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ABSTRACT This paper proposes a general unplanned incident analysis framework for public transit
systems from the supply and demand sides using automated fare collection (AFC) and automated vehicle
location (AVL) data. Specifically, on the supply side, we propose an incident-based network redundancy
index to analyze the network’s ability to provide alternative services under a specific rail disruption.
The impacts on operations are analyzed through the headway changes. On the demand side, the analysis
takes place at two levels: aggregate flows and individual responses. We calculate the demand changes
of different rail lines, rail stations, bus routes, and bus stops to better understand the passenger flow
redistribution under incidents. Individual behavior is analyzed using a binary logit model based on
inferred passengers’ mode choices and socio-demographics using AFC data. The public transit system of
the Chicago Transit Authority is used as a case study. Two rail disruption cases are analyzed, one with
high network redundancy around the impacted stations and the other with low. Results show that the
service frequency of the incident line was largely reduced (by around 30%∼70%) during the incident time.
Nearby rail lines with substitutional functions were also slightly affected. Passengers showed different
behavioral responses in the two incident scenarios. In the low redundancy case, most of the passengers
chose to use nearby buses to travel further, either to their destinations or to the nearby rail lines. In the
high redundancy case, most of the passengers transferred directly to nearby bus or rail lines. The results
of the individual analysis show that the increase in network redundancy can increase the probability of
using transit during disruptions. This effect is more prominent for low-income passengers. Corresponding
policy implications and operating suggestions are discussed.

INDEX TERMS Incident analysis, rail disruptions, redundancy index, smart card data.

I. INTRODUCTION

URBAN public transit systems play a crucial role in
cities worldwide, transporting people to jobs, homes,

outings, and a variety of other activities. However, transit
systems are susceptible to unplanned delays and service dis-
ruptions caused by equipment, weather, passengers, or other
internal and external factors.
Mitigating the impact of unplanned service disruptions is

an important task for urban transit agencies. Therefore, it

The review of this article was arranged by Associate Editor Erik Jenelius.

is important to recognize how a transit system is affected
by incidents [1]. This study focuses on long-term service
disruptions (e.g., longer than 1 hour) where there are sub-
stantial behavior impacts on passengers (i.e., they may have
to choose other travel modes). Otherwise, with short-term
service suspensions (e.g., 5-10 minutes), most passengers
may just choose to wait for the system to recover, where
we cannot observe rich behavior responses for empirical
analysis.
The analysis framework for incident impacts can be sum-

marized in Table 1. The two main dimensions of analysis,
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TABLE 1. Analysis framework for incident impacts.

supply and demand, can further be broken down into
“network performance” and “service” for supply analysis
and “passenger flow” and “individual behavior” for demand
analysis. The detailed explanations for each analysis task
can be found in Section II.
Recently, automated data collection systems in transit

networks have enabled a data-driven analysis of the impacts
of service disruptions. The two major sources are automatic
fare collection (AFC) and automatic vehicle location (AVL)
data. AFC data is collected when passengers tap their tran-
sit cards on smart card readers (in buses or rail station
gates). The records include times, locations, and card IDs.
Depending on whether the fare system requires passengers
to tap out, AFC data may only include tap-in records or both
tap-in and tap-out records. AVL data records vehicle’s (bus
and train) time-dependent locations based on GPS and train
tracking systems. From the AVL records, information such
as headways can be inferred.
The paper develops a data-driven methodology for the

comprehensive analysis of the impact of unplanned rail dis-
ruptions on passengers and operations. Specifically, on the
supply side, we propose an incident-based network redun-
dancy index to analyze the ability of bus and rail networks to
provide alternative services under a specific rail disruption.
The impacts on operations are evaluated through headway
changes across the systems. On the demand side, we calcu-
late the demand changes at different rail lines, rail stations,
bus routes, and bus stops to better understand the passen-
ger flow redistribution under incidents. Individual behavior is
analyzed using a binary logit model based on inferred passen-
gers’ mode choices and socio-demographics using AFC data.
The public transit system of the Chicago Transit Authority
(CTA) is used for a case study with two rail disruptions, one
of which has high network redundancy and the other low.
We summarized the contributions of this paper from

methodological and empirical points of view as follows:
From the methodological point of view:

• We propose an incident-based network redundancy
index to reflect the system’s ability to provide alter-
native services considering the integrated bus and rail
systems. The index leverages the proposed concept of
path throughput to incorporate the impact of the incident
duration on the redundancy calculation.

• We propose an individual mode choice analysis method
using AFC data. The approach includes a travel mode
inference model and a passenger demographics extrac-
tion model. To the best of our knowledge, this is the
first study that adopts AFC data for individual mode
choice analysis during incidents.

From the empirical point of view:

• We develop an incident analysis framework using AFC
and AVL data and apply it to incidents with different
characteristics. Specifically, we analyze two types of
incidents with high and low redundancy separately from
both demand and supply perspectives.

• We conduct an empirical study to demonstrate the
proposed framework using AFC and AVL data from
two real-world incidents in the CTA system. The corre-
sponding policy implications and operation suggestions
are also discussed.

The remainder of this paper is organized as follows.
Section II reviews the literature. Section III presents the
methodology used in this study. Case studies and data
are described in Section IV and results are discussed in
Section V. Section VI concludes the paper and discusses the
policy implications.

II. LITERATURE REVIEW
There are generally four methods researchers use to ana-
lyze the impact of disrupted operations: graph theory-based,
survey-based, AFC data-based, and simulation-based. Graph
theory-based analysis is majorly used for supply network
performance and supply service analysis. Survey and AFC
data-based methods are primarily used for passenger flows
and individual behavior analysis. Lastly, simulation-based
analysis can be used for both supply and demand analy-
sis. Each method has strengths and weaknesses depending
on the context. A complete review of various meth-
ods for the resilience of rail systems can be found in
Bešinović [2].

A. SUPPLY ANALYSIS
1) NETWORK PERFORMANCE

Network performance analysis usually uses graph theory-
based techniques to identify key aspects of the network’s
properties related to incidents, such as resilience, redun-
dancy, and vulnerability based on graph theory (or complex
network theory) [3]. For example, Yin et al. [4] studied
subway networks with respect to disruptions, finding the
weakness or critical locations of the network using “network
betweenness” and “global efficiency” metrics. Similarly,
Zhang et al. [5] built a general framework to assess the
resilience of large and complex metro networks by quantita-
tively analyzing their vulnerability and recovery time using
graph theory-based definitions. Yap et al. [6] developed a
method to identify the most vulnerable links in a multi-level
public transport network and to quantify the societal costs
of link vulnerability.
Simulation is also used to evaluate the impact of inci-

dents on networks. Usually, different hypothetical incident
scenarios are tested. System performance metrics, such as
travel delays and vehicle loads, are output to analyze the
incident effects. For example, Suarez et al. [7] looked at the
effects of climate change on Boston’s transportation system
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performance using a simulation model, suggesting almost a
doubling in delays and lost transit trips due to a variety of
climate change effects.
Redundancy is an important indicator for analyzing the

network performance under incidents. Redundancy is best
defined as “the extent to which elements, systems, or
other units of analysis exist that are substitutable, i.e.,
capable of satisfying functional requirements in the event
of a disruption, degradation, or loss of function” [8].
Redundancy has been widely studied, not just for transporta-
tion networks, but also in other areas including reliability
engineering [9], communications [10], water distribution
systems [11], and supply chain and logistics [12]. In
terms of transportation-specific resiliency and redundancy,
Berdica [13] developed a qualitative framework and basic
concepts for vulnerability, resilience, and redundancy for
transportation systems. Wilson-Goure et al. [14], Murray-
Tuite [15], and Goodchild et al. [16], defined redundancy
in the context of a specific transportation application areas
such as evacuation, traffic network, and freight network.
However, nearly all previous studies defined redundancy

at the level of networks, links, or OD pairs. Redundancy can
also be defined for a specific incident to assess the system’s
ability to provide alternative services under a specific condi-
tion. This study proposes such an incident-based redundancy
index to evaluate the network’s ability to satisfy functional
requirements under a specific incident. Both incident loca-
tion and duration impact the redundancy. Moreover, the bus
system, which is an important alternative to rail but rarely
considered in previous studies, is included in the redundancy
calculation.

