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Abstract. This paper proposes an ex post path choice estimation framework for urban
rail systems using an aggregated time-space hypernetwork approach. We aim to infer the
actual passenger flow distribution in an urban rail system for any historical day using the
observed automated fare collection (AFC) data. By incorporating a schedule-based
dynamic transit network loading (SDTNL) model, the framework captures the crowding
correlation among stations and the interaction between the path choice and passenger left
behind, which is important for the path choice estimation in a “near-capacity” operated
urban rail system. The path choice estimation is formulated as an optimization problem,
which aims to minimize the difference between the model-derived and observed infor-
mation with path choice parameters as decision variables. The original problem is intract-
able because of nonlinear (logit model) and nonanalytical (SDTNL) constraints. A
solution procedure is proposed to decompose the original problem into three tractable
subproblems, which can be solved efficiently. Solving the decomposed problem is equiv-
alent to finding a fixed point. We prove that the solution to the original problem is the
same as the decomposed problem (i.e., the fixed point) when passenger path choices fol-
low the predefined behavior model. If this condition does not hold, the solution of the
original problem is proved to be an “almost fixed point” for the decomposed problem.
The model is validated using both synthetic and real-world AFC data from a major urban
railway system. The analysis with synthetic data validates the model’s effectiveness in
estimating path choice parameters and left behind probabilities, which outperforms
state-of-art simulation-based optimization methods and probabilistic models in both
accuracy and efficiency. The analysis using actual data shows that the estimated path
shares are more reasonable than the baseline uniform path shares and survey-derived
path shares. The model estimation is robust to different initial parameter values and AFC
data from various dates.

Funding: The project is partially funded by the TRENoP Strategic Research funding at KTH.
Supplemental Material: The online appendices are available at https://doi.org/10.1287/trsc.2022.1177.
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1. Introduction
With increasing urbanization, the urban rail systems are
playing an important role in urban transportation.
Understanding passenger flow distribution in urban
rail systems is crucial for designing operating strategies
and better accommodating passengers. Simulation and
transit loadingmodels are powerful instruments to infer
and predict passenger flows in the network and hence
monitor and evaluate system performance. Two impor-
tant inputs are required for these models: the origin-
destination (OD) demand and passengers’ path choices.
With the availability of data from automated fare

collection (AFC) systems, station-to-station OD flows in
urban rail networks are readily available, especially for
close systems with both tap-in and tap-out fare valida-
tions (Koutsopoulos et al. 2019). However, path choices
are not observed directly. Therefore, estimating path
choices is an essential requirement for understanding
passenger flow distributions and monitoring system
performance.

On-site surveys are typically used to estimate path
choices. However, surveys are time-consuming and
labor intensive. In addition, given the changes in operat-
ing characteristics and performance of an urban rail
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system, survey results may quickly become outdated.
To overcome these disadvantages, researchers have pro-
posed path choice estimation methods using AFC data.
In closed urban rail systems, AFCdata include locations
and times of both tap-in and tap-out transactions. AFC
data-based methods for path choice estimation can be
categorized into two groups: path-identification meth-
ods (Kusakabe, Iryo, and Asakura 2010, Zhou and Xu
2012, Kumar, Khani, and He 2018, Zhu, Koutsopoulos,
and Wilson 2021) and parameter-inference methods
(Sun and Xu 2012, Sun et al. 2015, Zhao et al. 2017, Xu
et al. 2018). The former studies aim to identify the exact
path chosen by a user. The path attributes (e.g., walking
time and in-vehicle time) are used to evaluate how likely
a certain path is for a passenger. The later studies formu-
lated probabilisticmodels to describe the randomprocess
of passengers’ path choice behavior. Bayesian inference
is usually used to estimate the corresponding choice
parameters or path choice fractions. Despite using differ-
ent methods, the key idea for those AFC data-based
approaches are similar. They all attempt to match the
model-derived journey times with the observed journey
times from AFC data. Because the model-derived jour-
ney times are determined by the choice parameters,
observed journey times provide indirect measurements
to calibrate path choices. However, this type of method
may fail if left behind (also called denied boarding,which
means passengers are not able to board the first train on
their arrival on the platformdue to limited train capacity)
is not taken into account.

Left behind causes passengers’ waiting time on the
platform to increase, thus increasing their total travel
times. It may happen that the journey time for a longer
routewithout left behind is close to that of a shorter route
with left behind, which makes the two routes indistin-
guishable using the pure journey time-based methods
(Zhu 2017, Zhu, Koutsopoulos, andWilson 2021). Several
studies have taken left behind into consideration explic-
itly or implicitly. For example, Sun et al. (2015) consid-
ered the delay caused by the left behind as part of travel
time variability. This method is unable to distinguish the
choice of routes with very similar journey time distribu-
tions. Sun and Xu (2012) and Zhao et al. (2017) assumed
that the left behind probabilities for different stations are
independent and explicitly estimated the left behind
probability before inferring the path choice fraction.
These partially addressed the left behind problem.

However, the independence assumption neglects im-
portant interactions among stations. In the real world,
left behind is caused by the interaction between supply
and demand. A station with high entry demand may
cause the adjacent stations to be congested because the
remaining capacity for the next station will become lim-
ited. Therefore, the left behind probabilities for different
stations are dependent. Moreover, it is not reasonable to
consider path choice and left behind separately. These

two components are interconnected and affect passenger
journey times collectively. Thus, the path choice estima-
tion model needs to consider the correlation of left
behinds among platforms, as well as the interactions
between path choice and left behind. One of the solutions
is to incorporate a schedule-based dynamic transit net-
work loading (SDTNL) model (Mo et al. 2020) for the
model-derived journey time estimation.1 The SDTNL
simulates train movements and passenger boarding,
alighting, and left behind behaviors explicitly with OD
demands and path choices as inputs. The left behind cor-
relation at different stations and its interactionswith path
choices can be naturally endogenized and included.
However, as is known in the literature, the SDTNL is a
complicated simulation process with no analytical for-
mulation (Song et al. 2017). There is no direct way to
write the mathematical formulations of the model-
derived journey time as a function of the SDTNL. Hence,
none of the aforementioned studies have used the
SDTNL model for the path choice estimation problem
(ignore important interactions asmentioned previously).

This paper proposes a novel path choice estimation
framework to incorporate the SDTNLmodel. It captures
left behind correlations among platforms and interac-
tions between path choice and left behind. The key idea
is to convert the “model-derived journey time” to a new
concept named “path exit rates,” in which an aggre-
gated time-space (TS) hypernetwork is introduced
alongwith the newly defined aggregated network flows
(i.e., OD entry flows, OD entry-exit flows, and path
flows). The aggregated TS hypernetwork facilitates fast
computation by taking all passengers’ information into
consideration, thus leading tomore efficient path choice
estimations for large-scale urban rail systems. The objec-
tive is to minimize the difference between model-
derived and observed “OD entry-exit flows” with path
choice parameters in the choice model as decision varia-
bles (details in Section 3).

The original problem is intractable due to the nonana-
lytical SDTNL model and the nonlinear logit choice
model constraints. We decompose the original problem
into three tractable subproblems: rough path shares esti-
mation, choice parameters estimation, and path exit
rates estimation, and solve them iteratively to approxi-
mate the original solutions. We prove that the solution
of the decomposed problem is equivalent to that of the
original problem under specific conditions. The model
is validated using data from the Hong Kong Mass
Transit Railway (MTR) system. The results affirm the
effectiveness and robustness of the proposed method in
path choice estimation.

The contributions of the paper are as follows:
• Proposing a novel path choice estimation frame-

work that incorporates the SDTNL model. It captures
left behind correlations among platforms and dynamic
interactions between passenger’s path choices and left

Mo et al.: Ex Post Path Choice Estimation in Rails
2 Transportation Science, Articles in Advance, pp. 1–23, © 2022 INFORMS

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

18
.1

0.
77

.7
6]

 o
n 

20
 O

ct
ob

er
 2

02
2,

 a
t 1

9:
49

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



behind. Similar to the commonly used probabilistic
approach in existing studies, the proposed model
makes use of the information of observed trip jour-
ney times and flows in travel records. However, it is
purely data driven without using prior information
or making independent assumptions, whereas typi-
cal probabilistic approaches assume independence of
individual travels and trip components and need
prior information on trip component time distribu-
tions (e.g., left behind distribution).

• The proposed path choice estimation framework is
optimization-based and uses the information of all pas-
sengers’ travel records (i.e., AFC data of all passengers,
captured by time-dependent OD entry-exit flows as
illustrated in Section 3.1). Typical probabilistic app-
roaches only use samples (i.e., selected AFC data
records) from certain OD pairs in the network due to
the computational challenges (Sun et al. 2015). Results
in the case study show that the probabilistic models,
although only use 20% of the passengers in the system,
have a longer model running time than the proposed
model.

• Proposing an aggregate TS hypernetwork using the
“path exit rates” to capture the model-derived trip travel
time information. In the aggregated TS hypernetwork,
the vehicle travel times and congestion information can-
not be directly modeled as the link cost and left behind
probability, respectively, as in previous studies. Path exit
rates capture the vehicle travel times and congestion
loads in an aggregate way. The aggregate TS hypernet-
work simplifies the temporal representation of network
flows, which facilitates the modeling of large-scale net-
works while preserving the flow dynamics across time.

• Proposing a decomposition method and solution
algorithm with three tractable subproblems to solve the
original problem efficiently. We show that solving the
decomposed problem is equivalent to finding a fixed
point. We prove that the solution to the original problem
is the same as the decomposed problem (i.e., the fixed
point) when the passenger’s path choices follow the pre-
defined behavior model. When this condition does not
hold, the solution of the original problem is proved to be
an “almost fixed point” for the decomposed problem.

It is worth noting that the “ex post” path choice esti-
mation is different from the typical transit assignment
and traffic assignment problems in the literature. The
former infers the actual (realized) flow distribution
using the observed AFC data, whereas the latter fore-
casts “hypothetical” flow patterns by assuming user
equilibrium or system optimal criteria. Thus, these
problems have different settings and challenges.

The remainder of this paper is organized as follows:
Section 2 reviews related studies in the literature. Sec-
tion 3 describes themodeling framework, including net-
work representation, problem definition, and solution
procedures. The model’s effectiveness and robustness

are validated using both synthetic and actual data in
Section 4. The main findings and future research direc-
tions are summarized in Section 5.

2. Literature Review
2.1. Path Choice Estimation for Urban

Rail Systems
Considerable literature exists on rail transit path choice
estimation. Stated preference (SP) and revealed prefer-
ence (RP) surveys are often used for the estimation of
path choices. For example, Lam and Xie (2002) applied a
path-size logit model to estimate route choices in Singa-
pore’s urban rail system using the mixed SP and RP
data. Nazem, Trépanier, and Morency (2011) adopted a
discrete choice model to estimate passengers’ route
choice behavior for different demographic groups using
the household travel survey in Canada. Eluru, Chakour,
and El-Geneidy (2012) developed a mixed logit model
to study transit route choices in Montreal, Canada,
using data from a Google Map–based RP survey. A
methodological review on survey-based route choice
estimation can be found in Prato (2009).

