDelivery
class from the process ontology:

http://xmlcontracting.org/pr.daml#hasException(co123_process,e1);
http://xmlcontracting.org/pr.daml#LateDelivery(e1);

9 Here we use a relative date (e.g. 3) rather than an absolute date (e.g. 2002-04-02), for sake of

simplicity and because the rule engine that we are using in our prototype (IBM Common-
Rules) does not (yet) provide convenient date arithmetic functions.

Note that the actual occurrence of an exception is associated with a contract result, as
opposed to its potential occurrence which is associated with the contract (agree-
ment)’s process. hasException specifies the potential occurrence. We will see below
more about the actual occurrence.
 Next, we give a rules module (i.e., a set of additional rules to include in the overall
draft contract ruleset) that specifies a basic kind of exception handler process – to de-
tect the late delivery.

In our approach, exception handler processes themselves may be rule-based (in
part or totally), although in general they need not be rule-based at all. The exception
handler detectLateDelivery is rule-based in this example. Below, the variable ?CO
stands for a contract, ?R for a contract result, ?EI for an exception instance, ?PI for a
process instance, ?COD for a promised contract shipping date, and ?RD for a contract
result’s actual shipping date.

<detectLateDelivery_module> {

// detectLateDelivery is an instance of DetectPrerequisiteViolation
// (and thus of DetectException, ExceptionHandler, and Process)

http://xmlcontracting.org/pr.daml#DetectPrerequisiteViolation(
 detectLateDelivery) ;

// detectLateDelivery is intended to detect exceptions of class
// LateDelivery

http://xmlcontracting.org/sd.daml#detectsException(detectLateDelivery,
 http://xmlcontracting.org/pr.daml#LateDelivery);

// a rule defines the actual occurrence of a late delivery in a contract
// result

<detectLateDelivery_def>
http://xmlcontracting.org/sd.daml#exceptionOccurred(?R, ?EI) <-
 http://xmlcontracting.org/sd.daml#specFor(?CO,?PI) AND
 http://xmlcontracting.org/pr.daml#hasException(?PI,?EI) AND
 http://xmlcontracting.org/pr.daml#LateDelivery(?EI) AND
 http://xmlcontracting.org/pr.daml#isHandledBy(?EI,
 detectLateDelivery) AND
 http://xmlcontracting.org/sd.daml#result(?CO,?R) AND
 shippingDate(?CO,?COD) AND shippingDate(?R,?RD) AND
 greaterThan(?RD,?COD) ;
}

Then we add the following rule to the contract to specify detectLateDelivery as a
handler for e1:

<detectLateDeliveryHandlesIt(e1)>
http://xmlcontracting.org/pr.daml#isHandledBy(e1,detectLateDelivery);

Merely detecting late delivery is not enough; the buyer also wants to get a penalty
(partial refund) if late delivery occurs. Continuing our example, we next give a rules
module to specify a penalty of $200 per day late, via an exception handler process
lateDeliveryPenalty. Again, this handler is itself rule-based.

lateDeliveryPenalty_module {

// lateDeliveryPenalty is an instance of PenalizeForContingency
// (and thus of AvoidException, ExceptionHandler, and Process)

http://xmlcontracting.org/pr.daml#PenalizeForContingency(
 lateDeliveryPenalty) ;

// lateDeliveryPenalty is intended to avoid exceptions of class
// LateDelivery.

http://xmlcontracting.org/sd.daml#avoidsException(lateDeliveryPenalty,
 http://xmlcontracting.org/pr.daml#LateDelivery);

// penalty = - overdueDays * 200 ; (negative payment by buyer)
<lateDeliveryPenalty_def> payment(?R, contingentPenalty, ?Penalty) <-
 http://xmlcontracting.org/sd.daml#specFor(?CO,?PI) AND
 http://xmlcontracting.org/pr.daml#hasException(?PI,?EI) AND
 http://xmlcontracting.org/pr.daml#isHandledBy(?EI,lateDeliveryPenalty)
AND
 http://xmlcontracting.org/sd.daml#result(?CO,?R) AND
 http://xmlcontracting.org/sd.daml#exceptionOccurred(?R,?EI) AND
 shippingDate(?CO,?CODate) AND shippingDate(?R,?RDate) AND
 subtract(?RDate,?CODate,?OverdueDays) AND
 multiply(?OverdueDays, 200, ?Res1) AND multiply(?Res1, -1, ?Penalty) ;
}

We add a rule to specify lateDeliveryPenalty as a handler for e1:

<lateDeliveryPenaltyHandlesIt(e1)>
http://xmlcontracting.org/pr.daml#isHandledBy(e1,lateDeliveryPenalty);

During contract execution, if Plastics Etc. ships its product 8 days after the order is
placed (i.e. 5 days later than the agreed-upon date), then the rules
detectLateDelivery will declare that late delivery exception has occurred, which
will trigger lateDeliveryPenalty to impose a penalty of $200 per day late, total-
ing $1000.