2) SERVICE ANALYSIS

Service analysis mainly focuses on changes in an agency’s
operations during an incident period. This type of analy-
sis looks at headways, routing, staffing, shuttle services,
and other operator-controlled factors designed to mitigate
the incident. For example, Nash and Huerlimann [17]
developed a simulation model to analyze service variables
such as headways and routing in the wake of disruptions.
Schmöcker et al. [18] evaluated different operating strate-
gies in six metro systems under service disruptions. Service
delays and recovering times are treated as performance indi-
cators. Similarly, Mo et al. [19] proposed an event-based
simulation model that is capable of analyzing the impacts of
incidents on service performance (e.g., headways). Diab and
Shalaby [20] used AVL data to analyze the impact of subway
service interruptions on the speed performance of surface
transit in Toronto, Ontario.

B. DEMAND ANALYSIS
1) PASSENGER FLOW

Passenger flow analysis focuses on understanding how pas-
sengers choose alternative services at an aggregated level.
Simulation-based methods can be applied to passenger flow
analysis. For example, Hong et al. [21] simulated passenger

flows in a metro station during an emergency. Using AFC
data, Sun et al. [22] quantified three types of passenger
flows: leaving the system, taking a detour, and continuing
the journey but being delayed. This model was applied to the
Beijing metro network. Tian and Zheng [23] looked at unex-
pected train delay effects on Singapore’s MTR customers.
Using AFC data, they built a classification model to predict
whether commuters switch from MRT to other transportation
modes because of unexpected train delays. Wu et al. [24]
uses AFC data to detect passenger flow volumes and travel
time increases under station closures. Liu et al. [25] uses
AFC data to comprehensively analyze unplanned disruption
impacts, especially on passenger flows with trip cancellation,
station changes, etc. Eltved et al. [26] analyzes the long-term
impact of a planned disruption on different passenger groups
using K-means clustering using AFC data.

2) INDIVIDUAL BEHAVIOR

Individual behavior analysis usually focuses on individ-
ual responses to public transit incidents, including mode
shifts, route shifts, variable waiting time tolerance, trip can-
celing, changes in departure time, etc. These studies are
usually conducted using surveys. Surveys are a good means
to understand individual choices. Revealed preference (RP)
and stated preference (SP) are two major types of sur-
vey design. RP surveys collect respondents’ actual choices,
whose estimations are more accurate compared to the SP
survey where respondents are asked under an imaginary
scenario. However, RP studies do not always allow for a
thorough investigation of behavioral attitudes and percep-
tions as the SP approach. Examples of transit-oriented RP
studies include [27], which conducted an RP survey to under-
stand rail passengers’ behavior, perceptions, and priorities in
response to unplanned urban rail disruptions in Melbourne,
Australia. Murray-Tuite et al. [28] used a Web-based RP sur-
vey to understand the long-term impacts of a deadly metro
rail collision in Washington, DC, USA. Tsuchiya et al. [29]
conducted an RP survey in Japan that looked at passen-
ger choices of four alternative routes. Pnevmatikou and
Karlaftis [30] used RP survey data to analyze the effect
of a pre-announced closure of an Athens Metro Line. SP
survey studies include [31], who studied the modal shift
behavior of rail users after incidents. Fukasawa et al. [32]
investigated the effect of providing information such as esti-
mated arrival time, arrival order, and congestion level on
passengers’ modal shift behavior in response to an unplanned
transit disruption. Similar research was conducted by [33],
who found that various socioeconomic attributes and expe-
rience with the systems had strong influences on travelers’
behavioral responses in the context of real-time information.
Additionally, Rahimi et al. [34], [35] used a failure time
model and a discrete choice model to analyze individu-
als’ waiting time tolerances and mode choices, respectively,
during unplanned service disruptions in Chicago using sur-
vey data. Drabicki et al. [36] examines how PT users adapt
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TABLE 2. Summary of literature review.

their travel choices once they encounter sudden PT service
disruptions using a series of RP and SP surveys.
The major drawback of survey-based methods is that they

are time-consuming and labor-intensive. Hence, it is impor-
tant to develop individual behavior analysis methods using
AFC data as an alternative. For example, Mo et al. [37]
use AFC data to infer aggregated passengers demand with
different behaviors during disruptions.

C. COMPARISON BETWEEN OUR STUDY AND THE
LITERATURE
Table 2 summarizes the various studies in the literature from
three aspects: study methods, data sources, and research
focus. The main methodologies include graph theory-based
methods (GTB), simulation-based (SB), optimization mod-
els (OM), descriptive analysis (DA), statistical inference (SI),
machine learning (ML), and econometric models (EM).
We find that previous studies that leverage AFC data to

analyze passengers’ mode choices under disruptions are very
limited. Such approaches would require the inference of both
individual choices and socio-demographic information from
the AFC data. Besides, most of the previous studies on inci-
dent analysis only addressed one or two aspects in Table 1
using case studies of a single incident. A comprehensive
study that analyzes all four dimensions of the problem with
comparable case studies using AFC and AVL data is missing
in the literature.
Our study presents a comprehensive analysis focusing on

four aspects: travel mode choice, passenger flow, redundancy,
and service. It is also exclusive based on AFC and AVL data.

III. METHODOLOGY
In this section, we present the building blocks and methods
used to support the analysis framework of an unplanned inci-
dent. On the supply side, a method to calculate the network
redundancy index under a certain incident is proposed, which
reflects the network’s ability to provide alternative routes
when incidents occur. To analyze the agency’s service, we

TABLE 3. Notation summary.

calculate the headway distribution using AVL data. On the
demand side, we describe how to analyze passenger flows
under incidents using AFC data, and how to use AFC data to
analyze passengers’ mode choice using a binary logit model.
To infer the effect of an incident, we compare data from

the incident day to corresponding data from normal days.
A “normal day” is defined as a recent day on the same
day of the week and there are no incidents occurring in the
incident line or nearby region during the incident period on
that day. For example, if an incident happened on Friday
9:00-10:00 AM at a station, normal days can be all Fridays
in recent months without incidents from 8:00-11:00 AM (a
buffer is added to ensure normal services on a normal day)
on the same line. Headways and passenger flow during the
incident day are compared to those of normal days to reveal
their difference.
We summarize all notations used in Table 3.

A. SUPPLY ANALYSIS
1) NETWORK REDUNDANCY UNDER INCIDENTS

As mentioned in Section II, since redundancy is used to
evaluate a network’s functional response in the event of
disruptions, it is important to develop an incident-specific
redundancy index (opposite to network, link, or OD pair-
specific in the literature). For a given incident, such an
index can be used to evaluate the network’s ability to pro-
vide alternative services for this incident. Furthermore, given
the substitutional relationship between bus and urban rail
systems, the proposed redundancy index in this study also
explicitly considers the complementary role of bus and rail
systems during the incident.
Redundancy is usually a function of the number of avail-

able paths for each OD pair because more available paths
correspond to more opportunities for realizing the impacted
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trips when encountering service disruptions [43]. Hence,
network redundancy under incidents (NRUI) should capture
the transport capacity of alternative paths during the incident.
Typical path capacity is defined as the maximum number of
passengers transported per time unit (i.e., service frequency
times the vehicle capacity). It is a time-insensitive value,
which means the travel times of paths are not considered.
However, for the redundancy calculation, path travel times
are also important because passengers may not successfully
finish their trips during the incident period if they choose
paths with a long travel time. This means that the time-
insensitive path capacity does not reflect the actual ability
of paths to move passengers. Hence, a time-sensitive path
capacity should be used for the calculation. In this study,
we propose a new metric for the calculation of NRUI. The
basis of the analysis uses the concept of throughput, instead
of the classic definition of path capacity. In our approach,
throughput explicitly takes into account the travel time on
each alternative path. Throughput is defined as the number
of “equivalent” passenger trips that have been completed per
time unit during the incident. If a passenger has completed
half of the trip on an alternative path by the time an incident
is over, the “equivalent” trip count is 0.5.
More specifically, let W be the set of all OD pairs of the

rail network. For an OD pair w ∈ W , let Pw be the set of
available paths for w before the incident. As we consider
both bus and urban rail systems, a path p ∈ Pw may include
multiple bus trip segments. Pw can be obtained in several
ways, such as route choice surveys, Google Map API, and
k-shortest paths. In this study, k-shortest path is used to
obtain Pw with additional manual tuning to filter out unreal-
istic paths. Specifically, we filter out all paths with a transfer
number greater than or equal to 3 in the case study. Let DI be
the duration of incident I, Hp the headway of path p (defined
as the maximum headway of each segment of path p), Cp be
the vehicle (i.e., train or bus) capacity of path p (defined as
the minimum vehicle capacity over all segments of path p),
and Lp the travel time of path p. Then �DI/Hp� is the total
number of vehicles dispatched on path p during the incident
period. The throughput aims to capture the number of pas-
sengers at various stages of completing their trips during the
incident. Figure 1 illustrates how the equivalent number of
passengers completing trips is calculated during the incident
period. If DI < Lp (Figure 1 left), all vehicles in the path
cannot reach the final destination. Therefore, the number of
transported passengers is counted proportionally based on
their travel time in the vehicle. For example, the first vehi-
cle has traveled for DI during the incident period (i.e., DILp of

the total path length). We assume this is equivalent to Cp
DI
Lp

completed passenger trips. And it is easy to show that the k-
th vehicle’s travel time is DI −(k−1)Hp, which corresponds
to Cp

DI−(k−1)Hp
Lp

equivalent completed passenger trips dur-
ing the incident period. If DI ≥ Lp (Figure 1 right), the
first vehicle can reach the destination. Therefore, it accounts
for Cp completed passenger trips. In the example shown in

FIGURE 1. Illustration of path throughput. The bars show the number of equivalent
completed passenger trips during the incident period (unfinished trips are counted
proportionally based on their travel time). The orange (blue) bars represent vehicles
that cannot (can) finish the trips.