The emergence of smart card data has shifted the
research toward data-driven path choice estimation
using historical fare transaction records rather than using
surveys. As mentioned in Section 1, these studies can be
categorized into two categories: path-identificationmeth-
ods and parameter-inference methods. In terms of path
identification, Kusakabe, Iryo, and Asakura (2010) pro-
posed an algorithm to identify the exact train that a pas-
senger boarded using smart card data, which then gave
the path choice. Based on a case study in Japan, themodel
was implicitly validated using the train load weight data
and GPS trajectories of probe passengers. Zhou and Xu
(2012) proposed a path identification method using the
“maximum likelihood boarding plan” method. It as-
sumes that each individual will choose the path with the
highest degree of match between the model-derived and
observed journey times. Actual passenger data from the
Beijing subway system were used for a case study.
Kumar, Khani, and He (2018) proposed a trip chaining
method to infer the most likely trajectory of transit pas-
sengers using AFC and General Transit Feed Specifica-
tion (GTFS) data. The method was applied using smart
card data from the Twin Cities subway system and
implicitly verified using automatic passenger count data.
Zhu, Koutsopoulos, and Wilson (2021) formulated the
likelihood of passengers choosing an itinerary (i.e., time-
dependent path) based on their tap-in and tap-out times,
and estimated passengers’ path choices using the maxi-
mum likelihood estimation method. Path-identification
methods have several limitations. For example, they
require and are sensitive to predeterminedmodel param-
eters (e.g., walking speed, crowding) that are difficult to
calibrate in advance. Also, they assume independence of
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journey time components for an individual. It tends to be
computationally expensive to construct the likelihood of
individuals’ observations in large-scale networks with
high travel demand. The estimation results could be
biased forODpairswith limited travel observations.

The parameter-inference methods estimate the net-
work-level path choice that is more suitable for system
performance evaluation than the path-identification
methods. They model path shares as a function of path
attributes using behavioral models (e.g., discrete choice
models) and estimate the corresponding model para-
meters using observed AFC data. Sun and Xu (2012)
proposed a probabilistic model for path choice estima-
tion using AFC data. They first estimated the platform
elapsed times for transfer and through stations and used
a Gaussian mixture model to estimate path choice frac-
tions based on the journey time distribution. The model
was validated with a simple synthetic data set and
applied to the Beijing urban rail system. Sun et al. (2015)
proposed an integrated Bayesian approach to estimate
the network-level path choices. Path choices are captured
by a multinomial logit model with parameters to be esti-
mated. The model is implemented with data from the
Singapore MRT system. Zhao et al. (2017) proposed a
probabilistic model to estimate path choice fractions
usingAFCdata. Theyfirst estimated the number of trains
waited by passengers, which is equivalent to the left
behind rate. Then the path choice fractionsweremodeled
and estimated based on a Gaussian mixture model. Xu
et al. (2018) proposed a Bayesian inference approach to
estimate the path choice parameters of a logit model
using AFC data. Metropolis-Hasting sampling was used
to calibrate themodel parameters.

2.2. Time-Space Hypernetworks
The time-space (TS) hypernetwork representation is
commonly used for representation of scheduled transit
systems. In the spatial representation, the nodes repre-
sent the entrance, boarding platform, alighting plat-
form, and exit, whereas the arcs represent entering,
waiting, boarding, service (on trains), transferring, and
exiting. The TS hypernetwork expands the spatial repre-
sentation and captures the temporal flow interactions
(e.g., left behind from previous trips) (Schmöcker, Bell,
and Kurauchi 2008, Stasko, Levine, and Reddy 2016).
Depending on the application, different variants of the
TS hypernetwork are proposed in the transit assignment
literature, for example, a node-path network (Han et al.
2015, Kroon, Maróti, and Nielsen 2015), route-section
representation (a section arc is created to classify passen-
gers belonging to the same OD pair) (Szeto and Jiang
2014), service line-node network (Szeto et al. 2013), line
link-node network (Hamdouch et al. 2011), and dia-
chronic graph (Nuzzolo, Crisalli, and Rosati 2012). In
essence, the network representation is a tradeoff between
realistic flow assignment (strict capacity constraints, first

come first serve, left behind) and computational com-
plexity to effectively solve the problem.

The typicalfine-grained TShypernetwork representa-
tion is modeled at a granular level. For example, the
hypernetworks have explicit links to represent left
behind or walking behavior. This granular modeling
requires the time interval to be at least as small as a
headway. However, in our study, we propose an aggre-
gated TS hypernetwork. The time interval can be 10
minutes or 15 minutes (much greater than a headway).
In our aggregate TS hypernetwork, there is no explicit
left behind links or in-vehicle links. The travel time and
congestion (i.e., left behind) between two TS nodes are
jointly captured by the “path exit rate.” Details can be
found in Section 3.1.

2.3. Research Gaps
As mentioned in Section 1, the left behind is important
in estimating network-level path choices. However, few
studies have addressed this problem satisfactorily. The
pure journey time-based methods (Sun et al. 2015, Xu
et al. 2018) considered the waiting time caused by left
behind as part of the total journey time, which cannot
distinguish long paths without left behind and short
paths with left behind because they have very similar
total journey times. Sun and Xu (2012) and Zhao et al.
(2017) assumed left behinds are independent across sta-
tions and considered the left behind and path choice
problems separately, which neglects the interaction
between supply and demand in the network. Thus, a
comprehensive path choice estimation framework that
can capture the left behind correlations among plat-
forms, as well as the interactions between path choice
and left behind, is needed to advance the current state-
of-the-art.

To capture these interactions, the SDTNL model is
essential (Hamdouch and Lawphongpanich 2008, Ham-
douch et al. 2011,Mo et al. 2020). In the SDTNLmodel, a
vehicle’s movement is assumed to follow a fixed sched-
ule or real-world automated vehicle location (AVL)
data. Themodel defines an event as a vehicle’s arrival or
departure at a specific station (or platform). Each event
can be indexed by the corresponding platform and time.
Passengers boarding and alighting at each vehicle’s
arrival and departure events are processed one at a time
and in the topological and chronological order, that is,
an event whose platform with no predecessor and with
the smallest time index is processed first. In this way,
when loading passengers into a vehicle, the available
capacity of a vehicle (which is determined by previously
boarding passengers) is known, and the left behind can
be modeled if the number of waiting passengers exceed
the capacity. After processing all events, the model-
derived passengers’ journey times are obtained. These
journey times take left behind into consideration in an
endogenousway.

Mo et al.: Ex Post Path Choice Estimation in Rails
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The frequency-based static transit network loading
(FSTNL) model, although it has goodmathematical for-
mulations, cannot estimate the model-derived journey
times well due to the difficulty in estimating waiting
times caused by the left behind. In the FSTNL model
(De Cea and Fernández 1993,Wu, Florian, andMarcotte
1994, Spiess and Florian 1989, Nielsen 2000, Schmöcker
et al. 2011), the waiting time is either assumed to be
reversely proportional to the (effective) service fre-
quency (Wu, Florian, and Marcotte 1994, Nielsen 2000,
Schmöcker et al. 2011), or modeled as a congestion func-
tion (e.g., BRP) of previously boarded flows and new
arrival flows with exogenously calibrated parameters
(De Cea and Fernández 1993). The former method does
not consider the left behind (or considers the left behind
exogenously). The lattermethod only outputs a general-
ized waiting cost (rather than the waiting time) as the
vehicle capacity is not explicitlymodeled. Therefore, the
FSTNL model is not suitable for path choice estimation
in a near-capacity transit system where left behind has
to be considered. Therefore, in this paper, we use the
SDTNL model for the travel time (in-vehicle time and
waiting time with left behind) estimation and propose a
decompositionmethod to solve the nonanalytical SDTNL
problem.

3. Methodology
3.1. Network Representation
To capture the path choice and left behind interactions,
the model-derived journey times are estimated from an
SDTNLmodel. A network loading process assumes that
the passengers’ path choices are known and treated as
an input (Song et al. 2017). A typical way to represent a
transit network with schedule information is using a TS
hypernetwork (Nguyen, Pallottino, and Malucelli 2001,
Hamdouch and Lawphongpanich 2008, Hamdouch
et al. 2011), where each station in the urban rail system
is expanded into a series of nodes, representing the sta-
tion at different time intervals. The length of the time
interval τ is usually set as the minimum headway. For
example, assuming train departing the terminal every
two minutes, a station i in the urban rail system will be
expanded to nodes (i1, i2, : : : , iN), where i1 represents sta-
tion i at time 7:00-7:02 a.m.; i2 at time interval 7:02-7:04
a.m., and so on. This fine-grained method may not be
practical for real-world applications because the TS net-
work can be extremely large. Consider an urban rail sys-
tem with 100 stations and a headway of two minutes
(e.g., the peak hour in the Hong KongMTR system). For
a two-hour network loading, each station will be
expanded to 60 TS nodes. The total number of OD pairs
in this TS network is approximately 36 million, causing
great computational challenges. However, the path
choice calibration problem actually does not require
such a fine-grained representation. Instead, too granular

information may be sensitive to observation errors in
the system. Therefore, an aggregate network representa-
tion is preferred for the problem.

Let us consider a study time period T divided into
N elementary time intervals of length τ (e.g., τ� 15
minutes). Each time interval may include several head-
ways, indicating amore aggregate representation.Consid-
ering a station i, we expand i into a sequence of TS nodes,
denoted as (i1, : : : , im, : : : , iN), where im represents station i
at time interval m. The aggregate TS representation thus
consists of N layers of the network with each layer repre-
senting a time interval. Let S be the set of all physical sta-
tions in the network, N be the set of all TS nodes, where
N � {im :∀i ∈ S,m � 1, : : : ,N} and |N | � |S| ×N.

In the aggregate TS network, some detailed aspects
(e.g., left behind) cannot be explicitly modeled. How-
ever, the tradeoff is that we can obtain a small-scale TS
network, which is scalable to large networks. Moreover,
the value of τ should be consistent with the granularity
of information. A small τ, although allowing for model-
ing detailed data, may increase estimation errors caused
by external and uncaptured factors such as walking
speed. Consider, for example, an extreme scenario
where τ � 1 second. It allows us to model detailed pas-
senger flows per second. However, passenger flows per
secondmaybe easily distorted if thewalking timemeas-
urement error is greater than one second (which is com-
mon in reality). The sensitivity to external factors may
introduce errors in the path choice estimation. On the
contrary, a large value of τ may hide useful temporal
variations, which makes the model insensitive to path
choices. Therefore, considering the tradeoff of computa-
tional tractability and information granularity, τ� 15
minutes is used in this study. Online Appendix C tests
the impact of different values of τ.

Consider two stations i and j in an urban rail system
with different routes connecting them. The route set is
denoted as Ri,j. Our purpose is to calculate the choice
fractions of these routes for different time intervals.
Using the previous network representation, the key var-
iables are defined here:

• OD entry flow, qim,j: Number of people with origin
i and destination j entering station i during time inter-
val m. It can be obtained from the AFC data directly.
The vector of all qim,j is denoted as qe � (qim,j)im∈N ,j∈S .

• OD entry-exit flow, qim,jn : Number of passengers
who enter station i in time intervalm and exit at station
j in time interval n (m ≤ n). By definition,∑

{n:m≤n≤N}
qim,jn � qim,j, ∀im ∈N , j ∈ S: (1)

The expression qim,jn is an output of the network load-
ing model. For a closed urban rail system with both
tap-in and tap-out records, qim,jn is also directly
observed from the AFC data. OD entry-exit flows cap-
ture both passenger flow and journey time information

Mo et al.: Ex Post Path Choice Estimation in Rails
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at an aggregate level. Therefore, it can be used to cali-
brate the path choice.

• Path choice fraction (or path share), pim,jr : The prob-
ability that path r is chosen in time interval m, where
r ∈Ri,j. By definition, 0 ≤ pim,jr ≤ 1 and

∑
r∈Ri,j p

im ,j
r � 1.

