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Abstract— With millions of people using ride-hailing platforms
for daily travel, estimated time of arrival (ETA) has become
a significant problem in intelligent transportation systems and
attracted considerable attention recently. Deep learning-based
ETA methods have achieved promising results using massive
spatial-temporal data. However, we find that the prediction
accuracy is not satisfactory in practical applications due to the
prevalent data sparsity problems. Instead of focusing on the
average prediction performance as many other methods, this
study aims to alleviate the data sparsity problems in ETA to
enhance user experience. In general, the data sparsity problems
arise from two aspects. The first is the road network, where
many links are only traversed by few floating cars. The second
aspect is drivers, where many drivers’ trajectories are too scarce
(e.g., with only 3 trip records). To alleviate the sparsity in
road network, we propose a Road Network Metric Learning
framework for ETA (RNML-ETA), where an auxiliary metric
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learning task is used to improve the link-embedding, especially
for links with insufficient data. A novel triangle loss is proposed
to improve metric learning effectiveness for links. Experiments
on massive real-world data show that RNML-ETA outperforms
competing methods by promoting the cold links with limited data.
Furthermore, we propose a novel unified framework to Alleviate
Data Sparsity problems in ETA (ADS-ETA) by extending RNML-
ETA with an additional auxiliary task for driver ID embedding.
Results with extensive experiments demonstrate that ADS-ETA
can effectively alleviate the data sparsity problems caused by
road network and driver sparsity.

Index Terms— Estimated time of arrival, data sparsity prob-
lem, metric learning, multi-task learning.

I. INTRODUCTION

INTELLIGENT transportation systems (ITS) are devoted to
explore better transportation options for human beings and

better relationships among users, vehicles and transportation
infrastructures [1], [2], [3]. Estimated time of arrival (ETA)
is one of the most fundamental and challenging problems in
ITS [1], [2], [3]. ETA means predicting the travel time from
an origin location to a destination location along a given route.
A real case of ETA is illustrated in the left part of Fig. 1. ETA
models enable transportation systems to efficiently schedule
vehicles and reduce urban traffic congestion [4]. In recent
years, with the rapid growth of ride-hailing companies such as
Uber and DiDi, ETA has attracted more attention. For example,
route planning, navigation, carpooling, vehicle dispatching,
and scheduling in ride-hailing platforms rely heavily on the
ETA system [5], [6]. Therefore, an accurate and efficient
ETA system is vital for improving the platforms’ operating
performance and enhancing users’ experience.

Existing ETA methods can be roughly divided into two
categories. The first is the additive method. Generally, these
methods split a route into several links and explicitly predict
the travel time for each road segment and each intersection
by adopting different methods [7], [8], [9], [10]. The total
travel time of a route is then calculated by assembling dif-
ferent ingredients’ travel time. These methods are intuitive
and interpretable, but the accumulation of local errors may
easily result in inaccurate predictions. The second is the global
method that formulates ETA as a regression problem and
estimates the overall travel time directly. The methods based
on deep learning [5], [6], [11], [12] can effectively capture the
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Fig. 1. Conceptual demonstration of RNML-ETA and ADS-ETA. The left part shows a real-world example in which the ETA system predicts the travel time
along the route starting from the green pin to the orange pin. The route consists of a sequence of links. To alleviate the road network data sparsity problem,
RNML-ETA transfers the knowledge of hot links to the cold links by metric learning. The links’ similarity is measured using their speed distribution. When,
unfortunately, the driver data is also sparse, ADS-ETA proposes to also transfer the knowledge from dense drivers to sparse drivers sharing similar driving
styles so as to alleviate these two data sparsity problems simultaneously. The auxiliary task for improving the quality of driver embedding is with reference
to [13].

spatial-temporal dependencies in large-scale data and achieve
remarkable prediction performance. As a leading example,
the Wide-Deep-Recurrent model (WDR) [5] jointly trains
the wide, the deep, and the recurrent models to predict the
travel time based on a rich set of input features in real-world
applications. This kind of method avoids the local error accu-
mulation. For deep learning based methods, feature extraction
is needed from the raw trajectory data. Input features for
an ETA model can be categorized as sequential (dynamic
features) and non-sequential features (static features). In this
paper, (1) sequential features consist of link ID, link length,
and the estimated link travel speed (road condition); (2) non-
sequential features include the time of the day, driver ID, and
the day of the week.

In terms of the average estimation accuracy, deep learning-
based methods, such as WDR, have made tremendous progress
and perform effectively in practices [5]. Nevertheless, the
accuracy is not satisfactory when there are data sparsity
problems, which commonly exist in many real-world appli-
cations but have not been solved in the existing literature.
In the online ride-hailing application, increasing prediction
performance under data sparsity can enhance the experience of
passengers evidently. Data sparsity problems in ETA mainly
involve the following two aspects:

1) Driver Data Sparsity. Personalized driver information is
one of the key features for ETA. It has been experimen-
tally validated that embedding driver ID (i.e., personal-
ized information) can significantly improve the precision
of ETA [13]. However, since many drivers are part-time
or new, their trajectory data is scarce, resulting in poor
performance in forecasting [13];

2) Road Network Data Sparsity. Though ride-hailing plat-
forms collect millions of trajectories per day in the
real world, many links (i.e., road segments) still have a
limited number of passing cars. This sparsity may result
in an inaccurate estimation of travel time.

In a deep learning-based ETA system, the road network infor-
mation is usually captured by the link-embedding vectors [14],
[15], [16], where each link-embedding vector effectively
encodes the semantic information through iterative training
under a premise of sufficient data. We name links covered by
few (or even zero in very rare cases) trajectories and sufficient
trajectories as cold links and hot links, respectively. In the
current deep learning-based ETA system, embedding vectors
of cold links are easy to be under-fitting. Thus, for a trajectory
that contains many cold links, the ETA prediction accuracy
will drop significantly.