Figure 1 right side, the second vehicle can also reach the
destination during the incident (accounting for Cp passenger
trips), while the third cannot (accounting for Cp

DI−2Hp
Lp

pas-
senger trips). Therefore, combining these two scenarios, the
number of equivalent completed passenger trips for vehicle
k can be calculated as min {DI−(k−1)Hp,Lp}

Lp
· Cp.

Let Ap be the throughput of path p under incident I. From
the analysis above, it can be formulated as

Ap = 1

DI

�DI/Hp�∑

k=1

min {DI − (k − 1)Hp,Lp}
Lp

· Cp (1)

Eq. (1) counts the total number of equivalent passenger trips
along path p that have been completed per time unit during
the incident (passengers who did not finish their trips are
counted proportionally).
A larger value of DI implies that Ap is less sensitive to the

path travel time. In the extreme situation where DI → ∞,
Ap → Cp

Hp
(proof in the Appendix), which corresponds to

the typical definition of capacity where Lp does not matter.
The intuition behind this is that the proposed Ap limits the
capacity calculation in the incident period. When DI is large,
even if passengers have a longer travel time on a path, the
majority of the passengers impacted by the incident will
have their trips completed. On the contrary, if DI is small,
most of the passengers using paths with long travel times
cannot finish their trips. The typical definition of Cp

Hp
does not

capture this important aspect. Hence, considering travel time
in the redundancy calculation is much more representative
of the actual conditions.
In summary, Ap is an indicator reflecting a path’s ability to

serve impacted trips during the incident period.
∑

p∈Pw
Ap

reflects the ability of the network to provide services for
OD pair w. Actually, one of the network-level definitions
of redundancy in the literature is

∑
w∈W

∑
p∈Pw

Ap (where
Ap is defined differently), which measures the total path
capacity in the network [44].
In this study, we want to capture the incident-specific

characteristics of redundancy. Let WI be the set of all OD
pairs with at least one path blocked due to incident I.
Mathematically, WI = { w ∈ W : ∃p ∈ Pw s.t. p is blocked
due to incident I }. Then, only passengers with OD in WI

are affected by the incident. Let the total path throughput of
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w before the incident be Tw.

Tw =
∑

p∈Pw

Ap ∀w ∈ WI (2)

Because of the incident, passengers may augment their
typical path choice alternatives with paths that were not
considered before the incident. Hence, we define P̃w as the
set of available paths for w ∈ WI during the incident. P̃w
can be seen as Pw without the blocked paths and adding the
augmented paths. Usually, augmented paths are longer and
less preferred by passengers. It is worth noting that in cases
where shuttle bus services are provided, P̃w can also include
paths with shuttle buses. For a specific OD pair w ∈ WI ,
the total path throughput of w after the incident, denoted as
T̃w, should be less than or equal to (total path) throughput
before the incident. Therefore, we define T̃w as:

T̃w = min

⎧
⎨

⎩
∑

p∈P̃w

Ap, Tw

⎫
⎬

⎭ ∀w ∈ WI (3)

This corresponds to our assumption that the throughput
during the incident cannot exceed that before the incident
for a specific OD pair. Hence, the NRUI for incident I is
formulated as:

RI =
∑

w∈WI
T̃w∑

w∈WI
Tw

(4)

where the numerator (denominator) is the total throughput of
available paths after (before) the incident. Since Tw ≥ T̃w for
all w ∈ WI by definition, we have 0 ≤ RI ≤ 1. RI = 1 means
the capacities before and after the incident are the same,
suggesting that the incident does not deteriorate the function
of the network (i.e., the network is fully redundant under
incident I). RI = 0 means no alternative paths are available
during the incident (i.e., the network has no redundancy
under incident I)
For a better understanding of the index, we present a

small numerical example to show how RI is calculated. As
shown in Figure 2, consider a system with only one OD
pair w. Path 1 and 2 are primary and alternative paths,
respectively, where Pw = {1} and P̃w = {2} (i.e., before the
incident path 2 is not chosen by passengers). The attributes
of the two paths are shown in the figure. For path 1, there
are �DI/Hp� = 2 vehicles dispatched. The first vehicle has
traveled for min{DI,L1} = 20 minutes and reached the desti-
nation. The second vehicle, which was dispatched 30 minutes
later, can also travel for min{DI −H1,L1} = 20 minutes and
reach the destination. Therefore, these two vehicles success-
fully carried 400 passengers to the destination. According to
Eq. (1), we have

A1 = min{DI,L1}
L1DI

C1 + min{DI − H1,L1}
L1DI

C1

= 400 passengers/hour (5)

In terms of path 2, similarly, there are two vehicles dis-
patched during the incident. The first vehicle can reach the

FIGURE 2. Example of network redundancy calculation.

destination and the second one can only finish 30
60 of its

journey. Therefore,

A2 = min{DI,L2}
L2DI

C2 + min{DI − H2,L2}
L2DI

C2

= 300 passengers/hour (6)

The two terms in Eq. (6) represent the number of passengers
carried (successfully and partially) by the two vehicles in
path 2 per time unit.
The redundancy index for this single network under

incident I is

RI = T̃w
Tw

= A2

A1
= 300

400
= 0.75 (7)

which means during the incident when passengers start to use
path 2, the system maintains 75% of its original capacity. For
comparison purpose, if one follows the typical definition of
path capacity and calculate Ap as Cp

Hp
, the redundancy index

will be 1 because C1 = C2 and H1 = H2 in this example,
which is obviously unreasonable because it implies that the
system maintains 100% capacity and the incident has no
impact.

2) HEADWAY ANALYSIS

Headways are important indicators of the level of service
for transit systems. Analyzing headway patterns during an
incident can provide direct information about how services
are reduced by the incident. As mentioned in Section I, AVL
data provide the headway of each station in the urban rail
system. In this study, we calculate the headway temporal
distribution for lines of interest to capture the impact of
incidents.
Let us divide the analysis time period into several intervals

of equal length. Denote the headway on station i of trip j as
Hi,j (i.e., the length of interval between trip j and j− 1 and
Hi,1 = 0). Suppose line l has two directions, inbound and
outbound. The headway of line l outbound at time interval
τ is calculated as

Hout
l,τ =

∑
i∈Sout

l

∑
j∈Ri,τ

Hi,j
∑

i∈Sout
l

|Ri,τ | − 1
(8)

where Sout
l is set of outbound stations in line l. Ri,τ is the set

of trips passing through station i during the time interval τ .
Eq. (8) implies the headway of a line is calculated as the
mean of all stations along the line. The inbound headway,
Hin
l,τ , is calculated in a similar way by replacing Sout

l with
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S in
l . The headway distributions of both normal days and the

incident day are calculated for comparison.