The vector of all pim,jr is denoted as p � (pim,jr )im∈N ,j∈S,r∈Ri,j .
• Path flow, qim,jnr : Number of passengers who enter

station i in time interval m and exit at station j in time
interval n using path r. qim,jnr is an output of the network
loading process.

• Path exit rate, μim,jn
r : Number of passengers who

enter station i in time interval m and exit station j in
time interval n using path r divided by number of pas-
sengers who enter station i in time interval m and exit
station j using path r, that is,

μim,jn
r � qim,jnr∑

{n′:m≤n′≤N} q
im,jn′
r

, ∀im ∈N , jn ∈N , r ∈Ri,j:

(2)
This variable captures the information on how many
passengers exit the system at different time intervals,
which, for a given path r, depends only on the train
schedule and left behind. Because the schedule is
known, the path exit rate can be seen as an indicator of
left behind. The vector of all μim,jn

r is denoted by m �
(μim,jn

r )im∈N ,jn∈N ,r∈Ri,j .
Given the previous notation, the following relation-

ships hold.
• OD entry-exit flow equals the sum of all the path

flows of the corresponding OD.

qim,jn � ∑
r∈Ri,j

qim,jnr , ∀im ∈ N , jn ∈ N (3)

• The path flow can be expressed as a product of the
OD entry flow, the path share, and the path exit rate.

qim,jnr � qim ,j · pim ,jr · μim,jn
r , ∀im ∈ N , jn ∈ N , r ∈ Ri,j (4)

This relationship is themajor procedure for the network
loading. It assigns the OD demand (OD entry flows) to
path flows.

We use a simple example to illustrate the network rep-
resentation. Consider two stations, i and j, where i is the
origin and j is the destination (Figure 1(a)). Assume there
exists two different paths connecting this OD pair, that is,
Ri,j � {1, 2}. The upper arrows represent path 1, and the
lower arrows represent path 2. The time period of interest
is from 7:00 a.m. to 7:30 a.m. and the time interval is τ �
15 minutes. The TS network representation of this exam-
ple is shown in Figure 1(b). For example, i1 in the figure
represents the station i at time 7:00 a.m. to 7:15 a.m. Let us
assume that the only OD entry flow is qi1,j � 10. The path
shares are pi1,j1 � 0:3 and pi1,j2 � 0:7. Then there are 10 pas-
sengers arriving at station i during 7:00 a.m. to 7:15 a.m.
Three of them use path 1 and seven use path 2. They all
head to destination j, but currently, we do not know
when they will arrive at the destination. Given the avail-
able information, a transit loading model can determine
passengers’ exit times. For illustration, let us assume that
the exit times (which can be used to calculate the path
exit rate) are known. For the three passengers who use
path 1, two of three tap out at station jduring 7:00 a.m. to
7:15 a.m. (i.e., μi1,j1

1 � 2=3) and one of three tap out at sta-
tion j during 7:15 a.m. to 7:30 a.m. (i.e., μi1,j2

1 � 1=3). Then
we have qi1,j11 � qi1,j · pi1,j1 ·μi1,j1

1 � 2 and qi1,j21 � qi1,j · pi1,j1 ·
μ
i1,j2
1 � 1. These equations correspond to Equation (4),

which assigns the OD entry flow (qi1,j) to the path flows
(qi1,j11 and qi1,j21 ). Similarly, for the seven passengers who
use path 2, assume four of seven passengers tap out at
station j during 7:00 a.m. to 7:15 a.m. (i.e., μi1,j1

2 � 4=7),
and three of seven passengers tap out at station j during
7:15 a.m. to 7:30 a.m. (i.e., μi1,j2

2 � 3=7). Then we have
qi1,j12 � 4 and qi1,j22 � 3.

From the relationship between OD entry-exit flows
and path flows (Equation (3)), we have qi1,j1 � qi1,j11 +
qi1,j12 � 6, and qi1,j2 � qi1,j21 + qi1,j22 � 4. Also, the sum of the
OD entry-exit flows over all exit time intervals is the OD
entry flow, that is, qi1,j � qi1,j1 + qi1,j2 � 10.

Figure 1. (Color online) Network Representation Example

Notes. (a) Physical network. (b) Time-space hypernetwork.
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3.2. Problem Formulation
3.2.1. Model Assumptions. We assume that path
shares can be formulated as a C-logit model (Cascetta
et al. 1996), which is an extension of the multinomial
logit (MNL) model to correct for the correlation among
paths due to overlapping (Prato 2009):

pim,jr � exp (βX · Xr,m + βCF · CFr)∑
r′∈Ri,j exp (βX · Xr′,m + βCF · CFr′ )

:� exp (βYr,m)∑
r′∈Ri,j exp (βYr′,m) , (5)

where Xr,m are the attributes of path r in time intervalm
(e.g., in-vehicle time, number of transfers, and transfer
walking time). CFr is the commonality factor of path r
that measures the degree of similarity of path rwith the
other paths of the same OD; βX and βCF are the corre-
sponding coefficients to be estimated; and β and Yr,m

represent the combination of the two terms in the utility
function (i.e., β � [βX,βCF],Yr,m � [Xr,m,CFr]). CFr is
defined as

CFr � ln
∑
r′∈Ri,j

Lr,r′
LrLr′

( )γ
, (6)

where Lr,r′ is the number of common stations of path r
and r′. Lr and Lr′ are the number of stations for path r
and r′, respectively; γ is a fixed positive parameter that
determines the degree of overlapping impact on path
utilities. In this study, γ � 5 is used following the setting
in Li (2014). It is possible to use other path choicemodels
as long as they are convex. A detailed discussion on the
model extensions can be found inOnlineAppendixD.

It is worth noting that Yr,m (i.e., the path attribute vec-
tor) is known and fixed. It is assumed to represent the
historical path conditions based on which passengers
make their habitual choices. Different from typical
transit/traffic assignment problems where path choices
are estimated by assuming user equilibrium (for plan-
ning purposes), the AFC data-based estimation aims to
find the actual realized path choices based on real-
world observations (i.e., OD entry-exit flows). Because
passengers make decisions before knowing the actual
travel or waiting times, Yr,m should reflect passengers’
historical perceptions of path attributes and should not
change within the model estimation process. Therefore,
although μ

im,jn
r captures the actual path left behind and

travel time information, it should not be included in the
path choice formulation as passengers make decisions
before knowingμim,jn

r .
In the formulation of the problem, we assume that pas-

sengers waiting on a platform board trains based on a
first-in-first-board (FIFB) principle. Every train has a
capacity.When a train reaches its capacity, the remaining

passengers on the platformwill be left behind for the next
trainwith available capacity to board.

These constraints are formulated as the relationship
among all μim ,jn

r , because μim,jn
r represents when and how

many passengers exit the system,which is a reflection of
the network loading mechanism (NLM). For example,
we should have μ

im,jn
r � 0 for all (n−m) · τ smaller than

travel time of path r, which indicates no passenger exits
the system before the earliest possible time. We should
also have m following the patterns in Figure 2 given dif-
ferent congestion levels. However, formulating all these
constraints analytically, based on the aggregate network
representation, is difficult. We thus temporally denote
the constraints for μim,jn

r as

μim,jn
r satisfies the NLM, ∀im ∈N , jn ∈N , r ∈Ri,j: (7)

The constraints will be addressed explicitly in the fol-
lowing sections.

3.2.2. Formulation. Becauseweassume that path choices
can be captured by a C-logit model, the β in the C-logit
model are decision variables. As mentioned before, the
OD entry-exit flow (qim,jn ) can be obtained from the
transit network loading process, for which the ground
truth value can also be observed from AFC data.
Hence, minimizing the difference between the esti-
mated and observed OD entry-exit flows can be the
optimization objective. The reasons for using this dif-
ference as the objective function rather than individual
journey times in literature are as follows. (1) Themodel
is framed based on the aggregate TS hypernetwork.
Individual-based journey times are not available under
this framework. (2) Estimating individual-based jour-
ney times is difficult given many latent factors (e.g.,
various walking speeds, in-station activities). The
model may become sensitive to parameters when
matching individual-level information (Ma et al. 2019).
Aggregate information (e.g., qim,jn ) has the potential to off-
set some latent errors, thus providing more reliable cali-
brations. (3) Considering the computational cost, using

Figure 2. Pattern of μim ,jn
r

Notes. (a) Low congestion. (b)Mediumcongestion. (c)High congestion.
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aggregate information along with the aggregate TS
hypernetwork facilitates the application of the model in
large-scale urban rail systems, whereas individual-based
models are usually applied to a small sample ofAFCdata
(Sun et al. 2015).

If prior information about path choices was available
(e.g., estimated from a prior survey), the difference
between estimated β and prior β’s can be incorporated
into the objective function. Based on the previous dis-
cussions, the original problem is formulated as follows:

min
β,m,p

w1
∑

im∈N , jn∈N
(qim,jn − q̃im,jn)2 + w2||β − β̃||2 (8a)

s:t: qim,jn � ∑
r∈Ri,j

qim,jnr ∀im ∈ N , jn ∈ N , (8b)

qim,jnr � qim,j · pim,jr · μim,jn
r ∀im ∈ N , j ∈ S, r ∈ Ri,j,

(8c)

pim,jr � exp (βYr,m)∑
r′∈Ri,j exp (βYr′,m)

∀im ∈ N , j ∈ S, r ∈ Ri,j, (8d)

μim,jn
r satisfies the NLM

∀im ∈ N , j ∈ S, r ∈ Ri,j, (8e)∑
r∈Ri,j

pim ,jr � 1 ∀im ∈ N , j ∈ S, (8f)

0 ≤ pim,jr ≤ 1 ∀im ∈ N , j ∈ S, r ∈ Ri,j, (8g)

qim,jnr ≥ 0 ∀im ∈ N , j ∈ S, r ∈ Ri,j, (8h)

where q̃im,jn is the observedOD entry-exit flow; β̃ is prior
estimates of β.w1 andw2 are the correspondingweights.
In the case study section, we assume no prior knowl-
edge is available (i.e., w2 � 0). Constraints (8b) and (8c)
are the relationships described in Section 3.1. Con-
straints (8d) and (8e) represent the assumptions we
made in Section 3.2.1. Constraints (8f), (8g), and (8h) are
given by definition.

The original problem is hard to solve due to the fol-
lowing constraints: First, Constraints (8c) and (8d) are
nonlinear equality constraints because both μ

im,jn
r and

pim ,jr are decision variables. Thismakes the original prob-
lem a nonconvex optimization problem. Second, Con-
straint (8e) is nonanalytical because NLM constraints
cannot be formulated analytically in terms of μ

im,jn
r .

Therefore, the original problem is intractable. In the fol-
lowing sections, we propose a decomposition approach
to deal with these constraints and approximately solve
the original problem.

3.3. Problem Decomposition
AlthoughConstraints (8e) cannot be formulated analyti-
cally, the corresponding μ

im,jn
r values can be obtained

from the output of a network loading process. There-
fore, we decompose the original problem into two sub-
problems as follows.

• Subproblem 1:

min
β,p

w1
∑

im∈N , jn∈N
(qim,jn − q̃im,jn )2 + w2||β − β̃||2

s:t: Constraints (8b)–(8d),
Constraints (8f)–(8h):

(9)

• Subproblem 2:

m � Network Loading (β, qe): (10)

This decomposition shares the same idea as the Expecta-
tion–Maximization algorithmor alternating optimization.
The idea is that when fixing some variables, the original
problemwill be easier to solve.

