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A B S T R A C T

This study proposes a probabilistic framework to infer passengers’ responses to unplanned urban
rail service disruptions using smart card data in tap-in-only public transit systems. We first
identify 19 possible response behaviors that passengers may have based on their decision-
making times and locations (i.e, the stage of their trips when an incident happened), including
transferring to a bus line, canceling trips, waiting, delaying departure time, etc. A probabilistic
model is proposed to estimate the mean and variance of the number of passengers in each of
the 19 behavior groups using passengers’ smart card transactions. The 19 behavioral responses
can be categorized from two aspects. From the behavioral aspect, they can be grouped into
5 aggregated response behaviors including using bus, using rail (changing or not changing
route), not using public transit, and not being affected. The inference of the 19 behaviors can be
classified into four cases based on the information used (historical trips vs. subsequent trips) and
the context of the observed transactions (direct incident-related vs. indirect incident-related).
The public transit system (bus and urban rail) of the Chicago Transit Authority (CTA) is used
as a case study based on a real-world rail disruption incident. The model is applied with both
synthetic data and real-world data. Results with synthetic data show that the proposed approach
can estimate passengers’ behavior well. The mean absolute percentage error (MAPE) for the
estimated expected number of passengers in each behavior group is 20.5%, which outperforms
the rule-based benchmark method (60.3%). The estimation results with real-world data are
consistent with the incident’s context. An indirect model validation method using demand
change information and incident log data demonstrates the reasonableness of the results.

. Introduction

Urban rail transit plays an important role in urban mobility. However, with aging systems, continuous expansion, and near-
apacity operations, service disruptions often occur. Disruptions can range from short-term delays at some stations to shutdowns of
ntire subway lines over an extended period. These incidents may result in delays and cancellation of thousands of trips as well as
conomic and opportunity losses (Cox et al., 2011).

Consequently, there is growing research interest and literature in the area of rail disruption analysis and management. These
fforts can be classified into two types: supply-oriented and demand-oriented (Leng et al., 2018). The supply-oriented research
ocuses on analyzing the network vulnerability and improving network resilience from the supply and operation perspectives. The
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literature in rail transit network vulnerability based on complex network theory is very intensive. It explores the vulnerability of
network topology when some nodes or links of the network are failed. Degree, betweenness, centrality measures, and connectivity
methods are usually used (Derrible and Kennedy, 2010; Zhang et al., 2015; Dimitrov and Ceder, 2016; López et al., 2017). From
the operations point of view, many studies look at adjusting the timetable (Veelenturf et al., 2016), managing rolling stock (Nielsen
et al., 2012), and designing shuttle buses (Jin et al., 2016) during urban rail disruptions to ensure operational feasibility and improve
system efficiency.

Demand-oriented research focuses on understanding and modeling passengers’ behavior under rail disruptions. Transit users’
ehavior can be significantly different in the event of service disruptions and vary depending on the stage of the trip at the time of
he disruption (Lin et al., 2018). A better understanding of passengers’ behavior in the event of disruption is important for operators
o recommend alternative routes, adjust the capacity of rail lines, and provide shuttle services (Adelé et al., 2019). However, nearly
ll of the previous research investigated passenger behavior using survey-based methods (Bai and Kattan, 2014; Teng and Liu, 2015;
urray-Tuite et al., 2014). For example, Lin et al. (2018) used a joint revealed and stated preference (SP) survey to estimate transit

ser mode choice in response to a transit service disruption in the City of Toronto. Rahimi et al. (2020) utilized survey data collected
n the Chicago Metropolitan Area to analyze how transit users respond to unplanned service disruptions and the factors that affect
heir behavior. Survey-based methods are usually time-consuming and labor-intensive. Besides, SP surveys require passengers to
espond to hypothetical situations, which may not reflect the actual travel choices of passengers (Sun et al., 2016).

Recently, thanks to the widely adopted automated fare collection (AFC) system, passengers’ travel information is recorded in
he AFC data, providing opportunities to capture individual choices under rail disruptions using data-driven approaches. However,
tudies using AFC data to explore the impact of unplanned disruptions on individual responses are limited. Silva et al. (2015)
roposed a method to analyze large-scale mass transportation systems during unplanned disruptions. They estimated the disruption
ffects on passenger volumes during incidents using smart card data. van der Hurk (2015) developed a model based on smart cards
o forecast the route choices of passengers impacted by disruptions under different scenarios. The study shows that operators can
elp passengers minimize their overall inconvenience by providing individual advice. Sun et al. (2016), using AFC data, estimated
hree groups of passengers (leaving the system, detouring, and continuing to travel) during the rail disruption. Recently, Liu et al.
2021) also proposed a data-driven approach to evaluate disruption impacts on system performance and individual responses in
rban railway systems using AFC data. They considered four groups of passengers: performing trips, changing travel time, changing
tations, and changing modes.

However, there are some limitations in the previous studies. First, the approaches of identifying passenger responses in previous
tudies are rule-based and deterministic, meaning that they directly map the observed AFC records to a specific response behavior.
he rule-based method ignores uncertainty and randomness in passengers’ behavior (i.e., the observed AFC records may be due
o behavior randomness, rather than the impact of incidents), which may introduce estimation bias. Also, deterministic methods
annot quantify the uncertainty (i.e., variance) in the estimated results. Second, most of the previous studies are based on data from
losed AFC systems with both tap-in and tap-out information, which does not apply to many open transit systems where only tap-in
nformation is available (such as the transit systems in Chicago, Boston, and New York). Third, most of the previous studies only
onsidered three or four possible response behaviors. In this paper, we show that passenger’s responses are diverse depending on
here they are when the incident happens. There are 19 possible responses identified in this study.

To fill the research gap, this paper proposes a probabilistic passenger behavior estimation framework under rail disruptions using
ap-in-only AFC data. The historical travel trajectories before the incident and the subsequent travel records after the incident are
oth used for inference and capturing the uncertainty in passengers’ behavior. We first identify 19 possible response behaviors that
assengers may have based on their decision-making times and locations1 (i.e, the stage of their trips when an incident happened),

including transferring to a bus line, canceling trips, waiting, delaying departure time, etc. A statistical inference model is proposed to
estimate the mean and variance of the number of passengers in each of the 19 behavior groups using passengers’ AFC data. The urban
bus and rail system operated by the Chicago Transit Authority (CTA) is used as a case study. The proposed model is validated with
a synthetic data set and applied using an actual data set from CTA. Results show that the proposed model can estimate passengers’
travel behavior after the rail disruption accurately and outperform the rule-based benchmark model.

The identified 19 behavioral responses can be classified from two aspects. From the behavioral aspect, they can be grouped
into 5 aggregated response behaviors including using bus, using rail (changing or not changing route), not using public transit,
and not being affected. These five aggregated response behaviors are general and applicable for the incident analysis for any other
public transit system. From the methodological aspect, the inference of the 19 behaviors can be classified into four cases based on
the information used (historical trips vs. subsequent trips) and the context of the observed transactions (direct incident-related vs.
indirect incident-related).

The main contributions of the paper are as follows:

• Provide a comprehensive framework of passengers’ behavior under service disruptions. A total of 19 possible behavior groups
for passengers at different stages of their trips are considered, which enables a more detailed modeling framework. The
behavior identification is based on when and where passengers are making their decisions during a disruption. The method is
general and can be used for other transit systems (the resulting possible behaviors may vary according to the context of the
system, i.e., not necessarily 19)

1 The proposed model is not restricted to the 19 behaviors. The way of recognizing possible responses is general and can be extended to different case
2

tudies. See Section 2.1 for details.
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Fig. 1. Framework of the methodology.

• Propose a probabilistic behavior inference model with a specific formulation for each of the 19 behavior groups. The model
enables the estimation of the mean and variance of the number of passengers in each group to capture passenger’s behavior
uncertainty. To the best of the authors’ knowledge, this is the first article providing the estimation for both mean and variance
of post-incident behaviors using AFC data.

• Leverage both passengers’ historical travel trajectories and their subsequent tap-in records after the incident to facilitate
behavior inference. This is contrary to previous studies where only the AFC data on the incident day is used.

The rest of the paper is organized as follows. Sections 2 and 3 present the methodology of this study. Section 4 discusses the case
study for model application and the corresponding results. Section 5 concludes the paper and discusses future research directions.

2. Model framework

Fig. 1 shows an overview of the model framework. There are two steps for inferring passenger’s responses. At the first step,
we aim to identify all possible passenger response behaviors to the incident based on their decision-making times and locations.
Details of step 1 are shown in Section 2.1. At step 2, based on the results of step 1, we aim to associate each passenger to a specific
response behavior by calculating the corresponding probabilities based on the observed passenger AFC records and his/her travel
histories. The input data for the inference include AFC, AVL (automated vehicle location), and incident log. There are four different
formulations for the probability calculation, which are categorized by the used information and properties of observed AFC records.
Then, we aggregate the probabilities to the mean and variance of the number of passengers in the different response behavior
groups. Details of the step 2 are shown in Sections 2.2 and 3.
3
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Fig. 2. Passenger responses to an unplanned rail disruption.

2.1. Passenger behavior under disruptions

A prerequisite for behavior inference is to identify possible options passengers may have during the disruption. According to Sun
et al. (2016), passenger responses to a service disruption are generally triggered when the delay time is long enough (e.g., greater
than 30 min). Hence, for a meaningful analysis, this study focuses on substantial unplanned service disruptions (i.e., blockage or
shutdown of service as opposed to reduced capacity or frequency) so that there are observable behavior changes.

For an incident beginning at 𝑇1 and ending at 𝑇2, we consider the analysis time period as [𝑇𝑠, 𝑇𝑒] = [𝑇1 − 𝛿1, 𝑇2 + 𝛿2], where 𝛿1 is
set as the maximum travel time in the system because all passengers tapping in before 𝑇1 − 𝛿1 are not affected. 𝛿2 is the recovery
time for the system after the incident ends, which can be pre-calculated based on the smart card data (Mo et al., 2022) (i.e., we
assume that after 𝑇2 + 𝛿2 the system is fully recovered). We only consider passengers who were potentially affected by the incident,
defined as passengers who had (or were supposed to have) tap-in records during the analysis period ([𝑇𝑠, 𝑇𝑒]) on the incident day.
Passengers who are supposed to tap in are those with historical trips indicating that they may have a rail trip during this period,
though we do not observe them on the incident day AFC data. These passengers are considered because they may cancel their trips
or use other undetected modes (details can be found in the following sections).

Fig. 2 summarizes possible passenger behaviors under different cases. A total of 19 possible response behaviors are considered.
The general approach to characterize these behaviors is elaborated on below. The approach can be applied to other public transit
systems to identify a similar set of possible response behaviors.

Passengers’ behavior may vary a lot depending on the stage of their trips at the time of service disruption (Lin et al., 2016).
Therefore, all potentially affected passengers are first divided into two groups: (a) passengers in and (b) out of the rail system. The
first group of passengers was on a train or inside a station platform when the incident happened, while passengers in the second
group have not entered the system yet (e.g., at home).

When the disruption happens, some of the stations in the rail system are blocked (i.e. trains are not allowed to move in these
stations) due to the incident. Passengers who are in the blocked stations/trains are forced to leave the system. These passengers have
five options: changing to a bus line, changing to another rail line or station, waiting until the system is restored, canceling the trip,
or changing to other undetected modes. It is worth noting that if they choose transit services (rail or bus) again, they need to re-tap
to use the alternative services. The undetected modes include Transit Network Companies (TNC), walking, bicycling, etc. It is worth
noting that using a shuttle bus that was deployed to mitigate the incident impacts can be categorized into ‘‘bus’’ or ‘‘undetected
4

mode’’ depending on whether passengers are required to tap their fare card or not. If passengers are not in the blocked stations,
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Fig. 3. Illustration example of the probabilistic behavior inference.

their trains could still move. Hence, they may not be affected by the incident. Or if they were affected, compared with passengers
in the blocked stations, they would have one more option: transferring halfway to another line without leaving the system.

For passengers out of the system when the incident happens, if their travel routes on the rail system are not blocked, they are not
affected. Otherwise, instead of following the original route, they may choose to use buses, use rails but change the tap-in station,
use rail by transferring at a halfway station, use other undetected modes, cancel the trip, or delay their departure time until the
system recovers.

All these behaviors can be summarized into five groups: use rail (changing route), use rail (same route), use buses, not use public
transit, and not being affected. Note that these five alternatives are general for different transit systems and can be used to guide
the potential behavior identification. To better describe these behaviors, we assign a specific ID to each (i.e., numbers in the red
circle in Fig. 2). These behaviors are inferred separately based on their characteristics in the AFC data.

2.2. Probabilistic behavior inference

We propose a probabilistic framework to infer passengers in each behavior group using AFC data. The probabilistic framework
facilitates the inference of whether a specific observed behavior for a passenger is due to the incident, or is typical. In this study, we
focus on open public transit systems where only tap-in information is available. The AFC data include both bus and rail boarding
records.

The key idea of the inference framework is to identify (1) whether an observed AFC data record (e.g., transfer to bus) is atypical
or not and (2) whether the atypical behavior is owing to the incident or behavioral randomness. These two questions are answered
probabilistically (i.e., obtaining the corresponding probabilities). And the corresponding probabilities are used to calculate the mean
and variance of the number of passengers in each behavior group.

