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Individual Mobility Prediction in Mass Transit
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Abstract— Individual mobility is driven by demand for activ-
ities with diverse spatiotemporal patterns, but existing methods
for mobility prediction often overlook the underlying activity
patterns. Knowledge of activity patterns can improve the per-
formance and interpretability of existing individual mobility
models, leading to more informed policy design and better
user experience in intelligent transportation systems. This study
develops an activity-based modeling framework for individual
mobility prediction in mass transit systems. Specifically, an input-
output hidden Markov model (IOHMM) approach is proposed
to simultaneously predict the (continuous) time and (discrete)
location of an individual’s next trip using transit smart card
data. The prediction task can be transformed into predicting
the hidden activity duration and end location. Based on a case
study of Hong Kong’s metro system, we show that the proposed
model can achieve similar prediction performance as the state-of-
the-art long short-term memory (LSTM) model. Unlike LSTM,
the proposed IOHMM approach can also be used to analyze
hidden activity patterns, which provides meaningful behavioral
interpretation for why an individual makes a certain trip.
Therefore, the activity-based prediction framework offers a way
to preserve the predictive power of advanced machine learning
methods while enhancing our ability to generate insightful behav-
ioral explanations, which is useful for user-centric policy design
and intelligent transportation applications such as personalized
traveler information.

Index Terms— Individual mobility, next trip prediction, hidden
Markov model, smart card data, public transit.

I. INTRODUCTION

INDIVIDUAL mobility prediction describes the prediction
of human movements over space and time at the individual

level. It has important smart city and smart transportation
applications, including personalized traveler information, tar-
geted demand management, etc. Despite the emergence of
extensive urban data, it is a challenging problem to accurately
predict individual mobility. Travel behavior concerns multiple
dimensions (most notably the temporal and spatial dimen-
sions), exhibits longitudinal variability for an individual, and
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varies across individuals [1], making the mobility prediction
problem difficult to tackle. This is especially challenging for
public transit systems because they can only observe part of
individual mobility as transit trips, typically through smart card
records. The same issue is also relevant to the new app-based
mobility systems, as their apps only collect partial mobility
information when a user consumes their services. Such data
directly generated by usage of various mobility systems are
referred to as intrinsic mobility data [2].

Individual mobility prediction is complex and multi-
dimensional. While the literature mostly focuses on the
problem of next location prediction [3]–[6], relatively less
attention was given to the problem of next trip prediction,
especially using intrinsic mobility data. In a prior related
study, Zhao et al. [2] defined several sub-problems related
to the next trip prediction problem in the context of mass
rail transit systems based on smart card data. It is found that,
while it is easier to predict whether an individual travels or
not, it is much harder to predict when and where they go
next. This is not surprising because of the large number of
possible combinations of people’s spatiotemporal choices. It is
generally challenging to deal with high-dimensional problems,
especially when the data is relatively sparse at the individual
level. Besides, the existing methods are limited in that the
time of travel is often treated as a categorical variable. The
arbitrary discretization of time does not represent people’s
temporal choices adequately and may exacerbate the data
sparsity issue. Furthermore, while spatial and temporal choices
of travel are typically made simultaneously, existing methods
often simplify the problem to a sequential prediction task [2].
This study aims to address these limitations with an activity-
based approach.

Inspired by activity-based models commonly used in travel
behavior research, the main objective of the paper is to develop
a methodology to simultaneously predict the time and location
of an individual’s next trip through their latent activity patterns.
Instead of directly predicting travel behavior, we propose an
input-output hidden Markov model (IOHMM) approach to
analyze the underlying activity behavior. Individual mobility
is driven by demand for activities with diverse spatiotemporal
patterns, and thus uncovering the latter can help us predict the
former. For example, the prediction of the activity duration is
equivalent to that of the start time of the next trip. The specific
problem formulation and model design are based on smart
card data in mass transit systems, but they can be adapted
to other mobility systems, e.g., ride-hailing. Transit smart

1558-0016 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: MIT Libraries. Downloaded on September 19,2021 at 16:22:10 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-0323-0066
https://orcid.org/0000-0001-5170-9608
https://orcid.org/0000-0002-1929-7583
https://orcid.org/0000-0003-3830-9794


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

card data from Hong Kong’s Mass Transit Railway (MTR)
system are used to illustrate the applicability of the proposed
methodology.

The contributions of this study are summarized as follows:
• Existing individual mobility prediction models often lack

natural behavioral interpretation, limiting their applica-
bility for intelligent policy design. This paper introduces
an activity-based modeling framework that captures the
underlying generative mechanism of travel behavior and
uncovers people’s travel purposes not directly observable
in the data. To the best of our knowledge, this is the first
study that adopts an activity-based model for individual
mobility prediction using transit smart card data.

• We adopt an IOHMM approach for activity-based mod-
eling, and extend it for simultaneous prediction of the
discrete location and continuous time of travel. It has been
shown that the temporal aspect of individual mobility is
least predictable [2], partly because of the arbitrary dis-
cretization of time. In our extended IOHMM, the trip start
time is represented as a continuous emission variable, and
can be predicted jointly with a discrete location variable
through inference of latent activity types.

• We associate the hidden states in the IOHMM with
individual’s hidden activities, and propose a Gibbs sam-
pling method to extract and visualize hidden activity
patterns with semantic explanations. We also show how
the estimated model parameters and transition matrix can
be used for the model’s interpretability.

• The proposed methodology is demonstrated using transit
smart card data from Hong Kong MTR. Compared to
state-of-the-art deep learning models, the results show
that our activity-based model can achieve competitive
predictive performance, while offering significantly more
interpretability into the underlying activity patterns and
travel purposes. The combination of performance and
interpretability makes our approach more versatile and
actionable.

II. LITERATURE REVIEW

Demand prediction in public transit systems can be cate-
gorized into aggregate and individual levels. The aggregate
demand prediction [7]–[11] has been extensively studied with
the recent development of deep learning methods. A summary
of previous works can be found in Fang et al. [12]. However,
the individual-level prediction gains less attention compared
to the aggregated ones.

