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ABSTRACT1
This study proposes a general incident analysis framework from supply and demand sides using2
automated fare collection (AFC) and automated vehicle location (AVL) data in public transit sys-3
tems. Specifically, on the supply side, we propose an incident-based network redundancy index to4
analyze the network’s ability to provide alternative services under a specific rail disruption. The5
impacts on the operation are analyzed through the headway changes in multiple rail lines. On the6
demand side, we calculate the demand changes of different rail lines, rail stations, bus routes, and7
bus stops to show the passenger flow redistribution under incidents. Individual behavior is analyzed8
using a binary logit model based on inferred passengers’ mode choices and socio-demographics9
using AFC data. The public transit system of Chicago Transit Authority is used as a case study.10
Two rail disruption cases are analyzed, one of which has high network redundancy and low for11
another. Results show that the service frequency of the incident line was largely reduced during12
the incident time. Depending on the incident location, the network’s redundancies are different, as13
well as the passengers’ behavior. In the low redundancy scenario, most passengers choose to use14
nearby buses to move, either to their destinations or to the nearby rail lines. In the high redundancy15
scenario, most of the passengers transferred to nearby lines.16

17
Keywords: Incident analysis; Rail disruptions; Smart card data;18
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INTRODUCTION1
Urban transit systems play a crucial role in cities worldwide, transporting people to jobs, homes,2
outings, and a vast variety of other activities. Millions rely on urban transit systems to provide3
them with transportation. However, no system is perfect, and all are susceptible to unplanned4
delays and service disruptions, whether that comes from equipment, weather, passengers, or other5
internal and external factors.6

Mitigating the impact of unplanned service disruptions is an important task for urban tran-7
sit agencies. For this reason, it is important to recognize how a transit system is affected by service8
disruptions. The main analysis framework for incident impacts can be summarized in Table 1. The9
two main dimensions of analysis, supply and demand, can further be broken down into network10
property and operations for supply analysis and passenger flow and individual behavior for demand11
analysis. The network property analysis applies graph theory-based techniques to calculate indica-12
tors related to incidents (1–4), such as network resilience, vulnerability, redundancy, and a variety13
of other factors. The operations analysis focuses on changes in an agency’s operation during the14
incident period (5–7), including headway, routing, staffing, and other operator-controlled factors.15
From the demand aspect, passenger flow analysis investigates the demand changes of different sta-16
tions, lines, or regions of a network, presenting passenger’s choices and flow re-distribution after17
service disruptions. The individual behavior analysis focuses on studying the individual’s response18
behavior (such as mode choices, waiting time tolerance) to the incident (8, 9) and its relationship19
to individual’s characteristics (e.g., travel histories, demographics). Surveys are usually used for20
such studies.21

TABLE 1: Analysis framework for incident impacts

Analysis tasks Description

Supply
Network properties Calculate indicators such as resilience, vulnerability, redundancy
Operations Analyze changes of agency’s operations (e.g., headway, routing)

Demand
Passenger flows Analyze demand changes of different stations, lines
Individual behavior Analyze people’s response behavior under incidents

Previous research has used a variety of methods to analyze the impact of service dis-22
ruptions. Of these methods, the three most notable are graph theory-based, survey-based, and23
simulation-based. Graph theory-based methods usually derive resilience or vulnerability indica-24
tors based on the network topology (1–4). These methods are effective for understanding high-25
level network properties related to incidents. Survey-based methods investigate passengers about26
their behavior and opinions during the incident period (10–14). They can analyze and understand27
passengers’ individual-level behavior in-depth using econometric models. Simulation-based meth-28
ods simulate passenger flows on the transit network under certain hypothetical incident scenarios29
(15–17). These studies can output many metrics of interest such as the vehicle loads changes and30
additional travel delays caused by incidents.31

Recently, automated data collection systems in transit networks enable data-driven analysis32
on service disruptions. The two major sources are automatic fare collection (AFC) and automatic33
vehicle location (AVL) data. AFC data are collected when passengers tap their transit cards on34
smart card readers (in buses or rail station gates). The records include time, card ID, and location35
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of the tap in. Depending on whether the fare system requires passengers to tap out, AFC data1
may only include tap-in records or both tap-in and tap-out records. AVL data record vehicle’s2
(bus and train) time-dependent locations based on GPS and train tracking systems, from which3
the headway can be extracted. Multiple studies have been conducted using AFC and AVL data to4
look at transit disruptions (5–7). For example, Mojica (5) used AFC data to analyze changes in5
the travel behavior of a sample of rail commuters during a large scale maintenance project. Sun6
et al. (7) analyzed three types of abnormal passenger flows during rail disruptions using AFC data7
with both tap-in and tap-out records. Tian and Zheng (6) proposed a classification model to predict8
whether commuters switch from rail to other transportation modes because of unexpected travel9
delays using six months of AFC data.10