Subproblem 2 is a network loading model, which
takes the route choice parameter β and OD entry
demand qe as inputs and outputs the path exit ratem. In
this study, we use an event-based network loading
model proposed by Mo et al. (2020). The model is well
calibrated and validated with real-world data for the
case study. Two events are considered: train arrival
events, in which passengers who need to transfer or exit
the station are offloaded; and train departure events, in
which passengers are loaded into the train based on the
FIFB principle. All events are processed sequentially
according to their occurrence time. This network load-
ing model shares the same NLM and model assump-
tions as described before. Therefore, the estimated m
from themodel satisfies theNLM constraints.

Subproblem 1 is a variation of the original problem
(Equation (8)) with the nonanalytical Constraint (8e)
removed because m is treated as constants in Subpro-
blem 1. Moreover, Constraint (8c) is now linear to pim ,jr .
However, the problem is still intractable because of the
nonlinear Constraint (8d), which we refer to as the logit
constraint. In the following sections, we will show how
we linearize Subproblem 1 and solve it as a quadratic
programming problem.

3.4. Linearization for Subproblem 1
Addressing the logit constraints is difficult. Davis, Gal-
lego, and Topaloglu (2013) and Atasoy et al. (2015)
showed that when the logit structure is in an objective
function, and utilities are constants, but choice sets are
unknown, this assortment planning–type problem can
be reformulated as linear programming. However, for
our problem, the logit structure is a constraint and β in
the utility function is unknown. To the best of our
knowledge, there is no equivalent transformation of this
logit constraint to a tractable form. In this study, we pro-
pose two procedures to approximately linearize the
logit constraints in Subproblem 1.

3.4.1. Approximate Linear Constraints (ALC). The logit
constraint reflects the relationship between β and pim ,jr .
Because dealing with the nonlinear constraints directly is
difficult, wefirst replace the decision variables βwith pim ,jr
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and remove Constraint (8d). Then Subproblem 1 be-
comes a simple quadratic programming problem be-
cause all constraints have become linear. However, as the
degrees of freedom for pim,jr are much larger than β,
directly replacing decision variables will cause problems
of overfitting. Introducing additional constraints on pim,jr

can reduce the feasible solution space and create a
tighter problem.

In this study, we propose a Monte-Carlo sampling
method to construct a series of linear constraints for pim,jr .
The basic idea is that, in urban rail networks, there exists

some im, j, r and i′m′ , j′, r′ such that pim,jr � p
i′m′ ,j′
r′ . This prop-

erty is based on the argument that if the paths for two
different OD pairs share the same transfer patterns (i.e.,
transfer stations and the number of transfers), the corre-
sponding path choice fractions may be the same under
logit constraints.

A simple example is shown to illustrate the nature of
this constraint. Consider the ODpairs 1-5 and 2-5 in Fig-
ure 3. There are two paths for each OD pair. Path 1 has a
transfer at station 4 and path 2 at station 3. The path
choice fractions are denoted as p1,51 ,p1,52 ,p2,51 ,p2,52 , respec-
tively. For simplicity of notation, we ignore the time
index.We further assume that there are four path attrib-
utes affecting passengers’ path choices: in-vehicle time,
the number of transfers and transfer walking time, and
the commonality factor. Then we can show that, under
logit constraints, p1,51 � p2,51 and p1,52 � p2,52 . The proof is
shown later.

Denote the utility (in the C-logit model) for path r of
OD pair i and j as Vi,j

r . Because path 1 of OD 1-5 and
path 1 of OD 2-5 share the same transfer patterns, the
number of transfers and transfer walking time for them
are the same. The commonality factors for these two
paths are also the same (see Equation (6)). Therefore, the
difference in utilities for path 1 of the two different OD
pairs only contains in-vehicle time. Let the in-vehicle
time for path r of OD pair (i, j) be tti,jr , the in-vehicle time
for link (i, j) be tti,j, and the coefficients of in-vehicle time
be βtt. Then,we have

V1,5
1 −V2,5

1 � βtt · (tt1,51 − tt2,51 ) � βtt · tt1,2: (11)

Similarly, for path 2 ofOD 1-5 andOD 2-5, we have

V1,5
2 − V2,5

2 � βtt · (tt1,52 − tt2,52 ) � βtt · tt1,2: (12)

According to the logit constraint,

p1,51 � 1
1 + exp (V1,5

2 − V1,5
1 )

� 1
1 + exp ((V2,5

2 + βtt · tt1,2) − (V2,5
1 + βtt · tt1,2))

� 1
1 + exp (V2,5

2 − V2,5
1 ) � p2,51 : (13)

Similarly, for path 2, p1,52 � p2,52 .

This example network represents a subcomponent of
many real-world urban rail networks. Therefore, this
property also holds in formanyODpairs in reality.

Besides equality constraints, there are also inequality
constraints that can be introduced to further limit the
feasible space. For example, because all cost coefficients
(e.g., in-vehicle time, transfer times) should be negative,
if there is a path that has smaller costs than other paths
for the same OD pair, it should always have a higher
share regardless of the value of β. Therefore,we can con-
struct linear constraints of the form pim,jr ≥ pim,jr′ to capture
this information.

To automatically extract all these linear constraints
in the system, we propose a Monte-Carlo sampling
method. We first define a reasonable range for all β (i.e.,
β ∈ [Lβ,Uβ]) based on prior knowledge (e.g., survey
results from previous years), where Lβ (Uβ) is the vector
of lower (upper) bounds for β. It is worth noting that the
selection of Lβ and Uβ has a limited impact on the con-
struction ofALC. The equality constraints are independ-
ent of the value of β (as shown in Equations (11)–(13));
Lβ andUβ only affect the construction of inequality con-
straints, and fromour numerical tests, the impact is very
small. Generally,we only need to set the cost coefficients
to be negative (i.e., Lβ � −∞ andUβ � 0).

The detailed ALC construction steps are shown in
Algorithm 1. The maximum number of sampling points
is S. The choice of S is a tradeoff between computational
efficiency and constraint accuracy. Larger S can help
avoid including erroneous constraints. We sample β
uniformly from [Lβ,Uβ] because (1) it reflects no prior
distribution knowledge of β is used, and (2) this facili-
tates getting awide range of β covering different scenar-
ios so that the constructed linear constraints are valid.

Algorithm 1 (Monte Carlo–Based ALC Construction)
1: Initialize s � 0
2:while s < S do
3: s � s+ 1
4: Sample β from the uniform distribution U(Lβ,

Uβ), denoted as β(s).
5: Calculate the path choice fractions for all paths

based on β(s), denote them as pim,jr
(s)

6: InitializeΩEq � ∅, ΩIneq � ∅

Figure 3. (Color online) Network Example for Approxi-
mated Linear Constraints
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7: for all im, j, r in path sets do
8: for all im′, j′, r′ in path sets do

9: if pim,j
(s)

r � pim
′,j′(s)

r′ for all s � 1, : : : ,S then
10: ΩEq �ΩEq

⋃{(im, j, r, im′, j′, r′)}.
11: for all im, j in OD pairs sets do
12: for all r ∈Ri,j do
13: for all r′ ∈Ri,j do
14: if pim,j

(s)
r ≥ pim,j

(s)
r′ for all s � 1, : : : ,S then

15: ΩIneq �ΩIneq
⋃{(im, j, r, r′)}.

returnΩEq, ΩIneq

These linear constraints partially capture the effect of
the logit constraints and retain the model tractability.
We denote all the constructed linear constraints for pim, jr
as

pim,jr � pim
′,j′

r′ ∀(im, j, r, im′, j′, r′) ∈ΩEq, (14)

pim,jr ≥ pim,jr′ ∀(im, j, r, r′) ∈ΩIneq: (15)

Then Subproblem 1 can be reformulated as

min
p

w1
∑

im∈N , jn∈N
(qim,jn − q̃im,jn)2

+w2
∑

im∈N , j∈S

∑
r∈Ri,j

(pim,jr − p̃im,jr )2

s:t: Constraints (8b)–(8c),
Constraints (14)–(15),
Constraints (8f)–(8h):

(16)

The decision variables in the new formulation are p
instead of β; p̃im,jr are path shares derived from β̃ to cap-
ture the prior knowledge. Equation (16) is a quadratic
program because all constraints are linear and can be
solved efficiently. Based on the numerical results in the
case study, after adding the ALC, the total degrees of
freedom decrease by 40%, which demonstrates a nar-
rower feasible space. However, we still need to go one
step further tomake all estimated path shares satisfy the
actual logit constraints.

3.4.2. Logit Correction. The estimated p from Equation
(16) has two issues. The first is possible overfitting due
to the high degrees of freedom. The second is that some
path shares cannot be identified due to few or no
observed OD entry-exit flows; for example, if there are
no observed passengers for an OD pair (i, j) in time
interval m and historical information is not available.
The variable pim,jr can take any values and does not affect
the objective function. Hence, its value cannot be esti-
mated. Both of these problems can be attributed to the
same source: The estimated pim,jr violates the original
logit constraints (they only satisfy theALC of logit).

To address this problem, we use the estimated pim,jr
fromEquation (16) (called rough path shares hereafter) to
obtain β and then use the β to generate new path shares.
This procedure is referred to as logit correction. Path
shares after the logit correction will naturally satisfy the

logit constraints by definition. However, not all rough
path shares are equally reliable. Because more observed
passengers providemore information for the path shares
estimation, the reliability of the estimated pim,jr (∀r ∈Ri,j)
can be measured by the corresponding OD entry flow
qim,j. Therefore, we formulate the logit correction prob-
lem as follows, which can be seen as a weighted frac-
tional logitmodel (Papke andWooldridge 1996).

max
β

∑
im∈N , j∈S

qim ,j
∑
r∈Ri,j

pim ,jr · log exp (βYr,m)∑
r′∈Ri,j exp (βYr′,m) (17)

In Equation (17), pim,jr and qim,j are known. The objective

function is concave because log exp (βYr,m)∑
r′∈Ri,jexp (βYr′,m) is con-

cave in terms of β. Hence, it is a convex optimization
problem (maximizing a concave function) without con-
straints and can be solved efficiently. The term qim ,j is the
weight for corresponding path shares (pim ,jr , ∀r ∈Ri,j).
Equation (17) has the advantage that if there are no pas-
sengers observed for a specific OD pair (qim,j � 0), the
corresponding term will have zero weight and will not
contribute to the objective function. Using the estimated
β, new values of p that satisfy the logit constraints
exactly can be calculated.

Besides the weighted fractional logit model, another
way to look at Equation (17) is to treat it as a maximum
likelihood estimation. For a given im, j, there are qim,j ·
pim,jr passengers choosing path r. The probability of

choosing path r is exp (βYr,m)∑
r′∈Ri,jexp (βYr′,m). Therefore, the likeli-

hood function can be formulated as

L � ∏
im∈N , j∈S

∏
r∈Ri,j

exp (βYr,m)∑
r′∈Ri,j exp (βYr′,m)

( )qim,j·pim,jr

: (18)

Taking the logarithm of L and maximizing the log-
likelihood lead to Equation (17). The empirical results on
the effect of linearization of Subproblem 1 (i.e., ALC and
logit correction) can be found inOnlineAppendix E.