In this paper, we present a novel RNML-ETA to alleviate the
road network sparsity problem. RNML-ETA adopts the multi-
task learning (MTL) framework [17] where the link embedding
is shared and learned jointly. For the main task, it refers to
the Wide-Deep-Recurrent (WDR) [5] to estimate the travel
time. What is different is that the auxiliary task is a specially
designed road network metric learning which transfers the
knowledge of hot links’ patterns into cold links. We also
propose a novel metric learning loss–triangle loss–specially
designed for the links, which learns more precise positional
relationships among links in the embedded space. RNML-
ETA measures the similarity of different links according to
the speed distribution across different times. Through this
metric, links with similar traffic conditions are gathered closer
while the dissimilar links are separated in the embedded
space. Thus, embedding vectors of cold links are effectively
improved with information from other similar hot links. Our
method can effectively make up for the information lack of
cold links and predict more accurately in trajectories with
many cold links. The top half of Fig. 1 shows a conceptual
demonstration of RNML-ETA. Furthermore, we explore a
more difficult situation where the road network and driver
sparsity occur simultaneously, extending RNML-ETA and
proposing a framework named Alleviating Data Sparsity prob-
lems in ETA (ADS-ETA) to deal with such two data sparsity
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problems in a unified way. The conceptual demonstration of
ADS-ETA is shown in Fig. 1. Its core idea is a simultaneous
knowledge transfer for both drivers and links to alleviate the
corresponding data sparsity problems. The superiority of ADS-
ETA is demonstrated through the extensive experiments across
the whole datasets and with driver and road network sparsities.

This paper is an extension of our prior conference
paper [18]. There are additional improvements both in the
method and experiment aspects. The substantively novel
improvement are summarized as follows. (1) We conduct
an extensive experiment, RNML-ETA with our triangle loss
v.s. RNML-ETA with common triplet loss [19], to show the
effectiveness and fast convergence of the proposed triangle
loss function. (2) We extend the road network sparsity problem
to unified data sparsity problems containing road network and
driver sparsities. Furthermore, we propose a framework named
ADS-ETA to alleviate the unified data sparsity problems
in ETA. Extensive experiments on the data from the DiDi
platform are conducted. The experimental results demonstrate
that ADS-ETA further outperforms RNML-ETA significantly
when the road network and driver sparsity problems occur
simultaneously.

In this work, we make the following contributions (including
our prior conference paper) as follows:

• To the best of our knowledge, RNML-ETA is the first
deep learning method that effectively alleviates the data
sparsity problem of the road network, and ADS-ETA is
the first deep learning method that effectively addresses
the data sparsity problems of ETA containing both road
network and driver sparsity.

• We propose a novel metric learning framework to improve
the quality of link-embedding vectors. We utilize the
link traffic speed distribution across different time bins
to construct the link difference matrix to define the link
similarity. The novel triangle loss is designed specifically
for improving the effectiveness of road network metric
learning.

• We evaluated both RNML-ETA and ADS-ETA on mas-
sive real-world datasets with over 100 million trajec-
tories. Experiments demonstrate that both RNML-ETA
and ADS-ETA have significantly better prediction perfor-
mance when two data sparsity problems occur compared
with the competing methods.

We organize the rest of this article as follows. In Section II,
we review the related works of ETA and metric learning.
In Section III, we present the detailed descriptions of RNML-
ETA and ADS-ETA. In Section IV, we analyze the experi-
mental results on the large-scale vehicle travel datasets from
the DiDi platform. In Section V, we conclude this paper and
discuss the future work.

II. RELATED WORK

A. Estimated Time of Arrival

As one of ITS’s crucial tasks, ETA attracts widespread
interest in both academic and industrial communities. Except
for a few works [20], [21], [22] focusing on the prediction
of ETA distribution, the studies of ETA are dedicated to the
precise estimation of the individual time value. The methods
of solving the ETA problem can be roughly divided into two
categories.

The first category is the additive methods. These methods
focus on predicting each link’s travel time and the delay time
at intersections that the route passes. Then, all the time of
links and intersections is summed over to obtain the final
ETA result for the trajectory. Methods for predicting the time
of ingredients are rule-based methods or machine learning-
based ones. A simple rule-based method is dividing the length
of the link by real-time traffic speed provided by a traffic
monitoring service. Although it is difficult to achieve accurate
results in dynamic traffic systems, this method is popular
in the industry because of its simplicity and fast inference.
Various machine learning-based methods, such as dynamic
Bayesian network [8], least-square minimization [23], pattern
matching [9], gradient boosted regression tree [10] are adopted
to capture spatial-temporal dependencies to estimate the time
of ingredients. These methods obtain more accurate ETA
results than rule-based ones. However, there is no specific
strategy dealing with data sparsity problems. Wang et al. [7]
discuss the road network sparsity problem that a part of links
are traversed by too few trajectories. PTTE [7] is proposed to
represent the trips as a tensor and utilize tensor decomposition
to complete the missing values. However, alleviating the road
network sparsity problem is still a challenging problem for
ETA, and PTTE is not skilled in taking advantage of big
data. As far as we know, before our previous conference
paper [18], there is no method that can simultaneously leverage
deep learning to capture spatial-temporal dependencies given
massive data and effectively alleviate the road network data
sparsity problem.