Fig. 3 presents an explanatory example for the probabilistic behavior inference method. Consider a passenger 𝑝 in the system. We
observe that he/she has a transfer record to a nearby bus stop from the incident line. In typical rule-based method (Sun et al., 2016;
Liu et al., 2021), this passenger will be directly identified as ‘‘transferring to bus due to incident’’. However, in the probabilistic
framework, we consider two possible reasons for this observed record: (1) he/she transfers to a bus for a normal commute. (2)
he/she transfers to an alternative route due to the incident. We should only account for the second reason as the impact of incidents.
Therefore, we use historical data to calculate the probability that ‘‘this transfer is an atypical behavior’’ (i.e., due to the incident).
Then, the mean and variance of the number of passengers with a specific response behavior can be obtained from this probability
(by the definition of the Bernoulli random variable).

2.2.1. Notation
Denote 𝑆𝑖 as the set of passengers who have behavior 𝑖 in response to the incident, 𝑖 ∈  = {1, 2,… , 𝑍} (behavior IDs are

shown in Fig. 2, for example, ‘‘Behavior 1’’ means offloading from the train when an incident happens and using bus to respond to
the incident). Let 𝑁𝑆𝑖

be the number of passengers in set 𝑆𝑖. The day when the incident happens is referred to as the incident day.
A normal day is defined as a day without (substantial) incidents in the analysis period and area and with the same day of the week
as the incident day. For example, if an incident happens on Friday [8:00∼9:00] at Line X, then a normal day can be all Fridays in
the last 2 months where there are no substantial incidents occurring during [8:00−𝛿1 ∼ 9:00+𝛿2] at Line X.

Note that we use the term ‘‘no substantial incidents’’ due to the high frequency of various types of incidents in a public transit
system and it may be hard to find an ‘‘absolute normal day’’ without any incidents. The selection of normal days is a trade-off between
sample sizes and accuracy. A larger number of normal days can provide more observations to estimate the habitual behaviors of
5
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Table 1
Notation.

Variable Type Description

𝑍 Constant Total number of behaviors considered.
𝑀 Constant Total number of normal days considered.
𝑁𝑆𝑖

Random variable Number passengers in set 𝑆𝑖.
 Set The set of all potentially affected passengers.
𝐻 Set The set of passengers with reliable history trips.
𝐹 Set The set of passengers with future trips after the incident on that day.
𝑆𝑖 Set The set of passengers with behavior 𝑖 (see Fig. 2).
𝐵𝑆𝑖

Set A set of passengers that is defined to infer 𝑆𝑖.
𝑜𝑝𝑘 Constant Origin of the 𝑘th trip for passenger 𝑝 within the analysis period.
𝑡𝑝𝑘 Constant Tap-in time of the 𝑘th trip for passenger 𝑝 within the analysis period.
𝑚𝑝𝑘 Constant Travel mode of the 𝑘th trip for passenger 𝑝 within the analysis period.
𝐾𝑝 Constant Total number of public transit trips for passenger 𝑝 within the analysis period.
𝑀𝑝 Constant Total number of normal days passenger 𝑝 has public transit trips.
𝑇𝑠 Constant Start time of the analysis period.
𝑇𝑒 Constant End time of the analysis period.
𝑇1 Constant Incident start time.
𝑇2 Constant Incident end time.
𝑇𝑇𝑑 Constant Threshold to identify transfer trips for two consecutive tap-ins.
𝑑𝑟 Constant Maximum walking distance for transferring to a rail station.
𝑑𝑏 Constant Maximum walking distance for transferring to a bus.
𝐷(𝑠, 𝑠′) Constant A function which returns the walking distance between station 𝑠 and 𝑠′.
1{⋅} Constant or Random variable Indicator function which returns 1 if the event is true and 0 otherwise.
 Set The set of all blocked rail stations during the incident.
𝑏 Set The set of bus stops within walking distance from any of the blocked stations.
𝑟 Set The set of all unblocked rail stations within walking distance from any of the blocked stations.
𝑑𝑝𝑘 Random variable Inferred original destination for trip 𝑘 for passenger 𝑝.
𝑝𝑘 Set The set of all possible original destinations for trip 𝑘 for passenger 𝑝.
𝑠𝑝(𝑇 , 𝑑) Constant Location of passenger 𝑝 at time 𝑇 if his/her destination is 𝑑.

passengers. However, it may also include days with incidents that can introduce bias. Usually, we aim to have normal days with
consistent demand and supply characteristics, and are significantly different from the incident day (as shown in the case study,
Section 4.4).

Suppose that we have collected the AFC data of the incident day and a total of 𝑀 normal days. Let  be the set of all potentially
affected passengers, which is defined as the set of all passengers with at least one AFC data record in [𝑇𝑠, 𝑇𝑒] on the incident day or
ny of the 𝑀 normal days. Let 𝐻 ⊆  be a subset of passengers with reliable history trips and 𝑀𝑝 be the number of normal days
hat passenger 𝑝 has trips on (𝑀𝑝 ≤ 𝑀). Then 𝐻 = {𝑝 ∈  ∶ 𝑀𝑝 ≥ 𝑀R}, which means passengers with more than 𝑀R normal days
ith travel, where 𝑀R is a predetermined threshold to recognize passengers with reliable history trips. In future studies, a more

omplicated method to define 𝐻 can be explored considering the travel regularity (Goulet-Langlois et al., 2017).
Consider a passenger 𝑝 ∈  with a public transit trip chain { (𝑜𝑝1 , 𝑡𝑝1 , 𝑚𝑝1 ), (𝑜𝑝2 , 𝑡𝑝2 , 𝑚𝑝2 ), . . . , (𝑜𝑝𝐾𝑝

, 𝑡𝑝𝐾𝑝
, 𝑚𝑝𝐾𝑝

)} within the analysis

ime period. 𝑜𝑝𝑘 is the origin of the 𝑘th trip. 𝑡𝑝𝑘 is the start time (transaction time) of the 𝑘th trip. And 𝑚𝑝𝑘 is the mode of 𝑘th trip
𝑚𝑘 ∈ {rail, bus}). It holds that 𝑇𝑠 ≤ 𝑡𝑝1 < 𝑡𝑝2 < ⋯ < 𝑡𝑝𝐾𝑝

≤ 𝑇𝑒. We define 𝐹 ⊆  as the subset of passengers with subsequent
rips after the incident on the incident day, that is, 𝐹 = {𝑝 ∈  ∶phas trips after Te on the incident day}. According to previous
estination estimation studies for tap-in only systems (Barry et al., 2002; Zhao et al., 2007; Gordon et al., 2013), the destination of
he trip (𝑜𝑝𝑘 , 𝑡𝑝𝑘 , 𝑚𝑝𝑘 ) can be inferred using information of the next trip (𝑜𝑝𝑘+1 , 𝑡𝑝𝑘+1 , 𝑚𝑝𝑘+1 ) (i.e., the trip chain method). The basic idea
s to use the next tap-in location to estimate the destination of the current trip. Hence, for 𝑝 ∈ 𝐹 , we can obtain the destination of
he trip (𝑜𝑝𝐾𝑝

, 𝑡𝑝𝐾𝑝
, 𝑚𝑝𝐾𝑝

). It is worth noting that if the incident happened in the evening, we would extend 𝐹 to include passengers
ith trips in the next morning.

As mentioned above, when a disruption happens, some of the stations in the rail system are blocked. The set of all blocked rail
tations due to the disruption is denoted as  .

The notation used in this study is summarized in Table 1.

.2.2. Conceptual framework
We first outline the framework of the general inference model. For a specific behavior 𝑆𝑖, we define 𝐵𝑆𝑖

as the set of passengers
ith related observable behavior that can be identified from the AFC data. The word ‘‘observable’’ indicates that 1{𝑝∈𝐵𝑆𝑖 }

is a
nown constant, where 1{⋅} is an indicator function which returns 1 if the event is true and 0 otherwise. For example, 𝐵𝑆𝑖

can be a
et of passengers with a bus transfer trip during the incident period, or a set of passengers with a rail tap-in trip during the incident
eriod, etc. The definition of 𝐵𝑆𝑖

should satisfy that 𝑆𝑖 ⊆ 𝐵𝑆𝑖
. The goal is to identify 𝑆𝑖 from 𝐵𝑆𝑖

.
The specification of 𝐵𝑆𝑖

depends on to what extent passengers in 𝑆𝑖 can be observed in the AFC data. If the behavior of 𝑆𝑖
enerates many special AFC records, 𝐵𝑆𝑖

can be defined in more detail. In this case, |𝐵𝑆𝑖
| is relatively small, which reduces the

cope for inferring 𝑆𝑖. On the other hand, if the behavior of 𝑆𝑖 does not generate special AFC records, 𝐵𝑆𝑖
can only be defined in a

eneral way (e.g., passengers with a rail trip during the incident), bringing challenges in extracting 𝑆 .
6

𝑖



Transportation Research Part E 159 (2022) 102628B. Mo et al.

h

w
H
𝑝
i
‘
b
i
r

s
2
2
o
l
m
s
c
i
d

(
𝑌
c

f
s
c

According to the context of 𝑆𝑖, there are two types of 𝐵𝑆𝑖
regarding their relationship to the incident. For a passenger 𝑝 ∈ 𝐵𝑆𝑖

,
istorical information can be used to infer whether the behavior that passenger 𝑝 is showing in 𝐵𝑆𝑖

is atypical or not. However,
‘‘atypical’’ may not be enough to conclude whether 𝑝 is affected by the incident or not. For example, 𝐵𝑆𝑖

may be defined as passengers
ith a bus trip during the incident period. ‘‘atypical’’ only indicates the bus trip is a change of the passenger’s habitual behavior.
owever, the behavioral change on that particular day may be caused by many reasons, not necessarily the incident. To conclude
∈ 𝑆𝑖, 𝑝’s behavior needs to satisfy both ‘‘atypical’’ and ‘‘change is due to the incident’’. This type of 𝐵𝑆𝑖

is referred to as ‘‘indirect
ncident-related’’. However, sometimes, if 𝐵𝑆𝑖

is specified based on a lot of information related to the incident, we can infer that
‘atypical’’ is equivalent to ‘‘affected by the incident’’. For example, if 𝐵𝑆𝑖

are passengers with a transfer to bus stops close to the
locked rail stations after the incident, and this behavior is atypical, we can assume this change is due to the incident because 𝐵𝑆𝑖
s based on direct incident-related information (i.e., the transfer bus stops are close to the blocked rail stations). This type of 𝐵𝑆𝑖

is
eferred to as ‘‘direct incident-related’’.

Besides historical information, the subsequent trips information after the incident can also be used. As mentioned before, the
ubsequent tap-in information can be used to infer trip destinations using the trip chain method (Barry et al., 2002; Zhao et al.,
007; Gordon et al., 2013). Though recent studies also use historical information to infer passenger’s destination (Cheng et al.,
020), for the purpose of this study, only subsequent tap-in information is used as the destination estimation part is not the focus
f this study. Note that the proposed probabilistic framework is quite general and any destination estimation model can be used as
ong as the probability of each candidate destination can be obtained (see Section 3.2 for details). Although passengers may have
ultiple path choices in rail systems (Mo et al., 2021), we assume that all passengers follow the schedule-based shortest path to

implify the formulation (Barry et al., 2009). This assumption can be relaxed by summing over all paths with corresponding path
hoice probabilities in the formulation, instead of only considering a single path. For a passenger 𝑝, we obtain his/her original path
n the rail system as the shortest path to the inferred destination 𝑑. Based on the characteristics of the path (explained below), we
efine a related event 𝑌𝑝(𝑑). Since the path is known given 𝑑, 1{𝑌𝑝(𝑑)} is a known constant. 𝑆𝑖 can thus be inferred based on 1{𝑌𝑝(𝑑)}

i.e. the property of the original path). For example, 𝐵𝑆𝑖
can be a set of passengers without transfer trips during the incident period.

𝑝(𝑑) can be the event that the original path for 𝑝 is blocked and a transfer is not available. Then if 𝑌𝑝(𝑑) is true, a passenger 𝑝 ∈ 𝐵𝑆𝑖
an only use other undetected modes or cancel trips.

In summary, historical trips and subsequent trips after the incident are two types of available information to infer 𝑆𝑖. Therefore,
rom model formulations perspective, we can characterize the inference model in two dimensions: (1) historical trip information vs.
ubsequent trip information, (2) indirect incident-related 𝐵𝑆𝑖

vs. direct incident-related 𝐵𝑆𝑖
. We summarize the formulation in each

ase as follows:

• (1) ‘‘Historical trip information + direct incident-related 𝐵𝑆𝑖
’’: In this case, we have ‘‘atypical’’ = ‘‘affected by the incident’’.