More precisely, suppose we represent the contract result as the ruleset formed by add-
ing (to the above contract) the following “result” fact:

shippingdate(co123_res, 8) ;

Then the contract result ruleset entails various conclusions, in particular

http://xmlcontracting.org/sd.daml#exceptionOccurred(co123_res,e1) ;
payment(co123_res, contingentPenalty, -1000) ;

Our SweetRules prototype system, which implements SCLP RuleML inferencing, can
generate these conclusions automatically.

Next, we (relatively briefly, due to space constraints) illustrate how to use priori-

tized conflict handling, enabled by the courteous feature of SCLP RuleML, to modu-
larly modify the contract provisions, e.g., during bilateral negotiation. The seller

might like to specify that the late delivery exception should be handled by the handler
lateDeliveryRiskPayment, which imposes an up-front insurance-like discount to com-
pensate for the risk of late delivery, basing risk upon a historical average probability
distribution (defined separately) of delivery lateness. First, we define a rules module
for the risk payment handler:

lateDeliveryRiskPayment_module {

// lateDeliveryRiskPayment is an instance of AvoidException
// (and thus of ExceptionHandler, and Process)

http://xmlcontracting.org/pr.daml#AvoidException(
 lateDeliveryRiskPayment) ;

// lateDeliveryRiskPayment is intended to avoid exceptions of class
// LateDelivery.

http://xmlcontracting.org/sd.daml#avoidsException(
 lateDeliveryRiskPayment,
 http://xmlcontracting.org/sd.daml#LateDelivery) ;

// penalty = - expected_lateness * 200 (negative payment by buyer)
<lateDeliveryRiskPayment_def>
payment(?R, contingentRiskPayment, ?Penalty) <-
 http://xmlcontracting.org/sd.daml#specFor(?CO,?PI) AND
 http://xmlcontracting.org/sd.daml#hasException(?PI,?EI) AND
 http://xmlcontracting.org/pr.daml#isHandledBy(?EI,
lateDeliveryRiskPayment) AND
 http://xmlcontracting.org/sd.daml#result(?CO,?R) AND
 historical_probabilistically_expected_lateness(?CO, ?EOverdueDays) AND
 Multiply(?EOverdueDays, 200, ?Res1) AND Multiply(?Res1, -1, ?Penalty);
}

Then we add a rule to specify lateDeliveryRiskPayment as a handler for e1:

<lateDeliveryRiskPaymentHandlesIt(e1)>
http://xmlcontracting.org/pr.daml#isHandledBy(e1,
 lateDeliveryRiskPayment);

Next, we give some rules that use prioritized conflict handling to specify that late de-
liveries should be avoided by lateDeliveryRiskPayment rather than any other candi-
date avoid-type exception handlers for the late delivery exception (here, simply, lat-
eDeliveryPenalty). We specify this using a combination of a MUTEX statement and
an overrides statement that gives the lateDeliveryRiskPaymentHandlesIt(e1) rule
higher priority than the lateDeliveryPenaltyHandlesIt(e1) rule.

// There is at most one avoid handler for a given exception instance.
// This is expressed as a MUTual EXclusion between two potential
// conclusions, given certain other preconditions.
// The mutex is a consistency-type integrity constraint, which is
// enforced by the courteous aspect of the semantics of the rule KR.

MUTEX
 http://xmlcontracting.org/pr.daml#isHandledBy(?EI, ?EHandler1) AND
 http://xmlcontracting.org/pr.daml#isHandledBy(?EI, ?Ehandler2)
GIVEN
 http://xmlcontracting.org/sd.daml#AvoidException(?Ehandler1) AND

 http://xmlcontracting.org/sd.daml#AvoidException(?Ehandler2) ;

// The rule lateDeliveryRiskPaymentHandlesIt(e1) has higher priority
// than the rule lateDeliveryPenaltyHandlesIt(e1).

overrides(lateDeliveryRiskPaymentHandlesIt(e1),
 lateDeliveryPenaltyHandlesIt(e1)) ;

Now suppose the probabilistically expected lateness of the delivery (before actual
contract execution) is 3 days. I.e., suppose the contract also includes the following
fact.

historical_probabilistically_expected_lateness(co123, 3) ;

If upon execution the modified-contract’s result facts are as before – i.e., delivery is 5
days late – then the modified-contract’s result entails as conclusions that the late de-
livery will be handled by the up-front risk payment of $600 = (3 days * $200).

payment(co123_res, contingentRiskPayment, -600) ;

The modified-contract’s result does not entail that late delivery is handled by the pen-
alty of $1000 – as it should not. The courteous aspect of the rules knowledge repre-
sentation has properly taken care of the prioritized conflict handling to enforce that
the new higher-priority contract provision about risk payment dominates the provision
about penalty.