The literature on individual mobility prediction mostly
focuses on the problem of next location prediction, rather than
next trip prediction. Most existing methods for next location
prediction are based on mining sequential patterns of indi-
vidual location histories. Simple Markov chain (MC) models
have shown to be able to achieve good prediction perfor-
mance [4], [13]. Asahara et al [14] proposed a mixed Markov
chain model (MMM) for next location prediction by identify-
ing the group a particular individual belongs to and applying
a specific MC model for that group. Asahara et al. [15]
presented a hybrid method of clustering location histories

according to their characteristics before training a hidden
Markov model (HMM) for each cluster. Recently, due to the
rapid advance of deep learning, variants on Recurrent Neural
Network (RNN) models have been adopted for next location
prediction, and showed improved prediction performance over
MC models [16]–[18]. Some of the most competitive models
today are based on the Long Short-Term Memory (LSTM)
architecture [19]–[21]. Similar methods have also been proven
successful for vehicle trajectory prediction problems [22], [23].
However, none of these methods explicitly consider the tempo-
ral behavior of individual mobility, e.g., when to start the next
trip. This is important for any mobility service because travel
demand is dynamic and time-sensitive. In addition, despite
the superior predictive performance, the deep learning models
are generally black-box and difficult to interpret, making them
unfit as supportive tools for policy design.

For the next trip prediction, we have to model both the
spatial and temporal choices of individual trip-making. Only
a few prior studies have dealt with this issue. Gidófalvi and
Dong [24] developed a continuous-time Markov model to
predict when an individual will leave their current location
and where will they go next. Hsieh et al. [25] introduced
a time-aware language model, T-gram, to predict when an
individual leaves a location by extracting location-specific time
distributions from social media check-in data. Focusing on
mass transit systems, Zhao et al. [2] explicitly formulated the
spatiotemporal choices of individual passengers as a sequence
of decisions, and proposed a mobility N-gram model to predict
the choices associated with the next trip—the trip start time,
origin, and destination. It is found that the start time is the least
predictable aspect of the next trip. While the low predictabil-
ity for trip start time is to some extent rooted in people’s
inherent behavioral variability, the discrete representation of
time in most existing models is likely to limit our ability to
predict temporal behavior. The key challenge is to capture the
complex interaction of continuous time choices and discrete
location choices. One way to do this is through latent variables
representing hidden activities between trips [26].

In the activity-based analysis of travel behavior, travel is
treated as being derived from the need to pursue activities
distributed in space and time [27]–[29]. With a more realistic
representation of travel behavior, activity-based models are
intuitive and interpretable, and have been widely used in trans-
portation planning, though they usually depend on detailed
manual survey data. Recent years have seen growing interests
in automatically detecting activity patterns from large-scale
human mobility traces [30], [31], including transit smart card
data. Han and Sohn [32] developed a Continuous Hidden
Markov Model (CHMM) to impute the sequence of activities
for each trip chain. Zhao et al. [26] proposed a spatiotemporal
topic model to discover latent activity patterns from smart
card data. While these methods can enrich mobility data with
behavioral semantics, none of them are suitable for predicting
future trips. An activity-based approach to individual mobility
prediction is needed to capture spatiotemporal correlation and
enhance behavioral interpretability.

This study presents the first activity-based approach to
individual mobility prediction. It is based on the Input-Output

Authorized licensed use limited to: MIT Libraries. Downloaded on September 19,2021 at 16:22:10 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MO et al.: INDIVIDUAL MOBILITY PREDICTION IN MASS TRANSIT SYSTEMS USING SMART CARD DATA 3

TABLE I

SUMMARY OF INDIVIDUAL MOBILITY PREDICTION STUDIES

Hidden Markov Model (IOHMM), which is an extension of
standard HMMs [33]. The standard HMMs assume homo-
geneous transition and emission probabilities, in which the
contextual information cannot be captured. To overcome
this limitation, the IOHMM was proposed to incorporate
additional information. Specifically, transition probabilities in
IOHMMs are conditional on the input and thus depend on
time. IOHMM was designed for sequence data processing,
and has been applied for diverse problems including gram-
mar inference [34], gesture recognition [35], audio process-
ing [36], electricity price forecasting [37], and urban activity
generation [38]. As we will demonstrate in Section III-C,
the IOHMM architecture can be adapted to (1) capture the
dynamics of individual travel-activity histories, (2) incor-
porate rich contextual information for improved prediction
performance, and (3) jointly predict both discrete (location)
and continuous (time) attributes of trips/activities. Table I
summarizes the key difference of our model compared to some
of the existing ones for individual mobility prediction.

III. METHODOLOGY

A. Problem Description

In this section, we illustrate the methodology based on
transit smart card data for consistency with the case study.
However, as mentioned in Section I, this framework applies
to all intrinsic mobility data. More discussions on how to
extend the model to other intrinsic mobility data are shown
in Section V.

Transit smart card data is one of the most important intrinsic
mobility data. It includes passengers’ tap-in and tap-out1 trans-
action records, which can provide the chronological public
transit (PT) trip histories of each individual. The trip structure

1This study focuses on closed public transit systems with both tap-in and
tap-out records.

Fig. 1. Public transit trip structure.

is shown in Figure 1. Each trip starts with boarding at an
origin station and ends with alighting at a destination station.
The boarding (and alighting) times and locations are known
from the transit smart card data. The unique ID of each smart
card allows us to track the trip histories of each anonymous
individual. Between two consecutive trips, a passenger may
have some activities such as working, staying at home, etc.
In this study, the latent behavior of an individual between two
adjacent trips is referred to as a hidden activity. Different from
a typical definition of an activity where passengers stay in a
place, the hidden activity in this study may include unobserved
trips such as taking a taxi to another place. Due to data
limitations, we cannot identify people’s trips outside the PT
system. Thus, we assume that no matter what people have done
between two adjacent transit trips, this process is treated as a
single hidden activity. The alighting station of the last trip and
the boarding station of the next trip are referred to as activity
start and end locations, respectively. Our goal is to predict
when and where the next trip will start given a sequence of
recorded trip histories.

Since the alighting time of the last trip is known, predicting
the next trip start time is equivalent to estimating the duration
of the current hidden activity. Similarly, predicting the next
trip start location is equivalent to predicting the end location
of the current hidden activity. In this way, we can transform
the next trip prediction problem into an activity duration and
location prediction problem. The new perspective has more
relevant behavioral implications, as activities are usually what
drive people to travel.