Therefore,

E[1{𝑝∈𝑆𝑖}] = 1{𝑝∈𝐵𝑆𝑖 }
⋅ P(‘‘Behavior atypical’’ ∣ 𝑝 ∈ 𝐵𝑆𝑖

) (1)

𝑆1, 𝑆2, 𝑆4, and 𝑆12 belong to this case. P(‘‘Behavior atypical’’ ∣ 𝑝 ∈ 𝐵𝑆𝑖
) is estimated based on the context of 𝑆𝑖 using historical

trip information. Details of the formulation can be found in Section 3.1.
• (2) ‘‘Historical trip information + indirect incident-related 𝐵𝑆𝑖

’’: In this case, we need to satisfy both ‘‘atypical’’ and ‘‘the
change is due to the incident’’ in order to identify 𝑆𝑖. Therefore,

E[1{𝑝∈𝑆𝑖}] = 1{𝑝∈𝐵𝑆𝑖 }
⋅ P(‘‘Behavior atypical’’,‘‘Change is due to the incident’’ ∣ 𝑝 ∈ 𝐵𝑆𝑖

) (2)

𝑆5, 𝑆11, 𝑆14, 𝑆15, 𝑆17, 𝑆18, and 𝑆19 belong to this case. The joint probability P(⋅, ⋅ ∣ 𝑝 ∈ 𝐵𝑆𝑖
) is not estimated directly. Instead, we

show that it can be estimated using the difference of the marginal probabilities between normal and incident days. Details of
the formulation can be found in Section 3.3.

• (3) ‘‘Subsequent trip information only’’: In this case, the event of path properties (as a function of the inferred destination
𝑑) can help to identify 𝑆𝑖. Hence,

E[1{𝑝∈𝑆𝑖}] =
∑

𝑑
1{𝑝∈𝐵𝑆𝑖 }

⋅ 1{𝑌𝑝(𝑑)} ⋅ P(‘‘Original destination is 𝑑’’ ∣ 𝑝 ∈ 𝐵𝑆𝑖
) (3)

𝑆3, 𝑆7, 𝑆10, and 𝑆16 belong to this case. Some behavior assumptions are made when two groups are indistinguishable by the
above formulation. P(‘‘Original destination is 𝑑’’ ∣ 𝑝 ∈ 𝐵𝑆𝑖

) is estimated based on a destination inference model (Gordon et al.,
2013) with subsequent trip information. Details of the formulation can be found in Section 3.4.

• (4) ‘‘Historical trip information + direct incident-related 𝐵𝑆𝑖
+ Subsequent trip information’’: This scenario is a

combination of historical and future information. Hence, we combine Eqs. (1) and (3):

E[1{𝑝∈𝑆𝑖}] =
∑

𝑑
1{𝑝∈𝐵𝑆𝑖 }

⋅ P(‘‘Behavior atypical’’ ∣ 𝑝 ∈ 𝐵𝑆𝑖
)

⋅ 1{𝑌𝑝(𝑑)} ⋅ P(‘‘Original destination is 𝑑’’ ∣ 𝑝 ∈ 𝐵𝑆𝑖
) (4)

𝑆 and 𝑆 belong to this case. Details of the formulation can be found in Section 3.2.
7
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The above cases and the corresponding formulations are used to infer whether a specific passenger belongs to a certain group.
he expected number of passengers in the group is calculated as

E[𝑁𝑆𝑖
] =

∑

𝑝∈
E[1{𝑝∈𝑆𝑖}] (5)

It is worth noting that there are no explicit criteria to assign the inference of 𝑆𝑖 to one of the four cases. There is a trade-
ff between including more information and dealing with sample sparsity. For example, one may argue that both historical and
ubsequent trip information should be included for all inferences. However, many passengers do not have reliable history trips or
uture trips (i.e. 𝑝 ∉ 𝐻 ∩ 𝐹 ). The inference for those passengers can only be approximated by the results of 𝑝 ∈ 𝐻 ∩ 𝐹 (details
n Section 3). Hence, simply including more information will lead to higher approximation errors due to sample sparsity, which
s the reason that we have four types of formulations and some of them only include either future or history information, but not
oth. Determining the formulation for an 𝑆𝑖 needs empirical knowledge and numeral tests to judge which kinds of information are
ore critical for the inference.

.2.3. Uncertainty
In this study, we estimate the variance of the 𝑁𝑆𝑖

(Var[𝑁𝑆𝑖
]) to quantify the uncertainty. Var[𝑁𝑆𝑖

] captures the behavioral
andomness of passengers in 𝐵𝑆𝑖

. The behavior of a passenger in 𝐵𝑆𝑖
is atypical or not (i.e., 1{‘‘Behavior atypical’’∣𝑝∈𝐵𝑆𝑖 }

) is an indicator
andom variable. High behavioral randomness indicates high variance of 𝑁𝑆𝑖

because we cannot easily conclude whether a
assenger’s observed behavior in the incident day is typical or not. In this case, P(‘‘Behavior atypical’’ ∣ 𝑝 ∈ 𝐵𝑆𝑖

) is close to 0.5
where Var[𝑁𝑆𝑖

] reaches the maximum), which implies that the passenger’s behavior pattern is hard to estimate from the historical
rips.

Besides passengers’ inherent travel irregularity, Var[𝑁𝑆𝑖
] is also determined by the definition of 𝐵𝑆𝑖

. If 𝐵𝑆𝑖
is specified narrowly,

uch as a set of passengers with a transfer trip to bus stops near the blocked rail stations after the incident, passengers may seldom
ave this ‘‘complicated’’ behavior on normal days. If a passenger has this behavior in the incident day, it is highly likely to be
typical (i.e., P(‘‘Behavior atypical’’ ∣ 𝑝 ∈ 𝐵𝑆𝑖

) is close to 1). In this case, the Var[𝑁𝑆𝑖
] is relatively low. However, if 𝐵𝑆𝑖

has a very
road definition, such as a set of passengers with a bus trip in the incident period, P(‘‘Behavior atypical’’ ∣ 𝑝 ∈ 𝐵𝑆𝑖

) may be close
o 0.5 because passengers may use different modes on different normal days and it is difficult to infer having a bus trip is atypical
r not on the incident day. In this case, the Var[𝑁𝑆𝑖

] is relatively high. Since the definition of 𝐵𝑆𝑖
is according to 𝑆𝑖, Var[𝑁𝑆𝑖

]
rovides the information about whether 𝑆𝑖 is easy to be inferred by the AFC data or not (low variance means 𝑆𝑖 can be inferred
ore precisely).

. Model formulation

In this section, we elaborate on the inference formulation for every behavior group. The section is organized by the formulation
ases mentioned in Section 2.2.2. However, due to the tedious derivations and some formulation duplication, we only present the
ormulations for a part of behavior groups. The complete formulations can be found in Appendix.

.1. Historical trip information + direct incident-related 𝐵𝑆𝑖
: Inferring 𝑆1 and 𝑆2

By definition, passengers in 𝑆1 and 𝑆2 have at least one rail tap-in record before 𝑇1 because they were in the blocked
tations/trains when the incident happened. Since passengers who decide to use the public transit system again after alighting
eed to re-tap in, passengers in 𝑆1 have another bus tap-in record after 𝑇1, and passengers in 𝑆2 have another rail tap-in record
fter 𝑇1.

As passengers in 𝑆1 and 𝑆2 left the rail system from the blocked stations, the re-tap-in bus/rail stations should be close to
he blocked stations and the time difference between two consecutive tap-ins should not be too large. Otherwise, they may be two
eparate trips instead of a transfer. Let 𝑇𝑇𝑑 be the tap-in time difference threshold for transferring. We assume that if 𝑡𝑝𝑘−𝑡𝑝𝑘−1 < 𝑇𝑇𝑑 ,
rip 𝑘 is a transfer trip following trip 𝑘−1.2 Denote the walking distance threshold for passengers transferring to a bus (resp. rail) as
𝑏 (resp. 𝑑𝑟). Then the set of bus (resp. rail) stops close to the blocked stations is defined as 𝑏 = {𝑠 ∶ 𝑠 is a bus station and ∃𝑠′ ∈

s.t. 𝐷(𝑠, 𝑠′) ≤ 𝑑𝑏} (resp. 𝑟 = {𝑠 ∶ 𝑠 ∉  is a rail station and ∃𝑠′ ∈  s.t. 𝐷(𝑠, 𝑠′) ≤ 𝑑𝑟}), where 𝐷(𝑠, 𝑠′) returns the walking
istance between stations 𝑠 and 𝑠′.

To identify passengers in 𝑆1, we define a passenger set 𝐵𝑆1
= {𝑝 ∶ ∃𝑘 ∈ {1,… , 𝐾𝑝−1} s.t. 𝑡𝑝𝑘 ≤ 𝑇1 < 𝑡𝑝𝑘+1 , 𝑡𝑝𝑘+1 − 𝑡𝑝𝑘 < 𝑇𝑇𝑑 , 𝑚𝑝𝑘 =

ail, 𝑚𝑝𝑘+1 = bus, 𝑜𝑝𝑘+1 ∈ 𝑏}. 𝐵𝑆1
represents passengers with a rail tap-in record before the incident and a bus transferring tap-in

ecord after the incident. And the second tap-in station is within the walking distance of the blocked stations. As we described
bove, passengers in 𝑆1 should also in 𝐵𝑆1

(𝑆1 ⊆ 𝐵𝑆1
). However, 𝑆1 and 𝐵𝑆1

are not necessarily equivalent because passengers in
𝑆1

may transfer to a bus stop as a normal routine, that is, they did not transfer to a bus line in response to the rail disruption.
enote the event that 𝑝 was affected by the incident as 𝐴𝑝. Then we have

E[𝑁𝑆1
] =

∑

𝑝∈
E[1{𝑝∈𝑆1}] =

∑

𝑝∈
E[1{𝑝∈𝐵𝑆1 }

⋅ 1{𝐴𝑝 ∣𝑝∈𝐵𝑆1 }
] =

∑

𝑝∈
1{𝑝∈𝐵𝑆1 }

⋅ P(𝐴𝑝 ∣ 𝑝 ∈ 𝐵𝑆1
) (6)

2 This is a typical way for tap-in only public transit systems to determine transfer trips for fare calculation. Future study may include tap-out time estimation
8

odel to better define a transfer trip.
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r

Note that 1{𝑝∈𝐵𝑆1 }
is a constant because for every 𝑝, we observe whether it belongs to 𝐵𝑆1

or not using the AFC data from the
incident day. P(𝐴𝑝 ∣ 𝑝 ∈ 𝐵𝑆1

) is calculated as

P(𝐴𝑝 ∣ 𝑝 ∈ 𝐵𝑆1
) = 1 −

# normal days 𝑝 showing trip records described in 𝐵𝑆1

𝑀𝑝
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Prob. that transferring to a bus stop near blocked station is a typical behavior

∀𝑝 ∈ 𝐻 . (7)

Eq. (7) means that given a passenger with the observed behavior described in 𝐵𝑆1
on the incident day, the probability that this

behavior is atypical3 equals to 1 minus the relative frequency that the passenger has the same behavior on normal days. For example,
if 𝑝 transferred to a bus stop in 𝑏 on every normal day, then transferring to the bus stop in 𝑏 is highly likely to be a routine,
ather than a change in behavior due to the incident (i.e., P(𝐴𝑝 ∣ 𝑝 ∈ 𝐵𝑆1

) = 0
𝑀𝑝

= 0). Then, 𝑝 will not be counted into 𝑆1.
If history information of 𝑝 is unavailable or very limited (i.e., 𝑝 ∉ 𝐻 ), Eq. (7) may fail to work. In this scenario, we assume

P(𝐴𝑝 ∣ 𝑝 ∈ 𝐵𝑆1
) =

∑

𝑝′∈𝐻 P(𝐴𝑝′ ∣ 𝑝′ ∈ 𝐵𝑆1
)

|𝐻 ∩ 𝐵𝑆1
|

∀𝑝 ∉ 𝐻 (8)

which estimates the corresponding probability of passengers with little historical information using that of passengers with enough
historical information. This is a typical way to estimate behavior of passengers without enough information in the AFC data (Gordon
et al., 2013), though it may be biased considering different behavior patterns for 𝑝 ∈ 𝐻 and 𝑝 ∉ 𝐻 . There is no better way to
address this issue given data limitations.

As 1{𝐴𝑝 ∣𝑝∈𝐵𝑆1 }
is a Bernoulli random variable with probability P(𝐴𝑝 ∣ 𝑝 ∈ 𝐵𝑆1

), the corresponding variance of 𝑁𝑆1
can be

calculated as

Var[𝑁𝑆1
] =

∑

𝑝∈
(1{𝑝∈𝐵𝑆1 }

)2 ⋅ Var[1{𝐴𝑝 ∣𝑝∈𝐵𝑆1 }
]

=
∑

𝑝∈
1{𝑝∈𝐵𝑆1 }

⋅ [P(𝐴𝑝 ∣ 𝑝 ∈ 𝐵𝑆1
) − P(𝐴𝑝 ∣ 𝑝 ∈ 𝐵𝑆1

)2] (9)

Similarly, for passengers in 𝑆2, similarly, we can define 𝐵𝑆2
= {𝑝 ∶ ∃𝑘 ∈ {1,… , 𝐾𝑝−1} s.t. 𝑡𝑝𝑘 ≤ 𝑇1 < 𝑡𝑝𝑘+1 , 𝑡𝑝𝑘+1−𝑡𝑝𝑘 < 𝑇𝑇𝑑 , 𝑚𝑝𝑘 =

rail, 𝑚𝑝𝑘+1 = rail, 𝑜𝑝𝑘+1 ∈ 𝑟}. Then we have

E[𝑁𝑆2
] =

∑

𝑝∈
1{𝑝∈𝐵𝑆2 }

⋅ P(𝐴𝑝 ∣ 𝑝 ∈ 𝐵𝑆2
) (10)

where P(𝐴𝑝 ∣ 𝑝 ∈ 𝐵𝑆2
) can be calculated in the same way as Eqs. (7) and (8) by replacing 𝐵𝑆1

with 𝐵𝑆2
. And the variance of 𝑁𝑆2

can be calculated as

Var[𝑁𝑆2
] =

∑

𝑝∈
1{𝑝∈𝐵𝑆2 }

⋅ [P(𝐴𝑝 ∣ 𝑝 ∈ 𝐵𝑆2
) − P(𝐴𝑝 ∣ 𝑝 ∈ 𝐵𝑆2

)2] (11)

3.2. Historical trip information + direct incident-related 𝐵𝑆𝑖
+ subsequent trip information: Inferring 𝑆8 and 𝑆9

Passengers in groups 𝑆8 and 𝑆9 continued to use the public transit system after the incident. Hence, they have at least one tap-in
record before 𝑇1 and at least one tap-in record after 𝑇1. The difference between 𝑆8, 𝑆9 and 𝑆1, 𝑆2 is that passengers in 𝑆8 and 𝑆9
leave the rail system at some upstream station before the blocked stations. To differentiate 𝑆8 and 𝑆9 with other normal transfer
passengers, we need to infer their original route and consider whether the route is blocked. If their original routes are not blocked,
the transfers are not due to the incident.

