
WORKING PAPER – !! DRAFT, e.g., lacks most references !!

Version of December 19, 2005

Defining an

Abstract Core Production Rule System

Benjamin Grosof

Massachusetts Institute of Technology,

Sloan School of Management,

50 Memorial Drive, Cambridge, MA 02142 USA,

bgrosof@mit.edu, http://ebusiness.mit.edu/bgrosof

Abstract

We define an abstract core production rule system. This is part of our
overall foundational work on the Production Logic Programs knowledge
representation (KR) approach of web rules that are semantically inter-
operable between all four of the currently most commercially important
families of rule systems, including production rules, relational database
management systems, event-condition-action rules, and Prolog.

1

Contents

1 Definition of Abstract Core Production Rule System 3
1.1 Introduction . 3
1.2 Overall Level . 3
1.3 Language and KB: Details . 4
1.4 Engine: Details . 7
1.5 Additional Logical Connectives . 9
1.6 Summary . 9
1.7 Other Aspects of Production Rule Systems 11

2 Acknowledgements 11

2

1 Definition of Abstract Core Production Rule System

1.1 Introduction

Production rule systems in their full generality are fairly complicated. Indeed, they
can be used as fairly general-purpose programming mechanisms. In this paper, we are
concerned only with a restricted set of core capabilities and features of a production
rule system, where this core is shared across the family of production rule systems.
We abstract away from most of the details of a production rule system, particularly
the details of the rule language syntax and the engine implementation.

Our motivation is to provide a definitional part of our overall foundational work
on the Production Logic Programs knowledge representation (KR) approach of web
rules that are semantically interoperable between all four of the currently most com-
mercially important families of rule systems, including production rules, relational
database management systems, event-condition-action rules, and Prolog.

This is also related to the effort in the OMG Production Rules Representation
(PRR) standardization effort to develop a common abstract definition of a production
rule system. In near future work, we will seek to compare the formulation in this pa-
per to the (currently being drafted) OMG PRR formulation. Preliminary indications
are that there is a close relationship but somewhat different emphases and degrees of
elaboration in the two formulations.

Accordingly, we define an abstract version of a restricted production rule system,
as follows.

1.2 Overall Level

An abstract core production rule system consists of: a language; a knowledge base
(KB) expressed in that language; and an engine.

In production rule systems terminology, the engine is often known as the “infer-
ence” engine, since it generates conclusions drawn from the production rules. More
precisely, however, it could be described as an “inferencing+action” engine since
part of the behavior (in general) specified by the production rules is to perform side-
effectful actions by calling attached procedures.

The knowledge base consists of: premises and conclusions expressed in the lan-
guage.

An system instance of the abstract core production rule system consists of a par-
ticular KB (starting simply with its premises) and a particular instance of the engine
process.

The (set of) premises consists of premise facts, production rules, attached proce-
dures (aproc’s), and an agenda control strategy. The attached procedures are for tests

3

and actions (more details about that are given below). In production rule systems ter-
minology, these attached procedures are often known as (a category of) “functions”.

The (set of) conclusions consists of: conclusion facts; and launched action calls.
Each launched action call is an invocation (i.e., call) of an aproc.

The engine consists of: a KB store; an agenda; a pattern matcher; a firing process;
an action launcher (a.k.a. “execution engine”); and a main engine process . Here, and
below, “process” means in the sense of business process, i.e., a method or procedure

An episode is a run of the main engine process. It starts with a premise KB and
then generates all of its associated conclusions. This is accomplished by iteratively
pattern-matching the rules against the working memory’s set of facts and then firing
the successfully-matched rule instances to create new conclusions. The results of
calls to tests are treated as additional virtual facts for purposes of pattern-matching.
New (derived) conclusion facts are added to the working memory and are available
for pattern-matching in subsequent iterations. The overall iteration is performed until
exhaustion — i.e., until no new rule instances can be successfully-matched. The
conclusion facts consist of the derived conclusion facts together with the premise
facts. In addition, the conclusions include a set of launched action calls — whose
executions have side effects.

1.3 Language and KB: Details

Next, we describe the language and KB in more detail.
A fact is a ground atom. In production rule systems, an atom, and the language

generally, is furthermore required to be function-free. Function-free means that no
logical functions are permitted. In the KR literature, logical functions are sometimes
known as “constructors”, and function-free is sometimes known as the “Datalog” re-
striction. Note that here (and throughout this paper), we mean atom, ground, function,
and function-free each in their usual sense from logical knowledge representation
(KR), e.g., from first order logic or logic programs.