B. Activity-Based Modeling Framework

The duration of people’s hidden activities can vary greatly,
anywhere from one hour (e.g. shopping) to several days
(e.g. vacation). The wide range of activity duration makes it
challenging to predict. In this study, we set the basic prediction
interval as one day. A sequence of consecutive activities is
extracted from the smart card data on a specific day and
each individual may have multiple sequences of activities. The
choice of prediction interval of one day not only reduces the
scope of the prediction problem (from infinity to 24 hours)
but also represents the basic period of regularity for human
mobility and activity patterns [2], [39], [40]. Specifically, each
day spans from 4:00 AM to 4:00 AM of the next calendar day,
which better matches people’s daily activity schedules and the
operating time of transit.
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Fig. 2. Relationship between Su,v and H u,v . There are two trips (thus two
activities) in the day for this example.

For a user u, the recorded public transit trips in day v are
represented as

Su,v ={(ou,v
1 , du,v

1 , xu,v
1 , yu,v

1 ), . . . , (ou,v
T u,v , du,v

T u,v , xu,v
T u,v , yu,v

T u,v )}
(1)

where ou,v
t , du,v

t , xu,v
t , yu,v

t are the origin, destination, start
time, and end time of t-th trip for user u in day v, respectively.
T u,v is the total number of trips. The corresponding hidden
activity sequence is defined as

H u,v = {(pu,v
1 , qu,v

1 , ru,v
1 ), . . . , (pu,v

T u,v , qu,v
T u,v , ru,v

T u,v )} (2)

where pu,v
t , qu,v

t , ru,v
t are the start location, end location, and

duration of t-th activity for user u in day v, respectively.
Particularly, for t = 1, . . . , T u,v , we have

pu,v
t = du,v

t−1 (3)

qu,v
t = ou,v

t (4)

ru,v
t = xu,v

t − yu,v
t−1 (5)

For the first activity, we explicitly define du,v
0 = “null” and

yu,v
0 = 4:00 AM. An example to illustrate the relationship

between Su,v and H u,v is shown in Figure 2. After a trip ends,
pu,v

t is directly observed from the transit smart card records.
Therefore, our goal is to predict qu,v

t and ru,v
t given historical

trajectories and other information (e.g., weather).
It is worth noting that we do not consider the time period

from yu,v
T u,v to 4:00 AM next day as the last activity interval

because its duration is deterministic (yu,v
T u,v is known). This

study focuses on predicting the next trip’s time and location,
but there is no corresponding next trip for this activity.
Therefore, there is no need to predict the last activity, and
it is excluded from further analysis.

C. IOHMM for Activity Prediction

IOHMM is proposed to capture exogenous contextual infor-
mation over time, which allows the modeling of heterogeneous
transition and emission probabilities. The structure of IOHMM
for individual activity modeling is shown in Figure 3. At is the
t-th hidden activity (a latent random variable) and zt is a vector
of observed input variables containing contextual information
(e.g., weather, day of week, pt , etc.). The superscript (u, v)
is ignored for simplicity. Since each hidden activity can be
encoded as a latent state in IOHMM, the IOHMM architecture
matches well with the activity-based modeling framework.

The model consists of three key components: 1) initial
state probability πi = P(A1 = i | z1; θin), where i ∈ A

Fig. 3. Structure of IOHMM. The solid nodes represent observed information,
while the transparent (white) nodes represent latent random variables.

and A is the state space; It quantifies the distribution of the
first activity’s type. 2) transition probability: ϕi j,t = P(At =
j | At−1 = i, zt; θt r), which quantifies the probability that
next activity is j given this activity is i , and 3) emission
probability: δi,t = P(qt , rt | At = i, zt ; θem), which quantifies
the distributions of activity duration and end location. θin,
θt r , and θem are parameters of initial, transition, and emission
probability functions, respectively. The likelihood of a data
sequence under this model is given by:

L(θ) =
∑

A1,...,AT

P(A1 | z1; θin) ·
T∏

t=2

P(At | At−1, zt; θt r)

·
T∏

t=1

P(qt , rt | At , zt; θem) (6)

where θ = [θin, θt r, θem].
The model is estimated by the Expectation-Maximization

(EM) algorithm.
1) E-Step: Denote the estimated parameters at iteration k−1

of M-step as θ (k−1) (if k = 1, use the initial values of the
parameters). From θ (k−1) we can obtain the three probabilities
as π

(k−1)
i , δ

(k−1)
i,t , ϕ

(k−1)
i j,t . Then, the forward and backward

variables (denoted as α
(k)
i,t and β

(k)
i,t , respectively) are calculated

as

α
(k)
i,t = P(q1:t , r1:t , At = i | z1:t) = δ

(k−1)
i,t

∑

l∈A
ϕ

(k−1)
li,t · α

(k)
l,t−1

(7)

β
(k)
i,t = P(qt+1:T , rt+1:T | At = i, zt :T )

=
∑

l∈A
ϕ

(k−1)
il,t · β

(k)
l,t+1 · δ(k−1)

l,t+1 (8)

where α
(k)
i,1 = π

(k−1)
i δ

(k−1)
i,1 and βi,T = 1. The subscripts 1 : t

indicates a list of the corresponding variable with subscript
from 1 to t . Then, we calculate the posterior state probability
and posterior transition probability as:

γ
(k)
i,t = P(At = i | q1:T , r1:T , z1:T ) = α

(k)
i,t · β(k)

i,t /L(k)
c (9)

ξ
(k)
i j,t = P(At = j, At−1 = i | q1:T , r1:T , zt :T )

= ϕ
(k−1)
i j,t · α(k)

i,t−1 · β
(k)
j,t · δ(k−1)

j,t /L(k)
c (10)

where L(k)
c is the complete data likelihood at iteration k,

defined as Lc = ∑
i∈A α

(k)
i,T . Obtaining α

(k)
i,t , β

(k)
i,t , γ

(k)
i,t , and

ξ
(k)
i j,t for all i, j ∈ A and t = 1, . . . , T finishes the E-step.
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2) M-Step: The probability parameters in iteration k is
updated by maximizing the expected data log likelihood:

Q(θ; θ (k−1))

=
∑

i∈A
γ

(k)
i,1 · log P(A1 = i | z1; θin)

+
T∑

t=2

∑

i, j∈A
ξ

(k)
i j,t · log P(At = j | At−1 = i, zt; θt r)

+
T∑

t=1

∑

i∈A
γ

(k)
i,t · log P(qt , rt | At−1 = i, zt; θem) (11)

We have θ (k) = arg maxθ Q(θ; θ (k−1)). The M-step
can be implemented by any supervised learning model that
supports gradient ascent on the log probability. With proper
specification of three probability functions, the optimization
problem can be convex and easily solved. It is also worth
noting that since Q(θ; θ (k−1)) consists of three components
with independent parameters, maximizing Q(θ; θ (k−1)) is
equivalent to maximizing the three components separately,
which allows for more flexibility in optimization [38].

D. Model Specification

1) Contextual Information: In terms of the contextual infor-
mation zt , five different dimensions are considered: weather,
day of the week, holidays, last trip information, and historical
travel statistics. Denote the total number of contextual features
as Z . The specific variables used can be found in Appendix A.

2) State Space: The state space A is specified for each
individual (i.e., Au for user u). Since an activity label is
a latent categorical variable during the modeling process,
we only need to define the cardinality Nu , which follows
that Au = {1, . . . , Nu }. Nu indicates how many hidden
activities we considered for user u. A semantic label can be
associated to each element in Au with an in-depth analysis
in Section IV. Generally, the value of Nu can be deter-
mined using the validation data set [41] or optimization
approaches [42]. In this study, we select Nu by maximizing
the silhouette coefficient [43]. We assume hidden activities
can be characterized by zt

u,v . For user u, we can cluster zt
u,v

into m clusters, representing m possible hidden activities. The
silhouette coefficient of the m-clustering (denoted as SCu(m)
for user u) is a measure of how similar each object is to its
own cluster compared to other clusters (i.e., the quality of
clustering). It is defined as

SCu(m) = mean{ b(i) − a(i)

max{a(i), b(i)}} (12)

where a(i) and b(i) are the intra-cluster distance and nearest-
cluster (that i does not belong to) distance of data point i ,
respectively. “mean{}” indicates taking the average over all
samples. SCu(m) ranges from −1 to +1, where a high value
indicates that the samples are well matched to their own cluster
and poorly matched to neighboring clusters. Hence, Nu is
obtained by

Nu = arg max
m∈M

SCu(m) (13)

where M is the set of possible numbers of hidden activities.
In this study, M = {3, 4, . . . , 7} is used. It worth noting that
we also tested other cluster quality metrics, such as Akaike
information criterion (AIC) and Bayesian information criterion
(BIC). Numerical results show that the silhouette coefficient
works best for determining the number of hidden activities.

3) Three Probability Functions: The multinomial logistic
regression is used to model the initial probability and transition
probability. Specifically, we have:

P(A1 = i | z1; θin) = exp(θin,i · z1)∑
j∈A exp(θin, j · z1)

(14)

where θin,i are the coefficients of the initial state probability
function at state i .

P(At = j | At−1 = i, zt ; θt r) = exp(θt r,i j · zt)∑
j∈A exp(θt r,i j · zt)

(15)

where θt r,i j are the coefficients of the state transition proba-
bility function when the next state is j given the current state
is i .

Note that we use the multinomial logit (MNL) model to
characterize the probabilities, instead of directly estimating
the individual values (like the typical HMM), because these
probabilities are also determined by zt . And the linear-in-
parameters structure of the MNL model facilitates the model’s
interpretability. The same probability modeling methods can
also be found in [38].

In terms of the emission probability, it is worth noting that
qt is a discrete random variable while rt continuous. Given a
hidden activity, we assume conditional independence between
qt and rt , that is, we assume that the correlation between qt and
rt within the same activity type is negligible, which simplifies
the model estimation.

P(qt , rt | At = i, zt; θem)

= P(qt | At = i, zt; θemq) · P(rt | At = i, zt; θemr) (16)

For the activity end location distribution, a similar multino-
mial logistic regression model is used, where

P(qt = l | At = i, zt; θemq) = exp(θemq,i,l · zt)∑
l∈L exp(θemq,i,l · zt)

(17)

where θemq,i,l are the coefficients for emission probability of
activity location where the location is l given the current state
is i . L is the set of location candidates. For user u, Lu is
defined as all stations that he/she has visited in the smart card
data records.

In terms of the duration distribution, we assume a Gaussian
distribution with the mean expressed as a linear function of
explanatory variables. This formulation enables the evaluation
of the impact of contextual variables on activity duration and
can be estimated efficiently (like a linear regression).

P(rt | At = i, zt; θemr) = 1√
2πσi

e
− (rt −θemr,i ·zt )

2

2σ2
i (18)

where θemr,i and σi denote the coefficients and the standard
deviation of the model when the hidden state is i . Ideally, σi

can also be a function of zt . However, this will significantly
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increase the model’s estimation difficulty. Hence, we assume
that under a specific activity type, the variance of duration is
a constant, and different variance patterns can be captured by
different activity types.

It is worth noting that the conditional independence assump-
tion allows us to model the joint probability of rt and qt

through the hidden activity. This makes it feasible to estimate
the two variables simultaneously. Moreover, the conditional
independence between qt and rt under the same activity type
can be further justified by adding, if needed, more activity
types as a simple extension of the current framework. For
example, one may argue that the duration of a lunch activity
depends on where they have the meal. This can be captured by
separating the lunch activity into more sub-activities, where
each sub-activity is associated with an identical restaurant
(location). In this way, the current conditional independence
framework still works.