However, despite rich studies on incident analysis, there are still research gaps. First, for11
the graph theory-based approaches, the network indicators such as redundancy are usually defined12
for the whole network, an OD pair, or a link. Incidents usually cause service interruptions for13
multiple links depending on the power system and rail track structure. An incident-based indi-14
cator should be proposed to reflect the network’s redundancy under an actual incident. Second,15
for the individual-behavior analysis methods, rarely has previous studies leveraged the AFC data16
to analyze passengers’ mode choices. This problem needs to extract both individual choices and17
socio-demographic information from the AFC data. Third, most of the previous studies on incident18
analysis only addressed one or two tasks in Table 1 with a single incident case study. A compre-19
hensive study that analyzes all four tasks with multiple comparable case studies using AFC and20
AVL data is needed.21

To fill the research gaps, this paper conducts a comprehensive analysis of the impact of22
unplanned rail disruptions on urban rail systems. Specifically, on the supply side, we propose23
an incident-based network redundancy index to analyze the ability of bus and rail networks to24
provide alternative services under a specific rail disruption. The impacts on operations are analyzed25
through the headway changes in multiple rail lines. On the demand side, we calculate the demand26
changes of different rail lines, rail stations, bus routes, and bus stops to show the passenger flow27
redistribution under incidents. Individual behavior is analyzed using a binary logit model based28
on inferred passengers’ mode choices and socio-demographics using AFC data. The public transit29
system of the Chicago Transit Authority (CTA) is used as the case study. Specifically, two rail30
disruption cases are analyzed, one of which has high network redundancy and low for another.31

The contribution of this paper is threefold:32
• Propose an incident-based network redundancy index to reflect the ability to provide alterna-33

tive services for the bus and rail system as a whole.34
• Conduct a comprehensive incident analysis with two different types of incidents following a35

proposed incident analysis framework using AFC and AVL data.36
• Propose an individual mode choice analysis method using AFC data.37

The remainder of this paper is organized as followings. Section 2 reviews the literature.38
Section 3 elaborates the methodology used in this study. Case studies and data are described in39
Section 4 and results are shown in Section 5. Section 6 concludes the paper and discusses the40
policy implications.41

LITERATURE REVIEW42
There are generally four methods researchers use to analyze the impact of disrupted operations, in-43
cluding graph theory-based, survey-based, simulation-based, and AFC data-based methods. Each44
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method has strengths and weaknesses depending on the context.1

Graph theory-based2
Graph theory-based analysis identifies key aspects of the network’s properties and functions related3
to incidents (such as resilience, redundancy, vulnerability) based on graph theory (or complex4
network theory). These properties and functions show high-level topological characteristics of the5
network, providing intuitive conclusions for incident management. For example, Yin et al. (1),6
using the graph theory-based method, studied subway networks with respect to static disruptions,7
finding the weakness or key positions of the network through “network betweenness” and “global8
efficiency” calculation. Similarly, (2) built a general framework to assess the resilience of large9
and complex metro networks by quantitatively analyzing its vulnerability and recovery rapidity10
with proposed graph theory-based definitions.11

Redundancy is one of the important indicators for analyzing the network’s properties re-12
lated to incidents. It was defined as “the extent to which elements, systems, or other units of13
analysis exist that are substitutable, i.e., capable of satisfying functional requirements in the event14
of a disruption, degradation, or loss of function”. Redundancy has been widely studied, not just in15
transportation analysis. These areas are not limited to but include reliability engineering (18), com-16
munications (19), water distribution systems (20), and supply chain and logistics (21). Transporta-17
tion specific resiliency and redundancy studies include (4), who developed a qualitative framework18
and basic concepts for vulnerability, resilience, and redundancy. Other studies, like Wilson-Goure19
et al. (22), Murray-Tuite (23), and Goodchild et al. (24), each defined redundancy in the context of20
a specific transportation area of study. However, nearly all previous studies defined redundancy for21
networks, links, and OD pairs. This study proposed an incident-based redundancy index to eval-22
uate the network’s ability to satisfy functional requirements under a specific incident. Moreover,23
the bus system, which is an important alternative for rail but rarely considered in previous studies,24
is included for analyzing rail disruptions.25

Survey-based26
Many studies utilized survey-based methods to examine incident impacts. Surveys, including re-27
vealed preference (RP) and stated preference (SP), are a good medium to understand individual28
choices and demand. Surveys can be divided into two categories.29