An atom can be an ordered atom or an unordered atom. An ordered atom has a
sequenced argument collection, i.e., an ordered tuple of arguments. It has the form:

(p t1 . . . tm)
where p is (the name of) a predicate, each ti is a term, and m ≥ 0. If m = 0 then the
parentheses may be omitted.
Each term may be a constant or a (logical) variable.
For example:

(loves mary john)
says that Mary loves John.
A variable is prefixed by “?”. For example:

(loves mary ?x)
Note that in this parenthesized syntactic style for an abstract core production rule

system, we follow the Lisp-like parenthesized syntactic style of CLIPS and Jess.

4

An unordered atom has an unsequenced argument collection, in which each argu-
ment is the value of a named slot. The slot names must be distinct within a particular
atom.
An unordered atom is thus like a row in a relational database table. In such a table,
each row has individual named data fields corresponding to the table’s columns.
An unordered atom has the form:

(p (n1 t1) . . . (nm tm))
where each ni is a slot name. As with ordered atoms, p is a predicate, each ti is a
term, m ≥ 0, and each term may be a constant or a variable. For example:

(discount (customer Fred) (percentage 30) (product basicDV D))
says that customer Fred gets a 30% discount on the basic DVD.

In production rule systems terminology, an atom is also known as (a kind of)
“pattern”.

Premises and conclusions are specified via statements. A fact statement has the
form of a command to assert a fact, followed by an end-of-statement delimiter “.”. It
has the form:

(assert F).
where F is a fact.
For example:

(assert (loves mary john)).
asserts the fact that Mary loves John. The assert command here is a system command
— a special one.

A premise fact statement, and a conclusion fact statement, each have the form of
a fact statement.

A production rule is a premise statement that specifies an if-then rule. The if part
of the rule is also known as its “left hand side (LHS)”, and the then part of the rule is
also known as its “right hand side” (RHS). In the KR literature about rules in general,
the if and then part of a rule are also often known as the antecedent and consequent,
respectively, or as the body and head, respectively. In addition to its if and then part,
a production rule has a rule name. This rule name is required to be unique within a
given KB. A production rule has the form:

(defrule lab LHS ⇒ RHS).
where lab is the rule name, LHS and RHS are expressions whose form are detailed
below, and “.” is the end-of-statement delimiter.

The LHS and RHS are built up out of element expressions. The four basic kinds
of elements are atoms, assertions, tests, and actions. Additional kinds of elements
specify logical connectives, including “and”, “not”, and “or”. The LHS is built up
out of atoms and tests, using the logical connectives “and”, “not”, and “or” (which
may be nested freely). The RHS is built up out of assertions and actions, using the
logical connective “and” (which may be nested freely). If the LHS has a top-level
“and” connective, it may be left tacit (i.e., omitted from the explicit syntax). Likewise
if the RHS has a top-level “and” connective, it may be left tacit.

5

An atom within a rule need not be ground, i.e., logical variables may appear in it.
An assertion asserts an atom. It has the form:

(assert A)
where A is an atom. For example:

(assert (loves mary ?x))
A test is a call to an attached procedure (aproc). The test aproc is required to

return a boolean value; it thus can be viewed conceptually as similar to a predicate.
The test aproc is called for the sake of its return value, rather than for the sake of its
side effect. A test has the form:

(test (q t1 . . . tm))
where q is (the name of) a test aproc, each ti is a term, and m ≥ 0. For example:

(test (< ?x 50))
where < is the name of the less-than test aproc. < is typically available as a system
built-in. However, in general, a test aproc may be user-supplied.

An action is a call to an attached procedure (aproc). The action aproc is called
for the sake of its side effect, rather than for the sake of its return value. (By contrast,
with a test aproc, the sakes are vice versa.) An action has the form:

(test (a t1 . . . tm))
where a is (the name of) an action aproc, each ti is a term, and m ≥ 0. For example:

(action (printout t “Maryisinlove!′′))
which when called results in printing out “Mary is in love!”. Here, printout is the
name of a printing action aproc. printout is typically available as a system built-in.
Another example is:

(action (pay2 ?customer ?seller 75.00 dollars byMasterCard))
which when called results in ?customer paying ?seller via a $75.00 charge on Mas-
terCard. Here, pay2 is the name of a (hypothetical) user-supplied action aproc for
payment.

The “and” connective performs logical conjunction, as usual in logical KR, e.g.,
in first order logic or logic programs. An “and” expression has the form:

(and E1 . . . Em)
where each Ei is an expression, and m ≥ 0. As usual, if m = 0, the truth value of the
“and” expression is regarded as True.

The “not” connective performs logical negation. Negation in production rule sys-
tems is essentially (a kind of) negation-as-failure, i.e., default negation, rather than
classical negation. A “not” expression has the form:

(not E)
where E is an expression.