E. Prediction Formulation

The IOHMM supports predicting the next activity dura-
tion and location given today’s trajectories after train-
ing. Here we only give the formulation for predicting
the duration, and that for location prediction can be
derived in the same way. Observe that predicting the
duration of the next activity is equivalent to obtaining
P(rt+1 | q1:t , r1:t , z1:t+1). This is because q1:t , r1:t , z1:t+1 are
all observed information. By the conditional independence,
we have P(rt+1 | q1:t , r1:t , z1:t+1) = P(rt+1 | r1:t , z1:t+1).
By the law of total probability:
P(rt+1 | r1:t , z1:t+1)

=
∑

i∈A
P(rt+1 | At+1 = i, zt ) · P(At+1 = i | r1:t , z1:t+1) (19)

The first term in the right hand side (RHS) of Eq. 19 is the
emission probability. And the second term can be expanded
as:
P(At+1 = i | r1:t , z1:t+1) = P(At+1 = i, r1:t | z1:t+1)∑

j∈A P(At+1 = j, r1:t | z1:t+1)

(20)

where

P(At+1 = i, r1:t | z1:t+1)

=
∑

i∈A
P(At+1 = j | At = i, zt+1) · P(At = i, r1:t | z1:t) (21)

The first term in the RHS of Eq. 21 is the state transition
probability. And the second term is essentially the forward
variable (Eq. 7) when only incorporating the emission prob-
ability of duration. Therefore, based on the forward variable,
state transition probability, and emission probability, one can
output the distribution of rt+1 given r1:t , z1:t+1. We adopt
the value with the highest probability density as the predicted
duration.

For the location distribution, we can derive
P(qt+1 | q1:t , z1:t+1) using the same method. The location
with the highest probability is selected as the prediction.

F. Model Interpretability

The IOHMM allows us to explore the mobility patterns
of an individual. In the following discussion, the subscript
t is ignored as we focus on deriving the general pattern over
history.

1) Activity Pattern Identification: To identify the latent
activity, four distributions conditioning on a specific activity
label are calculated: 1) duration distribution P(r | A = i),
2) end location distribution P(q | A = i), 3) start time (i.e., last
trip end time) P(y | A = i), and 4) start location distribution
P(p | A = i). Since the transition matrix describes how
passengers moving from one activity to another, we are also
curious about P(At = j | At−1 = i) for all i, j ∈ A. Based
on these distributions, we can assign a semantic label (e.g.,
home, work) to each hidden activity manually.

These distributions/parameters are calculated based on
Gibbs sampling as illustrated in Algorithm 1. It is worth
noting that we assume P(z) is the same as the distribution
of z in historical trajectories. Hence, instead of sampling
z ∼ P(z), we can generate samples by going through all
histories (i.e. t = 1, . . . , T u,v , for v = 1, . . . , V u , where V u

is the total number of travel days for user u. This can be seen
as bootstrapping). The sampling process is repeated N times.
And the intended distributions can be directly obtained from
the generated sequences (e.g., for a discrete variable, we can
directly count the conditional frequency in the generated
sequences).

Algorithm 1 Activity Pattern Identification for a User u Using
Gibbs Sampling
Input: Trained IOHMM; Trip history of user u
Output: Intended probability distribution of user u
1: Initialize the number of sampling N .
2: for n = 1 to N do
3: for v = 1 to V u do
4: Sample Au,v

1 ∼ P(Au,v
1 | zu,v

1 )
5: Sample ru,v

1 ∼ P(ru,v
1 | Au,v

1 , zu,v
1 ) and qu,v

1 ∼
P(qu,v

1 | Au,v
1 , zu,v

1 ).
6: for t = 2 to T u,v do
7: Sample Au,v

t ∼ P(Au,v
t | Au,v

t−1, zu,v
t )

8: Sample ru,v
t ∼ P(ru,v

t | Au,v
t , zu,v

t ) and qu,v
t ∼

P(qu,v
t | Au,v

t , zu,v
t ).

9: end for
10: end for
11: Save the generated activity sequences and corresponding

contextual information in iteration n as H u
n and zu

n ,
respectively.

12: end for
13: Obtain the intended distribution described above for user

u based on [(H u
1 , zu

1), . . . , (H u
N , zu

N )].

2) Probability Coefficient Explanation: After training the
model, we can obtain θ for each probability function. Since
all functions adopt a linear relationship between θ and z,
the value of θ enables interpretability and validation of the
training results. For example, we may expect rain to have a
positive effect on the duration of all activities.
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Fig. 4. Distribution of individual travel characteristics. In (c), “first” means
the duration distribution of the first activity in a day. “Remaining” means all
activities in a day excluding the first one. “All” means all activities.

IV. CASE STUDY

A. Data

The dataset used for the case study contains transit
smart card records from 500 anonymous users between
July 2014 and March 2017 in the Hong Kong Mass Transit
Railway (MTR) system. These users are selected randomly
from all individuals with at least 300 active days of transit
usage during the study period, which excludes occasional
users and short-term visitors such as tourists. This is because
a minimum amount of personal travel history is required
to achieve reasonable prediction performance. The mobility
prediction for infrequent users and short-term visitors requires
future research. It is worth noting that though an individual
may hold more than one smart card and a smart card data
may represent multiple users, we assume that each card ID
corresponds to only one user [2].

We partition the personal daily activity sequences of each
user into training and test sets. The test set consists of the
sequences from 20% randomly selected active days. The
remaining sequences form the training set. The proposed
model is specified for each user based on their own training
data.

B. Travel Patterns

The travel patterns of selected sample individuals are shown
in Figure 4. Figure 4(a) shows the distribution of the number
of active days (i.e., days with at least one trip). We observe
most of the samples have less than 400 active days during
the 2.5 years of the analysis period. Figure 4(b) shows the
distribution of the number of trips per active day. An individual
typically makes two trips in a day, likely as a result of
commuting to and from work. Note that only rail-based trips
are considered in the case study. Thus, this distribution is an
underrepresentation of the true travel intensity of users. The
distribution of activity duration is shown in Figure 4(c). For
the first activity (i.e., the first activity in a day), we observe
a prominent peak of around 4 hours. This may represent the
weekday “staying at home” activity because the start of a day

is set as 4:00 AM and people usually leave home for work at
around 8:00 AM. There is a sub-peak at around 14 hours for
the first activity, which may correspond to the holiday “staying
at home” activity where people stay at home until 18:00 and
then leave home for leisure. For the remaining activities (i.e.,
all activities in a day excluding the first one), a major peak
at around 10 hours is observed, which may indicate the work
activity (start at 8:00 and end at 18:00). Another peak for
remaining activity duration is around 2 hours, which may
represent short-term dining/entertainment activities. The trip
start time distribution is shown in Figure 4(d), as expected,
a morning peak at 8:00 AM and an evening peak at 18:00 are
observed.