The second category is the global methods. These methods
take the ETA problem as a whole and directly estimate the
overall travel time given the route. Relatively early approaches
use traditional machine learning-based methods to mine the
spatial-temporal correlations for predicting ETA. For instance,
TEMP [24] is a simple ETA method based on nearest neighbor
as well as cyclical traffic conditions without the given route
information. Yuan et al. [20] construct a time-dependent land-
mark graph to model driver intelligence, and the travel time
distribution between two landmarks is predicted by variance-
entropy-based clustering. Recently, due to the bloom of deep
learning [11], [25], [26], many scholars apply deep neural
network to the field of ITS, such as traffic forecasting [27],
[28], [29], [30], [31]. Besides, several deep learning-based
ETA methods are also put forward from different perspectives.
Li et al. [12] also investigate the origin-destination ETA
problem which is similar to [24] by proposing MURAT [12].
To reduce the accuracy gap, they adopt the deep residual
network with graph embedding to preserve underlying road
network information. Wang et al. [6] propose a Geo-Conv
layer for transforming the longitude and latitude of raw GPS
location points to feature maps encoding the local spatial
correlations. Then the standard LSTM [32] is used to learn
the sequential dependencies of the feature maps. Before the
vehicle’s departure, the GPS points cannot be obtained, which
leads to limitations in real applications. At the inference stage,
generating appropriate pseudo-GPS points given a planned
route becomes a challenging issue. Wang et al. [5] present
a Wide-Deep-Recurrent (WDR) model which jointly trains
wide linear model, deep neural network, and LSTM to make
good use of non-sequential features and sequential features
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purposefully. The wide module and the deep module can
effectively and comprehensively extract non-sequential fea-
tures from two angles. However, the above two modules are
not adept at capturing the local information of sequential
features corresponding to each link [5]. Thus, Wang et al. [5]
add the recurrent module to deal with sequential features.
The recurrent module is a standard LSTM and completes
the task of learning the sequential dependencies between
different links. Applying appropriate modules to different
features is the key to achieving satisfactory ETA prediction
performance. WDR is selected as the primary baseline in this
paper for it is one of the state-of-the-art methods and can be
deployed on the platform. The authors of [33], [34] transform
the spatial information into the image sequence and adopt
a convolutional neural network to mine spatial correlations
for ETA. Besides the prediction accuracy, some works [35],
[36] recently begin to focus on the inference speed of deep
learning-based ETA systems for ensuring the efficiency of
practical applications. Most deep learning-based ETA methods
adopt the embedding technique to represent the geographical
elements of the road network, such as the link embedding
in [5], [12], and the grid embedding in [37]. The embedding of
geographical elements suffers from the road network sparsity
problem even in big data. We propose RNML-ETA to alleviate
this problem purposefully. The driving style information is
also usually added to the ETA system through the embedding
vector of driverID [5], [6], [12] and the driver data sparsity
problem is discussed and alleviated in [13]. An interesting
and challenging problem is how to effectively deal with these
two sparsity problems in the ETA system concurrently? A
related research subfield is the data imputing on the traffic
flow prediction task [38], [39], [40]. Tan et al. [38] introduce
the tensor pattern in order to model the traffic data and
present a tensor decomposition-based method for imputation.
Li et al. [39] extend the probabilistic principal component
analysis based imputing method through considering temporal
as well as spatial dependence appropriately. The data sparsity
problems in ETA are different from the scenario of missing
values on the traffic flow prediction task. Therefore, the novel
and systematic method, proposed ADS-ETA has some degree
of research significance.

B. Metric Learning

Metric learning aims to learn a representation function that
maps objects into an embedded space where the distance could
preserve the samples’ similarity. Intuitively speaking, similar
samples get close and dissimilar samples get far away. Early
methods adopt kernel approaches as a bridge to allow the
linear projection to have access to dealing with non-linear
characteristics of real-world problems [41]. Deep network-
based metric learning methods with activation functions are
proved to be more effective in recent years [41] and achieve
great success in many fields, especially in computer vision.
Loss functions that are also known as objective functions are
essential for metric learning, and various loss functions are
proposed. For example, the contrastive loss [42] guides the
objects from the same class to be mapped to the same point
and those from different classes to be mapped to different
points whose distances are larger than a margin. Triplet
loss [19] requires the distance between the anchor sample and

the positive sample to be smaller than the distance between
the anchor sample and the negative sample by a small margin.
Triplet loss is famous for its success in face recognition and
clustering. The case with one positive sample and multiple
negative samples is extended in [43]. Metric learning often
suffers from slow convergence, partially because the loss only
captures limited interaction in one update. For instance, in one
update of triplet loss, it is meaningless whether the distance
between negative and positive is larger than the distance
between negative and anchor. In this paper, for metric learning
of links, we make good use of the characteristic that the
speed distribution similarity distance of any two links can be
meaningfully measured to realize more interactions and faster
convergence.

III. METHODOLOGY

A road network consists of a set of links {l = 1, 2, · · · , M},
where M is the total number of links in the network, and l
is the link ID ranging from 1 to M . A trajectory is a path
composed of a series of links connected end to end. The
definition of ETA learning is introduced as follows.

Definition 1 (ETA Learning): Suppose we have a collection
of historical trajectories {si , ei , di , pi }N

i=1, where N stands for
the total number of trajectories, si is trajectory i ’s departure
time, ei is the arriving time, di is the associated driver ID
and pi is the travel path for i -th trajectory. Our goal is
to fit a model that can predict the travel time y �

i given the
departure time (the time slice in a day and the day of the
week), the driver ID, and the travel path information. The
ground-truth travel time yi can be computed as yi = ei − si .
The travel path pi is represented as a sequence of links pi =
{li1, li2, · · · , liTi }, where li j is the j -th link in path pi and Ti
is the total number of links for pi . After the feature extraction,
the sequential features, i.e., the travel path information include
link ID, link length, and the estimated link travel speed.