We first identify 𝑆8. Consider a passenger 𝑝 ∈ 𝐹 . Suppose ∃𝑘 ∈ {1,… , 𝐾𝑝 − 1} s.t. 𝑡𝑝𝑘 ≤ 𝑇1 < 𝑡𝑝𝑘+1 , 𝑡𝑝𝑘+1 − 𝑡𝑝𝑘 < 𝑇𝑇𝑑 , 𝑚𝑝𝑘 = rail,
𝑚𝑝𝑘+1 = bus, and 𝑜𝑝𝑘+1 ∉ 𝑏, which means 𝑝 has a rail trip before the incident and a bus transfer trip after the incident, and the
boarding stop of bus trip is not close to the blocked stations (otherwise he/she is already considered in the inference of 𝑆1). If 𝑝
was affected by the incident, the transferring trip 𝑘 + 1 would be an atypical behavior for 𝑝.

Denote the event ‘‘transferring is atypical for 𝑝’’ as 𝑇𝐴𝑝. Let (𝑜𝑝𝑘∗ , 𝑡𝑝𝑘∗ , 𝑚𝑝𝑘∗ ) be the next non-transfer trip of trip 𝑘 + 1.
Mathematically, 𝑘∗ = min{𝑘′ > 𝑘 + 1 ∶ 𝑡𝑝𝑘′ − 𝑡𝑝𝑘+1 > 𝑇𝑇𝑑}. Given 𝑇𝐴𝑝, if without any incident, the original trip chain for passenger
𝑝 is {..., (𝑜𝑝𝑘 , 𝑡𝑝𝑘 , 𝑚𝑝𝑘 ), (𝑜𝑝𝑘∗ , 𝑡𝑝𝑘∗ , 𝑚𝑝𝑘∗ ),…}, the observed transfer bus trip (𝑜𝑝𝑘+1 , 𝑡𝑝𝑘+1 , 𝑚𝑝𝑘+1 ) is caused by the disruption. Our goal is
to use trip 𝑘∗ to infer the original destination of trip 𝑘 (i.e. the destination under normal condition). This can be done from the
destination estimation model using the trip chain method (Barry et al., 2002; Zhao et al., 2007; Gordon et al., 2013). Let the set of
all possible original destinations for trip 𝑘 be 𝑝𝑘 . and 𝑑𝑝𝑘 the random variable representing the original destination of trip 𝑘. The
destination estimation model provides P(𝑑𝑝𝑘 = 𝑑) for any 𝑑 ∈ 𝑝𝑘 .

However, trip 𝑘∗ may not exist for some 𝑝 because the subsequent trip information may not be available (e.g., 𝑝 ∉ 𝐹 ). For
𝑝 ∉ 𝐹 , the destination distribution can be approximated by 𝑝 ∈ 𝐹 (Gordon et al., 2013):

P(𝑑𝑝𝑘 = 𝑑) =

∑

𝑝′∈𝐹 ∶𝑜𝑝𝑘=𝑜𝑝′𝑘
P(𝑑𝑝′𝑘 = 𝑑)

|{𝑝′ ∈ 𝐹 ∶ 𝑜𝑝𝑘 = 𝑜𝑝′𝑘}|
∀𝑝 ∉ 𝐹 , 𝑑 ∈ 𝑝𝑘 . (12)

3 Formulation type 1, ‘‘atypical’’ = ‘‘affected by the incident’’ in this case.
9
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Eq. (12) means that the probability of 𝑑𝑝𝑘 = 𝑑 for 𝑝 ∉ 𝐹 is estimated as the average value of 𝑝 ∈ 𝐹 with the same origin.
As we assume that, for a given 𝑑𝑝𝑘 , passengers follow the shortest path (Barry et al., 2009), the original route for 𝑝 from 𝑜𝑝𝑘 to

�̃�𝑘 can be obtained. Using automated vehicle location (AVL) data and a transit loading model (Zhu et al., 2017; Mo et al., 2020), we
an further infer the location of passenger 𝑝 in the rail system at time 𝑇1 for a given 𝑑𝑝𝑘 . Suppose that at time 𝑇1, 𝑝 was in location
𝑠𝑝(𝑇1, 𝑑𝑝𝑘 ) (which corresponds to a station or some middle point between two stations). Then, if the remaining route segment from
𝑠𝑝(𝑇1, 𝑑𝑝𝑘 ) to 𝑑𝑝𝑘 was blocked, 𝑝 would be affected by the incident. Let the event that the original route of 𝑝 is blocked given the
riginal destination is 𝑑 be 𝑅𝐵𝑝(𝑑).

We define 𝐵𝑆8
= {𝑝 ∶ ∃𝑘 ∈ {1,… , 𝐾𝑝 − 1} s.t. 𝑡𝑝𝑘 ≤ 𝑇1 < 𝑡𝑝𝑘+1 , 𝑡𝑝𝑘+1 − 𝑡𝑝𝑘 < 𝑇𝑇𝑑 , 𝑚𝑝𝑘 = rail, 𝑚𝑝𝑘+1 = bus, 𝑜𝑝𝑘+1 ∉ 𝑏}, which

represents passengers with a rail tap-in record before the incident and a bus transferring tap-in record after the incident. Then we
have 1{𝑝∈𝑆8} = 1{𝑝∈𝐵𝑆8 }

⋅ 1{𝑇𝐴𝑝} ⋅
∑

𝑑∈𝑝𝑘
1{𝑅𝐵𝑝(𝑑)} ⋅ 1{𝑑𝑝𝑘=𝑑}

. Note that 1{𝑇𝐴𝑝} and 1{𝑅𝐵𝑝(𝑑)} are independent because the former is
etermined by the historical trips while the later is determined by the subsequent trips after the incident. Therefore, the number of
assengers in 𝑆8 can be calculated as:

E[𝑁𝑆8
] =

∑

𝑝∈
E[1{𝑝∈𝑆8}] =

∑

𝑝∈

∑

𝑑∈𝑝𝑘

1{𝑝∈𝐵𝑆8 }
⋅ P(𝑇𝐴𝑝 ∣ 𝑝 ∈ 𝐵𝑆8

) ⋅ 1{𝑅𝐵𝑝(𝑑)} ⋅ P(𝑑𝑝𝑘 = 𝑑) (13)

{𝑅𝐵𝑝(𝑑)} is a constant because given the original destination and path, we can conclude whether the path is blocked or not.

(𝑇𝐴𝑝 ∣ 𝑝 ∈ 𝐵𝑆8
) can be calculated in the same way as Eqs. (7) and (8) by replacing 𝐵𝑆1

and 𝐴𝑝 with 𝐵𝑆8
and 𝑇𝐴𝑝, respectively.

The variance of 𝑁𝑆8
can be calculated as

Var[𝑁𝑆8
] =

∑

𝑝∈

∑

𝑑∈𝑝𝑘

1{𝑝∈𝐵𝑆8 }
⋅ 1{𝑅𝐵𝑝(𝑑)} ⋅

[

P(𝑇𝐴𝑝 ∣ 𝑝 ∈ 𝐵𝑆8
) ⋅ P(𝑑𝑝𝑘 = 𝑑) − P(𝑇𝐴𝑝 ∣ 𝑝 ∈ 𝐵𝑆8

)2 ⋅ P(𝑑𝑝𝑘 = 𝑑)2
]

(14)

Similarly, for passengers in 𝑆9, we have 𝐵𝑆9
= {𝑝 ∶ ∃𝑘 ∈ {1,… , 𝐾𝑝 − 1} s.t. 𝑡𝑝𝑘 ≤ 𝑇1 < 𝑡𝑝𝑘+1 , 𝑡𝑝𝑘+1 − 𝑡𝑝𝑘 < 𝑇𝑇𝑑 , 𝑚𝑝𝑘 = rail, 𝑚𝑝𝑘+1 =

ail, 𝑜𝑝𝑘+1 ∉ 𝑟}. Then:

E[𝑁𝑆9
] =

∑

𝑝∈

∑

𝑑∈𝑝𝑘

1{𝑝∈𝐵𝑆9 }
⋅ P(𝑇𝐴𝑝 ∣ 𝑝 ∈ 𝐵𝑆9

) ⋅ 1{𝑅𝐵𝑝(𝑑)} ⋅ P(𝑑𝑝𝑘 = 𝑑) (15)

Var[𝑁𝑆9
] =

∑

𝑝∈

∑

𝑑∈𝑝𝑘

1{𝑝∈𝐵𝑆8 }
⋅ 1{𝑅𝐵𝑝(𝑑)} ⋅

[

P(𝑇𝐴𝑝 ∣ 𝑝 ∈ 𝐵𝑆9
) ⋅ P(𝑑𝑝𝑘 = 𝑑) − P(𝑇𝐴𝑝 ∣ 𝑝 ∈ 𝐵𝑆9

)2 ⋅ P(𝑑𝑝𝑘 = 𝑑)2
]

(16)

.3. Historical trip information + indirect incident-related 𝐵𝑆𝑖
: Inferring 𝑆5 and 𝑆11

𝑆5 and 𝑆11 are people who were already in the rail system and decided to cancel their trips because of the rail disruption. The
FC records of passengers in 𝑆5 and 𝑆11 can be described as 𝐵𝑆5,11

= {𝑝 ∶ 𝑡𝑝𝐾𝑝
≤ 𝑇1, 𝑚𝑝𝐾𝑝

= rail}, which means passengers having

t least one rail tap-in record before 𝑇1 and no tap-in record between 𝑇1 and 𝑇𝑒.
Consider a passenger 𝑝 ∈ 𝐹 ∩ 𝐻 . Let (𝑜𝑝𝑘∗ , 𝑡𝑝𝑘∗ , 𝑚𝑝𝑘∗ ) be the next non-transfer trip following trip 𝐾 (i.e., 𝑘∗ = min{𝑘′ > 𝐾 ∶

𝑝𝑘′
− 𝑡𝑝𝐾𝑝

> 𝑇𝑇𝑑}). As 𝑘∗ is the next non-transfer trip right after 𝐾, 𝑝 had no non-transfer trips within [𝑡𝑝𝐾𝑝
, 𝑡𝑝𝑘∗ ] on the incident day.

e use an example to illustrate the AFC records that may help to identify 𝑆5 and 𝑆11. Consider a passenger who plans to go to the
upermarket on the incident day. He/she was in the system when the incident happened. Suppose that he/she decided to cancel
is/her trip and return home. Then he/she would not have the typical returning trip from the supermarket. In this situation, 𝑘∗
ay be some other trips late in the evening or the first trip in the next day. However, in the historical AFC records. the typical trip

ight after 𝐾𝑝 should be the returning trip from the supermarket. Therefore, we can assume that if passenger 𝑝 has high probability
f having trips within [𝑡𝑝𝐾𝑝

, 𝑡𝑝𝑘∗ ] on normal days, he/she is very likely to cancel the trip 𝐾𝑝 because the typical following trip for
𝑝 that is supposed to occur in [𝑡𝑝𝐾𝑝

, 𝑡𝑝𝑘∗ ] does not exist on the incident day.
However, it is worth noting that since we only have public transit trip records, passengers who do not cancel trips but use other

ravel modes to replace both trip 𝐾𝑝 and the returning trip may also be identified as ‘‘cancel trips’’. Consider the example above, if
passenger takes Uber to the supermarket and then takes Uber back. He/she would be identified as ‘‘cancel trips’’. However, the

nformation in AFC data is not enough to differentiate these two groups of passengers. Hence, in this study, we assume that the
ncident only changes passengers’ mode choices of trips in the analysis period, which implies that the returning trip travel mode
or the passenger will be public transit if he/she usually uses public transit. Note that this assumption can be relaxed if we focus
n estimating the number of passengers ‘‘not using public transit’’ in an aggregated framework (see Fig. 2).