3.5. Solution Algorithm
Thus far, we have formulated three subproblems to
approximate the solution of the original problem. These
subproblems can be summarized by Equations (19)–(21).
In Subproblem 1a, given μ

im,jn
r , we estimate the rough

path shares by solving a quadratic programming prob-
lem. In Subproblem 1b, given the rough path shares, we
estimate the corresponding β through a weighted frac-
tional logit model formulation. In Subproblem 2, given
β, we load passengers to the network and return the
μ
im,jn
r values that satisfy theNLMconstraints.
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• Subproblem 1a:

[SP1A(m)] min
p

w1
∑

im∈N , jn∈N
(qim,jn − q̃im,jn )2

+ w2
∑

im∈N , j∈S

∑
r∈Ri,j

(pim,jr − p̃im ,jr )2

(19a)

s:t: Constraints (8b)–(8c), (19b)

Constraints (14)–(15), (19c)

Constraints (8f)–(8h): (19d)

• Subproblem 1b:

[SP1B(p)]
max

β

∑
im∈N , j∈S

qim ,j
∑
r∈Ri,j

pim,jr · log exp (βYr,m)∑
r′∈Ri,j exp (βYr′,m) :

(20)

• Subproblem 2:

[SP2(β)] m � Network Loading (β, qe,θ): (21)

We solve these three subproblems iteratively and app-
roximate the solution for the original problem. This
process is summarized in Figure 4. The terms m and β
are updated in each iteration, which suggests that the
interactions between path choice and left behind are
captured. It is worth noting that this process is equiva-
lent to finding a fixed point of the following problem:

β � SP1B ◦ SP1A ◦ SP2(β), (22)

where SP2 is the solution function of Subproblem 2, that
is, m � SP2(β); SP1A is the solution function of Subpro-
blem 1a, that is, p � SP1A(m); SP1B is the solution func-
tion of subproblem 1b, that is, β � SP1B(p); and “◦” is
the sign of function composition, that is, f ◦ g(x) �
f (g(x)). The existence and uniqueness of the solution in
Equation (22) and its relationship to the original prob-
lem in Equation (8) are important questions.

Lemma 1. If p satisfies the logit constraints in terms of
β∗, that is, pim,jr � exp (β∗Yr,m)∑

r′∈Ri,jexp (β∗Yr′,m) for all im ∈N , j ∈ S,

r ∈Ri,j, then β∗ is the solution of Subproblem 1b with
respect to rough path share p (i.e., β∗ � SP1B(p))

Proof. Define him,jr (β) :� exp (βYr,m)∑
r′∈Ri,jexp (βYr′,m). Then Equation

(20) can be rewritten as

max
β

∑
im∈N , j∈S

qim ,j
∑
r∈Ri,j

pim ,jr · loghim,jr (β), (23)

which has the form of a cross-entropy function. The
maximum is reached when pim,jr � him,jr (β), im ∈N ,
j ∈ S, r ∈Ri,j. From the known condition of the lemma,

we know that pim,jr satisfies the logit constraints in terms

of β∗ i:e:; pim,jr � exp (β∗Yr,m)∑
r′∈Ri,jexp (β∗Yr′,m)

( )
, feeding β∗ into him,jr (β)

gives the desired condition (pim,jr �him ,jr (β∗)). Thus, β∗ is the
optimal solutionof Subproblem1b (i.e.,β∗ � SP1B(p)).

Because log exp (βYr,m)∑
r′∈Ri,jexp (βYr′,m) is strictly concave in

terms of β, the solution of Subproblem 1b is unique. w

Proposition 1 discusses the question of existence of a
fixed point in Equation (22).

Proposition 1. The optimal solution β∗ for the original
problem (Equation (8)) is a fixed point for Equation (22) if
the following condition holds: the optimal objective function
for the original problem Equation (8) is zero.

Proof. Denote m∗ :� SP2(β∗). Define p∗ such that its
element pim,j∗r � exp (β∗Yr,m)∑

r′∈Ri,jexp (β∗Yr′,m) for all im ∈N , j ∈ S,

r ∈Ri,j. We claim that p∗ � SP1A(m∗). The proof is
shown later.

By definition, p∗ satisfies the logit constraints with
respect to β∗. The term m∗ satisfies the NLM constraints
with respect to β∗ because it is the output from the net-
work loading process (i.e., SP2(·)). Therefore, (β∗,m∗,p∗)
is the optimal solution for the original problem.

If m∗ is used in Subproblem 1a, the optimal objective
function of Subproblem 1a should be less than or
equal to that of the original problem because p has a
larger feasible space in Subproblem 1a than in the

Figure 4. (Color online) Summary of Solution Procedure
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original problem (because we use ALC to approxi-
mate the logit constraints). However, given the condi-
tion that the optimal objective function of the original
problem is zero (cannot be decreased), the optimal
objective function of Subproblem 1a is zero as well.
Because the objective function for these two problems
are the same, it follows that p∗ is the optimal solution
for Subproblem 1a (i.e., p∗ � SP1A(m∗)).

By definition, p∗ satisfies the logit constraints in
terms of β∗. According to Lemma 1, β∗ � SP1B(p*). This
leads to β∗ � SP1B ◦ SP1A ◦ SP2(β∗). w

Remark 1. Proposition 1 proves the existence of a
fixed point for Equation (22), which is exactly the solu-
tion of the original problem. However, it only holds
under the condition that the path choice behavior is
perfectly captured by the behavior model (so that the
optimal objective function is zero). This may not be
true in reality. Nevertheless, even if the decomposed
method may give solutions not exactly the same as
the original problem, the proof under the specific con-
dition illustrates the reasonableness of the approach.

It is worth noting that the nonconvexity of the
original problem does not affect the conclusion of
Proposition 1 because the condition of zero optimal
objective function implies the global optimal. The
proof of Proposition 1 does not require the convexity
of the original problem. As long as β∗ is a global opti-
mal point of the original problem, it is a fixed point of
Equation (22).

When the optimal objective function of the original
problem (Equation (8)) is greater than zero, its optimal
solution may not be the fixed point of Equation (22).
Under this condition, Proposition 2 discusses the upper
bounds of the difference in terms of the estimated β
between the original problem and the decomposed
method. For simplicity, we assume w2 � 0 for the dis-
cussion, which corresponds to the setting in our case
study.

Proposition 2. Let (β∗,m∗,p∗) be the optimal solution for
the original problem. Define βD � SP1B ◦ SP1A ◦ SP2(β∗),
then ||βD − β∗|| is bounded from above. The upper bound is
illustrated in the proof.

Proof. Because (β∗,m∗,p∗) are the optimal solution to
the original problem, by definition, m∗ � SP2(β∗) and
pim ,j∗r � exp (β∗Yr,m)∑

r′∈Ri,jexp (β∗Yr′,m) for all im ∈N , j ∈ S, r ∈Ri,j.

According to Lemma 1, β∗ � SP1B(p∗).
Let pD � SP1A(m∗). We claim that there exists an

upper bound U(ΩEq,ΩIneq) ≥ 0 such that ||pD − p∗|| ≤
U(ΩEq,ΩIneq) ≤ 1|p|. The expression U(ΩEq,ΩIneq) will
decrease if we construct more effective linear cuts in
ΩEq and ΩIneq. The vector 1|p| is a vector of all ele-
ments 1 with the same dimension as p. The proof is as
follows.

Define

Z(p;m, qe, q̃) � ∑
im∈N , jn∈N

∑
r∈Ri,j

qim,j · pim ,jr · μim,jn
r − q̃im,jn

( )2
,

(24)
P1A(ΩEq,ΩIneq) � {0 ≤ p ≤ 1 : Eqs: 8f, 14, 15}, (25)

POP � {0 ≤ p ≤ 1 : Eq:8f,∃β ∈ R
|β|

s:t: Eq: 8d is satisfied}, (26)

where q̃ � (q̃im,jn)im∈N ,jn∈N . By definition, P1A ⊆ POP.
Then maxp∈P1aZ(p;m∗,qe, q̃) is Subproblem 1a and
maxp∈POPZ(p;m∗,qe, q̃) is the original problem (when
w2 � 0). Hence, Subproblem 1a and the original problem
have the same objective function. However, Subpro-
blem 1a has a larger feasible region becausewe use ALC
to approximate the logit constraints. Therefore, the
upper bound of ||pD − p∗|| can be expressed as the maxi-
mum difference between points under optimal condi-
tions in two feasible regions:

U(ΩEq,ΩIneq) � max
m∗,qe, q̃

{||p1 − p2|| :
p1 ∈ arg max

p∈P1A

Z(p;m∗,qe, q̃),

p2 ∈ arg max
p∈POP

Z(p;m∗,qe, q̃)}: (27)

The term U(ΩEq,ΩIneq) is bounded because both P1A

and POP are bounded. A trivial upper bound for
U(ΩEq,ΩIneq) is 1|p|. An illustration for U(ΩEq,ΩIneq) is
shown in Figure 5. Figure 5(a) shows that when the
optimal objective function value of the original formu-
lation is greater than zero, pD and p∗ may be different.
Figure 5(b) shows that when the optimal objective
function value of the original formulation equals zero,
pD�p∗ (reduced to Proposition 1). If we construct
more ALCs, we could have a tighter feasible region
for Subproblem 1a and thus a smaller U(ΩEq,ΩIneq).

Given the upper bound of ||pD − p∗||, we now prove
the upper bound for ||βD − β∗||. The proof follows the
maximum theorem (Ok 2011) and is illustrated later.

The maximum theorem states that if the elements of
an optimization problem are sufficiently continuous,
then some of that continuity is preserved in the solu-
tions. The goal is to prove that SP1B(p) (the maximizer
function) is continuous in terms of p. Specifically, for
Subproblem 1b, because it has no constraints, we
know that the correspondence (i.e., set-valued func-
tion) that maps p to the feasible region of Subproblem
1b (which is R

|β|) is continuous. Also, we know that
the objective function of Subproblem 1b is strictly con-
cave, according to the maximum theorem, SP1B(p), is
continuous. We further observe that because p is in a
compact set, SP1B(p) is also uniformly continuous (by
the Heine-Cantor theorem; Cadenas Aldana 2007).
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According to Vanderbei (1991), uniform continuity is
almost Lipschitz continuity, leading to

||βD − β∗|| � ||SP1B(pD) − SP1B(p∗)|| ≤ L · ||pD − p∗||
+ ε ≤ L ·U(ΩEq,ΩIneq) + ε, (28)

where L and ε are two parameters for the “almost Lip-
schitz continuity” (more details in Vanderbei 1991). w

Remark 2. Proposition 2 shows that when the optimal
objective function of the original problem is not zero,
the optimal solution of the original problem β∗ may
not be the fixed point of the decomposed method.
However, because ||βD − β∗|| are bounded above, β∗ is
essentially an “almost fixed point” (Afif Ben Amar
2022). Define Γ :� L ·U(ΩEq, ΩIneq) + ε. Then β∗ is a
Γ-fixed point of SP1B ◦ SP1A◦ SP2.

Remark 3. Denote the fixed point (if it exists) of
SP1B ◦ SP1A ◦ SP2 as β̃

∗
such that β̃

∗ � SP1B ◦ SP1A ◦
SP2(β̃∗). One may be interested in the difference
between β̃

∗
and β∗ (i.e., ||β̃∗ − β∗||). In general, answer-

ing this question is hard. This is because, although β∗

is a Γ-fixed point, it is not necessarily close to the
actual fixed point β̃

∗
(i.e., weak approximation). Find-

ing a point that is close to β̃
∗
(i.e., strong approxima-

tion) is not computationally feasible for general
functions because it requires anticipating the limit of a
sequence from a finite amount of data (Scarf 1967).

Proposition 1 discusses the existence of fixed points
under the condition that the optimal objective function of
the original problem is zero. For amore general situation,
we show the existence offixed points in Proposition 3.