In this section, we elaborate RNML-ETA and ADS-
ETA. The following subsections are organized as follows.
Firstly, we introduce the overall framework of RNML-ETA in
subsection III-A. Then, we give the measurement of link
similarity in subsection III-B and introduce the triangle
loss for links’ metric learning in subsection III-C. Finally,
we extend RNML-ETA to the framework of ADS-ETA in
subsection III-D.

A. Overall Framework of RNML-ETA

The overall framework of RNML-ETA is visualized in
Fig. 2. It contains two parts: the main task and the road
network metric learning task (i.e., the auxiliary task 2 in the
figure).

We first introduce the workflow of the main task which is
the backbone task for predicting the travel time. Inputs for
this part are features extracted from the raw trajectories [18].
They can be categorized as sequential features and non-
sequential features. Sequential features are composed of a
series of link features along the trajectory, including link ID,
link length, and link travel speed, where the link travel speed is
estimated by averaging the floating cars’ speed within the latest
10-minute window to reflect the link’s traffic condition. The
non-sequential features correspond to each trajectory, includ-
ing the time slice in a day (every 5 minutes), driver ID,
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Fig. 2. The overall architecture of RNML-ETA and ADS-ETA. ADS-ETA contains three components: (1) the main task: mining the spatial-temporal
dependencies from different category features; (2) the auxiliary task 1: to improve the quality of driver embedding vectors by combining the information of
sparse drivers and dense drivers [13]; (3) the auxiliary task 2: Road Network Metric Learning task in order to improve the quality of link embedding vectors.
RNML-ETA could be considered as a special case of ADS-ETA when only containing the main task as well as the auxiliary task 2, i.e., β1 = 0.

and the day of the week. Both link IDs and driver IDs are
embedded into vectors to encode the semantic information
in a data-driven way. For example, in an embedding table
EL ∈ R

20×M , the li j -th column EL(:, li j ) is served as the
distributional representation of link li j .

The Wide-Deep-Recurrent (WDR) model is adopted to deal
with the mentioned input features in the main task [5], which
is one of the state-of-the-art ETA models and is widely
deployed in practical scenarios. The model contains the wide
module, the deep module, and the recurrent module. The wide
module constructs a second-order cross-product and an affine
transformation for the non-sequential features, and the deep
module also learns patterns from the non-sequential features.
The deep module uses the embedding technology followed
by the Multi-Layer Perceptron (MLP) after the concatenating
operation. In our experiments, the dimension of the embedded
space for all non-sequential features is 20. The hidden state
size of MLP is 128 and we choose ReLU [25] as the
activation function for the MLP. The recurrent module is
the critical module for automatically learning and reserving
the sequential dependencies between different trajectory links.
Here Long-Short Term Memory network (LSTM) [32] is
chosen as the feature extractor for the concatenated sequential
features. The hidden state and memory cells of LSTM in our
experiments are initialized as zeros, and the hidden state size
is 128. Finally, the outputs of the wide and deep modules

and the last hidden state of the LSTM are concatenated as
the predictor’s input to estimate the travel time y �

i , where the
predictor is an MLP with a hidden state size of 128 in our
paper.

The parameters of the main task are trained under the Mean
Absolute Percentage Error (MAPE) loss:

Lmain = 1

N

N�
i=1

��yi − y �
i

��
yi

, (1)

where yi is the ground-truth travel time. In line with the
users’ tolerance, MAPE it is relative and reasonable for the
trips of different lengths. Thus, MAPE is popularly adopted
as the objective function and evaluation metric for the research
of ETA.

RNML-ETA introduces the auxiliary task 2 under MTL
framework, as shown in Fig. 2. The function of auxiliary
task 2 is to improve the link embedding quality of cold links
to effectively alleviate the road network sparsity problem,
which is discussed in section I. Due to the fact that link
ID embedding is constantly and iteratively updated during
the training process, it is well suited to be the object for
applying metric learning. More specifically, we leverage the
metric learning to reduce the distance between cold links and
similar hot links in the embedded space. In such a manner,
the knowledge, i.e., road network patterns of hot links are
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transferred to the cold links. The objective function of RNML-
ETA is:

L RN M L = (1 − β2) · Lmain + β2 · Laux2, (2)

where β2 is a hyper-parameter to balance the trade-off between
the main task and the auxiliary task 2. More detailed process
of this auxiliary task will be introduced in the following
subsections.

B. Link Similarity

The first step is to define the link similarity for auxiliary
task 2. The distribution of travel speed across different times
is adopted to depict the traffic characteristic of the link. For
each day, a series of time bins {τ1, τ2, · · · , τK } is constructed.
These time bins satisfy the following conditions:

τi ∩ τ j = ∅, ∀i �= j (3)

τ1 ∪ τ2 ∪ · · · ∪ τK = 24 hours (4)

Then, we statistic the average travel speed for link l and time
bin τk by computing:

v̄k(l) = 1

Z

N�
i=1

Ti�
j=1

vi j Isi ∈τk Ili j =l ,

Z =
N�

i=1

Ti�
j=1

Isi∈τk Ili j =l , (5)

where vi j is the travel speed feature of j -th link in i -th trip,
and Icond is an indicator that Icond = 1 if cond is satisfied and
Icond = 0 otherwise. Intuitively, we find a subset of the link
l’s travel speed features by selecting those whose departure
time belongs to the time bin τk , and then compute the average
on the subset. In this work, we retain three-time bins, which
represent the morning peak (τ1 is from 5 a.m to 11 a.m), the
evening peak (τ2 is from 4 p.m to 10 p.m), and the off-peak
time (τ3 takes the remaining hours).