B. DEMAND ANALYSIS
1) PASSENGER FLOW ANALYSIS

Demand change analysis: AFC data record passengers’ tap-
in information in bus and rail systems (tap-out is not
available in this study). These transactions can capture pas-
sengers’ route choices during an incident if they use the
transit system again [45]. Therefore, analyzing AFC data
can help understand passenger flow redistribution during an
incident.
At the station level, we calculate the number of tap-in

passengers at the stations in the incident area, and com-
pare the values on the incident day and normal days. The
difference in this number is an indicator of the impact of
the incident on passenger flow redistribution. Stations with
high demand increases reflect passengers’ choices after the
incident. Similarly, at the line level, we calculate the num-
ber of tap-in passengers for lines near the incident area for
both the incident day and normal days. Line-level demands
are calculated as the sum of all station-level demands in
corresponding lines.
Note that we assume the number of tap-in passengers

is approximately normally distributed. Hence, if the inci-
dent day demand is beyond the ±2×standard deviation
of the normal day demand, we say that a significant dif-
ference is observed (i.e., the impact of the incident is
significant).
Shuttle bus demand analysis: During a long-term dis-

ruption, shuttle buses are usually provided to connect the
suspended segment of a line. However, these services
are usually free and passengers’ tap-in information is not
directly recorded. In this section, we propose an approach
to infer shuttle bus users based on their re-tap in records in
downstream stations. Passengers using shuttle buses usually
come from upstream stations before the suspended segment.
Hence, they have a tap-in record in upstream stations. Also,
they usually need to re-tap-in in the downstream station
where the shuttle buses end (see Figure 3). Therefore, we can
identify shuttle bus users using a rule-based method accord-
ing to the aforementioned trip characteristics. Specifically,
denote the AFC data records for passenger i during the shut-
tle bus service period as B(i) = {(o(i)

1 , t(i)1 ), . . . , (o(i)
N(i) , t

(i)
N(i) )},

where o(i)
n and t(i)n are the tap-in location and time of the

n-th trip, respectively. Then, the set of all shuttle bus users
can be identified as
{
i ∈ I | ∃ 1 ≤ n ≤ N(i) − 1 s.t. (o(i)

n , t(i)n ),

(o(i)
n+1, t

(i)
n+1) ∈ B(i) and o(i)

n ∈ WSBU
I , o(i)

n+1 ∈ WSBD
I

}
(9)

where I is the set of all passengers, WSBU
I is the set of

upstream rail stations before the shuttle bus service for inci-
dent I and WSBD

I is the set of downstream rail and bus
stations close to where the shuttle bus services stop.

FIGURE 3. Illustration for shuttle bus user inference.

2) INDIVIDUAL BEHAVIOR ANALYSIS

Passengers may make different mode choices after the inci-
dent. One important question is how the characteristics of
the passengers influence their mode choices. This is typi-
cally using data from surveys. Previous studies have also
used AFC data to predict aggregate passenger demand [46].
In this study, we propose a method based on conveniently
available AFC data for individual behavior analysis.
The proposed approach consists of two steps: a) inferring

an individual’s mode choice and b) extracting samples’ char-
acteristics. We infer individual choices using AFC data. In
this study, only two choices are considered: 1) using tran-
sit and 2) other (including canceling trips and using other
travel modes). This is because these two options can be
confidently identified using AFC data and they are impor-
tant for transit operators. Since passenger travel patterns
in transit systems show high irregularity [47], it is more
convenient to identify the behavioral changes of regular pas-
sengers [48]. In this study, we define regular passengers
as those who use the public transit system every normal
day and have similar travel trajectories. Mathematically, let
us denote the trajectories of passenger i on normal day k
as T i,k = {(oi,k1 , di,k1 , ti,k1 ), . . . , (oi,k

Ni,k
, di,k

Ni,k
, ti,k
Ni,k

)}, where oi,kn ,
di,kn , and ti,kn are the origin, destination and start time of the
n-th trip, respectively (ti,k1 < · · · < ti,k

Ni,k
). Ni,k is the total

number of trips on normal day k for passenger i. The set of
regular passengers is defined as
{
i ∈ I | oi,kn = oi,k

′
n , di,kn = di,k

′
n , ti,kn ∈

[
t̄in − σ in, t̄

i
n + σ in

]
,

Ni,k = Ni,k
′
,∀k, k′ ∈ KT ⊆ K, k �= k′, |KT| > KT

}

(10)

where I is the set of all passengers, t̄in and σ in are the mean
and standard deviation of the start time of trip n for passenger
i over all normal days. K is the set of all normal days con-
sidered in this study, KT is a subset of normal days in which
passengers have the same trajectories. KT is a predetermined
threshold. This means regular passengers have the same num-
ber of trips and corresponding origins and destinations on
at least KT normal days. In addition, the corresponding trip
start times are stable (i.e., within a standard deviation). KT is
referred to as the “typical-behavior normal day set” for pas-
senger i hereafter. Hence, if these passengers had different
travel patterns on the incident day, most likely they would
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have been affected by the incident and chose a new travel
mode. Denote the trip sequence of passenger i on the incident
day as T i,In = {(oi,In1 , di,In1 , ti,In1 ), . . . , (oi,In

Ni,In
, di,In

Ni,In
, ti,In
Ni,In

)}.
Let [Te,Ts] be the incident period, where Te and Ts are
the incident start and end time, respectively. We define the
behavior analysis period as [Te,Ts+�] to capture the lasting
impact after the incident (e.g., passengers may change tap-in
stations or time after the incident due to lasting low-quality
services in the incident line). The mode choice during the
analysis period for a regular passenger i is denoted as Yi.
We infer Yi as follows:

• Yi = “Transit” if 1) there are additional transit trips
(compared to that in a normal day) during the anal-
ysis period, 2) there are changes in tap-in stations
or time during the analysis period. The first con-
dition implies that the regular passenger may have
transferred to a nearby rail station or bus stop, with
more transit trips than usual. The second condition
implies that the regular passenger may have changed
to a different rail line/bus route or delayed their
travel time in response to the incident. Let T i,k

I =
{(oi,kn , di,kn , ti,kn ) ∈ T i,k | Ts ≤ t̄in ≤ Te + �} and
T i,In
I = {(oi,Inn , di,Inn , ti,Inn ) ∈ T i,In | Ts ≤ ti,Inn ≤ Te + �}

be sub-sequences of trips within the analysis period
(i.e., [Ts,Te + �]) on a typical normal day k ∈ KT

and the incident day, respectively. Mathematically, the
first condition can be expressed as: |T i,In

I | > |T i,k
I | and

the second: ∃n s.t. oi,kn �= oi,Inn or ti,Inn ≥ t̄in + σ in, where
(oi,kn , di,kn , ti,kn ) ∈ T i,k

I and (oi,Inn , di,Inn , ti,Inn ) ∈ T i,In
I .

• Yi = “Other” if the transit trips that are supposed to
happen during the incident period on the normal days
disappear on the incident day. This means that the reg-
ular passengers may change to other modes or cancel
their trips. Mathematically, this can be expressed as
|T i,In
I | < |T i,k

I |.

Other regular passengers without the above behavior may
not be affected by the incident or have other choices that are
hard to be identified (e.g., transfer to another line without
leaving the system), which are not considered in the analy-
sis. Note that shuttle bus users, if having a re-tap-in in the
downstream stations (see Section III-B1), will be inferred as
Yi = “Transit”.
The value of KT decides the trade-off between behav-

ior inference accuracy and the final sample sizes. With a
relatively small value of KT, we can obtain more regular
passengers to increase sample sizes. However, for some pas-
sengers, the behavior change on the incident day may not
be due to the incident because there are high variations in
their normal day trajectories.
In the second step, the characteristics of each regu-

lar passenger (i.e., demographics and trip information) are
extracted. We aim to use information that is available in
AFC and sale transaction data as a proxy for passengers’
socio-demographics.

Since regular passengers have consistent travel trajectories,
we can infer their home locations as the tap-in rail station
or bus stop of the first trip on a normal day (i.e., oi,k1 for
any k ∈ K). Given the station/stop location, we can obtain
the median household income in passenger i’s neighborhood
or census tract using census data. Living in a high-income
or low-income neighborhood can be a proxy for passengers’
income. AFC data can also provide passengers’ fare status
information, such as whether the passenger is in a reduced
fare status. Reduced fare status users are usually students,
seniors, and people with disabilities. This information is also
a proxy for socio-demographic characteristics.
Sale transaction data provide the historical add-value trans-

actions of passengers. We extract three variables in this
study: total added value (i.e., pre-pay credit) per year, add-
value frequency (i.e., number of add-value transactions per
year), and maximum single added value in a year. The
first two variables reflect the passenger’s dependence on
and familiarity with public transit and part of their income
information. The last variable can also be used to some
extent as a proxy for income because low-income people
may not be able to deposit a large amount of money in a
smart card at once. We denote all this “proxy” demographic
information for passenger i as Xi.