9. Conclusions and Overall SweetDeal Effort

To recap, this work makes novel contributions in several areas:
• Represents process knowledge from the MIT Process Handbook (PH) using an

emerging Semantic Web ontology KR (DAML+OIL). This is the first time
PH process knowledge has been represented using XML or powerful KR.

• Extends our previously existing SweetDeal approach to rule-based representa-
tion of contracts in SCLP/RuleML with the ability to reference such process
knowledge and to include exception handling mechanisms. (The SweetDeal
approach enables software agents to create, evaluate, negotiate, and execute
contracts with substantial automation and modularity.)

• Enables thereby more complex contracts with behavioral provisions.
• Provides a foundation for representing and automating contractual deals about

Web Services (and e-services more generally), so as to help search, select, and
compose them.

• Gives a new point of convergence between Semantic Web and Web Services.
• Gives a conceptual approach to specifying LP/RuleML rules “on top of”

DL/DAML+OIL/DL ontologies (for the first time to our knowledge). More-
over, this is for the highly expressive SCLP case of RuleML. And this is one
of the first two published descriptions and examples of combination of
DAML+OIL with a non-monotonic rule KR — the other being [19] which was

done independently. Our approach to rules on top of ontologies is described
here conceptually and by examples, but only informally, however, in that we
do not have space or focus to give a formal semantics (or proof theory) for it.

• Combines (SC)LP/RuleML with DL/DAML+OIL (i.e., emerging Semantic
Web rules with emerging Semantic Web ontologies) for a substantial business
application domain scenario/purpose (for the first time, to our knowledge).

A prototype is running. We intend to make it publicly available in the near future.

This paper also:
• Demonstrates an inherent limitation of DAML+OIL in representing inheri-

tance overrides (a.k.a. “default inheritance”, a.k.a. “inheritance with excep-
tions”). The limitation is due to the logical monotonicity of its underlying De-
scription Logic KR. The limitation was well known in principle, but we gave
here one of the first practical example application contexts in which it arises.

For more discussion of conclusions, see the Introduction.

The larger SweetDeal effort further:
• Defines and implements a queryable process repository.
• Defines and implements a mechanism for rule-based contracts in RuleML to

be built from reusable modular provisions, called contract fragments, that are
retrieved from queryable contract repositories.

• Designs and implements the mechanisms of a market agent that largely auto-
mates the creation of such contracts as part of a negotiation process, in support
of a human user.

• Provides an overall interaction architecture for an agent marketplace with such
rule-based contracts.

10. Future Work

One interesting research direction is to develop more and longer example scenarios
and test them out by running them using SweetRules together with tools for
DAML+OIL and, later, tools for reasoning specifically about process knowledge. In
particular, we are investigating aspects specific to Web Services. We are focusing on
relating our SweetDeal approach and its elements (rules, ontologies, process knowl-
edge) to the Web Services area’s standards (e.g., WSDL [24]), techniques (e.g.,
SOAP invocations [23], UDDI [25]), and exploratory application areas. A second in-
teresting direction is how to incorporate legal aspects of contracting into our ap-
proach, including to connect to the Legal XML emerging standards effort [26].

Other interesting directions involve ontologies. One is to further develop the
DAML+OIL ontology for business processes, e.g., by drawing on the Process Hand-
book. A second is to further develop the contract ontology. Currently, we are inves-

tigating how to formalize more deeply the relationship between a contract rulebase
and a rule-based handler process. Third, we are prototyping an approach to using
DAML+OIL as an ontology about RuleML itself. We have released an early version
of this specification. Called DamlRuleML [14], it provides a relatively straightfor-
ward encoding of SCLP RuleML’s syntax in DAML+OIL. A natural next step is then
to combine DamlRuleML with a DAML+OIL domain ontology (e.g. about processes)
whose classes serve as predicates for RuleML rules, as presented in this paper.

Another important aspect of ontologies is to develop the theory of combining rules
on top of ontologies, including expressive union and intersection, semantics, proof
theory, algorithms, and computational complexity. Our development of this theory is
in progress.

Yet other directions for future work include tying in to agent negotiation strategies,
to emerging standards for general-purpose e-business/agent communication, e.g.,
ebXML [20] and FIPA’s Agent Communication Language [21], and to more general
efforts on combining Semantic Web and Web Services, e.g., DAML-S.