We further scale the speeds to be within [0, 1] by applying�vk(l) = (v̄k(l) − a)/(b − a), where a and b are the minimum
and maximum of {v̄k(l), k = 1 · · · K , l = 1 · · · M}. We finally
get a normalized speed histogram of link l:�v(l) = [�v1(l), �v2(l), �v3(l)]T . (6)

The link difference matrix Q ∈ R
M×M can be computed as

follows:
Qij = Q ji = 	�v(i) −�v( j)	2, (7)

where Qij is the element of Q measuring the difference
between links with ID=i and ID= j . A smaller difference
means a larger similarity. The proposed link similarity reflects
the traffic patterns appropriately but does not need any extra
information.

C. Triangle Loss

We also propose a novel metric learning loss function,
triangle loss, for the link metric learning. Triangle loss is based
on the triplet loss [19] while solving its weakness that the
interaction is limited in one update. Unlike the triplet loss with
only one restriction, our triangle loss has three restrictions by

Fig. 3. The visualized demonstration of the triangle formed by the link
distances. The order of the triangle’s edge lengths should satisfy the relation
in Eq. 8.

taking turns as the anchor. Furthermore, our triangle loss is
more effective in improving the ETA accuracy and converges
faster. We introduce the triangle loss as follows.

Suppose we have three links with ID=li , l j , lk and the
corresponding differences Qli l j , Ql j lk and Qli lk , without loss
of generality, we assume:

Qli l j < Ql j lk < Qli lk . (8)

We then compute the euclidean distances between the
pair-wise embedding vectors of link li , l j and lk ,⎧⎪⎨⎪⎩

Dli l j = 	�EL(:, li ) − �EL(:, l j )	2

Dli lk = 	�EL(:, li ) − �EL(:, lk)	2

Dlkl j = 	�EL(:, lk) − �EL(:, l j )	2

(9)

where �EL(:, li ) = EL(:, li )/	EL(:, li )	2 is the L2 normalized
embedding vector. The three distances Dli l j , Dl j lk and Dli lk
forms a triangle. We aims to restrict the lengths of the triangle
edges to be in the same order as in Eq. 8, which derives three
inequations:

D2
li l j

+ α1 < D2
l j lk ,

D2
li l j

+ α2 < D2
li lk ,

D2
l j lk + α3 < D2

li lk (10)

where α1, α2 and α3 are required margins. The distances forms
a triangle and the visualized demonstration is shown in Fig. 3.
The triangle loss is in the form of:

Laux2 = 1

U

�
li ,l j ,lk

	
γ1



D2

li l j
− D2

l j lk + α1

�
+

+ γ2



D2

li l j
− D2

li lk + α2

�
+

+ γ3



D2

l j lk − D2
li lk + α3

�
+

�
, (11)

where the operator [x]+ = max(x, 0) and U is the number
of possible triangles in the training set, γ1, γ2 and γ3 are
hyper-parameters to adjust the weights of the three distance
relationships. For a mini-batch of trajectories, we compute the
auxiliary loss by randomly combining triangles with all the
links in the trajectories. In practice, the in-place construction is
needed after getting an initialized triangle. More specifically,
in the triangle, the point whose opposite side is the largest
should be l j . Analogously, the point whose opposite side is
the smallest should be lk and the point whose opposite side is
the middle edge should be li .
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D. Framework of ADS-ETA

We next introduce the model framework of ADS-ETA.
ADS-ETA is proposed to deal with a more difficult situation
where driver and road network sparsity problems occur simul-
taneously. In this situation, the driver preference information
and the link information of the road network are scarce at
the same time. Therefore, we propose this unified framework
under the MTL paradigm by constructing two auxiliary tasks
to improve the driver and link embedding vectors, respectively.
As shown in Fig. 2, ADS-ETA consists of three tasks: the main
task, the auxiliary task 1, and the auxiliary task 2. The main
task is introduced in detail in Section III-A, which captures
spatial-temporal dependencies from a variety of features and
gives the final ETA results, the auxiliary task 1 is to transfer the
knowledge from dense drivers to sparse drivers, and auxiliary
task 2 is for the metric learning of road network which is
the same as that of RNML-ETA. RNML-ETA concentrating
on alleviating the road network sparsity problem is also the
special edition (β1 = 0) of the unified framework, ADS-ETA.

As illustrated in the lower third of Fig. 2, we adopt
the auxiliary task of CoDriver ETA [13] to accomplish the
auxiliary task 1. The workflow is briefly introduced as follows.
Firstly, the driving style statistics that are done offline do not
take up model training time. The average speed of one driver
across the whole training dataset is adopted to measure the
two drivers’ similarities. Secondly, the triplet network [19]
is adapted from face recognition and clustering to make
drivers with similar driving styles closer and make drivers
with different driving styles farther in the embedded space.
The random driver triplets are generated in a batch manner, and
the in-place construction involves a conditional branch judging
whether to exchange samples in the positive and negative mini-
batches [13]. Thirdly, the L2 row normalization result of driver
embedding table �Ed is used to construct the improved triplet
loss [13]:

Laux1 = 1

N

N�
i=1

[	�Ed(x (a)
i , :) − �Ed(x (p)

i , :)	2
2

− 	�Ed(x (a)
i , :) − �Ed (x (n)

i , :)	2
2 + α]+, (12)

where the hyper-parameter α controls the driver embedding
distance margin and N is the number of driver triplets which
is also the total trajectory number.