Examples of transit-oriented RP studies include Currie and Muir (10), who conducted an30
RP survey to understand rail passengers’ behavior, perceptions, and priorities in response to un-31
planned urban rail disruption in Melbourne, Australia. Murray-Tuite et al. (11) used a web-based32
RP survey to understand the long term impacts of a deadly metro rail collision in Washington DC.33
Tsuchiya et al. (25) conducted an RP survey in Japan that looked at passenger choices of four34
alternative routes. Pnevmatikou and Karlaftis (26) used RP survey data to analyze the effect of a35
pre-announced closure of an Athens Metro Line. SP survey studies include Kamaruddin et al. (27),36
who studied the modal shift behavior of rail users after incidents. Fukasawa et al. (12) investigated37
the effect of providing information such as estimated arrival time, arrival order, and congestion38
level on passengers’ modal shift behavior in response to an unplanned transit disruption. This39
was contrasted with another SP survey conducted by Bai and Kattan (28), which found that light40
rail transit passengers in Calgary, Canada had a higher willingness to switch travel modes given41
less information. The major drawback of survey-based methods is time-consuming and labor-42
inefficient. Hence, it is important to develop individual behavior analysis methods using AFC data43
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as alternatives.1

Simulation-based2
Simulation-based studies evaluate the impact of the incident by running simulation models. Usu-3
ally, different hypothetical incident scenarios are tested. The system performance metrics such as4
travel delays and vehicle loads are output to analyze the incident effect. For example, Balakrishna5
et al. (15) used a simulation-based framework to model transportation network performance under6
emergency conditions. Traffic densities and travel times are compared for different emergency sce-7
narios. Suarez et al. (16) looked at the effects of climate change on Boston’s urban transportation8
using a simulation model, suggesting almost a doubling in delays and lost trips. Another example9
is Hong et al. (17), who simulated passenger flows in a metro station during an emergency.10

Automatic fare collection data-based11
AFC data-based methods are powerful in examining the impact of actual incidents. While rela-12
tively new, these methods have been gaining traction in the previous decade. Mojica (5) used AFC13
data to analyze the impact of station closures and service reductions. Using a case in Chicago, they14
concluded that 79% of all riders continued to use rails, 8.4% switched to buses, and 4% percent15
switched to non-transit methods. Tian and Zheng (6) looked at unexpected train delay effects on16
Singapore’s MTR customers. Using AFC data, researchers built a classification model to predict17
whether commuters switch from MRT to other transportation modes because of unexpected train18
delays. Sun et al. (7) used AFC data to quantify three choices passengers could make in the face19
of delay: leave the system, take a detour, or continue the journey but be delayed. This model was20
applied to the Beijing metro network.21

Though there are existing studies on AFC data, they usually only addressed one or two22
tasks in Table 1, and majorly in the demand side. This study aims to conduct a comprehensive23
analysis of both the demand and supply sides using AFC data.24

METHODOLOGY25
In this section, we illustrate the analysis framework for an unplanned incident. On the supply-side,26
a method to calculate the network redundancy index under a certain incident is proposed, which27
reflects the network’s ability to provide alternative routes when incidents occur. To analyze the28
agency’s operations, we specify how we calculate the headway distribution using AVL data. On29
the demand-side, we describe how to analyze passenger flows under incidents using AFC data, and30
how to use AFC data to analyze passengers’ mode choice using a binary logit model.31

To extract the effect of the incident, we need to compare the information on the incident day32
and normal days. A “normal day” is defined as the recent same weekdays without incidents hap-33
pening in the incident period. The headway and passenger flows in the incident day are compared34
to those of normal days to reveal the counterfactual.35

Supply analysis36
Network redundancy under incidents37
As mentioned in Section 2, since redundancy is used to evaluate network’s functional responses in38
the event of disruptions, it is important to develop an incident-specific redundancy index (opposite39
to network, link or OD pair-specific in the literature), that is, for a given incident, evaluating the40
network’s ability to provide alternative services under this incident. Besides, given the substitu-41
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tional relationship between bus and urban rail systems, the redundancy index in this study also1
explicitly considers the complementary role of bus and rail systems during the incident.2

Redundancy is usually evaluated by the number of available paths for each OD pair be-3
cause more available paths correspond to more opportunities of realizing the impacted trips when4
encountering service disruptions (3). Hence, the network redundancy under incidents (NRUI)5
should capture the transport capacity of alternative paths after the incident. The typical path ca-6
pacity is defined as the max number of passengers transported per hour (i.e. service frequency7
times the vehicle capacity). It is a time-insensitive value, which means the travel times of paths8
are not considered. However, for the redundancy calculation, the path travel times matter because9
passengers may not be successfully transported to the destination during the incident period if they10
choose paths with long travel time. This means the time-insensitive path capacity cannot reflect the11
actual ability of paths to move passengers. Hence, a time-sensitive path capacity should be used12
for the calculation. Moreover, since the NRUI is incident-specific, the impact of the incident on13
the network capacity should be captured (i.e. for different incidents, the NRUI should be different14
depending on the conditions of the incident). In this study, we propose a normalized NRUI to meet15
the above requirements.16