Proposition 3. There is a fixed point for SP1B ◦ SP1A ◦
SP2(·) if the following conditions hold:

• There are closed boundaries for β across the estimation
process (i.e., −∞ < Lβ ≤ β ≤Uβ < +∞)

• The composed function SP1B ◦ SP1A ◦ SP2(·) is
continuous

Proof. Because Lβ ≤ β ≤Uβ is convex and compact, the
proposition directly follows Brouwer’s fixed-point
theorem (Afif Ben Amar 2022). w

Remark 4. Proposition 3 provides the conditions for the
existence of a fixed point using Brouwer’s fixed-point
theorem. However, the continuity of SP1B ◦ SP1A◦
SP2(·) is not clear. In the proof of Proposition 2, we
show that SP1B(·) is continuous. However, as SP2(·) is a
transit network loading process that simulates the inte-
ger number of passengers, it is inherently noncontinu-
ous. Moreover, we can also show that the gradient of
SP2(·) can be arbitrarily large due to network crowding
and left behind (i.e., a slight change in path choices
can lead to a large change in m, see Online Appendix
B for an example). Although the large gradient does
not change the continuity mathematically, it does
affect the numerical estimation and may result in
precision issues.

In addition to the existence, we also discuss the
uniqueness of the fixed point in Proposition 4.

Proposition 4. The composed function SP1B ◦ SP1A ◦
SP2(·) has a unique fixed point if for any β and
β′, ||SP1B ◦ SP1A ◦ SP2(β) − SP1B ◦ SP1A ◦ SP2(β′)||
≤ δ||β− β′||, where δ ∈ [0, 1) is a constant.
Proof. The proof directly follows Banach’s fixed-point
theorem (Luan and Xia 2015). w

However, because SP1B ◦ SP1A ◦ SP2 has no analyt-
ical expression (due to the network loading process), it
is hard to prove the contraction of SP1B ◦ SP1A ◦ SP2.
According to the Banach fixed-point theorem, if the con-
traction holds, the unique fixed point can be obtained
by the following procedure: start with an arbitrary β(0)

Figure 5. (Color online) Upper Bound of ||pD − p∗||

Notes. (a) Z(p∗;m∗,qe, q̃) > 0. (b) Z(p∗;m∗,qe, q̃) � 0.
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and define a sequence {β(n)} by β(n) � SP1B ◦ SP1A ◦
SP2(β(n−1)) for n ≥ 1. Then, the lim n→∞β(n) exists and the
converged value is the fixed point.

Although we cannot prove the contraction of
SP1B ◦ SP1A ◦ SP2 analytically, we apply the Banach
fixed-point theorem to develop the solution approach
(Algorithm 2) and validate the convergence later numeri-
cally. If lim n→∞βn exists, and the converged value is the
solution of the original problem, then a necessary condi-
tion for the uniqueness is satisfied, which provides more
evidence of the reasonableness of the decomposed
method. The results of the numerical validation of the
approach using synthetic data are discussed in Section
4.4. It is shown that lim n→∞βn converges, and the con-
verged value is close to the solution of the original prob-
lem. (In Table 1, we show that the rootmean square error
for estimated path share is only 1.16%.)

Algorithm 2 (Solution Procedures for Path Choice
Estimation)

1: Initialize β(0) and specify Kt,Kb,ε.
2: m(0) �Network Loading (β(0),qe) (Subproblem 2)
3: Set iteration counter k � 0.
4: do
5: k � k+ 1
6: Solve Subproblem 1(a) with fixed m(k−1) and

return p(k)
7: Solve Subproblem 1(b) with fixed p(k) and return

β(k)
8: Solve Subproblem 2 with β(k) as input and

return m(k)
9:while ||β(k) − β(k−1)|| > ε and k < Kt

10: if k < Kt then
11: β � β(k)
12: else
13: β �∑Kt

k�Kb
β(k)=(Kt −Kb + 1)

14: return β

In Algorithm 2, β(0) is the initial value of β. The varia-
ble ε is a predetermined threshold for algorithm termi-
nation. To address the randomness in the network
loading model, we also define a “burn-in” iteration Kb

and a maximum iteration Kt. When β fluctuates because
of randomness, we take the average of the last Kt −Kb
values of β as the final estimation.

4. Case Study
For the purpose of model illustration and validation, we
apply the proposed modeling framework using data
from Hong Kong’s MTR network. The model is vali-
dated using both synthetic and real-worldAFCdata.

4.1. MTR Network
The map for the Hong Kong MTR system is shown in
Figure 6. In this study, the airport express and light rail
transit services are not considered because they are sep-
arated from the urban railway lines, and passengers
who enter the urban railway lines from these services
need to tap in again. The system consists of 10 lines and
114 stations, out of which 16 are transfer stations. In this
network, most transfer stations connect only two lines.
A special case is the Admiralty station on Hong Kong
Island, where three lines pass through the same transfer
station. The Admiralty station is in the CBD area of
Hong Kong. During peak hours, it is very busy. Despite
its near-capacity operation, the MTR system offers a
good level of servicewith high on-time performance.

In the aggregated TS hypernetwork, the dimension of
all TS paths (i.e., |p|) is reasonable. This is because (1) in
urban rail networks, the number of possible paths
between an OD pair is limited (as opposed to road net-
works). For example, in the Hong Kong MTR network,
there is a total of 91 stations, 8,190 OD pairs, and 13,545
paths. On average, there are 1.65 paths perODpair. (2) In
the aggregated TS hypernetwork, because we are using
15-minute intervals, the total number of space-time
paths (i.e., combinations of (im, j, r)) only increases to
54,180 in the one-hour study period. Therefore, we do
not encounter the typical column management pro-
blems as in typical road networks or fine-grained TS
hypernetworks.

4.2. Validation Setting
We use AFC data from March 16, 2017 (Thursday), for
model validation. The path sets for each OD pair are
provided by MTR. Li (2014) conducted a revealed-
preference (RP) route choice survey of more than 20,000
passengers in the MTR system and used the data to esti-
mate a C-logitmodel. The estimation results are included
in Online Appendix A. According to Li (2014), the

Table 1. β Estimation Results of Synthetic Data

Variable Synthetic (“true”)

Estimated

[Lβ, Uβ]Proposed BYO CORS Prob1 Prob2

In-vehicle time (β1) −0.147 −0.156 −0.205 −0.231 −0.085 −0.095 [−2, 0]
Number of transfers (β2) −0.573 −0.544 −1.218 −1.189 −0.840 −0.791 [−4, 0]
Relative walking time (β3) −1.271 −1.291 −2.499 −2.316 −1.015 −1.518 [−6, 0]
Commonality factor (β4) −3.679 −3.413 −6.184 −6.537 −2.881 −2.906 [−10, 0]
Objective function — 10,328.8 42,390.6 37,066.1 58,123.0 57,043.3 —
RMSE (%) — 1.16 7.34 6.74 7.67 7.44 —
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following attributes were used in the path utility specifi-
cation: (a) total in-vehicle time, (b) the number of trans-
fers, (c) relative walking time (total walking time divided
by total route distance), and (d) the commonality factor
(Equation (6)). Other attributes such as average waiting
time and average left behind rate were not significant
based on the survey results and thus are not included.
We follow the model specifications of Li (2014) so that
there are reference parameters to generate synthetic data
(details in the following) and to be compared with real-
world estimation results (Section 4.5).

The evening peak (6:00 p.m. to 7:00 p.m.) is selected
for validation. For simplicity, we assume the path shares
are static during this hour. The weights in the objective
function of Subproblem 1(a) are set as w1 � 1 and
w2 � 0, which means no prior knowledge is available.
The maximum number of iterations, Kt, is set to 15, and
the “burn-in” iteration number, Kb, is set as 13. Accord-
ing to our numerical testing, a larger Kt does not change
the estimation results of β. The term β(0) is set to zero for
all parameters. The parameters of the network loading
model are summarized here.

• Access, egress, and transfer walking times. They are
platform-specific, obtained from field measurements.

• Train arrival and departure times: Approximated
by the timetable. Future research can use AVL data to
get actual train arrival and departure information.

• Capacity: 235 passengers per car based on MTR’s
calibration.

• Warm-up and cool-down time: 60 minutes warm-
up and cool-down time for simulation.

Access/egress walking time is defined as the walking
time between the fare machine and the train boarding
platform.Warm-up (cool-down) time indicates the time

before (after) simulation period starts (ends). It is
needed because the simulation system usually starts
from an empty state (no train and passengers).

Because the actual path choice information is usually
unavailable, it is common to quantitatively validate the
modelwith synthetic data. To generate the synthetic data,
we first extract the OD entry flow from the real-world
AFC records. Choice parameters β estimated in Li (2014)
are treated as passengers’ “true” behavior parameters
(called synthetic β hereafter). We use the network load-
ing model with the true OD entry flows (actual number
of tap-in passengers according to the AFC data) and the
synthetic β as input to simulate the travel of passengers
in the system and record their tap-out time. The records
of tap-out times and their true tap-in times are treated as
the synthetic AFC data. The proposed path estimation
approach is applied to the synthetic AFC data and vali-
dated based on its ability to recover the synthetic β val-
ues (i.e., the difference between the estimated and
synthetic β values). The methodology is also applied to
the real-world AFC data, providing further qualitative
analysis and indirect comparison.

4.3. Benchmark Model
To evaluate the model performance, we compare the
results from the proposed model to two types of meth-
ods: the simulation-based optimization (SBO) method
(Mo et al. 2021) and probabilistic models (Sun and Xu
2012, Zhao et al. 2017).

4.3.1. SBO The formulation of the SBO benchmark
approach is shown as follows:

min
β, p

w1
∑
im, jn

(qim ,jn − q̃im,jn)2 + w2||β − β̃||2 (29a)

Figure 6. (Color online) Hong KongMTRUrban Rail SystemMap
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s:t: Constraints (8b), (8d), (8f)–(8h), (29b)

qim,jnr � Network Loading (p, qim,j)
∀im ∈ N , jn ∈ N , r ∈ Ri,j, (29c)

Lβ ≤ β ≤ Uβ, (29d)

where Lβ and Uβ are predetermined lower and upper
bounds of β. Equation (29) is equivalent to Equation (8).
Constraints (8c) and (8e) are embedded into the network
loading process (Equation (29c)). We set w1 � 1 and
w2 � 0 as previously. Compared with our proposed
model, the pure SBOmethods need more function eval-
uations (i.e., simulation) to construct surrogate func-
tions and calculate gradients. The terms Lβ and Uβ are
usually required to narrow the feasible space and guide
the algorithm to obtain reasonable results. The values of
Lβ and Uβ are shown in Table 1. By introducing Lβ and
Uβ, we actually provide the benchmark model with
more information.

Many solution algorithms have been proposed to
solve SBO problems. These algorithms generally belong
to threemajor classes: direct search, gradient-based, and
response surface methods (Osorio and Bierlaire 2013,
Amaran et al. 2016). According to Osorio and Bierlaire
(2013) andCheng et al. (2019), response surfacemethods
have good performance and are gaining popularity in
the transportation literature. In this study, we adopt
two response surface methods to solve the benchmark
model: Bayesian optimization (BYO) (Snoek, Larochelle,
and Adams 2012) and constrained optimization using
response surfaces (CORS) (Regis and Shoemaker 2005).

• BYO aims to construct a probabilistic model of the
objective function (response surface) and then exploit
this model to determine where to evaluate the objective
function for the next step. In each iteration, the proba-
bilistic model is updated according to the posterior dis-
tribution of the objective function.