All the model parameters of ADS-ETA are optimized under
the following objective function:
L ADS = (1 − β1 − β2) · Lmain + β1 · Laux1 + β2 · Laux2,

(13)

where the hyper-parameter β1 and β2 are the weighting coef-
ficients of auxiliary task 1 and auxiliary task 2 respectively.
In such a manner, the embedding vectors of sparse driver and
cold link are improved concurrently and ADS-ETA effectively
alleviate the driver and road network data sparsity problems
simultaneously.

IV. EXPERIMENT

We conduct an extensive experimental verification based on
large-scale real-world datasets collected from the DiDi plat-
form. The datasets, competing methods, evaluation metrics,

TABLE I

STATISTICS OF DATASETS

Fig. 4. Statistics of link coverage frequency. For both pickup and trip datasets,
the links concentrate on the bands with small number of traversing trajectories.

implementation details, experimental results, and analysis are
presented in the following subsections.

A. Dataset

We collected massive floating car trajectories of one city
in 2018 from the DiDi platform. All data is anonymized and
aggregated for privacy concerns. These trajectories are split
into pickup and trip datasets according to the driver’s working
status. A pickup trajectory starts when a driver responds to
a passenger’s request and ends when he/she picks up the
passenger. A trip trajectory starts when a passenger gets on
board and ends when he/she reaches the destination. For
each trajectory order, the ground-truth value of travel time
is computed as the arrival time minus the departure time. For
each dataset, we use the first 25 weeks of data as the training
set. The data of the 26-th week is treated as the validation
set and that of the 27-th week as the test set. We remove the
outliers with extremely short travel time (<60s) and extremely
high average speed (>120km/h). Datasets are summarized
in Table I.

A road network consists of various links in the real world,
such as private community road links, local street links, and
urban freeway links. Even though we have collected massive
trajectories with more than 100M and cross over a half year,
there is still a significant number of cold links with only a few
trajectories covered. The histogram of link coverage frequency
is plotted in Fig. 4 to demonstrate the sparsity problem. The
median coverage frequencies of links are 42 on pickup and
69 on trip.

B. Competing Methods and Evaluation Metrics

We compare RNML-ETA and the extended version ADS-
ETA with the following benchmark methods:

• Route-ETA: is a representative and straightforward
method in industrial applications. It directly sums up
the predicted travel time for each link and each inter-
section. Each link’s travel time is estimated by dividing
the link length by the link travel speed, and the time
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of each intersection is mined from the historical data.
The biggest advantage of Route-ETA is the fast infer-
ence speed. However, the accuracy is often much worse
than deep learning-based methods. We only choose this
non-deep learning method as a representative. Other non-
deep learning methods, such as PTTE [7], GBDT [5],
TEMP [24] are also verified to be inferior to deep
learning-based methods by [5].

• WDR [5]: is one of the state-of-the-art and most popular
industry methods in terms of prediction performance
for ETA. This method uses non-sequential and sequential
features by combining the wide model, the deep model,
and the recurrent model. It has been tested online in
large-scale application scenarios and shows excellent per-
formance [5].

• WDR-no-link-emb: is the WDR without embedding
link ID. We use this model to demonstrate link embedding
vectors’ contribution where the RNML-ETA and ADS-
ETA aim to improve.

• RNML-ETA-triplet: is the method replacing the auxiliary
task’s loss in our RNML-ETA with triplet loss [19].
We use it to demonstrate the effectiveness of our proposed
triangle loss.

To compare the prediction performance of different meth-
ods, we introduce three widely used metrics: the Mean
Absolute Percentage Error (MAPE), Mean Absolute Error
(MAE), and Root Mean Square Error (RMSE). MAPE is
relative to the ground truth travel time, thus leading to the
objective measurement regarding the long and short trajecto-
ries. It also works as the loss function of the main task. MAE
and RMSE are two other important and popular metrics to
evaluate the performance of prediction tasks in ITS. They are
formulated as follows:

MAPE = 1

N

N�
i=1

��yi − y �
i

��
yi

, (14)

MAE = 1

N

N�
i=1

��yi − y �
i

��, (15)

RMSE =



1

N

N�
i=1

�
yi − y �

i

�2

�1/2

, (16)

where yi and y �
i are the ground truth travel time and estimated

time, respectively, and N is the number of samples.

C. Implementation Details

All the deep learning-based methods, i.e., WDR, WDR-no-
link-emb, RNML-ETA and ADS-ETA are implemented in
PyTorch [44]. They are trained and tested on a single NVIDIA
Tesla P40 GPU. The mini-batch size and the maximal iteration
number are set as 256 and 7 million, respectively. The hyper-
parameters of RNML-ETA and ADS-ETA are selected on
the validation set. For RNML-ETA, we use margins α1 =
α3 = 0.005, α2 = 0.02 and weights γ1 = γ3 = 0.3,
γ2 = 0.4 in the triangle loss for both pickup and trip datasets.
The task weight β2 is 0.52 for pickup and 0.35 for trip. For
ADS-ETA, the weights of two auxiliary tasks are β1 = 0.2,
β2 = 0.35 for pickup and β1 = 0.25, β2 = 0.2 for trip.
In the auxiliary task 1, the margin α is 0.01 for both pickup

TABLE II

RESULTS OF THE PICKUP DATASET

TABLE III

RESULTS OF THE TRIP DATASET

and trip datasets. In the auxiliary task 2, the margins and
weights in the triangle loss are the same as those of RNML-
ETA. All the parameters, such as the MLP weights and
the embedding vectors, are jointly trained using Adam [45]
optimizer, which is a stochastic gradient descending method.
Adam can adaptively adjust the step size according to the
historical gradients and thus accelerate the convergence. The
initial learning rate is set to 0.0002.