LetW be the set of all OD pairs of the rail network. For an OD pair w ∈W , let Pw be the17
set of available paths for w before the incident. As we consider both bus and urban rail systems, a18
path p ∈ Pw may include segments of bus trips. Pw can be obtained in several ways, such as route19
choice surveys, Google Map API, and k-shortest paths. Let Ap be the time-sensitive path capacity20
of p under incident I, which is defined as21

Ap =
bDI/Hpc

∑
k=1

min{DI− (k−1)Hp,Lp}
Lp

·Cp (1)

where DI is the duration of incident I. Hp is the headway of path p (defined as the maximum22
headway of each segment of path p). Cp is the vehicle (i.e. train or bus) capacity of path p (defined23
as the minimum vehicle capacity of each segment of path p). Lp is the travel time of path p.24
bDI/Hpc is the number of vehicles dispatched for path p during the incident period. The first term25
in Eq. 1 is the proportion of k-th trip which finished during the incident period. Hence, Eq. 126
captures the number of people successfully transported to the destination along path p (passengers27
who did no finished the trip are counted proportionally) during the incident.28

Ap is an indicator reflecting p’s ability to serve impacted trips during the incident period29
and assigns different weights to different paths. Therefore, ∑p∈Pw Ap reflects the ability of the30
network to provide services for OD pair w. Actually, one of the network-level redundancy in the31
literature is defined as ∑w∈W ∑p∈Pw Ap (where Ap is defined differently), which means the total32
capacity of paths in the network (29).33

In this study, we need to capture the incident-specific property of the redundancy metric.34
LetWI be the set of all OD pairs with at least one path blocked due to incident I. Mathematically,35
WI = { w ∈W : ∃p ∈ Pw s.t. p is blocked due to incident I }. Then, only passengers with OD in36
WI are affected by the incident. As the incident may augment passengers’ path choice alternatives,37
some paths that are not chosen before the incident can be available during the incident. Hence,38
we define P̃w as the set of available paths for w ∈WI during the incident. P̃w can be seen as Pw39
without the blocked paths and adding the augmented paths. To make these two sets comparable,40
we assume |Pw| ≥ |P̃w|, which means the number available paths after incident is less than or equal41
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to those before. The NRUI for incident I is formulated as:1

RI =
∑w∈WI ∑p∈P̃w

Ap

∑w∈WI ∑p∈Pw Ap
(2)

where the numerator (denominator) is the total capacity of available paths after (before) the inci-2
dent. Since the path sets after the incident (P̃w) are longer and less preferred than the those before3
the incident (Pw). We usually have ∑p∈Pw Ap ≥ ∑p∈P̃w

Ap for w ∈ WI
1. Therefore, 0 ≤ RI ≤ 14

by definition. RI = 1 means the path capacity before and after the incident are exactly the same,5
suggesting that the incident does not harm the function of the network (i.e. the network is fully6
redundant under incident I). RI = 0 means no alternative are paths available after the incident (i.e.7
the network is has no redundant under incident I)8

Headway analysis9
Headway is an important indicator of the level of service for transit systems. Analyzing headway10
patterns during an incident can provide straightforward information about how services are reduced11
by the incident. As mentioned in Section 1, AVL data provide the headway of each platform in the12
urban rail system. In this study, we calculate the headway temporal distribution for lines of interest13
to show the impact of incidents.14

Let us divide the analysis time into several intervals with equal length. Denote the total15
number of time intervals as T , the headway on platform i of trip j as Hi, j. Suppose line l has two16
directions, inbound and outbound. The headway of line l outbound at time interval τ is calculated17
as18

Hout
l,τ =

∑i∈Sout
l

∑ j∈Ri,τ Hi, j

∑i∈Sout
l
|Ri,τ |

(3)

where Sout
l is set of platforms in the outbound direction of line l. Ri,τ is the set of trips passing19

through platform i during time interval τ . Eq. 3 means the headway of a line is calculated as the20
mean of all platforms. The inbound headway, H in

l,τ , is calculated in the similar way by replacing21

Sout
l with S in

l . The headway distributions of both normal days and the incident day are calculated22
for comparison.23

Demand analysis24
Passenger flow analysis25
AFC data record passengers’ tap-in information in bus and rail systems (tap-out is not available in26
this study), which reflect passenger’s route choices after the incident if they use the transit system27
again. Therefore, analyzing AFC data can help to understand the passenger flow re-distribution28
after the incident.29

At the station level, we can count the number of tap-in passengers for the stations near the30
incident area, and compare the demand between normal days and incident days. Stations with high31
demand increase reflect passengers’ choices after the incident. At the line-level, we can calculate32
the number of tap-in passengers for lines near the incident area. Line-level demands are calculated33