The characteristics of passenger i’s trip (denoted as Zi)
during the incident may also affect mode choices. We define
the incident-related trip (trip ID denoted as n∗) as the first
trip with t̄i,k in the incident period. Mathematically, n∗ =
argminn{n = 1, . . . ,Ni,k | t̄in ∈ [Ts,Te + �]}. Since regular
passengers are supposed to have stable travel patterns, oi,kn∗
and di,kn∗ should be the intended origin and destination for
passenger i on the incident day. Based on (oi,kn∗ , di,kn∗ ), two
trip-related variables are considered. The first is whether the
di,kn∗ is downtown, which is a proxy for work trips. Note
that for a tap-in only system, di,kn∗ can be inferred from a
destination estimation model [49], [50], [51]. The second
variable is OD-based redundancy, defined as

RODi = T̃wi
Twi

(11)

where RODi is the OD-based redundancy for passenger i,
measuring the availability of alternative transit services for
the specific OD pair during an incident. wi = (oi,kn∗ , di,kn∗ ) is
passenger i’s OD pair for the incident-related trip. It is worth
noting that RODi can be seen as the NRUI for the case of a
single OD pair.
In this study, we use a binary logit model [52] to better

understand the main factors that impact choice Yi. Let the
utility of mode j for passenger i be Uij.

Uij = ASCj + αjXi + βjZi + εj (12)

where ASCj is the alternative specific constant (ASC) for
mode j. εj is the error term that is assumed to be Gumbel
distributed. αj and βj are the vectors of parameters to be
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FIGURE 4. Summary of the individual behavioral analysis model.

FIGURE 5. CTA rail system map.

estimated. The probability of passenger i choosing mode j is

P(Yi = j) = exp
(
ASCj + αjXi + βjZi

)
∑

j′∈C exp
(
ASCj + αjXi + βjZi

) ∀j ∈ C

(13)

where C = {“Transit”, “Other”} is the choice set.
The approach of the individual behavioral analysis model

is summarized in Figure 4.

IV. APPLICATION
A. CHICAGO TRANSIT SYSTEM
We use incident data from the Chicago Transit Authority
(CTA) public transit system for the model application in
this section. CTA is the second-largest transit system in
the United States, providing services in Chicago, Illinois,
and some of its surrounding suburbs. It operates 24 hours
each day and is used by 0.84 million bus and 0.81 mil-
lion train passengers per weekday on average [53]. The
map of the CTA rail system is shown in Figure 5. The
rail system consists of eight lines (named after their color)
and the “Loop”. The Loop, located in the Chicago down-
town area, is a 2.88 km long circuit of elevated rail that
forms the hub of the Chicago rail system. Its eight stations
account for around 10% of the weekday boardings of the
CTA trains.
CTA’s AFC system is entry-only, meaning passengers use

their farecards only when entering a rail station or boarding
a bus, and so no information about a trip’s destination is
directly provided. The train tracking system provides train
arrival and departure times at each station.
According to the control center data, CTA experienced a

total of 27,198 incidents in 2019. However, around 80%
percent of the incidents have a duration of fewer than

10 minutes. Since small incidents may not affect the system
significantly, this study focuses on substantial incidents that
lasted longer than 1 hour. Passengers who leave the rail
system because of service disruptions need to re-tap if they
decide to use other CTA services (buses or rails). They are
only charged a transfer fee. Usually, CTA will provide shuttle
services to connect the disrupted segments in both directions
(see Figure 3). These buses are dispatched from nearby bus
garages. Depending on the distance from the garage to the
incident location, the shuttle bus may take 20 to 40 minutes
to arrive after the incident. Passengers do not need to pay
for the shuttle services. Hence, there is no direct information
for passengers using shuttle buses.1

B. REDUNDANCY INDEX
Prior to analyzing actual incidents, we first present an
overview of the CTA system redundancy. As the NRUI is
defined based on each incident, for the purpose of this anal-
ysis, we assume that a hypothetical incident takes place at a
station in the system (one at a time), blocking the track seg-
ment that connects the station for 1 hour. Note that if a station
has two separate tracks, each track is blocked independently
and there will be two incident cases for this station. For
example, the Roosevelt station has two different tracks for
the Red Line and Purple/Yellow Lines. Hence, two hypothet-
ical incident cases are generated, each corresponding to the
interruption of a track. Considering the infrastructure layout
of urban rail systems, assuming that incidents occur at the
track level is more realistic than simply assuming an inci-
dent blocks the whole station as in many previous studies
that used graph-based methods [54], [55].
Besides the incident-specific redundancy index, the occur-

rence frequency of incidents per passenger at various stations
is also of importance. Figure 6 shows the redundancy index
at each station against the number of incidents per 106 at
that station (only incidents with a duration greater than
10 minutes are counted, averaged over 1-year data). The
combination of the two metrics divides the figure into four
sections: 1) Stations in the red section (upper left) have high
incident occurrence frequency and low redundancy. These
are critical stations in the system where alternative public
transit services are limited and service disruptions happen
frequently. Transit operators need to prepare strategies in
advance for these stations. 2) Stations in the yellow sec-
tion (upper right) have high incident occurrence frequency
and high redundancy. In these stations, passengers are able
to seek alternative services during a disruption. Operators
need to provide direct information to passengers with sug-
gestions regarding alternatives. 3) Stations in the blue section
(lower left) have low incident occurrence frequency and low
redundancy. Though incidents may not happen frequently,
mitigation plans need to be prepared as there are lim-
ited substitutional services. 4) Stations in the green section

1. But some shuttle bus users can be inferred based on our method in
Section III-B1
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FIGURE 6. Redundancy index v.s. incident occurrence rate.

(lower right) have low incident occurrence frequency and
high redundancy. These stations are less critical in terms of
incident management compared to stations in other sections.
Figure 6 shows that most of the stations in the CTA system

are in the blue or green sections. And only a limited number
of stations are in the red section. This implies that CTA can
focus more on some critical stations with adequate incident
management strategies. In terms of critical stations (red sec-
tion), most of them are terminal stations (such as Howard
and Ashland). This is expected as terminal stations usu-
ally have more complex infrastructure layouts (i.e., more
prone to failures) and are usually located in suburban areas
(i.e., fewer alternative services and low redundancy index).
Backup shuttle services can be provided in these stations.

C. RAIL DISRUPTION CASES
Since the location of the incidents may influence their
impact, we selected two incidents at locations with high
and low redundancy, respectively, for comparative analysis.

1) BROWN AND PURPLE LINES SEDGWICK INCIDENT

On September 24 (Tuesday), 2019, at 9:09 AM, a Purple Line
train collided with a Brown Line train at the Sedgwick sta-
tion. The incident caused a number of stations to be blocked
and closed in both Brown and Purple Lines since these two
lines share the same track in this area. The impacted stations
were Fullerton and Armitage to the north and Chicago and
Merchandise Mart (MM) to the south. Southbound trains
short turned at Fullerton, while northbound trains short
turned at MM. At 9:28 AM, 19 minutes after the incident
started, bus substitution service began between Fullerton to
MM. Service resumed at all blocked stations at 10:19 AM,
70 minutes after the start of the incident. The incident on the
Brown and Purple Lines is a high redundancy case because
the Red Line is a good substitution for the incident location
(See Figure 7).

FIGURE 7. Incident diagram of Brown Line Sedgwick case.

FIGURE 8. Incident diagram of Blue Line Jefferson Park case.

2) BLUE LINE JEFFERSON PARK INCIDENT

On February 1 (Friday), 2019, at 8:14 AM, the inbound track
Blue Line between Harlem and Jefferson Park was closed
due to infrastructure problems. All trains in the Blue Line
were suspended. CTA used the remaining single-direction
track to serve trains from both directions in the incident
link. At 9:03 AM, 49 minutes after the incident, single-track
operations commenced between Harlem and Jefferson Park,
with shuttle service starting 7 minutes later. At 9:40 AM,
all inbound trains succeeded to move under the single-track
operation. At 12:09 PM, the full line was reopened. The
entire incident lasted 4 hours and 9 minutes. The incident
on the Blue Line is a low redundancy case because the Blue
Line is far away from other rail lines with limited alternative
services (see Figure 8).

V. ANALYSIS
The framework discussed in Section III was used for the
analysis of the cases. For each case, the results are orga-
nized from supply to demand analysis. The individual choice
analysis is conducted based on samples of affected passen-
gers from two incidents. For both incidents, we select seven
normal days (i.e., the same day of the week in the last 7
weeks) to construct the normal day benchmark and define
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FIGURE 9. Headway temporal distribution (Brown and Purple Lines Sedgwick
incident). “SB” indicates southbound. The shade around normal day lines indicates
±standard deviation (same for all the following figures).

regular passengers. On average, there are 1,320,862 tap-in
records on a normal day, 636,087 for rails and 684,775 for
buses. The total demand on the incident day is similar to
that of a normal day (detailed comparison can be found in
Sections V-A3 and V-B3).