D. Experimental Results and Analysis

1) Competing Results of the Overall Precision: We list
three evaluate metrics of different approaches corresponding
to the pickup data and the trip data in Table II and Table III,
respectively. The results and analysis in terms of the overall
precision are described as follows. (1) The best scores marked
with bold font are all obtained by our methods, i.e., RNML-
ETA and ADS-ETA. (2) The metric learning task for links
improves the quality of link embedding leading to a more
accurate ETA by comparing WDR and RNML-ETA. In our
experiment, RNML-ETA relatively reduces 2.62% RMSE on
pickup data and 1.19% MAPE on trip data compared with
WDR which is one of the state-of-the-art methods. (3) ADS-
ETA is superior to the WDR and similar to RNML-ETA in
terms of three metrics on two datasets. (4) RNML-ETA is
better than RNML-ETA-triplet on all three metrics except
RMSE on trip data. In terms of MAPE, RNML-ETA makes a
relatively 0.64% improvement on pickup data and a relatively
0.55% improvement on trip data compared to RNML-ETA-
triplet. These results demonstrate the effectiveness of trian-
gle loss on link metric learning compared to the common
triplet loss. (5) The link embedding technique’s importance
is demonstrated by comparing the WDR and the WDR-no-
link-emb. Through link embedding, the WDR realizes relative
7.0% and 7.9% reduction regarding to MAPE on pickup and
trip data, respectively. (6) Rule-based Route-ETA is inferior
to deep learning-based methods in terms of all the metrics.

2) Road Network Sparsity Problem: Experiments using a
series of subset data with cold links from the whole dataset
are conducted to illustrate the road network sparsity problem.
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Fig. 5. Experimental results when road network data sparsity problem occurs with different link coverage levels. For a threshold δl , we keep the trajectory
that at least 25% of the contained links have coverage frequencies less than δl . The 6 subfigures stand for (a) MAPE on pickup data, (b) MAPE on trip data,
(c) MAE on pickup data, (d) MAE on trip data, (e) RMSE on pickup data and (f) RMSE on trip data.

Each subset contains trajectories of which at least 25% links
have coverage trajectory orders less than a threshold δl .
Varying δl from 50 to 500 on pickup data and from 300 to
750 on trip data in a step size 50, we obtain ten subsets
for each dataset. A lower δl represents a more serious road
network sparsity problem. Three metrics in the test phase of
RNML-ETA, ADS-ETA, and other baselines are recorded, and
the curves are displayed in Fig. 5.

The comparison results and analysis in the scene of the road
network sparsity problem are presented below. (1) The road
network sparsity problem makes the prediction accuracy of
different methods drop compared with their overall accuracy,
which illustrates the significance of addressing the road net-
work sparsity problem. (2) As δl decreases, which represents
the degree of road network sparsity increases, all the methods
perform worse. (3) Compared with all baselines, RNML-
ETA and ADS-ETA are superior significantly in all sparse
subsets. For example, on pickup data, ADS-ETA relatively
improves [4.04%, 9.66%] on MAPE and [6.05%, 11.52%] on
MAE compared with the WDR. On trip data, RNML-ETA
relatively improves [1.73%, 1.99%] and [2.10%, 2.73%] in
terms of MAPE and MAE, respectively. These improvements
demonstrate the effectiveness of RNML-ETA and ADS-ETA
in alleviating the road network sparsity problem. (4) In
Fig. 5, ADS-ETA and RNML-ETA are marked by circles
with dark yellow and red, respectively. On pickup data, the
curves of ADS-ETA have a similar and slightly lower trend
compared with RNML-ETA. The curves of ADS-ETA are
close to those of RNML-ETA on trip data. These results show

that ADS-ETA and RNML-ETA perform similarly when han-
dling the road network data sparsity problem.

3) Both Data Sparsity Problems: In real-world applications,
scenarios with both road network and driver sparsities are also
common. Prediction performances of different ETA models
on the trajectories with sparse drivers and many cold links
can reflect their ability to deal with such scenarios. A series
of sparse subsets from the test dataset of the pickup data
are selected to demonstrate the superiority of ADS-ETA in
alleviating scenarios containing both sparsity problems. For
each subset, the sparsity is restricted by a pair of thresholds,
i.e., (δd , δl). The driver’s maximum coverage frequency is
less than δd , and trajectories have at least 25% of links with
coverage frequencies less than δl . δd varies from 90 to 230 with
an interval of 20, and δl varies from 150 to 500 with an
interval of 50. Then, we obtain eight subsets, and they are used
to test the effectiveness of different methods under different
degrees of sparsity. The competing methods are WDR [5],
CoDriver ETA [13] and RNML-ETA. The latter two methods
have ever been adept in dealing with the scenario either with
driver sparsity or road network sparsity. We test all models
on all eight subsets with three metrics, i.e., MAPE, MAE,
RMSE. Results are reported in Table IV, Table V and Table VI,
respectively. Fig. 6 gives an intuitive bar chart to illustrate the
performances of different approaches.

We summarize and analyze the results from the Table IV,
Table V, Table VI and Fig. 6 as follows. (1) When the driver
data sparsity problem and the road network sparsity problem
co-occur, the ETA system’s prediction performance drops a lot,
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Fig. 6. Fine grained experimental result comparison when two data sparsity problems appear simultaneously. The experiment are conducted on different
coverage levels of driver and link. ADS-ETA is obviously superior to WDR and more accurate than CoDriver ETA and RNML-ETA regarding to all metrics
and all coverage levels. (a) Comparison in terms of MAPE. (b) Comparison in terms of MAE. (c) Comparison in terms of RMSE.