C. Evaluation Metrics and Benchmark Models

Recall that the proposed IOHMM can output the predicted
activity duration (ru,v

t ) and end location (qu,v
t ). qu,v

t is a
categorical variable and the prediction accuracy is used for
the performance evaluation. ru,v

t is a continuous variable. The
predicted R2 (i.e. R2 in the test data set) is used as the main
performance metric because it typically ranges between 0 and
1, which is consistent with the range of prediction accuracy.

To properly evaluate the proposed IOHMM, we compare it
against two types of models for benchmarking. The first group
includes simple and straightforward models and can be seen
as a “lower bound” of the prediction performance. The second
group is based on more advanced machine learning methods
that are commonly used for sequential prediction. It can be
seen as providing an approximate “upper bound” of the predic-
tion performance for existing approaches. Specifically, linear
regression (LR) and the first-order Markov Chain (MC) model
are used as the first type benchmark models for predicting
ru,v

t and qu,v
t , respectively. LR is used because it is the most

commonly used model for continuous variable prediction. The
MC model is used because it was shown in [4] that the
first-order MC can approach the limit of predictability for the
next location prediction and it was previously used in [2] as
the baseline model for location prediction. Moreover, we also
include the mobility n-gram (NG) model proposed in [2] as a
benchmark for the location prediction.

The LR model for user u is formulated as

ru,v
t = βu

0 + βu · zu,v
t + 
u ∀v, t (22)

where βu
0 is the intercept and βu is the vector of parameters

to estimate. 
u is the error term.
In terms of the MC model, the distribution of the activity

end location (i.e. next trip origin) is formulated as

P(qu,v
1 ) = P(ou,v

1 ) = C(ou,v
1 ) + α/|Lu |
V u + α

(23)

P(qu,v
t | qu,v

t−1) = P(ou,v
t | ou,v

t−1)

= C(ou,v
t−1, ou,v

t ) + α/|Lu |
∑

õu,v
t ∈Lu C(ou,v

t−1, õu,v
t ) + α

∀t ≥ 2 (24)

where C(ou,v
1 ) is a counting function that returns the number

of times that the first activity of the day ends at ou,v
1 . Similarly,

C(ou,v
t−1, ou,v

t ) returns the number of times that an activity
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Fig. 5. LSTM network structure. M is the number of LSTM layers. K is the
number of hidden units. “FC” means fully connected neural network layer.

ending at ou,v
t−1 is followed (in the same day) by another activity

ending at ou,v
t . Lu is the set of candidates location for user

u. The parameter α is used for smoothing so that a non-zero
probability is generated for any possible value.

Long short-term memory (LSTM) [44] is selected to rep-
resent the second type of benchmark model. It is well-suited
to classify, process, and predict time series given time lags
of unknown duration as it has the advantage of memorizing
long-range dependencies in the data. LSTM is often considered
one of the state-of-the-art methods for time series prediction
tasks. Since LSTM is not suitable for predicting continuous
(ru,v

t ) and discrete (qu,v
t ) variables simultaneously, we train

for each individual two separate LSTM models to predict
ru,v

t and qu,v
t , respectively. The structure of LSTM is shown

in Figure 5. Input variables are fed into M LSTM layers and
then aggregated by a fully connected (FC) neural network
layer. For duration (resp. location) prediction, the linear (resp.
softmax) activation layer is used for the outputs. The hyper-
parameters (e.g., number of LSTM layers M , number of
hidden units K , regularization strength, drop out rate) are
tuned based on a searching process over a predetermined
hyper-parameter space (see Appendix B). A validation data
set (20% of the training data) is used for the hyper-parameters
selection. The hyper-parameters with the highest R2 and
prediction accuracy in the validation data are used as the final
models.

The key idea of the NG model for the next tap-in location
prediction is to construct the following conditional probability
based on individual’s travel histories.

P(qu,v
t | xu,v

t−1, ou,v
t−1, du,v

t−1). (25)

Details of the NG model can be found in Zhao et al. [2].

D. Prediction Performance

As each model outputs R2 and prediction accuracy for each
individual, we can plot the distribution of R2 and predic-
tion accuracy for overall performance evaluation. Figure 6
shows the prediction performance for the activity duration
and location. Since the first activities are predicted by the
initial probability and the remaining activities are predicted by
the transition probability, we plot the performance distribution
for two types of activities separately. What stands out in the
figure is a high degree of individual heterogeneity in terms

Fig. 6. Prediction performance. “First activities” means the first activity in
a day. “Remaining activities” are all other activities in a day excluding the
first one. The dash lines represent the mean value.

Fig. 7. Distribution of prediction errors for activity duration. The errors
are aggregated in 0.5 hour intervals for better visualization. The solid lines
are cumulative density functions (CDF) with colors corresponding to different
models.

of predictability. Overall, the IOHMM shows very similar
performance as the LSTM model in all prediction tasks. And
both IOHMM and LSTM can outperform the first type of
baseline models (i.e. LR and MC). This implies that the
proposed IOHMM not only has the same predictive capacity as
the advanced machine learning model but also has the potential
to identify latent activities with model interpretability (details
illustrated in Section IV-F).

In terms of the duration prediction (Figure 6a), we observe
that IOHMM and LSTM are only slightly better than LR
(with mean R2 = 0.371, 0.381, and 0.346, respectively).
This implies that people’s first trip start time on a day has
high randomness and is hard to predict as many uncaptured
reasons can cause morning departure times to be adjusted.
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However, for the remaining activities, the IOHMM and LSTM
significantly outperform the LR model (with mean R2 =
0.692, 0.687, and 0.563, respectively).