1Sometimes there are some exceptions where ∑p∈Pw Ap < ∑p∈P̃w
Ap due to the augmented paths have high vehicle

capacity and low headway. We manually let ∑p∈Pw Ap = ∑p∈P̃w
Ap in this case
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as the sum of all station-level demands. Demand at stations belonging to multiple lines will be1
divided uniformly.2

Individual behavior analysis3
Passengers may have different mode choices after the incident. One important question is how4
the characteristics of the passengers related to their mode choices. This is typically studied by the5
survey. In this study, we propose a method of using AFC data for individual behavior analysis.6

The first step is to infer individual choices using AFC data. In this study, only two choices7
are considered: 1) using transit and 2) not using transit (including canceling trips and using other8
travel modes). This is because these two options can be confidently identified using AFC data9
and they are important for transit operators. Due to the high travel irregularity of passengers in10
transit systems (30), it is more convenient to identify the behavioral changes of regular passengers11
(5). In this study, we define regular passengers as those who appear in the public transit system12
on every pre-determined normal day and show the same travel trajectories (i.e. same number of13
trips and tap-in stations). Hence, if these passengers showed different travel trajectories during the14
incident period, most likely they would be affected by the incident and choose a new travel mode.15
The mode choice after the incident for a regular passenger i is denoted as Yi. We infer Yi as the16
following:17

• Yi = “Using transit” if 1) there are additional transit trips or 2) changes of tap-in stations in the18
incident period. The first condition implies the regular passenger may transfer to nearby rail19
or bus, with more transit trips than usual. The second condition implies the regular passenger20
may change to different rail lines or bus routes to respond to the incident.21

• Yi = “Not using transit” if the transit trips that are supposed to happen disappear in the incident22
period. This means the regular passengers may change to other modes or cancel their trips.23

Other regular passengers without the above behaviors may not be affected by the incident or have24
other choices that hard to be identified (e.g., transfer to another line without leaving the system),25
which are not considered in the behavior analysis.26

The second step is to extract samples’ characteristics (i.e. demographics). As regular27
passengers have consistent tap-in stations at the morning peak, we can infer their home locations28
as the morning tap-in stations, thus obtain the median household income in the corresponding29
neighborhoods or census tracks. The historical add-value transactions of passengers also provide30
demographic information. For example, low-income people may not be able to deposit a large31
amount of money in the smart card at once. Hence, the added values reflect passenger’s income32
information to some extent. AFC data also provide information on passengers’ fare status (e.g.,33
whether using a pass). Denote all this “proxy” demographic information for passenger i as Xi.34

In this study, we applied a binary logit model (31) to analyze the relationship between Xi35
and Yi. Let the utility of mode j for passenger i be Ui j. We specified Ui j as36

Ui j = β jXi + ε j (4)

where ε j is the error term that is assumed to be Gumbel distributed. β j is the vector of parameters37
to be estimated. It is worth noting that since we only collect the demographic information, no38
alternative specific variables (such as travel times of a specific mode) are used. The probability of39
passenger i choosing mode j is40
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Pi j =
exp(β jXi)

∑ j′∈C exp(β jXi)
(5)

where C = {“Using transit”,“Not using transit”} is the choice set.1

CASE STUDIES2
Chicago Transit System3
We use the CTA transit system as the case study. CTA is the second-largest transit system in4
the United States, providing services in Chicago, Illinois, and some of its surrounding suburbs,5
including the trains of the Chicago "L" (rail) and CTA bus service. It operates 24 hours each day6
and on an average weekday provides 0.84 and 0.81 million rides on buses and trains, respectively7
(32). The map of the CTA rail system is shown in Figure 1. The rail system consists of eight lines8
(named by color) and the "Loop". The Loop, located in the Chicago downtown, is the 2.88 km9
long circuit of elevated rail that forms the hub of the Chicago rail system. Its eight stations account10
for around 10% weekday boardings of the CTA trains.11

FIGURE 1: CTA rail system map

CTA’s AFC system is entry-only, meaning passengers only use their farecards when en-12
tering a rail station or boarding a bus, and so no information about a trip’s destination is directly13
provided. The train tracker system can provide trains arrival and departure time for each station.14

According to the control center data, the CTA reported a total of 27,198 incidents in 2019.15
However, around 80% percent of the incidents have a duration of fewer than 10 minutes. Since16
small incidents may not affect the system significantly, this study focuses on substantial incidents17
that lasted longer than 1 hour.18

Passengers who leave the rail system because of service disruptions need to re-tap-in if they19
decide to use other CTA normal buses or rails. And they are only charged with a small value of20
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transfer fee. However, no tap-in is needed for shuttle bus users. So, we have no information for1
passengers using shuttle buses.2

Rail disruption cases3
Since the location of the incidents may influence the impact on the entire system, we selected two4
case studies of low and high redundancy, respectively, for comparison.5