A. BROWN AND PURPLE LINE INCIDENT ANALYSIS
1) REDUNDANCY INDEX

The NRUI (Eq. (4)) for the Brown and Purple Line case
is 0.732, meaning that the transit system maintains 73.2%
transporting capacity for the Brown and Purple Lines inci-
dent during the incident period. The high redundancy of the
Brown and Purple Lines incident is as expected. In the inci-
dent area, the Red Line is almost parallel with the Brown
and Purple Lines. In addition, there exist many south-bound
bus routes going to Downtown Chicago (see Figure 12).
This implies that during the Brown and Purple Line inci-
dent, CTA can focus on guiding passengers to find alternative
services. Some information dissemination strategies need to
be applied, such as route and transfer recommendations. Note
that as shuttle buses’ supply information is not available, we
did not account for their impact (same for the Blue line
incident), which may cause a slight underestimation of the
NRUI.

2) HEADWAY ANALYSIS

The headway analysis results from the Brown and Purple
Line Sedgwick incident are summarized in Figure 9. The
shade around normal-day lines indicates ±standard devia-
tion (same for all the following figures with shades around
normal-day lines). The line-level headway is calculated as
Eq. (8). We selected three lines with directions of interest to
analyze. Recall that the Brown and Purple Lines share tracks
in the incident area, while the Red Line runs on separate
tracks in the incident area but shares tracks further north of
the line.
Rises in southbound headways for both the Brown and

Purple Lines are observed (Figures 9a and 9b) and the
changes are significant (i.e., beyond the two standard devia-
tion ranges). This is as expected because these two lines are
blocked due to the incident. On average, headway increases
from 5 minutes to 15 minutes in the Brown Line and from 5
minutes to 7 minutes in the Purple Line, implying a reduc-
tion of service frequency by 66.7% and 28.6% for the Brown

FIGURE 10. System level passenger flow analysis (Brown and Purple Lines
incident).

and Purple Lines, respectively. The Brown Line experiences a
continuous increase in headways towards the end of the inci-
dent. We also see a decrease in headways once the incident
clears. The Purple Line, which has most of its local stops
farther away from the incident area, has less disrupted ser-
vice at the line level, despite sharing tracks with the Brown
Line. Therefore, its headways deviated less from the normal-
day average. Note that there is also a headway increase after
10:30 AM for Brown and Purple Lines, which may be due
to other operation changes from CTA. Unfortunately, due to
data limitations, specific reasons are not available.
As shown in Figure 9c, the Red Line experiences little

deviation from its normal day service for the first half of
the incident (before 9:30 AM), largely because it does not
share tracks at the incident location and could run largely
uninterrupted. However, halfway through the incident, there
is a headway increase spike. This could be caused by two
possible reasons: 1) Because of the low-quality service on
Brown and Purple Lines, passengers chose to take the Red
Line southbound instead, leading to higher passenger vol-
umes and thus the delays at the stations when loading and
unloading passengers. 2) The unusual operation (e.g., short-
turn) of the trains on Brown and Purple Lines may occupy
facilities in the Red Line, resulting in congestion and longer
headways. The headway increase in nearby lines implies that
the transit operator should pay attention to both incident lines
and nearby lines to better serve passengers.

3) PASSENGER FLOW ANALYSIS

Passenger flows can be examined at multiple levels, includ-
ing system-wide, line level, and station level. Figure 10
shows the total number of tap-in passengers for the bus
and rail systems during the Brown and Purple Lines inci-
dent. The results show that there is no significant difference
between the incident day and normal days for both bus and
rail because the demand lines on the incident day are within
the ±2 standard deviation range. This implies that though
the incident lasted for more than 1 hour and blocked sev-
eral stations, the impact on the whole system demand is
still negligible (i.e., as influential as the inherent demand
variations).
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FIGURE 11. Line level passenger flow analysis (Brown and Purple Lines incident).

The line-level demand changes for the Brown and Purple
Line incident are shown in Figure 11. As expected, demand
on the Brown and Purple Lines (interrupted by the incident)
both significantly decreased during the incident and returned
to normal after the incident. As the Red Line runs adjacent
to the Brown and Purple Lines for a significant portion and
is not suspended, we see a significant increase in demand
during the incident period with a return to normal after the
incident is over.
We further examine the demand changes at rail and bus

stations close to the incident area (shown in Figure 12).
During the incident, we see an increase in rail demand
at Fullerton and Belmont stations that have direct connec-
tions to the uninterrupted Red Line. We also see clusters
of increased bus demand near the incident lines. Of note
are the clusters outlined in red and blue squares. The red
clusters represent increased bus demand proximal to blocked
stations. These passengers may have transferred directly to
nearby bus stops from the blocked line. Additionally, the
blue clusters represent increases in bus demand for routes
that connect directly to downtown. The increase may be
attributed to passengers who live in nearby neighborhoods
and change to buses during the incident.
The total decrease in the number of tap-in passengers in

the Brown and Purple Lines is 1,141, while the increases
in nearby bus stations and the Red Line are 696 and 1,414,
respectively. The demand decrease in the Brown and Purple
lines is smaller than the corresponding increase in the Red
Line and bus stations. This is probably because some passen-
gers may first tap in the Brown and Purple Lines and then
leave (this phenomenon will be illustrated in Figure 13),
which leads to the underestimation of demand decrease in
the Brown and Purple Lines. For all the 2,110 observed pas-
sengers using the alternative services, around one-third of
them (696) transfer to buses and two-thirds (1,414) to the
Red Line. Note that there may also be many passengers with
direct transfers who do not exit the rail system (such as pas-
sengers from further north of the Brown Line transferring
at the Belmont station to the Red Line), which cannot be
observed from the AFC data.
Additionally, Figure 13 shows the temporal demand

distribution at three stations: Sedgwick (the incident sta-
tion), Fullerton (a nearby partially blocked station), and

FIGURE 12. Station demand increase patterns (Brown and Purple Lines incident).

FIGURE 13. Station level passenger flow analysis (Brown and Purple Lines
incident).

North/Clybourn (a nearby station in the Red Line that is
open). The illustrated trends align with the incident pattern.
At Sedgwick (Figure 13a), the center of the incident, we
see a drastic decrease in demand once the incident starts.
As some passengers may not be aware of the incident and
accidentally tapped into the station, the demand is not zero
during the incident period. After the incident is over, we
see a quick recovery in demand. In terms of the Fullerton
(Figure 13b) station, despite it being partially blocked (the
tracks of the Brown/Purple Lines are blocked but the tracks
of the Red Line are not), we see an immediate rise in
demand. This indicates that passengers used Fullerton sta-
tion for the Red Line. Lastly, we see a sharp increase in the
number of tap-in passengers at the North/Clybourn station in
the Red Line (Figure 13c), which is within walking distance
from Sedgwick station. This implies that passengers from
the Brown and Purple Lines may also walk to the Red Line
to finish their journey. Additionally, this station gives pas-
sengers access to Fullerton station, where they can switch to
Brown or Purple Lines trains going northbound. The sharp
increase may represent the first wave of transfer passengers.
The demand analysis is helpful for transit operators to

identify passengers’ choices, supplement transit on other
lines, and inform passengers of better alternatives.
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B. BLUE LINE INCIDENT ANALYSIS
1) REDUNDANCY INDEX

The NRUI (Eq. (4)) for the Blue Line Jefferson Park case is
0.093, meaning that the transit system maintains 9.3% trans-
porting capacity during the incident period. The relatively
low redundancy, in this case, is due to the lack of alterna-
tive rail lines. Though there are some nearby bus services
(see Figure 17), the capacity of buses is much lower than
that of the metro lines. Also, most of the bus routes are not
directly connected to downtown, which increases the travel
time for passengers using buses. The low NRUI indicates
that during the Blue Line incident, CTA needs to provide
more alternative services, such as dispatching shuttle buses
and increasing the frequency of substitutional bus routes.

2) HEADWAY ANALYSIS

The headway analysis results from the Blue Line incident
are shown in Figure 14. Looking at the Blue Line south-
bound (Figure 14b), the headway was a little bit longer
than usual at the start of the day for unknown reasons. As
the incident starts, the headway increases immediately for
southbound trips. The increase is steeper before 9:30 AM,
which is understandable since before that time CTA was
working on changing the system to a single-track operation.
Once the single-track operation successfully deployed for all
southbound trains, the headway plateaued, and then gradu-
ally decreased after 9:30 AM. On average, headway increases
from 7 minutes to 17 minutes in the Blue Line southbound,
indicating a 58.8% reduction in service frequency.
Figure 14a shows the headway change for the Blue Line

northbound. Similarly, the headway was a little bit longer
than usual at the start of the day. As the incident started,
headways gradually increased. However, though the single-
track operation starts at 9:30 AM, the northbound headway
still remains higher than normal. This may be because CTA
allowed more southbound trains to cross the single-track
area as they serve the major demand in the morning peak,
which caused delays for the northbound trains. On average,
headway increases from 8 minutes to 12 minutes in the Blue
Line southbound, indicating a 33.3% reduction in service
frequency.
The headway for the Brown Line southbound is also

shown in Figure 14c as the Brown Line may be a possible
alternative for passengers in the south part of the Blue Line.
The headway remains relatively unchanged throughout the
Blue Line incident, which means the incident did not affect
the Brown Line operations.