The results for location prediction (Figure 6b) are similar to
those of duration prediction. IOHMM, NG, and LSTM models
are slightly better than the MC model in the first activity end
location prediction, but significantly better in the prediction of
remaining activities. An interesting finding is that, though the
duration of the first activity is relatively difficult to predict,
the prediction accuracy for the first activity end location (i.e.
first trip origin) is high (with a mean of 77.6%, 76.1%, 78.4%,
and 74.6% for IOHMM, NG, LSTM, and MC, respectively).
This implies that despite randomness in start time, the first trip
origins are relatively stable for these frequent public transit
users. The location prediction accuracy for the remaining
activities is lower than that of the first activities (with a mean
of 68.2%, 68.4%, 68.0%, and 51.2% for IOHMM, NG, LSTM,
and MC, respectively). This may be attributed to the higher
degree of behavioral randomness after leaving home. For the
first activity, people are likely to use the nearest rail station
around the home. But for remaining activities, people may
have more choices that are not easy to capture.

In addition to R2, it is also useful to examine the magnitude
of duration prediction errors. The distribution of absolute
errors for duration prediction is shown in Figure 7. Overall,
errors within 30 minutes account for the highest fraction for
all models. For the remaining activities, more than half of the
activity duration can be predicted with errors within 1 hour for
our IOHMM model. For the first activities, we observe that
the LSTM model has a higher density in errors smaller than
30 minutes compared to IOHMM. However, for the remaining
activities, IOHMM accounts for a higher density for prediction
errors within 30 minutes. As for errors within 1.5 hours,
the performance of IOHMM and LSTM models is similar,
and both models outperform the LR model. This indicates that
LSTM may have more advantages for the first activity duration
prediction while IOHMM for remaining activities. This may
be because the duration of the first activity (usually staying
at home) is hard to predict given the complex interactions
of different factors (such as weather, holidays, or even some
unobserved factors such as users’ moods). LSTM is more
complicated than IOHMM in terms of model structure and
the number of parameters. Hence, it may have more predic-
tion power to capture the underlying factor interactions, thus
outperforming the first activity duration prediction task.

Figure 8 shows the cumulative distribution of prediction
rank for activity end location. The cumulative probability (on
the y-axis) at rank k represents the probability that the true
activity end location is among the top-k (on the x-axis) most
likely outcomes predicted by the model. We observe that, for
the first activity, there is more than 90% probability that one
of the top 3 predictions in the proposed model is correct.
But for the remaining activities, we need to include the top
10 predicted outcomes to achieve 90% probability. The results
imply that the origins of the first trips (i.e. first activity end
locations) are easier to predict with limited variations than
those of following trips. Similarly, IOHMM, NG, and LSTM
models achieve comparable (essentially the same) performance

Fig. 8. Cumulative distribution of the prediction ranks for activity end
location.

in the remaining activity prediction, and both consistently
outperform the MC model. However, for the first activities,
the NG model becomes worse when counting for more than
the top 5 predictions.

E. Factors Impacting Individual Mobility Predictability

As shown in Figure 6, the prediction performance varies
greatly among passengers. Hence, it is worth evaluating which
attributes affect the individual’s predictability. We estimated
two linear regression models with the R2 (for duration pre-
diction) and prediction accuracy (for location prediction) of
IOHMM as dependent variables. Independent variables are
factors related to a user’s travel frequency, regularity, fare
card type, number of estimated hidden activities, and inferred
home location. To reveal how longitudinal behavior changes
influence predictability, we introduce the “number of change
points” for departure time and visited locations calculated from
a Bayesian model in our previous study [45] as new inde-
pendent variables. These two variables describe the number
of substantial behavior pattern changes in terms of departure
time and ODs, respectively.

Table II shows the results of estimated coefficients.
We observe that the number of days with travel is significantly
positive to location prediction, which implies that longer
historical trips can increase location predictability. Similarly,
the mean number of trips per day is significantly positive for
both duration and location prediction. This may be because a
high mean number of trips per day reflects longer daily travel
sequences, which can potentially make it easier to uncover
sequential dependencies and ultimately help with prediction
performance. Variables that indicate high travel irregularity,
such as the standard deviation (std.) of travel frequency
and departure time, number of change points for departure
time and locations, have significant negative effects on the
prediction performance. We also find that senior passengers’
activity duration is harder to predict. In addition, the activity
locations for users living in New Territories (one of the three
main regions of Hong Kong, alongside Hong Kong Island and
the Kowloon Peninsula) are easier to predict. This may be
because New Territories is further away from the commercial
business center of Hong Kong, and its residents generally
have less diverse socioeconomic activities outside commuting
between home and work. The number of hidden activities has
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TABLE II

FACTORS ON INDIVIDUAL MOBILITY PREDICTABILITY

no significant impact on either location or duration prediction
accuracy.

F. Latent Activity Identification

Although IOHMM has a similar performance as the LSTM
model, the advantage of IOHMM is its ability to identify
latent activity patterns for each individual. Figure 9 presents
the spatiotemporal distributions of three latent activities (see
Section III-F) for a selected individual. Note that the activity
labels are manually assigned based on their corresponding
characteristics. Also, since the mean duration is a function
of zt (Eq. 18), the activity duration under a specific activity
type can be multi-modal depending on the distribution of zt .

The first activity (i.e. the first column) has a start time peak
around 4:00 AM, a duration peak of around 4 hours, a domi-
nant activity start location “Null” (i.e. the one with the highest
probability and is much higher than others), and a dominant
activity end location “CSW” (Cheung Sha Wan). This is
obviously associated with “home” activity because people
usually stay at home from the beginning of a day (4:00 AM)
to the departure time for working (around 8:00 AM) with a
duration of 4 hours. By definition, the first activity of a day
has no activity start location (i.e. Null). And the dominant
activity end location (i.e. CSW) should be the nearest station
to his/her house.

The second activity (i.e. the second column) has a start time
peak around 8:00 AM, a duration peak of around 10 hours,
a dominant activity start and end location “MOK” (Mong
Kok). We can easily associate it with the “work” activity,
because the activity start time and duration match the typical
work schedule, and the activity start and end locations are the
same, which means during the activity the user does not move.
MOK station is located in the CBD area in Hong Kong, which
should be the nearest station to his/her working place.

The third activity (i.e. the third column) has a relatively
dispersed start time and duration compared to the first two.