For this study, we also chose to look at substantial incidents. The CTA reported a total of6
27,198 incidents in 2019, with an average of 75 incidents a day (33). However, the average incident7
duration was only 4.97 minutes. To widen the amount of available passenger data, we narrowed8
the scope to incidents that lasted longer than 1 hour.9

Blue line Jefferson Park case10
The incident on the blue line is a low redundancy case because the blue line is far away from11
other rail lines, adding difficulties in finding alternative services (see Figure 2). On February 112
(Friday), 2019, at 8:14 AM, the inbound track in the link between Harlem and Jefferson park was13
closed down due to physical problems. All trains in the blue line are suspended. CTA decided14
to use the remained single direction track to serve trains from both directions in the incident link.15
At 9:03 AM, 49 minutes after the incident, single track operations commence between Harlem16
and Jefferson Park, with shuttle service starting 7 minutes later. At 9:40 AM, all inbound trains17
succeeded to move under the single-track operation. At 12:09 PM, the full line is reopened. The18
entire incident lasted 4 hours and 9 minutes. And we set a major incident period as 8:14-9:40 AM.19

FIGURE 2: Incident diagram of blue line Jefferson Park case

Brown Line Sedgwick case20
The incident on the brown line is a high redundancy case because the red line is a good substitution21
for the incident line (See Figure 3). On September 24 (Tuesday), 2019, at 9:09 AM, a Purple Line22
train collided with a Brown line train at Sedgwick station. The incident caused a sequence of23
stations to be blocked and closed in both brown and purple lines since these two lines share the24
same track in this area. This includes Fullerton and Armitage stations to the North and Chicago25
and Merchandise Mart (MM) Stations to the south. Southbound trains short turned at Fullerton26
station, while northbound trains short turned at MM station. At 9:28 AM, 19 minutes after the27
incident started, bus substitution service began between Fullerton to MM. Service resumes at all28
blocked stations at 10:19 AM, 70 minutes after the start of the incident.29
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FIGURE 3: Incident diagram of brown line Sedgwick case

RESULTS1
Supply analysis2
Redundancy index3
The NURI (Eq. 2) for the blue line case is 0.093, for the brown line case is 0.747. The values4
mean that the transit system maintains 9.3% (74.7%) transporting capacity for the blue (brown)5
line incident during the incident period.6

The low redundancy in the blue line incident is due to the lack of alternative rail lines.7
Though there are some nearby bus services (see Figure 7), the capacity of buses is much lower than8
that of rails. Also, most of the bus routes are not directly connected to downtown, which increases9
the travel time for passengers using buses. The high redundancy of the brown line incident is as10
expected. In the incident area, the red line is almost parallel with the brown and purple lines. Also,11
there exist many south-bound bus routes going to the downtown (see Figure 9).12

Headway analysis (Blue Line Jefferson Park incident)13
The headway analysis results of the two incidents are shown in Figure 4 and 5. The shade around14
normal day lines is standard deviations (same for all following figures). For each case, we select15
three line+direction of interests to analyze.16

Looking at the blue Line inbound (Figure 4a), the headway was a little bit longer than usual17
at the start of the day due to unknown reasons. As the incident starts, the headway increases imme-18
diately for inbound trips. The rise in headway is steeper before 9:30 AM, which is understandable19
since before that time the CTA is working on changing the system to single-track operation. Once20
the single-track operation successfully worked for all inbound trains, the headway plateaued, and21
then gradually decreased after 9:30 AM. Figure 4b shows the headway change of blue line out-22
bound. Similarly, the headway was a little bit longer than usual at the start of the day. As the23
incident starts, headways gradually increased. However, though the single-track operation starts24
at 9:03 AM, the outbound headway still remains higher than the normal condition. This may be25
because CTA allowed more inbound trains to cross the single track area as they serve the major26
demands in the morning peak, which caused delays of outbound trains. The headway of the brown27
line is also shown in Figure 4c because the brown line can be a possible alternative for passengers28
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in the south part of the blue line. The headway remains relatively unchanged throughout the Blue1
Line incident, which means the incident of the blue line did not affect the operation in the brown2
line.3

(a) Blue Line (Inbound) (b) Blue Line (Outbound) (c) Brown Line (Inbound)

FIGURE 4: Headway temporal distribution (Blue Line Jefferson Park incident)

Headway analysis (Brown Line Sedgwick incident)4
For the brown line Sedgwick case (see Figure 5), we can see a variety of different trends. Recall5
that the Brown and Purple Line share tracks in the incident area, while the Red Line runs on6
separate tracks in the incident area but shares tracks further up the line.7

Looking at the brown line inbound (Figure 5a), we see a rise in inbound headways of both8
the Brown and Purple line trains. This is as expected because these two lines are blocked due to9
the incident and it took some time before trains began terminating early and turning around. We10
see a slight decrease in headways towards the end of the incident, as the system normalizes to11
the premature terminations of both parts of the line. Once the incident clears and the line is fully12
reopened, we see a further decrease in headways, with slight rising for both the Brown and Purple,13
most likely due to unevenly spaced trains throughout the line.14