3) PASSENGER FLOW ANALYSIS

We first look at the system level demand change during the
Blue Line incident in Figure 15. Similar to the results from
the Brown and Purple Lines incident, there is no significant
difference between incident day and normal days for both
bus and rail systems because the incident demand is within
the 2 standard deviation range, implying that the incident did

FIGURE 14. Headway temporal distribution (Blue Line incident). “SB”: southbound,
“NB”: northbound.

FIGURE 15. System level demand analysis (Blue Line incident).

FIGURE 16. Line level passenger flow analysis (Blue Line incident).

not significantly change the demand patterns for the whole
system.
The demand patterns of the Blue, Brown, and Red Lines

during the Blue Line incident are shown in Figure 16. The
Blue Line (Figure 16a) initially experiences a drop in the
number of tap-in passengers immediately after the incident,
which is as expected because passengers were informed of
the incident and chose to not tap in. As the single-track
operation started, the number of tap-ins gradually returned to
regular levels as the system’s backlog slowly began to clear.
By 9:40 AM, single tracking is in full operation. Hence, the
number of tap-in passengers is closer to average.
For the Brown Line (Figure 16b), we see a slight spike in

demand about 30 minutes after the incident. This is because
the Brown Line is not within the walking distance from the
Blue Line. Passengers need to take the eastbound bus routes
and then transfer onto the Brown Line to continue their
journeys, which takes around 30 minutes. We also observe
a consistent (though not significant) demand increase in the
Red Line for the entire major incident period (Figure 16c).
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The reason may be that the Red and Brown Lines are
largely overlapping near the incident area and can both be
alternatives for the Blue Line.
Demand changes at individual rail stations and bus stops

near the incident area are shown in Figure 17. Figure 17a
shows that demand rises at the bus stations that are located
close to the Blue Line, which means many passengers
switched to bus services during the incident. We also observe
a substantial increase in ridership on the nearby Brown and
Red Lines. This is presumably due to passengers from the
Blue Line who board the buses and transfer to the Brown
and Red Lines. However, we see little increase in ridership
on the Green Line in comparison. Since the Green Line is
close to the Blue Line and provides service to downtown
as well, it should be a good alternative. However, the small
number of passengers using it implies that some passengers
did not make good choices.
Figure 17b illustrates the demand changes for nearby bus

routes. The demand for several bus lines increased, with
routes 56, 72, and X49 being the top 3. Route 56 demand
increased most likely because it runs parallel to much of the
Blue Line and connects directly to downtown. The increase
in route 72 may be due to passengers transferring to that
route and using it to connect to the Brown and Red Lines.
Since there is little increase in the Green Line where the
X49 connects, most of the increased ridership in route X49
was most likely passengers with destinations in the south
that route X49 directly serves.
The total decrease in the number of tap-in passengers in

the Blue Line is 2,219, while the increases in nearby bus
stations, Brown Line, and Red Line are 2,426, 845, and
1,125, respectively. It is worth noting that passengers may
tap in the Blue Line and then get out to use buses due to long
waiting times. This implies that the actual demand decrease
in the Blue Line is larger than 2,219. For all passengers using
nearby bus stations (2,426), most of them (845 + 1,125)
transferred to Brown and Red Lines.
Further analysis can be done on specific key stations in

terms of temporal demand patterns. Figure 18 summarizes
the demand changes at the Jefferson Park (incident sta-
tion, partially blocked) (Figure 18a), California, (partially
blocked) (Figure 18b), and Addison (Brown Line, open)
(Figure 18c) stations. At Jefferson Park, the number of tap-in
passengers does not show a significant difference compared
to that of normal days (i.e., within two standard deviations).
Possible reasons are 1) passengers were not well informed
of the incident and entered the station during the service
disruption; 2) there are not enough alternative services for
passengers at the Jefferson Park station, so passengers chose
to enter the station and wait for service. At the California
station, we see a huge drop-off in ridership before 9:00 AM.
This may be due to the fact that California is closer to down-
town and has more bus options for riders, which corresponds
to the results in Figure 17a. As the single-track operations
stabilize (around 9:00 AM), we see an increase in the num-
ber of tap-ins. Lastly, looking at Addison (Figure 18c), we

FIGURE 17. Station and bus route demand increase patterns (Blue Line incident).
The demand change for a route is calculated based on stations within the walking
distance (1.5 km) to the incident line.

FIGURE 18. Station level passenger flow analysis (Blue Line incident).

observe normal ridership during the first part of the incident.
Halfway through, a large spike in ridership takes place. This
is most likely explained by Blue Line riders taking a bus to
the Brown Line, as outlined in Figure 17a. The spike is due
to the fact that they arrived as a group.

C. SHUTTLE BUS DEMAND ANALYSIS
The shuttle bus services for the two incidents are indicated as
green arrows in Figures 7 and 8. For the Brown and Purple
Lines incident, the shuttle bus is run between Fullerton and
MM stations. For the Blue Line incident, the shuttle bus is
run between Harlem and Jefferson Park. The inferred shuttle
bus demands for different directions are shown in Figure 19.
Since both incidents happen in the morning, the inbound

demand (i.e., towards the loop) is higher than the outbound
demand (i.e., outwards from the loop). For the Brown/Purple
Lines incident, the outbound demand is extremely small. The
reason may be that the Red Line can well serve the outbound
demand and passengers do not need to take the shuttle bus.
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FIGURE 19. Inferred shuttle bus demand.

TABLE 4. Descriptive statistics of samples.

For the Blue Line, since the train can still operate with a
single track, the shuttle bus demand is not as high as in the
Brown/Purple Line case.

D. INDIVIDUAL PASSENGER CHOICE ANALYSIS
For the individual-level passenger choices, we set � = 1
hour to define the analysis period. KT = 5 is used to define
regular passengers (i.e., passengers with the same trajecto-
ries on at least 5 days out of the 7 normal days). Out of
479,087 users in the analysis period, we extracted 9,980
regular passengers (around 2%). After filtering out passen-
gers that are not affected by the incidents and cannot be
inferred with travel modes or socio-demographics, a total of
1,683 regular passengers who are affected by the incident are
obtained using the AFC data from the two incidents above,
886 of which are from the Brown and Purple Line incident
case and 797 from the Blue Line incident case. Table 4
provides descriptive statistics related to various variables
of interest. All transaction-related variables (such as total
added value and total add-value times) are calculated based
on smart card transaction data from January to December
2019.
The small proportion of identified regular users may be

attributed to the following two reasons: 1) We have a very
strict definition for regular passengers which requires similar
trajectories over all normal days. 2) In the CTA system, users
may change their smart cards frequently (for example, every
time they buy a 7-day pass or 1-month pass, a new smart
card is purchased), resulting in the misidentification of new
users using smart card ID.
The estimation results of the binary logit model are shown

in Table 5. “Other” is set as the base travel mode. We observe

TABLE 5. Individual choice model estimation results.

that passengers with larger total added value and those who
use a pass (as opposed to pay-as-you-go) are more likely
to choose CTA during the incident. This is understandable
because these passengers generally use the public transit
system more frequently. They are familiar with the service
and able to find alternative public transit routes during the
incident. Passengers who live in high household income areas
and have high max single added value are less likely to
choose CTA. Note that both of these two variables are used
as proxies for high income. Hence, their choice of other
options may be because they can afford alternative modes of
transportation (such as Uber/Lyft). Passengers with reduced
fare status are more likely to use CTA services. The reason
may be that reduced fare status users are usually students,
seniors, and disabled people likely on limited incomes. They
usually rely primarily on CTA to travel. OD-based redun-
dancy has a positive impact on choosing CTA, which is as
expected because higher redundancy indicates better alterna-
tive public transit services. Another interesting result is that
passengers with destinations in the downtown area are less
likely to use CTA. This may be because these passengers
were going to work and they have a higher motivation to
arrive on time, thus changing to alternative modes (such as
Uber/Lyft).
We also evaluate the sensitivity of the probability of

choosing CTA with respect to the OD-based redundancy
(Figure 20). The probabilities in Figure 20 are calculated by
fixing the remaining variables to the corresponding sample
means. Similar to the results above, low-income passengers
have a higher probability of using CTA than that of high
income, and the difference increases with the increase in
redundancy. This implies that low-income passengers have
higher elasticity with respect to redundancy. Assuming OD-
based redundancy equal to 0.5, a 1% increase in OD-based
redundancy can lead to a 0.03% increase in the probability
of choosing CTA for high-income passengers, and a 0.11%
increase for low-income passengers.
Understanding the impact of demographics on travel mode

choices is helpful for transit operators to customize their
operation strategies during the incident. For example, as low-
income passengers are more likely to use CTA during the
incident, alternative services can be provided to serve low-
income areas first.
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FIGURE 20. Impact of OD-based redundancy for passengers living in high and
low-income areas.