The “or” connective performs logical disjunction. An “or” expression has the
form:

(or E1 . . . Em)
where each Ei is an expression, and m ≥ 0. As usual, if m = 0, the truth value of the
“or” expression is regarded as False. (Note that False here means essentially in the

6

sense of negation-as-failure, rather than classical negation).
We can summarize the syntax of a production rule as follows:

(defrule lab ({nested and|not|or} of {atom|test})
⇒ ({nested and} of {assert|action}))

Here, atom, test, assert, and action stand for atom, test, assertion, and action ex-
pressions. “|” stands for the choice operator. lab is the rule name.

We define a normal production rule to be one that has a connective structure simi-
lar to a “normal” rule in declarative logic programs. The LHS consists of an “and” of
expressions that are each either an atom, a test, the “not” of an atom, or the “not” of a
test. The RHS consists of single assertion or action expression.

(Note that “normal” here is terminology specific to this paper, rather than being
previously in common use in production rule systems terminology. It is inspired by
the logic programs KR literature, where it is in common usage.)

We can summarize the syntax of a normal production rule as follows:
(defrule lab ({and} of {atom|test|(not atom)|(not test)})

⇒ ({assert|action}))
In addition to facts and production rules, there are two other kinds of premises:

aprocs (for tests and actions) and agenda control strategy.
An aproc declaration statement specifies an aproc as a premise. It has the form:

aproc A.
Here, A is an aproc name, e.g., printout or pay2 or <. “.” is the end-of-statement
delimiter. The statement declares the aproc to be accessible, i.e., callable, by the
engine process. The aproc takes an ordered tuple of input parameters (recall test and
action expressions described above.)

In current commercially practical production rule systems, some aproc’s (e.g.,
printout or <) are built in to the system, rather than supplied by the user (e.g., pay2).
These can be viewed as implicitly declared.

An aproc is defined as a procedure in some programming language, e.g., as a
method in C/C++ or Java or C#, or as a web service in WSDL. As is normal for
procedures in those languages, the aproc takes an ordered tuple of input parameters.
Its interface is available (to the production rule system) indirectly via its name, in the
usual manner for these programming languages. An aproc used in a test expression
must return a boolean truth value and should have no side effect. An aproc used in a
action expression should have a side effect.

We will describe the agenda control strategy a bit later, after first describing the
agenda.

In addition to facts, there is one other kind of conclusion: launched action calls.
A launched action call has the form of a ground action expression, i.e.,

(action (ac1 . . . cm))
where a is (the name of) an (action) aproc, each ci is an individual constant, and
m ≥ 0.

7

1.4 Engine: Details

Next, we describe the engine in more detail.
The KB store consists of: a working memory, which is a store for premise facts

and conclusion facts; a production rules store; an aprocs store, an agenda control
strategy store, and a launched action-calls store.

The agenda consists of: an activation list; and an agenda ordering. The activa-
tion list is a list of “activated” ground instances of production rules. “Activated” in
production rule systems terminology means that the rule instance’s body is satisfied
according to current state of the KB store, notably of the working memory. The
agenda ordering is a partial ordering over the members of the activation list.

The pattern matcher is a component process within the engine that generates and
maintains the activation list. The pattern matcher computes the rule instances whose
LHS’s are satisfied, i.e., that are “applicable” in production rule systems terminology.
“Applicable” rule instances that have not yet fired constitute the activation list. In
most current and previous commercially practical production rule systems, the pattern
matcher is implemented by using Rete algorithm.

The agenda control strategy (ACS) is defined as a partial ordering ACS over the
set of potential activations, i.e., over the set of ground instances of the production
rules. For every pair of activations av1 and av2, the agenda control strategy indicates
whether av1 is higher than av2 in the partial ordering — which can be written for-
mally as:

ACS(av1, av2) .
The main engine process forms the agenda ordering based on the agenda control strat-
egy.

Current commercially practical production rule systems often permit complicated
agenda control strategy specifications. For example, in Jess, each activation includes
not only the production rule and the instantiating bindings to that rule’s variables, but
also other information, including: the facts and test aproc calls used to satisfy the
rule’s LHS, and the time at which that satisfaction was detected. In Jess, the agenda
control strategy is specified by a combination of an overall “conflict resolution strat-
egy” together with salience. A few “conflict resolution strategies” are available as pre-
defined choices, including first-in first-out (FIFO) (called “breadth” in Jess) and last-
in first-out (LIFO) (called “depth” in Jess). Static salience is an optional user-defined
score for each production rule statement, which takes precedence over the “conflict
resolution strategy”. In addition, Jess permits the salience and/or “conflict resolution
strategy” to be computed dynamically using general user-defined procedures (written
in Java code). However, complicated reliance upon, and extensive “hacking” of, the
agenda control strategy by the user is typically discouraged in production rule systems
(e.g., the Jess documentation/book cautions against it).