For the purple line (Figure 5b), As most of the local shops are much farther from the15
incident area, the service is less disrupted on a line level, despite sharing tracks with the brown16
line. This explains why headways deviated less from the average.17

The red line experiences little deviation from its normal deal service for the first half of18
the incident (Figure 5c), largely because it does not share tracks at the incident location and could19
run largely uninterrupted. However, halfway through the incident, there is a spike in headway20
time. This could be due to two possible factors. Because of the bad service on brown and red21
lines, people chose to take the red line northbound instead, leading to more passengers and thus22
the longer time at the stations loading and unloading passengers. A second explanation could be23
that because trains on brown and purple lines were terminating and reversing farther up in areas24
that the red line shares tracks and stations, these actions could be causing increased congestion,25
increasing headway between trains.26
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(a) Brown Line (Inbound) (b) Purple Line (Inbound) (c) Red Line (Inbound)

FIGURE 5: Headway temporal distribution (Brown Line Sedgwick incident)

Demand analysis1
Passenger flow analysis allows us to look at how passengers reacted to unplanned disruptions.2
Specifically, we look at the line-level and station-level demand changes during an incident. This3
allows us to understand how individual lines and stations react demand-wise to both incidents.4

Passenger flow analysis (Blue line Jefferson park incident)5
We first analyze the demand patterns of the blue, brown, and red lines for the blue Line Jefferson6
Park incident (see Figure 6. The blue line (Figure 6a) initially experiences a drop in passengers7
entering the blue line immediately after the incident, which is as expected because passengers were8
informed of the incident and chose to not tap in. As single tracking opens up, tap ins started to9
return to regular levels as the system’s backlog slowly begins to clear. By 9:40 AM, single tracking10
is in full operation. Hence, the number of tap in passengers is closer to the average. For the brown11
line (Figure 6b), we see a slight spike of demand about 30 minutes after the blue Line incident.12
This is due to the brown line being relatively close to the incident area. Passengers most likely13
either walked or took alternative bus routes and then transferred onto the brown Line to continue14
their commute into downtown Chicago. We also observe a consistent demand increase in the red15
line for the entire major incident period (Figure 6c). This reason is the same as that of the brown16
line because red and brown lines are largely overlapped near the incident area.17
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(a) Blue Line (blocked) (b) Brown Line (not blocked) (c) Red Line (not blocked)

FIGURE 6: Line level passenger flow analysis (Blue Line Jefferson Park Incident)

Demand changes in rail stations and bus system are shown in Figure 7. In Figure 7a, we1
see a rise in bus stations that are close to the blue line, which means many passengers chose to2
use bus services instead after the incident. We also observe a substantial increase in ridership on3
the nearby brown and red lines. This is presumably from passengers taking buses near the blue4
line and transferring to the brown and red lines. However, we see little increase in ridership on5
the green line in comparison. This shows that some passengers did not make good choices, as the6
green line is close to the blue line are provides service to downtown as well.7

In Figure 7b, we calculate demand changes at bus route level. The demand for multiple8
bus lines increased, top 3 of which are routes 56, 72, and X49. Route 56 increased most likely9
because it runs parallel to much of the blue Line and connects directly to downtown. The increase10
in route 72 was most likely due to passengers transferring to that route and using it to connect to11
the brown and red lines further east in order to make their journey to downtown. Since there is12
little increase in the green line where the X49 connects, most of the increased ridership in route13
X49 was probably passengers with destinations in the south that route X49 directly heads to.14

The total decrease of the number of tap-in passengers in the blue line is 2,219, while the15
increases in nearby bus stations, brown line, and red line are 2,426, 845, and 1,125, respectively.16
It is worth noting that passengers may tap-in the blue line then get out to use buses due to long17
waiting times. This causes the demand decrease in the blue line is actually larger than 2,219. By18
the number comparison, we observe that most of the decreased demand in the blue line change to19
use buses instead. For these passengers using buses, around 80% of them transferred to nearby red20
and brown lines.21
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(a) Demand changes of nearby bus stops and rail stations levels

(b) Demand changes of bus routes

FIGURE 7: Station demand increase patterns (Blue Line Jefferson Park Incident)

Passenger flow analysis (Brown line Sedgwick park incident)1
For the Brown Line Sedgwick case, the line-level demand changes are shown in Figure 8. As ex-2
pected, demands on the brown and purple lines both decreased during the incident and normalized3
after the incident. As the red line runs adjacent to the brown and purple lines for a significant por-4
tion, we see an increase in demand during the incident period and normalizing after the incident5
back to average demand.6
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(a) Brown Line (blocked) (b) Purple Line (blocked) (c) Red Line (not blocked)