TABLE IV

EXPERIMENTAL RESULT COMPARISON: MAPE (%)
WHEN BOTH DATA SPARSITY PROBLEMS OCCUR

and the drop gap is larger than that with only road network
sparsity. All the metrics of deep learning-based ETA methods,
such as WDR and RNML-ETA, are worse compared with the
scenarios only with the same road network sparsity degree.
Furthermore, as the degree of both sparsity increases, i.e.,
the threshold set values decrease, the gap increases. These
phenomenons demonstrate the necessity to solve such data
sparsity problems in real-world scenarios. (2) The prediction
performances of CoDriver ETA and RNML-ETA are better
than WDR on all metrics. For instance, when the threshold set
is (110, 200), CoDriver ETA and RNML-ETA obtain a relative
7.28% improvement and a 7.82% improvement in terms of
MAPE to the WDR, respectively. This is because CoDriver
ETA and RNML-ETA have effectively alleviated the driver

TABLE V

EXPERIMENTAL RESULT COMPARISON: MAE (SEC)
WHEN BOTH DATA SPARSITY PROBLEMS OCCUR

data sparsity and the road network data sparsity, respectively.
(3) ADS-ETA shows superior estimation ability compared to
both CoDriver ETA and RNML-ETA. For example, when
the threshold set is (110, 200), ADS-ETA obtains a relative
improvement of 11.81%, 4.89% and 4.33% compared to
WDR, CoDriver ETA, and RNML-ETA on MAPE, respec-
tively. The detailed quantitative results demonstrate that ADS-
ETA could effectively alleviate the driver and road network
data sparsity problems simultaneously.

E. Influence of Hyper-Parameter

We explore the influence of RNML-ETA’s hyper-
parameters, and plot the performance curves of pickup data
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TABLE VI

EXPERIMENTAL RESULT COMPARISON: RMSE (SEC)
WHEN BOTH DATA SPARSITY PROBLEMS OCCUR

Fig. 7. The influence of RNML-ETA’s hyper-parameters: (a) for the margin
α2 in the triangle loss, and (b) for the weight β2 balancing the main task
and the auxiliary task for link embedding. Under different hyper-parameters,
RNML-ETA generally outperforms the competitor WDR, which demonstrates
the robustness of RNML-ETA.

in Fig. 7 by varying two representative hyper-parameters, i.e.,
the margin α2 and the weight β2 for auxiliary task 2. The
basic configuration is the same as in section IV-C, namely,
α1 = α3 = 0.005, α2 = 0.02, γ1 = γ3 = 0.3, γ2 = 0.4 and
β2 = 0.52.

The hyper-parameter α2 is a bit more special than α1 and
α3, because it controls the gap between the longest edge and
the shortest edge in the triangle loss. If this restriction is
broken, the model is far from our expected status and needs
a stronger gradient to update the parameters. Usually, we set
α2 > α1 + α3 and the curve in Fig. 7 (a) shows that the
most accurate performance of RNML-ETA is achieved with
a α2 = 0.02. Moreover, RNML-ETA achieves better perfor-
mance than WDR from α2 = 0.001 to 0.1, which demonstrates
that the superiority of RNML-ETA is not sensitive to the
margin hyper-parameter.

The weight β2 is to balance the trade-off between the main
task and the auxiliary task for link embedding. In extreme
cases, RNML-ETA degenerates to WDR if β2 = 0 and
degenerates to a pure metric learning model if β2 = 1.
Fig. 7 (b) shows that the advantage of RNML-ETA over WDR
is robust in a wide range of β2 from 0.2 to 0.7 and that the
best performance is achieved at β2 = 0.52.

F. Convergence Speed Comparison

We also compare the convergence efficiency of the triplet
loss and the proposed triangle loss when serving as the loss
function of the RNML-ETA’s auxiliary task. Fig. 8 shows the
loss function curves versus the training iteration (mini-batch
size = 256) on two datasets. The distance between every two

Fig. 8. The convergence speed comparison in the training phase: triplet loss
v.s. triangle loss. (a) the loss function curves on pickup data, (b) the loss
function curves on trip data.

points on the curve is 20k, and the value of each point is
obtained by averaging the loss values of the last 20k iterations.
From the figures, we could find that the proposed triangle loss
needs fewer iterations to converge. The experimental results
validate that the triangle loss is superior to the triplet loss in
terms of the convergence rate.

V. CONCLUSION AND FUTURE WORK

In this paper, we discuss the impact of the data sparsity
problems in terms of driver and road network information in
the ETA system. A set of solutions are proposed to alleviate
data sparsity problems, which are of great importance for
enhancing user experience. Specifically, we propose a novel
framework RNML-ETA equipped with a novel triangle loss
to alleviate the road network sparsity problem. Furthermore,
we extend RNML-ETA and propose a unified framework
ADS-ETA to effectively alleviate data sparsity problems in
ETA that arise from both road network and driver sparsity.
Extensive experiments on two massive floating-car datasets
from the DiDi platform demonstrate the effectiveness of
RNML-ETA and ADS-ETA. When the road network sparsity
occurs, both RNML-ETA and ADS-ETA significantly improve
the prediction precision compared with the benchmark WDR
model which is one of the state-of-the-art methods in the
literature. When the road network and driver sparsity problems
co-occur, ADS-ETA further outperforms RNML-ETA signifi-
cantly.

There are still many other open questions in ETA. An inter-
esting avenue of research in future work is to explore other
deep-seated problems that hinder the prediction precision of
deep learning-based ETA methods, such as emergencies in the
dynamic traffic system and the long time traffic congestion.
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