Fig. 9. Activity patterns of a selected individual with Nu = 3. The i-th
column represents the conditional distributions P(· | A = i). Each column
(i.e. each latent activity) is associated with a semantic label (i.e. “home”,
“work”, and “other”) based on its distribution patterns.

Fig. 10. Activity transition matrix (P(At | At−1)) of the selected individual.

And the activity locations are more diverse. So, we associated
it with “other” activities such as entertainment and dining. The
activity start and end locations with the highest probability
are both MOK. It seems the user prefers to perform other
activities around MOK as well, which makes sense as MOK
is one of the busiest areas in Hong Kong with many shops and
restaurants. It is also likely that some of the other activities are
work-based, as they may be planned around the work location.

The activity transition matrix is shown in Figure 10.
As expected, the transition from home to work shows the
highest probability. It is worth noting that as the activity
after the last trip in a day is omitted from analysis (see
Section III-B), the typical work to home transition is not
revealed in the model. The most likely activity following
work is other, which may represent work-based shopping,
dining, and entertainment activities (corresponding to results in
Section IV-F). And the most likely activity following other is
work. This also makes sense because the user usually conducts
work-based other activities (such as dining) and after that
he/she may need to return to work.
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TABLE III

ESTIMATED PARAMETERS FOR DURATION PREDICTION

Since the mean activity duration is specified with a lin-
ear model in IOHMM (see Section III-D), the estimated
parameters in the linear model are useful for understanding
other contextual factors affecting activity duration. Table III
summarizes some estimated parameters with interpretability
for the same selected individual. As expected, the duration
for all activities is higher on rainy days (compared to those
without rain). It is worth noting that the sum of three activity
duration is not a fixed value, since the activity after the last trip
is not considered. Thus, the rainy parameter can be positive
for all three activities, which means users may delay their trip
departure time when it rains outside. Monday has a positive
impact on the work and other activities duration (the impact
of Monday on home activity is negligible compared to the
other two). Sunday has a negative impact on the work activity
duration and a positive impact on home activity duration.
On public holidays, the duration of home activities increases
and decreases for the other two. Since “other” activities for
this individual are usually work-based, all these effects are
reasonable.

V. CONCLUSION AND DISCUSSION

This paper proposes an activity-based IOHMM framework
to simultaneously predict the time and location of an indi-
vidual’s next trip using smart card data. The prediction task
can be transformed into predicting the hidden activity duration
and end location, which enables a natural behavioral repre-
sentation. Based on a case study with data from Hong Kong’s
MTR system, we show that the proposed model has a sim-
ilar prediction performance as the advanced LSTM model,
and significantly outperforms the benchmark models. Unlike
LSTM, the proposed activity-based model can also be used to
analyze hidden activity patterns, which provides meaningful
behavioral interpretation for why an individual makes a certain
trip. Therefore, the activity-based prediction framework offers
a way to combine the predictive power of machine learning
methods and the behavioral interpretability of activity-based
models. The estimated activity (or travel purpose) information
can facilitate the development of situational awareness in
intelligent transportation applications, such as personalized
traveler information or targeted travel demand management in
public transit systems [46]. Activity-based models have been
used extensively in travel demand forecasting and simulation.
As demonstrated in [38], IOHMM is well suited to simulating
individual activity-travel behavior, which can help public tran-
sit agencies to better design policies and plan future services.

A natural extension of this study is to apply the proposed
activity-based modeling framework to other data sources and

TABLE IV

SUMMARY OF CONTEXTUAL VARIABLES zt

mobility systems. Note that while the Hong Kong MTR system
is used as a case study, our approach is agnostic to particular
modes. The only information required is the longitudinal
observations of individual travel history, including the start/end
time, origin, destination, and individual identifier of each
trip. Such travel information is generally available in most
of the intrinsic mobility data sources. New mobility service
providers, such as ride-hailing systems, bike-sharing programs
as well as on-demand “pop-up” bus services, also collect
individual-level travel records (typically through mobile apps)
similar to the transit smart card data, though the predictability
of individual mobility may vary by different systems. It is
expected that the predictability is higher for public transit
systems, because of a higher proportion of commuting trips.
A further distinction can be made between stationed systems
(e.g., subway, buses, docked bike-sharing) and stationless sys-
tems (e.g., taxis, ride-hailing, and dockless bike-sharing) [47].
For the latter, certain spatial aggregation is needed for the
proposed method to work.

The proposed methodology is not without limitations. One
limitation is that the model requires a long observation period
of individual trip records, and does not work well with
infrequent or new users with little to no travel histories. Future
studies can leverage user clustering techniques to extract
similar users’ travel patterns as additional input [48], which
can compensate for the sparsity of individual data. Another
limitation lies in the assumption of stable travel patterns.
However, individual travel patterns may change over time,
leading to reduced predictive performance due to domain
shift (or distributional shift) issues. To address this, we could
potentially adopt a change detection module [45] to guide the
update of individual mobility prediction model parameters.
One way to do this is through dynamic weighting of data
points based on behavior change patterns.

APPENDIX A
SUMMARY OF CONTEXTUAL VARIABLES

Table IV shows the summary of contextual variables zt . Five
different dimensions are considered: weather, day of the week,
holidays, last trip information, and historical travel statistics.

APPENDIX B
HYPER-PARAMETER SPACE OF THE LSTM MODEL

The hyper-parameters of the LSTM model used in this study
(for all individuals) are M = 1, K = 50, dropout rate = 0.3,
l1 regularization = 0, l2 regularization = 0, batch size = 30.
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TABLE V

HYPER-PARAMETER SPACE OF THE LSTM MODEL

Fig. 11. Distribution of number of estimated hidden activities.

The model is trained using Adam optimizer (with the default
learning rate) with 200 training epochs.

APPENDIX C
ANALYSIS ON NUMBER OF HIDDEN ACTIVITIES

Figure 11 shows the distribution of the number of estimated
hidden activities for all 500 samples. Most of the users have
three hidden activities. And with the increase in the number
of activities, the proportion of users decreases. The high pro-
portion of 3-activity users indicates that most of the frequent
users (with at least 300 active days of transit usage during
the study period) in the MTR system can be characterized by
three major activity patterns: home, work, and other.
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