Denote the event that passenger 𝑝 ∈ 𝐵𝑆5,11
canceled trip 𝐾𝑝 after the incident as 𝐶𝑇𝑝. Based on the assumption above, we can

erive the probability as

P(𝐶𝑇𝑝 ∣ 𝑝 ∈ 𝐵𝑆5,11
) = 1 −

# normal days 𝑝 has rail trips in [𝑇𝑠, 𝑇1] with origin 𝑜𝑝𝐾𝑝
but no trip in [𝑡𝑝𝐾𝑝

, 𝑡𝑝𝑘∗ ]

# normal days 𝑝 has rail trips in [𝑇𝑠, 𝑇1] with origin 𝑜𝑝𝐾𝑝

∀𝑝 ∈ 𝐻 ∩ 𝐹

(17)

The second term in Eq. (17) represents the conditional probability that there is no trip in [𝑡𝑝𝐾𝑝
, 𝑡𝑝𝑘∗ ] on normal days given that the

passenger already has a rail trip in [𝑇𝑠, 𝑇1] with origin 𝑜𝑝𝐾𝑝
. The lower is this probability, the higher is the probability that this

behavior is atypical (i.e. the passenger actually cancels his/her trip) on the incident day.
10
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For 𝑝 ∉ 𝐻 ∩ 𝐹 , similar to Eq. (8), we can approximate the probability by that of passengers in 𝐻 ∩ 𝐹 :

P(𝐶𝑇𝑝 ∣ 𝑝 ∈ 𝐵𝑆5,11
) =

∑

𝑝′∈𝐻∩𝐹 P(𝐶𝑇𝑝′ ∣ 𝑝 ∈ 𝐵𝑆5,11
)

|𝐻 ∩ 𝐹 ∩ 𝐵𝑆5,11
|

∀𝑝 ∉ 𝐻 ∩ 𝐹 (18)

As mentioned before, passengers may cancel trips due to many reasons, not necessarily because of the incidents. Therefore,
we need to consider the event 𝐶𝑇𝑝 ∩ 𝐴𝑝, which represents passengers canceling trips because of the incident. However, directly
calculating P(𝐶𝑇𝑝, 𝐴𝑝 ∣ 𝑝 ∈ 𝐵𝑆5,11

) is difficult. The following equations show an aggregate calculation approach:

E[𝑁𝑆5
+𝑁𝑆11

] =
∑

𝑝∈
E[1{𝑝∈𝑆5∪𝑆11}] =

∑

𝑝∈
1{𝑝∈𝐵𝑆5,11 }

⋅ P(𝐶𝑇𝑝, 𝐴𝑝 ∣ 𝑝 ∈ 𝐵𝑆5,11
)

=
∑

𝑝∈
1{𝑝∈𝐵𝑆5,11 }

⋅ P(𝐶𝑇𝑝 ∣ 𝑝 ∈ 𝐵𝑆5,11
) ⋅ P(𝐴𝑝 ∣ 𝐶𝑇𝑝, 𝑝 ∈ 𝐵𝑆5,11

)

=
∑

𝑝∈
1{𝑝∈𝐵𝑆5,11 }

⋅ P(𝐶𝑇𝑝 ∣ 𝑝 ∈ 𝐵𝑆5,11
)(1 − P((𝐴𝑝)𝑐 ∣ 𝐶𝑇𝑝, 𝑝 ∈ 𝐵𝑆5,11

))

= 𝑁𝐶𝑇 − �̃�𝐶𝑇 (19)

here

𝑁𝐶𝑇 ∶=
∑

𝑝∈
1{𝑝∈𝐵𝑆5,11 }

⋅ P(𝐶𝑇𝑝 ∣ 𝑝 ∈ 𝐵𝑆5,11
) (20)

�̃�𝐶𝑇 ∶=
∑

𝑝∈
1{𝑝∈𝐵𝑆5,11 }

⋅ P(𝐶𝑇𝑝 ∣ 𝑝 ∈ 𝐵𝑆5,11
) ⋅ P((𝐴𝑝)𝑐 ∣ 𝐶𝑇𝑝, 𝑝 ∈ 𝐵𝑆5,11

) (21)

𝐶𝑇 is the expected number of passengers who canceled trips on the incident day (not necessarily due to the incident) and �̃�𝐶𝑇 is the
xpected number of passengers who canceled trips on the incident day and the reason is not the incident. We can approximate �̃�𝐶𝑇
s the number of passengers canceling trips on normal days. Specifically, denote �̃� (𝑗)

𝐶𝑇 as the number of canceling-trip passengers
alculated by applying Eq. (20) to the AFC data of 𝑗th normal day. Then we have

E[𝑁𝑆5
+𝑁𝑆11

] = 𝑁𝐶𝑇 − �̃�𝐶𝑇 = 𝑁𝐶𝑇 −

∑𝑀
𝑗=1 �̃�

(𝑗)
𝐶𝑇

𝑀
(22)

To calculate the variance of 𝑁𝑆5
+𝑁𝑆11

, we assume

P(𝐴𝑝 ∣ 𝐶𝑇𝑝, 𝑝 ∈ 𝐵𝑆5,11
) =

𝑁𝐶𝑇 − �̃�𝐶𝑇
𝑁𝐶𝑇

. ∀𝑝 ∈ 𝐵𝑆5,11
(23)

Eq. (23) means the probability that 𝑝’s behavior is atypical given that he/she canceled trips equals the expected number of passengers
canceling trips due to the incident divided by the total expected number of passengers canceling trips (not necessary due to the
incident). It implies that we are using population statistics to approximate the individual probability. Then, we can calculate the
variance as:

Var[𝑁𝑆5
+𝑁𝑆11

] =
∑

𝑝∈
1{𝑝∈𝐵𝑆5,11 }

⋅
[

P(𝐶𝑇𝑝 ∣ 𝑝 ∈ 𝐵𝑆5,11
)P(𝐴𝑝 ∣ 𝐶𝑇𝑝, 𝑝 ∈ 𝐵𝑆5,11

) − P(𝐶𝑇𝑝 ∣ 𝑝 ∈ 𝐵𝑆5,11
)2P(𝐴𝑝 ∣ 𝐶𝑇𝑝, 𝑝 ∈ 𝐵𝑆5,11

)2
]

(24)

It is worth noting that the number of passengers canceling trips due to the incident is expected to be small. Therefore, Eq. (22)
ay be smaller than zero due to variations in the AFC data. This means that there is no big difference between the number of

anceling trips passengers (Eq. (20)) on the incident day and on normal days, implying the number of passengers who canceled
rips due to the incident is negligible. In this situation, we simply let E[𝑁𝑆5

+𝑁𝑆11
] = 0 and Var[𝑁𝑆5

+𝑁𝑆11
] = 0.

.4. Subsequent trip information only: Inferring 𝑆3, 𝑆7 and 𝑆10

Identifying 𝑆3, 𝑆7 and 𝑆10 is similar to identifying 𝑆8 and 𝑆9. The inference leverages the subsequent trip information to
nfer the original routes. We consider these three groups together because they have the same AFC records in the incident day
i.e., at least one rail tap-in record before 𝑇1 and no tap-in record between 𝑇1 and 𝑇𝑒.). We define the corresponding set as
𝑆3,7,10

= {𝑝 ∶ 𝑡𝑝𝐾𝑝
≤ 𝑇1, 𝑚𝑝𝐾𝑝

= rail}.
Passengers in 𝑆7 are those who transfer at some upstream stations (not go out) if their original rail route is blocked. For 𝑝 in

𝑆3,7,10
∩ 𝐹 , let 𝑘∗ be his/her next non-transfer trip after trip 𝐾𝑝. Then, using the same way as in Section 3.2, we can infer the

estination distribution for trip 𝐾𝑝 (i.e. obtain P(𝑑𝑝𝐾𝑝
= 𝑑) for any 𝑑 ∈ 𝑝𝐾𝑝

), as well as their locations when the incident happened
i.e. 𝑠𝑝(𝑇1, 𝑑𝑝𝐾𝑝

)). For a given 𝑑𝑝𝐾𝑝
, if the original route from 𝑠𝑝(𝑇1, 𝑑𝑝𝐾𝑝

) to 𝑑𝑝𝐾𝑝
is blocked, as we do not observe another tap-in

ecord in [𝑇1, 𝑇2], 𝑝 would only have three options: (1) transferring to alternative routes from 𝑠𝑝(𝑇1, 𝑑𝑝𝐾𝑝
) to 𝑑𝑝𝐾𝑝

without going out

f the rail system (𝑆7), (2) using other undetected modes (𝑆3 + 𝑆10), and (3) canceling the trip (𝑆5 + 𝑆11). This section focuses on
he first two behaviors. It is worth noting that passengers can transfer only if there exist alternative routes from 𝑠 (𝑇 , 𝑑 ) to 𝑑
11

𝑝 1 𝑝𝐾𝑝 𝑝𝐾𝑝
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within the rail system. Given an inferred original destination 𝑑 ∈ 𝑝𝐾𝑝
, we denote the event that 𝑝’s original route is blocked but

transfer is available as 𝑅𝐵𝑇𝐴𝑝(𝑑).
We assume that passengers would not cancel trips when alternative routes were available. Then, if 𝑅𝐵𝑇𝐴𝑝(𝑑) was true, 𝑝 could

either use intra-system transferring or use other undetected modes. However, given the data limitations, there is no available
information to differentiate these two behaviors. We, thus, assume that the probability of using rail if a transfer is available, given
the destination 𝑑 of passenger 𝑝, is 𝛼𝑝,𝑑 , that is, P(1{𝑈𝑅𝑇𝐴𝑝|𝑑} = 1) = 𝛼𝑝,𝑑 , where 𝑈𝑅𝑇𝐴𝑝|𝑑 is the event that passenger 𝑝 will use
rail if a transfer is available given the destination is 𝑑. 𝛼𝑝,𝑑 can be estimated using a discrete choice model (DCM) with the utility
expressed as a function of the travel cost, travel time of different travel modes (including transfer by rail, TNC, etc.) (Ben-Akiva
et al., 1985). Given 𝑑, travel cost and travel time of different travel modes can be obtained from the Google Map API, and the
parameters in the DCM can be estimated from survey data (Rahimi et al., 2020).

Notice that 1{𝑈𝑅𝑇𝐴𝑝|𝑑} is independent of 1{𝑑𝑝𝐾 =𝑑} (i.e., the conditional independence). And based on the above assumptions, we
have

E[𝑁𝑆7
] =

∑

𝑝∈
E[1{𝑝∈𝑆7}] =

∑

𝑝∈

∑

𝑑∈𝑝𝐾

1{𝑝∈𝐵𝑆3,7,10 }
⋅ 1{𝑅𝐵𝑇𝐴𝑝(𝑑)} ⋅ 𝛼𝑝,𝑑 ⋅ P(𝑑𝑝𝐾 = 𝑑) (25)

And the corresponding variance is

Var[𝑁𝑆7
] =

∑

𝑝∈

∑

𝑑∈𝑝𝐾

1{𝑝∈𝐵𝑆3,7,10 }
⋅ 1{𝑅𝐵𝑇𝐴𝑝(𝑑)} ⋅

[

𝛼𝑝,𝑑 ⋅ P(𝑑𝑝𝐾 = 𝑑) − 𝛼2𝑝,𝑑 ⋅ P(𝑑𝑝𝐾 = 𝑑)2
]

(26)

Passengers in 𝐵𝑆3,7,10
whose original routes were blocked and a transfer is not available have two options: (1) using other

undetected modes or (2) canceling trips. Hence, we can use the total number of transfer-unavailable passengers minus the number
of canceling-trip passengers to represent passengers using other undetected modes (𝑆3+𝑆10). Note that when a transfer is available,
passengers with probability 1−𝛼𝑝,𝑑 may choose other undetected modes, and should also be counted into 𝑆3+𝑆10. Given an inferred
original destination 𝑑 ∈ 𝑝𝐾𝑝

, denote the event that 𝑝’s original route is blocked and transfer is not available as 𝑅𝐵𝑇𝑁𝑝(𝑑). Then,

E[𝑁𝑆3
+𝑁𝑆10

] =
∑

𝑝∈

∑

𝑑∈𝑝𝐾𝑝

1{𝑝∈𝐵𝑆3,7,10 }
⋅ 1{𝑅𝐵𝑇𝐴𝑝(𝑑)} ⋅ (1 − 𝛼𝑝,𝑑 ) ⋅ P(𝑑𝑝𝐾𝑝

= 𝑑) +

∑

𝑝∈

∑

𝑑∈𝑝𝐾𝑝

1{𝑝∈𝐵𝑆3,7,10 }
⋅ 1{𝑅𝐵𝑇𝑁𝑝(𝑑)} ⋅ P(𝑑𝑝𝐾𝑝

= 𝑑) − E[𝑁𝑆5
+𝑁𝑆11

] (27)

he first term in Eq. (27) indicates passengers with available intra-system transfer routes but still choosing other undetected modes.
he second term represents the total number of passengers without intra-system transfer routes. And the third term (E[𝑁𝑆5

+𝑁𝑆11
])

s the number of passengers canceling trips, which is calculated in Section 3.3.
According to Section 3.3, 𝑁𝑆5

+ 𝑁𝑆11
=

∑

𝑝∈ 1{𝑝∈𝐵𝑆5,11 }
⋅ 1{𝐶𝑇𝑝 ,𝐴𝑝 ∣𝑝∈𝐵𝑆5,11 }

. And 1{𝑈𝑅𝑇𝐴𝑝|𝑑} ⋅ 1{𝑑𝑝𝐾𝑝
=𝑑} is independent of

{𝐶𝑇𝑝 ,𝐴𝑝 ∣𝑝∈𝐵𝑆5,11 }
because the choice behavior (1{𝑈𝑅𝑇𝐴𝑝|𝑑}) is estimated from survey data, the destination inference (1{𝑑𝑝𝐾𝑝

=𝑑})

s based on subsequent trip information, while the estimation of canceling trips (1{𝐶𝑇𝑝 ,𝐴𝑝 ∣𝑝∈𝐵𝑆5,11 }
) is based on historical trip

nformation. So, the variance can be calculated as

Var[𝑁𝑆3
+𝑁𝑆10

]

=
∑

𝑝∈

∑

𝑑∈𝑝𝐾

1{𝑝∈𝐵𝑆3,7,10 }
⋅ 1{𝑅𝐵𝑇𝐴𝑝(𝑑)} ⋅ [(1 − 𝛼𝑝,𝑑 ) ⋅ P(𝑑𝑝𝐾 = 𝑑) − (1 − 𝛼𝑝,𝑑 )2 ⋅ P(𝑑𝑝𝐾 = 𝑑)2] +

∑

𝑝∈

∑

𝑑∈𝑝𝐾

1{𝑝∈𝐵𝑆3,7,10 }
⋅ 1{𝑅𝐵𝑇𝑁𝑝(𝑑)} ⋅ [P(𝑑𝑝𝐾 = 𝑑) − P(𝑑𝑝𝐾 = 𝑑)2] + Var[𝑁𝑆5

+𝑁𝑆11
]

here Var[𝑁𝑆5
+𝑁𝑆11

] is obtained in Section 3.3.