• CORS constructs a response surface model and
updates the model based on all previously probed
points. The criteria for selecting the next points to be
evaluated are (a) finding points that have lower objec-
tive function value, and (b) improving the fitting of the
response surface model by sampling feasible regions
where little information exists.

SBO methods are usually unstable due to the ran-
domness in the search process. For this reason, we per-
form 10 replications of each algorithm and report the
mean and standard deviation of the objective function.
The SBOmethods are only used with the synthetic data
so that we can compare the estimated path choice
parameters to the synthetic ones.

4.3.2. Probabilistic Models. The other type of bench-
mark is probabilistic models. We implement the Sun
and Xu (2012) model (referred to asmodel “Prob1”) and
the Zhao et al. (2017) model (referred to as model

“Prob2”) methods because their models can directly
output the left behind probabilities, which can be used
to compare with our proposed approach. The ideas of
the methods of Sun and Xu (2012) and Zhao et al. (2017)
are similar: they both first estimate the left behind prob-
abilities based on a subset of users that only have one
possible route in the system. Then, based on the esti-
mated left behind probabilities, they further estimate the
route choices. The difference is that Sun and Xu (2012)
assume that the number of trains a passenger needs to
wait for follows a geometric distribution, whereas Zhao
et al. (2017) assume a multinomial distribution. As Sun
andXu (2012) andZhao et al. (2017) only output the path
choice fractions, for comparison purposes, after getting
the estimated left behind probabilities, we use the fol-
lowing maximum likelihood estimation to obtain path
choice parameters for these twomodels:

max
β

∑
im∈N , j∈S

∑
u∈U im,j

∑
r∈Ri,j

pim,jr (β) · P(TTObs
u | r, Est: left behind),

(30)

where U im,j is the set of passengers with OD pair (i, j)
and departure time indexm. The expression P(TTObs

u | r,
Est: left behind) is the probability that passenger u’s
total journey time is TTObs

u given the estimated left
behind information and that he/she has chosen path r.
To also capture the distribution of access and egress
walking times, we adopt a state-of-the-art formulation
for P(TTObs

u | r, est: left behind) based on Zhu et al.
(2021)2 The maximum likelihood estimation is imple-
mented with the Python Scipy package and the BFGS
optimizer (Nocedal and Wright 2006). Due to the com-
putational burden, only 20% of the passengers (around
160,000) are used for the estimation. These passengers
are randomly drawn fromOD pairs withmultiple route
choices. This setting is similar to Sun et al. (2015), who
randomly draw 190,000 passengers from different OD
pairs in the Singaporemetro network.

4.4. Synthetic Data Results
4.4.1. Convergence of b. The convergence results of β
for the fixed-point algorithm (Algorithm 2) is depicted
in Figure 7, which shows the value of β for each itera-
tion. All β values appear to converge despite slight fluc-
tuation in the tail. The results support the proposed
solution approach (Algorithm 2) and validate the theo-
retical arguments on the solution’s existence and
uniqueness made in Section 3.5. There are two possible
reasons for the fluctuation in the tail. First, due to the
discontinuity of network loading (as discussed in
Remark 4 and Online Appendix B), the fixed point of
SP1B ◦ SP1A ◦ SP2(·) may not exist (thus the iteration
may not converge). Second, although Subproblem 1B is
strictly concave, due to precision issues, there may exist
multiple sets of β values that result in close path shares,
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especiallywhen some path attributes are not statistically
significant. However as shown in Algorithm 2, the final
β will be the average over the last Kt −Kb iterations,
which reduces the influence of fluctuations.

4.4.2. Performance. Two indicators are reported dur-
ing the iterations for the SBO and the proposed
approaches. One is the objective function value of Sub-
problem 1a, which shows the square error of OD entry-
exit flows. Another is the root-mean-square-error
(RMSE) of estimated path shares:

RMSE �







































∑
im, j

∑
r∈Ri,j

(pim ,jr − p̂im,jr )2=
∑
i, j

Ri,j,
√

(31)

where pim ,jr are the estimated path shares and p̂im ,jr are the
synthetic path shares (unit is %). The term

∑
i,jRi,j is the

total number of paths in the system.
Figure 8 shows the value of the objective function in

Subproblem 1a as a function of the number of evalua-
tions of the transit loading process. The error bars for
the benchmark methods represent the standard devia-
tion. The proposed method outperforms the benchmark
models both in convergence rate and final solution qual-
ity. The RMSE comparison results are shown in Figure 9.
The proposedmethod approaches the “true” path shares
rapidly and has a lower estimation error than the bench-
mark models. The RMSE may not always decrease with

the reduction of the objective function. This is because
the relationship between path choices and OD entry-exit
flows is highly nonlinear.

The comparison of estimated β and “true” (synthetic)
β are shown in Table 1. The β values estimated using the
proposedmethod are close to the “true” ones. The qual-
ity of the estimated solution is highlighted by the RMSE
values. The RMSE of the β values estimated from the
proposed method is significantly lower than the RMSE
of those estimated from the benchmark methods. The
probabilistic models show the worst estimation results.
The possible reasons include (1) only using part of the
user information and (2) not capturing the interaction
between left behind and path choices.

4.4.3. Left Behind Estimation Comparison. Because
the probabilistic models first estimate left behind then
route choices, it cannot capture the interaction between
path choices and left behind. Hence, we expect that the
proposedmodel has a better left behind estimation.

For comparison, we calculate the left behind probabil-
ity for each station in every 15-minute interval from 1800
to 1900 hours. Denote the probability of being left behind
k times at station i and time index m as LBim

k . LB
im
k are

obtained from the simulationmodel using the estimated
path choices as input. Figure 10 shows the comparison
of estimated and actual LBim

k for different models. The

Figure 7. (Color online) Convergence Behavior of Estimated β

Notes. (a) In-vehicle time. (b) Number of transfer. (c) Relative walking time. (d) Commonality factor.

Figure 8. (Color online) Subproblem (1a) Objective Function
Results (Synthetic Data)

Figure 9. (Color online) RMSE of Path Fractions (Synthetic
Data)
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RMSE is calculated using the similar way as Equation
(31) by replacing pim,jr with LBim

k (unit is percentage). The
results show that the proposed model can well capture
the left behind patterns in the system, with RMSE �
1.3%. Although the two probabilistic models have the
worst left behind probability estimation, with RMSE �
6.3% for bothmodels.

4.4.4. Computational Time. All models are run on a
personal computer with a single-core CPU I9-9900K.
The typical running time for a network loading (simula-
tion) process is four minutes. For the probabilistic model
(Sun and Xu 2012, Zhao et al. 2017), to efficiently esti-
mate the route choices, we precalculate P(TTObs

u | r,
Est: left behind) for all u and r before solving the maxi-
mum likelihood estimation (Equation (30)). It turns out
that the probability precalculation takes a significant
amount of time in the large-scale MTR network. This is
because, for each path r and user u, there are many com-
binations of boarded trains and left behind situations
that can result in the observed travel time, especially in
the case of a pathwithmultiple transfers (i.e., the passen-
ger may be either left behind at the boarding station or
the transfer stations). Because Sun and Xu (2012)
assumes geometric distribution for the number of wait-
ing vehicles, there are more nonzero left behind proba-
bilities and it takesmore computational time.

The comparison results in Table 2 show that the
time bottleneck for the probabilistic models is the
probability precalculation. After that, the maximum
likelihood estimation can be efficiently solved. The
total running times for the two probabilistic models
are around six and four hours, respectively. There
may exist better implementation techniques that could
accelerate the probabilistic models, which is beyond
the scope of this study. In terms of optimization-based
methods, because the SBO methods require more
function evaluations (i.e., simulation), they take a lon-
ger time than the proposed approach.Most of the com-
putational time in optimization-based methods is
spent in the simulation process, meaning that it can be

Figure 10. (Color online) Comparison of Left Behind Estimation

Notes. (a) Proposed. (b) BYO. (c) CORS. (d) Prob1. (e) Prob2.

Table 2. Model Running Time Comparison

Models

CPU time (min)

LB
estimation

Prob
precalculation

Choice
estimation Total

Prob1 0.1 343.1 1.9 345.1
Prob2 0.3 210.9 1.7 212.9
CORS NA NA 169.2 169.2
BYO NA NA 178.6 178.6
Proposed NA NA 65.0 65.0

Note.NA, not applicable.
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further accelerated if the simulation coding efficiency
is improved (e.g., using C/C++ or Java).

4.5. Real-World Data Results
Because ground-truth path fractions are not available,
we use the real-world AFC data to estimate the β values
with the proposed method and compare them to ones
obtained by Li (2014) (summarized in Table 3). The
results show that the scale of all coefficients is similar.
The tradeoff between the in-vehicle time and the num-
ber of transfers is reasonable, where one transfer is
equivalent to 7.9 minutes of in-vehicle travel time com-
pared with 3.9 minutes in Li (2014). The tradeoff
between in-vehicle time and walking time is relatively
small for long trips but significant for short trips. The
results indicate that for a trip with four stations, 1
minute of transfer walking time is equivalent to 3.14
minutes of in-vehicle travel time (2.16 minutes in Li
(2014)). For a trip with eight stations, 1 minute of walk-
ing time is equivalent to 1.57minutes of in-vehicle travel
time (1.08 minutes in Li (2014)). Hence, the marginal
rates of substitution are reasonable and similar to the
previous results (Li 2014). It isworth noting that because
there are no ground truth path choices, the comparison
of results using real-world data should be treated quali-
tatively rather than quantitatively. Moreover, it should
be pointed out that since 2014, a number of changes
have taken place in the MTR network. There was not
only a growth in demand but also the opening of a new
line that can result in path choice pattern changes.

Although we cannot directly compare path shares,
other measurements can also reflect the quality of path
shares. Field observation data for the Admiralty station
Northbound platform during the testing period (1800–
1900 hours) is available, which contains information on
left behind rates (proportion of passengers who are not
able to board the first train), the total number of arrival
passengers (sum of new tap-in and transfer passengers),
and the total number of boarding passengers. These
measures can also be obtained from the network loading

model using the path shares estimated from the pro-
posed method as input. For comparison purposes, we
also run the network loading model using two other
path shares. The first is generated by a naive model that
results in equal shares among all paths (referred to as
“uniform” path shares). The second is based on the path
choicemodel in Li (2014) to calculate path fractions.

The comparison results are shown in Table 4. Com-
paredwith the ground truth, the network loadingmodel
using the estimated path shares replicates closely the left
behind rate, the number of arriving passengers, and the
number of boarding passengers. The squared error of
OD entry-exit flow (i.e., the objective function) is also the
lowest. The performance in terms of left behind rate and
number of arriving passengers for the estimated path
shares are similar to that of Li (2014). However, the
model with path shares estimated using the proposed
method can outperform that of Li (2014) in the number
of boarding passengers andOD entry-exitflows.

From an evaluation point of view, it is important to
consider the performance of each path share generation
method across all metrics in Table 4. The generated path
shares are reasonable only if it performs well across all
metrics. For example, the naive uniform path shares
report a good left behind rate but significantly underes-
timates the number of boarding passengers and have a
large squared error of OD entry-exit flows, which
should be seen as reasonable path shares. We also
observe that these metrics have different sensitivity to
path shares. For example, the estimated left behind rates
at Admiralty station from four methods are similar.
This may be because the left behind rate at Admiralty
station is largely determined by tap-in demands and not
sensitive to the path shares. These metrics also reflect
the performance of path shares at different levels. The
first three metrics (related to Admiralty station) are
station-level (local) indicators, whereas the fourth one
(i.e., the squared error of OD entry-exit flows) is net-
work level (global). As we aim at estimating path
choices for the whole network, the fourthmetric is more
representative in terms of the quality of path shares as it
captures the flows at the network level. The proposed
model has the best performance in the fourth metric,
indicating consistent estimation quality for all ODpairs.