VI. CONCLUSION AND DISCUSSION
A. CONCLUSION
This study proposes a general incident analysis framework
both from the supply and demand sides using automatically-
collected data (AFC and AVL) in public transit systems.
Specifically, from the supply side, we propose an incident-
based network redundancy index (NRUI) to analyze the
network’s ability to provide alternative services under a spe-
cific rail disruption. The impacts on service operations are
analyzed through the headway changes. From the demand
side, we calculate the demand changes at different rail
lines, rail stations, bus routes, and bus stops to understand
the passenger flow redistribution under incidents. Individual
behavior is analyzed using a binary logit model based on
inferred passengers’ mode choices and socio-demographics
inferred from AFC and sale transaction data. Two incidents
in the CTA public transit system are selected as case stud-
ies of different characteristics, one at the location with high
network redundancy and the other low. Methodologically,
the paper contributes to the literature with the new proposed
redundancy index and the individual model choice analysis
approach. Practically, the paper’s contributions include the
development of an incident analysis framework with AFC
and AVL data and the empirical application of the framework
to two real-world incidents in the CTA system.
Results show that the service frequency of the incident

line was largely reduced (by 30%∼70%) during the inci-
dent time. Nearby lines with substitutional functions are also
slightly affected. Redundancy analysis shows that only a few
CTA stations have high incident frequency and low redun-
dancy, which need adequate incident management strategies.
Depending on the incident location, the network’s redun-
dancies and the passengers’ behavior are varied. In the low
redundancy case, most of the passengers chose to use nearby
buses to travel further, either to their destinations or to the
nearby rail lines. In the high redundancy case, most of the
passengers transferred directly to nearby bus or rail lines.
The results of the individual analysis show that the increase
in network redundancy can increase the probability of using
transit during disruptions. This effect is more prominent for
low-income passengers.

B. LIMITATION AND FUTURE STUDIES
Some limitations and associated future studies of this paper
are discussed as follows. First, we define the NRUI with
a fixed vehicle capacity Cp. This may overestimate the
network’s redundancy due to ignoring the utilized capacity
by onboard passengers. Actually, Cp can be defined as the
“available capacity” for future studies. In this way, the NRUI
can capture the impact of demand. The “available capac-
ity” can be captured for the specific day of the incident
using automated passenger counting (APC) data, weight-
ing sensors, visual monitoring data, or transit assignment
model [19]. Second, the limitation of the individual-level
analysis is that only a subset of passengers (i.e., regular
passengers) can be analyzed, which may not be representa-
tive of the system. Future studies may construct models to
predict the relationship between aggregate passenger demand
and incidents [46]. This requires the data of many incident
cases and associated demand information. Third, in the indi-
vidual analysis, users’ socio-demographics are proxied by
other variables (such as trip characteristics and the household
median income of the home location). These proxy measures
may suffer from errors and do not reflect an individual’s
actual demographics. Future studies may combine AFC and
survey data to cross-validate the conclusion of individual
analysis. Fourth, as this study only focuses on long-term
incidents, future studies may design an analysis framework
for short-term disruptions. The main difference would be that
most passengers will choose to wait. Identifying delays may
be more important than inferring passenger behaviors for
short-term incidents. Last, this study only considers demand
analysis for shuttle buses. Since shuttle buses are usually
retracted buses from regular buses, they may affect the
system’s supply (especially those bus routes being retracted).
Future studies can analyze the supply impact with associated
operation data.

C. POLICY IMPLICATIONS AND SUGGESTIONS
The results of the case study provide useful insights into
operations when dealing with incidents. We summarize the
main policy implications below.
Planning for incident responses using redundancy index:

In Section IV-B, we calculate the NRUI for different sta-
tions by assuming a one-hour track-block incident. The
NRUI can be adapted to different types of incidents, network
blockages, and duration. Based on a graph similar to
Figure 6, transit operators can better plan for future incidents,
such as planning alternative services for low-redundancy
locations, preparing route recommendation strategies for
high-redundancy locations, etc.
Headway management and fleet size adjustment for both

the incident line and nearby lines: In Sections V-A2
and V-B2, we observe that headways increase in both the
incident line and nearby lines. The results suggest that
transferred passengers from the incident line and unusual
operations of the incident line may also affect operations
of nearby lines. More comprehensive headway management
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should be considered during incidents. Besides, operators
can also increase the fleet size (i.e., the number of cars
for each train) to provide higher-capacity services for the
incident and nearby lines during and after the incident.
Provision of timely customer information: The results indi-

cate that passengers tap into the blocked station during
the incident, implying that these passengers are not well
informed. Transit agencies should improve their customer
information delivery during incidents (especially at fare
gates). This can be done through text messaging, Twitter,
in-station signs, station staff, and a variety of other methods
to keep the passenger informed.
Provision of route recommendations during incidents:

During the Blue Line incident, not many passengers use
the Green Line, although it is a good alternative (see
Section V-B3). This suggests that passengers may not act
rationally, or they lack knowledge about the available alterna-
tives. Providing route recommendations to passengers during
the incident can increase the utilization of alternative services
and improve the level of service.
Data-driven methods to design alternative services: The

analysis provides a better understanding of how passengers
move and the alternatives they may choose, based on which
operators can better allocate available buses or trains. For
example, most passengers used Bus Route 56 as a substitu-
tional service during the Blue Line incident (Section V-B3).
CTA may increase the service frequency of these heavily
used routes.
Provision of shuttle services to improve the use of alterna-

tive routes: During the Blue Line incident, one of the reasons
that the Green Line is not fully utilized may be that it is not
directly connected to the Blue Line (Section V-B3). Hence,
CTA may provide shuttle services to connect the Blue and
Green lines to encourage more passengers to follow the rec-
ommendation (note that multiple recommendations should
be provided to avoid overwhelm of a specific line).
Operation adjustment based on demographics: As shown

in Section V-D, passengers with different demographics may
respond differently to the incident. Specifically, low-income
passengers and passengers with reduced fare status more
rely on public transit during incidents. Hence, transit agen-
cies may provide more alternative services to low-income
areas and if possible, provide free rides to reduced-fare-
status users. For high-income areas, transit authorities may
cooperate with transportation network companies (TNC, such
as Uber/Lyft) and ask them to provide more vehicles in
high-income areas (note that traffic congestion should be
considered when TNC’s supply is increased).

APPENDIX
DERIVATION FOR THE LIMIT OF THE THROUGHPUT
Let k∗ be the last trip of path p that can reach the des-
tination during the incident period. Mathematically, k∗ =
argmink{k = 1, 2, . . . , �DI/Hp� | DI − (k − 1)Hp ≤ Lp}.
Therefore, we have

min {DI − (k − 1)Hp,Lp} = Lp ∀k ≤ k∗ (14)

min {DI − (k − 1)Hp,Lp} = DI − (k − 1)Hp
∀k∗ < k ≤ �DI/Hp� (15)

This leads to

lim
DI→∞Ap

= lim
DI→∞

1

DI

�DI/Hp�∑

k=1

min {DI − (k − 1)Hp,Lp}
Lp

· Cp

= lim
DI→∞

k∗∑

k=1

Lp
Lp · DI · Cp

+ lim
DI→∞

�DI/Hp�∑

k=k∗+1

DI − (k − 1)Hp
Lp · DI · Cp

= lim
DI→∞ k∗ 1

DI
· Cp + lim

DI→∞

�DI/Hp�∑

k=k∗+1

DI − (k − 1)Hp
Lp · DI · Cp

(16)

Notice that k∗ → �DI/Hp� as DI → ∞ because when DI
is large enough, almost all trips can reach the destination.
And limDI→∞�DI/Hp� = DI/Hp by definition. Therefore,

lim
DI→∞Ap = limDI→∞

⌊
DI/Hp

⌋ · 1
DI

· Cp + 0 = Cp
Hp

. (17)
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