Finally, there is the challenge we discussed in section 5: how to cope with the is-
sue of default inheritance in regard to DAML+OIL and also to the Process Handbook.
In current work, we are taking an approach to default inheritance using the prioritized
conflict handling capability provided by the courteous feature of SCLP.

Acknowledgements

Thanks to our MIT Sloan colleagues Mark Klein, Chrysanthos Dellarocas, Thomas
Malone, Peyman Faratin, and John Quimby for useful discussions about the Process
Handbook and representing contract exceptions there. Also thanks to the workshop’s
anonymous reviewers for numerous helpful comments.

References

1. Grosof, B.N., Labrou, Y., and Chan, H.Y., “A Declarative Approach to Business Rules in
Contracts: Courteous Logic Programs in XML”. Proc. 1st ACM Conf. on Electronic
Commerce (EC-99), 1999.

2. Reeves, D.M., Wellman, M.P., and Grosof, B.N., “Automated Negotiation From Declara-
tive Contract Descriptions”. To appear 2002 in Computational Intelligence, special issue
on Agent Technology for Electronic Commerce. (Revised and extended from 2001
Autonomous Agents conference paper.)

3. Rule Markup Language Initiative, http://www.dfki.de/ruleml and
http://www.mit.edu/~bgrosof/#RuleML.

4. Grosof, B.N., “Representing E-Business Rules for Rules for the Semantic Web: Situated
Courteous Logic Programs in RuleML”. Proc. Wksh. on Information Technology and
Systems (WITS ‘01), 2001.

5. DAML+OIL Reference (Mar. 2001). http://www.w3.org/TR/daml+oil-reference/
6. Semantic Web Activity of the World Wide Web Consortium. http://www.w3.org/
7. Web Services activity of the World Wide Web Consortium. http://www.w3.org/

8. DAML Services Coalition (alphabetically A. Ankolekar, M. Burstein, J. Hobbs, O. Las-
sila, D. Martin, S. McIlraith, S. Narayanan, M. Paolucci, T. Payne, K. Sycara, H. Zeng),
‘‘DAML-S: Semantic Markup for Web Services’’, Proc. International Semantic Web
Working Symposium (SWWS), 2001.

9. MIT Process Handbook. http://ccs.mit.edu/ph/
10. XSB logic programming system. http://xsb.sourceforge.net/
11. Niemela, I. and Simons, P., Smodels (version 1). http://saturn.hut.fi/html/staff/ilkka.html.
12. IBM CommonRules. http://www.alphaworks.ibm.com/ and

http://www.research.ibm.com/rules/
13. Knowledge Interchange Format http://logic.stanford.edu/kif and

http://www.cs.umbc.edu/kif/. A new effort is named CommonLogic.
14. Grosof, B.N., Gandhe, M.D., and Finin, T.W., “SweetJess: Translating DamlRuleML to

Jess”. Proc. Intl. Wksh. on Rule Markup Languages for Business Rules on the Semantic
Web, held at 1st Intl. Semantic Web Conf., 2002.

15. Jess (Java Expert System Shell). http://herzberg.ca.sandia.gov/jess/
16. DARPA Agent Markup Language Program http://www.daml.org/
17. Malone, T.W., Crowston, K., Lee, J., Pentland, B., Dellarocas, C., Wyner, G., Quimby, J.,

Osborn, C.S.., Bernstein, A., Herman, G., Klein, M., and O’Donnell, E., “Tools for Invent-
ing Organizations: Toward a Handbook of Organizational Processes.” Management Sci-
ence, 45(3): p. 425-443, 1999.

18. Klein, M., Dellarocas, C., and Rodríguez-Aguilar, J.A., “A Knowledge-Based Methodol-
ogy for Designing Robust Multi-Agent Systems.” Proc. Autonomous Agents and Multi-
Agent Systems, 2002.

19. Antoniou, G., “Nonmonotonic Rule Systems using Ontologies”. Proc. Intl. Wksh. on Rule
Markup Languages for Business Rules on the Semantic Web, held at 1st Intl. Semantic
Web Conf., 2002.

20. ebXML (ebusiness XML) standards effort, http://www.oasis-open.org
21. FIPA (Foundation for Intelligent Physical Agents) Agent Communication Language stan-

dards effort, http://www.fipa.org
22. XSLT (eXtensible Stylesheet Language Transformations), http://www.w3.org/Style/XSL/
23. SOAP, http://www.w3.org/2000/xp/Group/ and http://www.w3.org/2002/ws/
24. WSDL (Web Service Definition Language), http://www.w3.org/2002/ws and

www.w3.org/TR/wsdl
25. UDDI (Universal Description, Discovery, and Integration), http://www.uddi.org
26. Legal XML, http://www.oasis-open.org