. Case study

.1. Chicago Transit system

We use data from the CTA transit system as the case study because this paper focuses on open public transit systems with only
ap-in information and CTA is an open system.

CTA is the second-largest transit system in the United States, providing services in Chicago, Illinois, and some of its surrounding
uburbs. The transit network consists of the Chicago ‘‘L’’ (rail) and CTA bus services. It operates 24 h each day and on an average
eekday provides 0.84 and 0.81 million rides on buses and trains, respectively (CTA, 2019). The map of the CTA rail system is

hown in Fig. 4. The rail system consists of eight lines (named by color) and the ‘‘Loop’’. The Loop, located in the Chicago downtown
rea, is the 2.88 km long circuit of elevated rail that forms the hub of the Chicago rail system. Its eight stations account for around
0% of all weekday boardings on the CTA trains.

Two data sources are used in this study: the AFC transaction data and train tracker (or AVL) data. CTA’s AFC system is entry-only
s passengers only use their fare cards when entering a rail station or boarding a bus. No information about a trip’s destination is
irectly provided. The AVL system provides trains’ arrival/departure times at each station.
12
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Fig. 4. CTA rail system map. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

4.2. Disruption background

The rail disruption used in this study happened on September 24, 2019. At 9:09AM, two trains collided at the Sedgwick station
on the Brown line (see Figs. 4 and 5). This collision caused an interruption in service with five stations near Sedgwick on both
Purple and Brown lines which are paralleled in this area being blocked (Fig. 5). The disruption lasted for 70 min and ended at
10:19 AM when trains returned to normal operations.

The reasons for choosing this incident are as follows: (1) It is a substantial unplanned service disruption that can trigger
observable behavior changes. (2) The incident area has enough alternative services (such as nearby rail lines, bus routes, etc.)
to cover 19 possible behaviors so that we can illustrate the proposed model’s performance.

When the incident happened, passengers who were in blocked stations and trains were cleared out of the system. The station
closure sign was placed outside the fare collection gate in blocked stations, reminding passengers about the service suspension. CTA
informed passengers about the incident from both the Ventra app (CTA user app to manage and pay fares on CTA) and CTA Tweets
right after the disruption. All passengers in the system were informed of train and platform announcements.

During the service interruption, CTA provided bus shuttle services between Fullerton and Merchandise Mart. People who were
forced to leave their trains from the blocked stations would re-tap-in if they decided to use CTA normal bus or rail services and
were only charged a small transfer fee.4 However, no tap-in is needed for shuttle bus users. Hence, the shuttle bus is defined as an
undetected mode in this study.

4.3. Parameter settings

Based on the incident information, the incident start time is 𝑇1 = 9:09AM and end time 𝑇2 = 10:19AM. 𝛿1 = 𝛿2 = 60 min is used
according to the network scale and the analysis of system recovery time (Mo et al., 2022). Therefore, the analysis period is from
𝑇𝑠 = 8:09AM to 𝑇𝑒 = 11:19AM. The normal days are selected as all Fridays (except for the incident day) in September and October,
2019.

The time threshold for transferring 𝑇𝑇𝑑 = 2 h is used based on the CTA fare system. The walking distance threshold for bus and
rail systems are set as 𝑑𝑏 = 0.7 km and 𝑑𝑟 = 1.2 km, respectively. These two numbers are slightly higher than the typical public
transit transfer distance (Peng et al., 2009) so as to capture the increase in wiliness-to-walk during service disruptions.

As discussed before, 𝛼𝑝,𝑑 and 𝛽𝑝 can be calculated based on the passenger’s travel time and travel cost for different choices
(including canceling trips) using DCM. The parameters in the DCM can be estimated from survey data or extracted from previous
survey-based studies (Lin et al., 2018; Rahimi et al., 2020). The reason for using 𝛼𝑝,𝑑 and 𝛽𝑝 is that, from AFC data alone, some groups
of passengers cannot be identified as they have the same AFC transactions. AFC data only allows estimating 𝑁𝑆3

+𝑁𝑆7
+𝑁𝑆10

(the
number of passengers using intra-system transfers or not using public transit) and 𝑁𝑆17

+𝑁𝑆18
(the number of passengers out of the

4 Sometimes there is no need to re-tap-in, depending on whether the control center has informed the CTA staff working in rail stations and bus drivers
to allow free rides, and whether passengers asked for free rides due to the incident. In this study, we assume all passengers would re-tap-in according to the
observation in the AFC data.
13



Transportation Research Part E 159 (2022) 102628B. Mo et al.
Fig. 5. Rail disruption case. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

system when the incident happens and not using public transit) as a whole. Model-based inferences are necessary for differentiating
these groups. In this study, as we focus on a data-driven approach, the model-based parameters are set as 𝛼𝑝,𝑑 = 0.95, 𝛽𝑝 = 0.9 for
all 𝑝 and 𝑑 for simplicity. These values are based on the sample statistics of CTA riders who participated in the survey about travel
mode choices during incidents (Rahimi et al., 2020).

4.4. Descriptive analysis

For a better understanding of the incident, we show the demand patterns of three rail lines (Brown, Purple, and Red) and bus
stations around the incident area (i.e., 𝑏). The line-level demand is calculated as the sum of all station demands in the line.

Fig. 6 shows the comparison of the number of tap-in passengers on the incident day and normal days (aggregated by 15-min
interval). We observe that the normal day demand patterns are relatively consistent compared to the incident day, which enables us
to differentiate behavioral discrepancy on the incident day. As expected, the demand on the Brown and Purple Lines (interrupted
by the incident) both decreased during the incident (Figs. 6a and 6b). And it gradually returned to normal with the end of the
incident. As the Red Line runs adjacent to the Brown and Purple Lines for a large portion (see Fig. 5) in the incident area and it
is not suspended, we see a significant increase in demand during the incident period with a return to normal after the incident is
over (Fig. 6c). In terms of the nearby bus stops, the demand pattern is similar to that of the Red Line.

In terms of the demand change numbers, we see that the demand increase on the Red Line (1413) is much higher than that in
the nearby bus stations, implying that most of the passengers choose the Red Line as the alternative. Note that the total demand
decrease in Brown and Purple lines is slightly smaller than the total demand increase due to the fact that some passengers may first
tap into the incident lines and then leave. This means that the actual demand decrease is higher than 680 + 506 = 1186.

4.5. Rule-based benchmark models

We choose the rule-based deterministic method that has been used in previous studies (Sun et al., 2016; Liu et al., 2021) as the
benchmark model. The rule-based method directly maps passengers with observed behavior (𝐵𝑆𝑖

) to those who are influenced by
the incident (𝑆𝑖). Note that as this paper considers different behavior sets from those of previous studies, we cannot use their rules
to classify passengers. For a fair comparison, we use the rule defined in our paper (𝐵𝑆𝑖

) as the criterion. Recall that there are four
formulations in Section 2.2.2 to infer passengers’ responses. For the rule-based model, the number of formulations reduces to two
because some cases share the same formulation:

• ‘‘Historical trip information + direct incident-related 𝐵𝑆𝑖
’’ and ‘‘Historical trip information + indirect incident-related

𝐵𝑆𝑖
’’: In the rule-based method, we assume 𝑝 ∈ 𝐵𝑆𝑖

is equivalent to 𝑝 ∈ 𝑆𝑖. Therefore, eliminating the probability component
in Eqs. (1) and (2), we have

1{𝑝∈𝑆𝑖} = 1{𝑝∈𝐵𝑆𝑖 }
(28)

𝑆 , 𝑆 , 𝑆 , 𝑆 , 𝑆 , 𝑆 , 𝑆 , 𝑆 , 𝑆 , 𝑆 , and 𝑆 belong to this case.
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Fig. 6. Demand comparison for normal days and the incident day. A green thin line represents the demand curve for a single normal day. The green shade
areas represent the ±standard deviation. The demand change is calculated as the total number of tap-ins during the incident period (9:09–10:19 AM) on the
incident day minus that of the normal day average. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

• ‘‘Subsequent trip information only’’ and ‘‘Historical trip information + direct incident-related 𝐵𝑆𝑖
+ Subsequent trip

information’’: In this case, we first infer a destination 𝑑 for the passenger. Then, eliminating the probability component in
Eqs. (3) and (4), we have

1{𝑝∈𝑆𝑖} = 1{𝑝∈𝐵𝑆𝑖 }
⋅ 1{𝑌𝑝(𝑑)} (29)

𝑆3, 𝑆7, 𝑆10, 𝑆16, 𝑆8, and 𝑆9 belong to this case.

The estimated number of passengers in group 𝑆𝑖 is calculated as.

�̂�𝑆𝑖
=

∑

𝑝∈
1{𝑝∈𝑆𝑖} (30)

Since this is a deterministic method, variance information is not available.

4.6. Model validation with synthetic data

4.6.1. Synthetic data generation
Since there are no available observations for passengers’ actual choices, the model validation is conducted with a simulation-

based synthetic data set generated from the actual AFC data. The generation process is as follows. And the illustration diagram is
shown in Fig. 7.
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Fig. 7. Diagram for synthetic data generation.

Step 1: Sample intended trajectories. For each passenger 𝑝 who has used the CTA system in any of 𝑀 normal days (i.e., 𝑀𝑝 ≥ 1),
we randomly sample one normal day ID (from 1 to 𝑀), denoted 𝑖𝑝. If the passenger does not have an AFC record on the 𝑖𝑝th normal
day, we assume that he/she did not use public transit on the incident day. Otherwise, the AFC records on the 𝑖𝑝th normal day are
treated as his/her intended trajectory. We assume that, on the incident day, passenger 𝑝 would follow the same travel trajectory as
the 𝑖𝑝th normal day (i.e., tap-in and tap-out records) if there was no incident. For all intended trajectories, the public transit trip
destinations are inferred from the destination estimation model (Gordon et al., 2013).

Step 2: Generate synthetic AFC data for the incident. The data from step 1 are the passenger ‘‘intended’’ trajectories under
normal conditions. We also need to generate the ‘‘actual’’ AFC records subject to the incident at Sedgwick station (see Section 4.2).
Specifically, with the intended trajectories of all passengers, we can infer their locations when the incident occurs based on a transit
assignment model (see Section 3.2). For the purpose of model validation, we assume that passengers’ behavior follows the diagram
in Fig. 2. From passengers’ locations and intended routes, we can identify all affected and unaffected passengers based on whether
their original routes are blocked or not. For all affected passengers, we first enumerate their possible choices based on the stage of
the trip they are at when the incident occurs (e.g., at the blocked stations, in the system but not at blocked stations, outside the
system, etc.) and availability of different travel modes. Then, each passenger is assigned an available mode based on the choice
probabilities. For this application, the choice probabilities are calculated using the behavior model in Rahimi et al. (2020) and Lin
et al. (2018). If the passenger is assigned with public transit, we find the available nearby bus or alternative rail lines for him/her and
calculate his/her tap in time based on the walking distance. The new tap-in record is added to the synthetic data on the incident day.
For passengers who decide to wait until the system recovers, we assume they all wait outside the blocked stations and tap in right
after 𝑇2. Then new AFC records are added to the synthetic data. If the passenger is out of the system when the incident happens and
is assigned with an undetected travel mode or canceling trips, we remove his/her AFC transaction in [𝑇𝑠, 𝑇𝑒]. For passengers in the
system deciding to cancel their trips, we remove their subsequent AFC transactions (i.e., returning trips) as assumed in Section 3.3.
The new AFC records are treated as synthetic data on the incident day (where the incident does happen).

The synthetic AFC data on the incident day and passengers’ ‘‘true’’ choices are then used as the ground truth for model validation.
Data generation and model estimation processes are replicated 15 times.