The firing process is a component process within the engine. It computes which
rule instance is next to be fired, then fires that rule instance. To compute which rule
instance is next to be fired, it applies the agenda control strategy to the activation

8

list to determine the agenda ordering, then chooses a rule instance that is maximal
wrt that ordering, i.e., that is “agenda-maximal” (in our terminology). To fire a rule
instance, the firing process executes the rule instance’s RHS and then removes the
rule instance from the activation list. To execute its RHS, the firing process adds its
asserted facts into the working memory and launches its actions by calling the action
launcher. When adding an asserted fact into the working memory, the fact is marked
as derived, i.e., as a derived-conclusion.

The action launcher launches an action by adding it to the launched-action-call
store and actually calling the corresponding aproc with the instantiated parameters.

The main engine process orchestrates an episode of generating all the conclusions
from a starting premise KB. (Recall the overview in sub-section 1.2.) Figure 1 gives
a pseudo-code description of it.

1.5 Additional Logical Connectives

(This subsection is described in less detail than the others in this section.)

We extend PR1 to add enhanced logical connectives and quantifiers, in roughly the
manner of Lloyd-Topor, including: or, and, and exists in the body; nesting of all
these and not in the body; and and in the head. This is defined via transformations
that reduce to the case without these, in a manner that is similar, but not identical, to
the usual Lloyd-Topor (treatment of) logical connectives and quantifiers in LP. One
main difference from Lloyd-Topor is in regard to the or connective when the rule has
an action head; production rules behavior (e.g., in Jess) is defined as generating a set
of “subrules”, one per OR branch. This subrule generation may lead in worst case
to an exponential blowup in the size/number of rules in the corresponding PLP, when
multiple or’s nested within and’s. The other main difference from Lloyd-Topor is in
regard to the exists connective, which is a kind of twice-nested not.

1.6 Summary

We summarize the foregoing formally as a definition.

Definition 1 (Abstract Core Production Rule System)

An abstract core production rule system (PR1) is defined as above in this section.
•
The structure of the overall PR1 can be summarized as follows.

system := language, KB, engine.

KB := premises, conclusions.

premises := premise facts, production rules, aprocs,

agenda control strategy.

conclusions := conclusion facts, launched action calls.

9

1. load the KB premises into the KB store;
/* (first, empty out the working memory and agenda;) */

2. do loop {
2.1. pattern match;

/* with respect to (updated) working memory.
I.e., find every rule instance whose LHS
is satisfied, and that has not yet been
fired. This creates an (updated)
activation list. */

2.2. if activation list is empty, then go to step (3.) to
finish up.

/* begin firing process: */
2.3. order the agenda (using the agenda control strategy),

and
select an agenda-maximal activated rule instance RIN
as next to fire;

/* begin firing that rule instance: */
2.4. add RIN’s RHS’s asserted facts as derived into the

working memory;
/* A derived fact may have already been present

in the working memory. If so, just keep one
copy of the fact, overall. */

/* begin action launching */
2.5. add RIN’s RHS’s action calls to the

launched-action-call store.
2.6. perform RIN’s RHS’s action-calls by performing

the corresponding aproc calls;
/* these have side effects */

/* end of action launching */
/* end of firing that rule instance */
2.7. remove RIN from the activation list;

/* since it has now been fired */
/* end firing process */ }

3. finish up
3.1. return the conclusions set from the conclusions store;

/* The conclusion set includes both facts and
launched-action-calls.

The facts include both premise facts and
derived facts.

Also, the launched-action-calls when executed
had side effects. */

3.2. stop;

Figure 1: Pseudo-Code for Main Engine Process of Abstract Core Production Rule
System

10

engine := KB store, agenda, pattern matcher,

firing process, action launcher.

KB store := working memory, production rules store,

aprocs store, agenda control strategy store,

launched action calls store.

agenda := activation list, agenda ordering.

Here, “:=” is used to mean “consists of”, as in EBNF and other definitional gram-
mars.

1.7 Other Aspects of Production Rule Systems

There are a number of other aspects of expressiveness in production rule systems that
are not captured in the above notion of an abstract core production rule system.

These aspects include: builtins; datatyping; comments; lists; “constraint expres-
sions” (similar to logical connectives and quantifiers); retracting or updating/modifying
facts in the working memory; static and dynamic “shadow facts” from the surrounding
programming language environment; additional engine control mechanisms such as
“modules” (multiple cooperating rulebases and engine threads); various system com-
mands, e.g., for starting, halting, resetting, and tracing the engine process and knowl-
edge base store, and for modifying the agenda control strategy; additional fairly gen-
eral procedural-programming mechanisms, e.g., scripting; and some other features.

Some of these aspects can be, and some cannot be, reasonably expected to be
treated declaratively in future. The above list is very roughly sorted from more to less
declarative in prospect.

2 Acknowledgements

The author wishes to thank Said Tabet for useful discussions.
Support for this work was provided by awards from DAML, the DARPA Agent

Markup Language program.

11