FIGURE 8: Demand Analysis - Line Level - Brown Line Sedgwick Incident

The demand change patterns at the station level are shown in Figure 9. During the incident,1
we see an increase in rail demand at Fullerton and Belmont, stations that have direct connections2
to the undisputed Red Line. We also see clusters of increased bus demand. Of note are the clusters3
outlined in red and blue. The red clusters represent increased bus demand proximal to blocked sta-4
tions. These passengers may direct transfer to nearby bus stops from the blocked line. Additionally,5
the blue clusters represent increases in bus demand for routes that connect directly to downtown.6
These passengers may be those who live in the corresponding neighborhoods and change to use7
buses during the incident.8

The total decrease in the number of tap-in passengers in the brown and purple lines are9
1,141, while the increase in nearby bus stations and the red line are 696 and 1,414, respectively.10
This means around 800 passengers may first tap in the brown and purple lines, then transfer to11
the red line. For all passengers leaving the system, around one-third of them transfer to buses,12
and two-thirds of them transfer to the red line. However, there may be also many passengers with13
direct transfers in the system, which we cannot observe from AFC data.14
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FIGURE 9: Station demand increase patterns (Brown Line Sedgwick incident)

Individual choices analysis1
We sampled 539 regular passengers who are affected by the incident (see Section 3.2.2) using the2
AFC data during the brown line incident. The descriptive statistics of all observations are shown3
in Table 2.4

TABLE 2: Descriptive statistics of samples

Variables Mean Standard deviation

House location median income ($) 79,332 29,284
Average added value in 2019 ($) 52.55 34.78
Added value times in 2019 31.83 38.54
Using pass (Yes = 1) 0.419 0.494
Reduced fare staus (Yes = 1) 0.082 0.274

Number of observations: 539
Choices: using CTA: 144; not using CTA: 395

The estimation results of the binary logit model are shown in Table 3. “Not using CTA” is5
set as the base mode. We observe that high household income has a negative effect on using CTA.6
This may be because high-income people can usually afford alternative modes of transportation7
(such as Uber/Lyft). Passengers using a pass are more likely to using CTA after the incident.8
This is understandable because pass users are generally commuters or those that use the system9
frequently. They are familiar with the system services and able to find alternative CTA services10
are the incident. Passengers with reduced fare status are also more likely to use CTA services.11
The reason may be that reduced fare status users are usually students, seniors and disabled people.12
They usually rely primarily on CTA to travel.13
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TABLE 3: Individual choice model estimation results

Parameters Value (standard error)

CTA: Alternative specific constant -0.747 (0.427) *
CTA: Average added value ($100) -0.417 (0.441)
CTA: Average add-value times (100) -0.289 (0.428)
CTA: House location median income -0.0743 (0.0361) **
CTA: Using pass (Yes = 1) 1.19 (0.263) ***
CTA: Reduced fare status (Yes = 1) 0.711 (0.355) **
Not CTA: Alternative specific constant 0 (fixed)

Number of individuals: 539. Adjusted ρ2 = 0.196
*: p < 0.1; **: p < 0.5; ***: p < 0.01;

CONCLUSION AND DISCUSSION1
This study proposes a general incident analysis framework from supply and demand sides using2
automatically-collected data (AFC and AVL) in public transit systems. Specifically, from the sup-3
ply side, we propose an incident-based network redundancy index to analyze the network’s ability4
to provide alternative services under a specific rail disruption. The impacts on the operation are5
analyzed through the headway changes in multiple rail lines. From the demand side, we calcu-6
late the demand changes of different rail lines, rail stations, bus routes, and bus stops to show the7
passenger flow redistribution under incidents. Individual behavior is analyzed using a binary logit8
model based on inferred passengers’ mode choices and socio-demographics using AFC data. The9
CTA public transit system is used as a case study. Two rail disruption cases are analyzed, one of10
which has high network redundancy and low for another.11

Results show that the service frequency of the incident line was largely reduced during the12
incident time. Depending on the incident location, the network’s redundancies are different, as13
well as the passengers’ behavior. In the low redundancy scenario, most passengers choose to use14
nearby buses, either directly move to their destinations or move the nearby rail lines. In the high15
redundancy scenario, most of the passengers directly transferred to nearby lines.16

This study helps the agency understand better how passengers move and what alternatives17
they may pick, based on which operators can better design shuttle buses and bus routes connect-18
ing with other buses and trains. They can also increase the frequency of buses that are heavily19
used by passengers during the incident. Since we observe some passengers’ choices may not be20
optimal during the incident. The operator can offer on twitter or other public announcement plat-21
forms different routes passengers can take to avoid the disruption. Integrating a better-personalized22
passenger profile on the route design may also help.23
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