4.6. Robustness
Model robustness is important for real-world applica-
tions. We test the performance of the model under

Table 3. β Estimation Results of Real-World Data

In-vehicle
time

Number of
transfers

Relative
walking
time

Commonality
factor

Estimated −0.116 −0.920 −1.457 −1.775
Li (2014) −0.147 −0.573 −1.271 −3.679

Table 4. Comparison of Various Measurement of Admiralty Station (1800 to 1900 hours)

Left behind
rate

Number of arriving
passengers

Number of boarding
passengers

Squared error of
OD entry-exit flows

Ground-truth 0.747 24,945 23,926 —
Proposed model 0.724 24,589 23,570 1,044,692
Li (2014) 0.742 24,959 22,357 1,166,814
Uniform 0.779 25,683 18,767 1,323,594
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different β(0) (initial β values) and data from different
days. A robust model should output similar estimated β
values regardless of initial values. The estimated β for
different days should also be similar because passen-
gers’ choice behavior is stable in the short term.

4.6.1. Sensitivity to b(0). The sensitivity analysis to dif-
ferent values of β(0) are conducted using the synthetic
data. Twelve different β(0) are drawn from a uniform
distribution U(Lβ,Uβ). Figure 11(a) shows the conver-
gence of the objective function for different β(0) values.
In early iterations, the initial objective function values
vary a lot. However, after around 10 iterations, they all
converge to the same value regardless of β(0). These
results demonstrate the robustness of the approachwith
respect to initial β values. Figure 11(b) is the boxplot of
the estimated β parameters for different β(0). The varia-
bles that β1,… ,β4 correspond to can be found in Table 1.
The estimated β1, β2, and β3 values are very stable
regardless of β(0). The estimated β4 value (commonality
factor) shows some fluctuations but still within a small
range (the 95% confidence interval is [−3:2, − 3:6]). This
also corresponds to the survey estimation results where
β4 has a relatively low t value (seeOnlineAppendixA).

4.6.2. Sensitivity to Data from Different Days. To test
the robustness of the model in terms of OD demands
from different days, the model was applied using actual
AFC data on different days in onemonth (fromMarch 6
to 30, all weekdays). Figure 12 compares the estimated β
values for different days of week (Monday to Friday). In
general, all estimated values are consistent across days
except for the coefficient of relative walking time on Fri-
day. This may be because Friday nights are the start of
the weekend, and passengers may have different travel

patterns and behavior. Walking time, for example, is
less important for entertainment trips that may take
place during the evening peak on Friday.

Figure 13 shows the mean and standard deviation of
estimate β for different weeks. We find that the parame-
ters for in-vehicle time, number of transfers, and com-
monality factors are stable across different weeks. The
values are similar and standard deviations are relatively
small. However, the estimated coefficient for relative
walking time is not stable with high variance. Because
we expect that the choice behavior does not change too
muchwithin amonth, the nonstability indicates that rel-
ative walking time may not be statistically significant in
determining path choices.

Overall, the proposed model is robust with respect to
data fromdifferent weekdays in terms of estimating sig-
nificant parameters (such as in-vehicle time, number of
transfers, and commonality factors). For nonsignificant
parameters (such as relative walking time), the estima-
tion hasmore variances.

5. Conclusion
This paper presents an aggregated time-space hypernet-
work approach to infer passenger route choice behavior
in urban rail systemswith both entry and exit AFC trans-
actions. The approach models explicitly the interactions
between path choices and left behind and the interac-
tions among stations in terms of crowding. The path
choice estimation is modeled as an optimization prob-
lem. The original intractable problem is decomposed
into three tractable subproblems that can be solved effi-
ciently. Case studies using synthetic and actual data vali-
date the effectiveness and robustness of the approach.

The proposed ex post path choice estimation frame-
work is general. It is applicable to accommodate differ-
ent choice model structures (nested logit models) by

Figure 11. (Color online)Model Sensitivity to Initial β Values

Notes. (a) Convergence of the objective function (different curves correspond to different β(0)). (b) Boxplot of estimated coefficients for different β(0).
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changing Subproblem (1b). Also, it can be extended to
allowdifferent β values for different groups of passengers
to better capture the heterogeneity in real-world route
choice behavior. It could drive applications in perform-
ancemonitoring (e.g., network crowding) and evaluation
of control/management strategies in planning and opera-
tions (e.g., train timetabling and network change).

A limitation in this study is assuming that a passen-
ger’s path choice is based on the attractiveness of a path
as measured by its attributes. However, some complex
choice behaviors, such as that passengers may choose
whatever line comes first when they wait at a station
with multiple lines to their destinations (i.e., common
line case), may not be captured by the standard discrete
choice models. In the literature, an alternative setting is

to estimate path choice fractions p directly, instead of β.
This setting does not assume any behavior models for
path choices. However, there are pros and cons for esti-
mating p and β. When estimating p directly, we can cap-
ture complex path choice behavior beyond behavior
models. However, the estimation errors can be large for
some OD pairs with sparse or small samples. When esti-
mating β, the domain knowledge (i.e., behavior assump-
tion) is incorporated. All OD pairs and path shares can
obtain reasonable results even if there is sample sparsity.
However, the drawback is that complex choice behav-
iors beyond the behavior model (such as the common
line case mentioned previously) cannot be captured. In
this study, we estimate β considering the estimation
accuracy of all ODpairs and application potentials.

Figure 12. (Color online) Comparison of Estimated β Values for Different Days

Note. Black lines indicate6standard deviation.

Figure 13. (Color online) Comparison of Estimated β Values for DifferentWeeks

Note. Black lines indicate6standard deviation.
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Endnotes
1 We illustrate why SDTNL is needed instead of frequency-based
static network loading models in Section 2.3.
2 In Zhao et al. (2017), they used the probability of a travel plan to
represent P(TTObs

u | r, est: left behind) but ignoring the access and
egress walking time distribution.
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Appendix A: Passenger Route Choice Model for MTR System

These results are from Li (2014). The C-logit Model formulation is the same as Eq. (5) and Eq. (6). A

total number of 31,640 passengers completed the questionnaire. After filtering duplicate responses, 26,996

responses were available. The model results are shown in Table 1. The main explanatory variables are the

total in-vehicle time, relative transfer walking time, and number of transfers. All variables are statistically

significant with the expected signs. Routes with high in-vehicle time, walking time, and number of transfers

are less likely to be chosen by passengers.

Table 1 Route Choice Model Estimation Results

Estimate Std. Error t-value

In-vehicle time -0.147 0.011 -13.64 ***
Relative walking time -1.271 0.278 -4.56 ***
Number of transfers -0.573 0.084 -6.18 ***
Commonality factor -3.679 1.273 -2.89 **

ρ2 = 0.54

***: p < 0.01; **: p < 0.05.

Appendix B: An explanation of large gradient for the transit network loading

In this section, we want to show that a slight change in β may lead to a large change in SP2(β). Consider

a single direction rail line with M stations and a fixed headway H (Figure 1). Every train has a capacity

of 1. Assume that under the path choice parameter β, there is one passenger waiting at station 2, and

no passengers from station 1 choose to use this line. Hence, the passenger at station 2 can board the first

available train. Suppose that under the path choice parameter β+∆β, passengers from station 1 start to use

the rail line (with proportion ∆p). And the total demand for station 1 is q. Therefore, the waiting passenger

at station 2 will be able to board the train after being left behind ∆p× q times with increased waiting time

by ∆p× q×H. These values can be arbitrarily large for large values of q and H. Hence, the path exit rate

for the passenger at station 2 can change dramatically depending on how many times they have been left

behind.

Figure 1 Illustration of large gradients for the transit network loading

1
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Appendix C: Impact of time interval length

In this section, we evaluate the impact of different values of τ (i.e., the time interval length). Specifically, β

estimation results for τ = 15,10,5 minutes are shown in Table 2. τ = 10 minutes results in a slightly better

estimation than that of τ = 15 minutes, which implies that τ = 15 minutes may be slightly larger and this

setting ignores some temporal variations. τ = 5 minutes leads to worst results. As mentioned in Section 3.1,

the value of τ should be consistent with the information granularity. Clearly, τ = 5 minutes is too fine-grained

which makes the system sensitive to observation errors. In the simulation model, the access/egress/transfer

walking time are random variables with the mean around 1∼2 minutes and standard deviations similar to the

mean. Therefore, the OD entry-exit flows may have random errors at the granularity level of τ = 5 minutes.

Table 2 Impact of time interval length on β estimation

Variable
Synthetic
(“True”)

Estimates from the proposed model

τ = 15 mins τ = 10 mins τ = 5 mins

In-vehicle time (β1) -0.147 -0.156 (6.1%) -0.151 (2.8%) -0.140 (4.7%)
Number of transfers (β2) -0.573 -0.544 (5.1%) -0.534 (6.7%) -0.504 (12.0%)
Relative walking time (β3) -1.271 -1.291 (1.6%) -1.292 (1.7%) -1.332 (4.8%)
Commonality factor (β4) -3.679 -3.413 (7.2%) -3.427 (6.9%) -3.028 (17.7%)

Average absolute relative error - 5.0% 4.5% 9.8%
1: Numbers in the parentheses are the absolute relative error compared to the synthetic β

Appendix D: Extension to other route choice models

The proposed approach can be extended to other route choice models. The C-logit model can be replaced by

any other strictly convex discrete choice model, such as path-size logit. To implement other choice models,

we only need to replace sub-problem 1b as follows:

max
β

∑
im∈N ,j∈S

qim,j
∑

r∈Ri,j

pim,j
r · logP[r ;β] (1)

where P[r ;β] is any convex discrete choice models with parameters β. With the strict convexity, all the

analysis in this article is still effective. Models such as cross-nested logit and logit kernel models (Ben-Akiva,

Ramming, and Bekhor 2004) may be non-convex (or weakly convex). The non-convexity (or weak convexity)

makes Lemma 1 invalid because the solution of subproblem 1b may not be unique. However, we can still

implement the proposed approach. But we may not have good convergence with convex choice models. One

possible modification is to impose the successive average in Algorithm 2. That is, set β(k) = k−1
k

β(k−1)+ 1
k
β̂(k),

where β̂(k) is the estimation of β in iteration k. This may be helpful for convergence.

Appendix E: Effect of subproblem 1 linearization

In this section, we explicitly test the effect of the two procedures to approximately linearize the logit con-

straints in sub-problem 1 (Section 3.4. Specifically, with the same basic settings as the case study, we solve

three problems to get path shares for comparison: 1) The first one is a model similar to subproblem 1a

(Eq. 19) but eliminating the ALC (i.e., Constraints 14 and 15). 2) The second is subproblem 1a (i.e., with
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the ALC). 3) The third model is subproblem 1b (i.e., logit correction) with the results of the second model

as input. The path shares are generated using the estimated β. The first two models both use the actual

path exit rate µ as inputs. We compare the output path shares pim,j
r in Figures 2a ∼ 2c. It is found that

adding ALC can improve the path share estimation and decrease the RMSE from 30.2% to 25.9%. After logit

correction, the estimated path shares are almost the same as the actual ones (because we use the actual µ

as input). This implies that both techniques for the linearization of subproblem 1 are important to improve

the quality of estimated path shares.

(a) Without ALC (b) With ALC (c) After logit correction

Figure 2 Comparison of path shares for the effect of sub-problem 1 linearization
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