4.6.2. Validation criteria
Since the proposed model can output the expected number of passengers in each behavior group (i.e., E[𝑁𝑆𝑖

]) and corresponding
variance (i.e., Var[𝑁𝑆𝑖

]), it is worth validating both estimates. The validation of E[𝑁𝑆𝑖
] is straightforward. As in the synthetic data we

have the ‘‘true’’ value of 𝑁𝑆𝑖
, a comparison between the ‘‘true’’ 𝑁𝑆𝑖

and the estimated E(𝑁𝑆𝑖
) can be conducted (For the benchmark

model, the comparison is against �̂�𝑆𝑖
). Since the data generation and model estimation processes are replicated 15 times, the ‘‘true’’

average of 𝑁𝑆𝑖
and estimated E[𝑁𝑆𝑖

] are compared (Fig. 8).
To validate Var[𝑁𝑆𝑖

], we notice that the ‘‘true’’ 𝑁𝑆𝑖
in each replication of the synthetic data can be seen as a sample drawn from

the underlying behavioral distribution. This distribution is a reflection of passenger’s choice probabilities and inferred destination
distribution. Therefore, the sample variance of 𝑁𝑆𝑖

over the 15 replications can be seen as the ‘‘true’’ Var[𝑁𝑆𝑖
], which is compared

with the estimated Var[𝑁𝑆𝑖
] (Fig. 9). Note that since we have 15 estimated Var[𝑁𝑆𝑖

] from different replications, the average value
is used for comparison.

To quantify the estimation errors over all behavior groups, we calculate the root mean square error (RMSE) and mean absolute
percentage error (MAPE) as follows:

RMSE(E[⋅]) =

√

∑𝑍
𝑖=1(�̄�𝑆𝑖

− Ē[𝑁𝑆𝑖
])2

𝑍
, (31)

MAPE(E[⋅]) = 1
𝑍

𝑍
∑

𝑖=1

|�̄�𝑆𝑖
− Ē[𝑁𝑆𝑖

]|

�̄�𝑆𝑖

, (32)
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Fig. 8. Estimation results of expectations with synthetic data.

where �̄�𝑆𝑖
(resp. Ē[𝑁𝑆𝑖

]) is the average value of the ‘‘true’’ 𝑁𝑆𝑖
(resp. estimated E[𝑁𝑆𝑖

]) over the 15 replications. The RMSE and
MAPE of Var[𝑁𝑆𝑖

] are calculated in a similar way.

4.6.3. Results
Model estimation results with synthetic data are shown in Figs. 8 and 9. Note that we exclude the results of 𝑁𝑆6

and 𝑁𝑆13
(number of not affected passengers) in the graph as their values are too large and may distort the comparison. In Fig. 9, the standard
deviations (i.e.,

√

Var[𝑁𝑆𝑖
]) are shown instead of variance for unit consistency.

Fig. 8 presents the estimated results of E[𝑁𝑆𝑖
] (probabilistic model) and �̂�𝑆𝑖

(rule-based). Results show that the probabilistic
model can estimate passenger’s response behaviors with an RMSE = 144 and MAPE = 20.5%. It significantly outperforms the rule-
based benchmark model (RMSE = 536 and MAPE = 60.3%). The absolute errors of the probabilistic model are relatively large for
E[𝑁𝑆16

] and E[𝑁𝑆7
]. This may be due to the fact that there are around 30% passengers without future information for destination

inference. Their destination distribution is approximated by the inferred population (Eq. (12)), leading to estimation errors. In terms
of the rule-based model, it has a system error (overestimation) because it does not account for the fact that some observed behaviors
are due to behavior randomness, rather than the impact of incidents.

Fig. 9 presents the estimation results for
√

Var[𝑁𝑆𝑖
]. Note that the rule-based model cannot output estimated variance, thus

is not plotted in the figure. Results show that the probabilistic model can capture the patterns of standard deviation for different
behavior groups well. The RMSE is 4.4 and MAPE is 69.8%, which is higher compared to the error of the expected values. This is
reasonable because variance is the second moment which in general is harder to estimate than the first moment (i.e., expectation).

4.7. Model application with real-world data

4.7.1. Results
In the real-world data, we only implement the probabilistic method. Table 2 summarizes the estimation results for the real-world

data from the CTA system. Overall, most of the passengers (97.43%) are not affected by the incident. This is reasonable because the
incident only affected a small area. 69.51% of all affected passengers choose to use rail by changing routes. This is expected because
the Red Line is a good substitution for the blocked Brown and Purple lines. Most of the OD pairs can be connected by the Red line
when the Brown and Purple lines do not work. 6.57% of passengers choose to wait or delay their departure times (i.e., using rail
without changing routes). 15.72% choose to use buses while 8.09% choose to not use public transit.

The variance in Table 2 captures the behavioral randomness of 𝑆𝑖 and how much information of 𝑆𝑖 can be captured in 𝐵𝑆𝑖
by

AFC data (see Section 2.2.3). Generally, the variances are proportional to the means. The coefficients of variation for 𝑁𝑆1
and 𝑁𝑆2

are low, meaning these two behaviors are relatively easy to be captured by AFC data. This is reasonable because multiple tap-in
records are generated by these behaviors, leading to the direct incident-related 𝐵𝑆𝑖

. Canceling trips and using other undetected
modes have a relatively high coefficient of variation. This means these two behaviors are hard to be estimated using the AFC data.

Fig. 10 shows the behavior distribution for passengers in the rail system when the incident happened. 46% of those passengers
choose the inside rail transfer (i.e. transfer without leaving the rail system). This is reasonable because passengers coming from
stations north of the blocked stations (main morning peak demand) have multiple rail transfer stations (such as Belmont and
Fullerton) that connect the suspended Brown and Purple lines to the Red line (see Fig. 5). This allows passengers to conveniently
continue to use the rail system without leaving the system. 19% and 23% of passengers choose to leave the system and transfer to
17
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Fig. 9. Estimation results of standard deviations with synthetic data.

Table 2
Passenger behavior estimation results.

Behavior
(Prop.; Impacted Prop.b)

Group Mean Variance
(Coeff. of variationa, %)

Proportion (%) Proportion
(Impactedb, %)

Use rail changing route S2 595 157.4 (2.11) 0.25 9.61
(1.79%; 69.51%) S7 1282 1005.7 (2.47) 0.53 20.71

S9 56 49.0 (12.5) 0.02 0.9
S15 831 675.5 (3.13) 0.35 13.43
S16 1538 2639.4 (3.34) 0.64 24.85

Use rail not changing route S4+S12 48 11.5 (7.07) 0.02 0.78
(0.17%; 6.57%) S19 365 295.9 (4.71) 0.15 5.9

Use bus S1 315 87.8 (2.97) 0.13 5.09
(0.40%, 15.72%) S8 202 170.5 (6.46) 0.08 3.26

S14 456 412.9 (4.46) 0.19 7.37

Not use public transit S3+S10 291 255.8 (5.5) 0.12 4.7
(0.21%, 8.09%) S17 180 180.2 (7.46) 0.07 2.91

S5+S11 10 10.4 (32.18) 0 0.16
S18 20 20.0 (22.39) 0.01 0.32

No impact S6 63 503 1748.1 (0.07) 26.37 N.A.
(97.43%, N.A.) S13 171 085 4223.9 (0.04) 71.06 N.A.

aCoefficient (Coeff.) of variation is calculated as the standard division divided by the mean.
bImpacted proportion (prop.) is the proportion within all affected passengers (excluding 𝑆6 and 𝑆13).

a bus line and other rail stations, respectively. Around 10% of passengers choose to use other undetected modes. And only a small
proportion of passengers choose to wait (2%) or cancel their trips (0.3%). Overall, the estimated proportions of different behaviors
are reasonable.

Fig. 11 shows the behavior distribution for all affected passengers out of the rail system when the incident happened. Similar
to the results above, most of those passengers (45%) chose to transfer to another rail line without leaving the system. 25% of them
changed tap-in stations and 13% chose to use buses. We also observe that 11% of passengers delayed their departure time and 5%
used other undetected modes. Only around 1% of passengers canceled their trips. Compared to the results above, we find there is a
decrease in the percentage of passengers using buses and other undetected modes and an increase in using rail. This is reasonable
because when passengers are out of the system, they are more flexible in choosing rail routes, thus more likely to keep using rail
services.

4.7.2. Analysis of real-world results
Though there is no direct validation for the estimation results using real-world data, we propose two indirect approaches to

discuss the reasonableness of the results.
The first is to compare the ridership increase in bus stops and rail stations that are close to the blocked stations (i.e., 𝑏 and

 ). The ridership increase at these bus stops and rail stations should be similar to (slightly larger than) 𝑁 and 𝑁 , respectively.
18
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Fig. 10. Behavior distribution for passengers in the rail system when the incident happened (texts in boxes are behavior description, number of passengers, and
proportion, respectively).

Fig. 11. Behavior distribution for passengers out of the rail system when the incident happened.

‘‘Slightly larger’’ is because some ridership increase may be passengers living in the nearby neighborhoods, which do not belong to
𝑆1 and 𝑆2. The ridership increase is calculated as the number of tap-in passengers during the incident period minus the mean on
normal days. The ridership increase for nearby bus stops is 401 passengers (slightly larger than the estimated E[𝑁𝑆1

] = 315), and
for rail stations 720 passengers (slightly larger than the estimated E[𝑁𝑆2

] = 595), which is as expected.
The second approach is based on the CTA incident logs. CTA incident logs report that ‘‘run 505 (Purple line) unloads around 300

customers’’ and ‘‘run 416 (Brown line) unloads around 500 customers’’. According to the AVL data, these two trains are the only
trains that unloaded passengers. Assuming that passengers who entered the blocked stations between 𝑇1 and the time of the last
train departure waited at the platforms, there were a total of 437 waiting passengers on the platforms of the blocked stations when
the incident happened (based on the AFC and AVL data). According to Fig. 2, the total number of unloaded and waiting passengers
should be equal to the number of passengers at the blocked stations (i.e., ∑5

𝑖=1 𝑁𝑆𝑖
). Hence, the estimated value of ∑5

𝑖=1 E[𝑁𝑆𝑖
]

should be close to 300 + 500 + 437 = 1237 passengers. However, the inference model provides estimates for E[𝑁𝑆1
] and E[𝑁𝑆2

],
but not E[𝑁𝑆3

], E[𝑁𝑆4
], and E[𝑁𝑆5

] (because E[𝑁𝑆3
+ 𝑁𝑆10

], E[𝑁𝑆4
+ 𝑁𝑆12

], and E[𝑁𝑆5
+ 𝑁𝑆11

] are estimated as a whole). Since
E[𝑁𝑆4

+ 𝑁𝑆12
] and E[𝑁𝑆5

+ 𝑁𝑆11
] are relatively small, ∑5

𝑖=1 E[𝑁𝑆𝑖
] + E[𝑁𝑆10

] + E[𝑁𝑆11
] + E[𝑁𝑆12

] should be slightly greater than
1237 and E[𝑁𝑆1

] + E[𝑁𝑆2
] slightly smaller than 1237 if the estimates are correct. A simple calculation leads to

E[𝑁𝑆1
+𝑁𝑆2

] = 910 < 1237 <
5
∑

𝑖=1
E[𝑁𝑆𝑖

] + E[𝑁𝑆10
] + E[𝑁𝑆11

] + E[𝑁𝑆12
] = 1259, (33)

supporting the validity of the estimation results.

5. Conclusion and discussion

This study proposes a probabilistic framework to infer passengers’ response behavior to an unplanned rail service disruption using
smart card data in a tap-in-only public transit system. We enumerate 19 possible behaviors that passengers may have based on the
stages of their trips when the incident happened. A probabilistic model is proposed to estimate the mean and variance of the number
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of passengers in each of the 19 groups using passengers’ historical and subsequent trip information. Based on the information used
and the context of the behavior, four cases of formulations are used in the probabilistic model. Data from the CTA public transit
system (bus and urban rail) is used for the case study with a rail incident. The model is implemented with both synthetic data
(consistent with the CTA AFC data) and real-world data. The main conclusions of this study are as follows:

• The proposed approach can estimate passengers’ behavior well and outperform the rule-based benchmark model. Results with
synthetic data show that the RMSE and MAPE for the estimated expected number of passengers in each behavior group are
143.9 and 20.5%, respectively. The RMSE and MAPE for the estimated standard deviation are 4.4 and 69.8%, respectively. The
estimation results with real-world data are consistent with the incident’s context. An indirect model validation using ridership
change information and incident log data demonstrates the reasonableness of the results.

• Results with real-world data find that most of the passengers (97.43%) are not affected by the incident. This is reasonable
because the incident only affected a small area. The incident we analyzed has high service redundancy with the Red line
substituting the blocked Brown and Purple lines. Our model results show that in the high redundancy case, most of the affected
passengers (69.51%) choose to use rail by changing routes.

• Based on the results, CTA operators can confirm that the Red line is a good alternative and quantify the impact. To relieve the
incident impact, operators can increase service frequency in the Red line. The model indicates that only 8.1% of passengers
choose to leave the public transit system. This number can help CTA conduct the service loss analysis due to the incident.

The proposed model has several practical significances. First, The model is data-driven. Compared to the conventional survey-
ased methods, the proposed approach can effectively estimate passengers’ responses without collecting data manually. Second, the
utput results can help transit operators better understand passengers’ choices during a disruption, based on which they can design
etter operating strategies on the supply side to mitigate the impact of incidents. For example, for heavily used alternative services
uring the disruption, operators can increase the service frequency or provide shuttle buses with similar routes. Third, based on
he results, operators can identify congestion in the network. They can disseminate information (e.g., route recommendation) to
assengers, or conduct flow control at the gate level, to avoid overloaded routes.

Future studies can focus on the following directions. (1) Estimate the estimation error (i.e., Var[E[𝑁𝑆𝑖
]]). The estimation error is

another type of uncertainty. It comes from the fact that we are using sample data to estimate a specific probability. For example, as
P(𝐴𝑝 ∣ 𝑝 ∈ 𝐵𝑆𝑖

) is estimated from the historical travel trajectories, we actually only obtain the estimated value (i.e., P̂(𝐴𝑝 ∣ 𝑝 ∈ 𝐵𝑆𝑖
)). It

is a random variable and the corresponding variance Var[P̂(⋅)] reflects the estimation error. The estimation error depends on sample
sizes (i.e., amount of normal day data) and passenger travel irregularity. The challenge of estimating Var[P̂(⋅)] is that this value is
not available for passengers without historical information. Future studies can explore approximation techniques with reasonable
distributional assumptions to calculate estimation errors. (2) Apply the model to different incident cases. According to Mo et al.
(2022), the incident locations and the redundancy of surrounding public transit alternatives are influential in passenger mode choice
behavior. Future studies may analyze more case studies and compare passengers’ behavioral responses under different scenarios. (3)
Analyze individual-level choices. In this study, we only output the aggregate level mode choice behavior (i.e., 𝑁𝑆𝑖

). Future work
may explicitly output P(𝑝 ∈ 𝑆𝑖), and analyze its relationship with passengers’ characteristics (such as home location, fare card type,
travel frequency, etc.).

These future studies can help improve the proposed method, and make the understanding of passenger responses more accurate.
For example, with better quantification of estimation uncertainty, we can develop more robust or stochastic optimization methods
for shuttle service design, headway design, path recommendations, flow control, etc.

Though there are extensive data in the AFC and AVL systems, machine learning methods do not fit into this study because of
the lack of actual observed responses behaviors (i.e., lack of labels). In the future, if some passenger’s actual response behavior can
be observed (e.g., from self-report data, probe GPS data, or cell phone data), a supervised learning model may be trained to predict
passengers’ responses to incidents. The features may include passenger’s spatial and temporal travel histories, incident information,
and supply information. These features can be embedded with many advanced deep learning methods such as long short-term
memory (LSTM) networks, convolutional neural networks (CNN), graph neural networks (GNN), etc.
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Appendix. Model formulations (continued)

A.1. Historical trip information + direct incident-related 𝐵𝑆𝑖
(continued)

A.1.1. Inferring 𝑆4 and 𝑆12
𝑆4 and 𝑆12 are passengers who waited until the system recovered. Passengers in 𝑆4 left and waited outside the blocked stations.

Thus, they have at least one tap-in record before 𝑇1, and another tap-in record at the blocked stations after 𝑇2. We assume that
passengers in 𝑆12 also waited outside the blocked stations (passengers usually take the train up to the blocked stations then start to
wait).

We define 𝐵𝑆4,12
= {𝑝 ∶ ∃𝑘 ∈ {1,… , 𝐾𝑝 − 1} s.t. 𝑡𝑝𝑘 ≤ 𝑇1, 𝑡𝑝𝑘+1 ≥ 𝑇2, 𝑚𝑝𝑘 = 𝑚𝑝𝑘+1 = rail, 𝑜𝑝𝑘+1 ∈ }, which means passengers with

a rail tap-in trip before the incident and another rail tap-in trip after the system recovery, with the second tap-in station one of the
blocked stations. As passengers who tap-in again at a blocked station may do so not because of the incident but as part of a normal
routine, similar to Eq. (6),

E[𝑁𝑆4
+𝑁𝑆12

] =
∑

𝑝∈
1{𝑝∈𝐵𝑆4,12 }

⋅ P(𝐴𝑝 ∣ 𝑝 ∈ 𝐵𝑆4,12
). (A.1)

1{𝑝∈𝐵𝑆4,12 }
is a constant. P(𝐴𝑝 ∣ 𝑝 ∈ 𝐵𝑆4,12

) can be calculated the same way as Eqs. (7) and (8) by replacing 𝐵𝑆1
with 𝐵𝑆4,12

. The
variance of 𝑁𝑆4

+𝑁𝑆12
is

Var[𝑁𝑆4
+𝑁𝑆12

] =
∑

𝑝∈
1{𝑝∈𝐵𝑆4,12 }

⋅ [P(𝐴𝑝 ∣ 𝑝 ∈ 𝐵𝑆4,12
) − P(𝐴𝑝 ∣ 𝑝 ∈ 𝐵𝑆4,12

)2] (A.2)

.2. Historical trip information + indirect incident-related 𝐵𝑆𝑖
(continued)

.2.1. Inferring 𝑆14 and 𝑆15
Passengers in 𝑆14 and 𝑆15 have not entered the rail system when the incident happens. Therefore, they have no rail tap-in records

efore 𝑇1.
We first consider passengers in 𝑆14. Consider a 𝑝 ∈ 𝐻 with 𝑇1 < 𝑡𝑝1 < 𝑇2 and 𝑚𝑝1 = bus, which means the first trip for 𝑝 during

the incident period is bus. Define 𝐵𝑆14
= {𝑝 ∶ 𝑇1 < 𝑡𝑝1 < 𝑇2, 𝑚𝑝1 = bus}. And define the event that 𝑝 changed from rail to bus on the

incident day as 𝐶𝐵𝑝. The probability of 𝐶𝐵𝑝 for 𝑝 ∈ 𝐵𝑆14
can be calculated as

P(𝐶𝐵𝑝 ∣ 𝑝 ∈ 𝐵𝑆14
) = 1 −

# normal days 𝑝’s first trip in [𝑇1, 𝑇2] is bus
# normal days 𝑝 has trips in [𝑇1, 𝑇2]

∀𝑝 ∈ 𝐻 (A.3)

Eq. (A.3) means the probability of 𝐶𝐵𝑝 equals 1 minus the frequency of using a bus on normal days. A high frequency of using a
bus on normal days means using a bus is highly likely the typical behavior for 𝑝, instead of a change in the behavior. For 𝑝 ∉ 𝐻 ,
we can approximate the probability by

P(𝐶𝐵𝑝 ∣ 𝑝 ∈ 𝐵𝑆14
) =

∑

𝑝′∈𝐻∩𝐹 P(𝐶𝐵𝑝′ ∣ 𝑝 ∈ 𝐵𝑆14
)

|𝐻 ∩ 𝐵𝑆14
|

∀𝑝 ∉ 𝐻 (A.4)

However, passengers may change from rail to bus due to many reasons, not necessarily because of the incident. Similar to
Eq. (19), we have

E[𝑁𝑆14
] =

∑

𝑝∈
E[1{𝑝∈𝑆14}] =

∑

𝑝∈
1{𝑝∈𝐵𝑆14 }

⋅ P(𝐶𝐵𝑝, 𝐴𝑝 ∣ 𝑝 ∈ 𝐵𝑆14
) (A.5)

= 𝑁𝐶𝐵 − �̃�𝐶𝐵

where 𝑁𝐶𝐵 ∶=
∑

𝑝∈ 1{𝑝∈𝐵𝑆14 }
⋅P(𝐶𝐵𝑝 ∣ 𝑝 ∈ 𝐵𝑆14

) is the expected number of passengers who change from rail to bus on the incident
day. �̃�𝐶𝐵 ∶=

∑

𝑝∈ 1{𝑝∈𝐵𝑆14 }
⋅ P(𝐶𝐵𝑝 ∣ 𝑝 ∈ 𝐵𝑆14

)P((𝐴𝑝)𝑐 ∣ 𝐶𝐵𝑝, 𝑝 ∈ 𝐵𝑆14
) is the expected number of passengers who change from rail

to bus but not because of the incident. It can be approximated by the number of passengers changing from rail to bus on normal
days. Similar to Eq. (22),

E[𝑁𝑆14
] = 𝑁𝐶𝐵 − �̃�𝐶𝐵 = 𝑁𝐶𝐵 −

∑𝑀
𝑗=1 �̃�

(𝑗)
𝐶𝐵

𝑀
(A.6)

where �̃� (𝑗)
𝐶𝐵 is the number of passengers changing from rail to bus on the 𝑗th normal day, calculated with the same method of

calculating 𝑁𝐶𝐵 but using the 𝑗th normal day AFC data. Similar to Eqs. (23) and (24), we can calculate the variance of 𝑁𝑆14
as:

Var[𝑁𝑆14
] =

∑

𝑝∈
1{𝑝∈𝐵𝑆14 }

⋅[P(𝐶𝐵𝑝 ∣ 𝑝 ∈ 𝐵𝑆14
)P(𝐴𝑝 ∣ 𝐶𝐵𝑝, 𝑝 ∈ 𝐵𝑆14

)−

P(𝐶𝐵𝑝 ∣ 𝑝 ∈ 𝐵𝑆14
)2P(𝐴𝑝 ∣ 𝐶𝐵𝑝, 𝑝 ∈ 𝐵𝑆14

)2] (A.7)

̃

21

where P(𝐴𝑝 ∣ 𝐶𝐵𝑝, 𝑝 ∈ 𝐵𝑆14
) = (𝑁𝐶𝐵 −𝑁𝐶𝐵)∕𝑁𝐶𝐵 for all 𝑝 ∈ 𝐵𝑆14

(similar to Eq. (23)).
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For passengers in 𝑆15, we define 𝐵𝑆15
= {𝑝 ∶ 𝑇1 < 𝑡𝑝1 < 𝑇2, 𝑚𝑝1 = rail}, and denote the event that 𝑝 changes tap-in station to 𝑜𝑝1

on the incident day as 𝐶𝑆𝑝. Similar to Eq. (A.3), we have

P(𝐶𝑆𝑝 ∣ 𝑝 ∈ 𝐵𝑆15
) = 1 −

# normal days that 𝑝’s first rail tap-in station in [𝑇1, 𝑇2] is 𝑜𝑝1
# normal days that 𝑝 has rail trips in [𝑇1, 𝑇2]

∀𝑝 ∈ 𝐻 (A.8)

Analogue to the estimation of E[𝑁𝑆14
], we have

E[𝑁𝑆15
] =

∑

𝑝∈
1{𝑝∈𝐵𝑆15 }

⋅ P(𝐶𝑆𝑝, 𝐴𝑝 ∣ 𝑝 ∈ 𝐵𝑆15
) (A.9)

= 𝑁𝐶𝑆 − �̃�𝐶𝑆

where 𝑁𝐶𝑆 ∶=
∑

𝑝∈ 1{𝑝∈𝐵𝑆15 }
⋅P(𝐶𝑆𝑝 ∣ 𝑝 ∈ 𝐵𝑆15

) is the expected number of passengers changing tap-in stations on the incident day.

And �̃�𝐶𝑆 ∶=
∑𝑀

𝑗=1 �̃�
(𝑗)
𝐶𝑆

𝑀 , where �̃� (𝑗)
𝐶𝑆 is the number of passengers changing tap-in stations on the 𝑗th normal day, which is calculated

with the same method as calculating 𝑁𝐶𝑆 using the AFC data on the 𝑗th normal day. The variance of 𝑁𝑆15
can be calculated the

same way as in Eq. (A.7) by replacing 𝐵𝑆14
and 𝐶𝐵𝑝 by 𝐵𝑆15

and 𝐶𝑆𝑝, respectively.

A.2.2. Inferring 𝑆17 and 𝑆18
Passengers who decided to use other undetected modes or cancel trips after the incident (i.e., 𝑆17 and 𝑆18) have no rail tap-in

records between 𝑇1 and 𝑇𝑒 on the incident day. The inference is based on passengers who were supposed to have tap-in records
in this period according to their behavior on normal days. Define 𝐵𝑆17,18

= {𝑝 ∶ 𝑝 has rail tap-in records within [𝑇1, 𝑇𝑒] on any of
the 𝑀𝑝 normal days, but not on the incident day}. These are potential passengers who might change to other undetected modes or
cancel trips on the incident day. Due to the nature of the AFC data, there is no direct way to differentiate these two groups. We
assume that the probability of a passenger 𝑝 using other undetected modes in this situation is 𝛽𝑝, that is, P(1{𝑈𝑀𝑂𝑆𝑝} = 1) = 𝛼𝑝,𝑑 ,
where 𝑈𝑀𝑂𝑆𝑝 is the event that passenger 𝑝 will other undetected modes when he/she is outside the system. The value of 𝛽𝑝 can
be obtained from previous survey-based studies (similar to 𝛼𝑝). Note that if we focus on the aggregate estimation of the passengers
who do not use public transit (i.e., canceling trips + using other undetected modes), the value of 𝛽𝑝 is not needed.

Consider a passenger 𝑝 ∈ 𝐵𝑆17,18
. As in Section 3.3, we assume that if 𝑝 has a high probability of having trips in [𝑇1, 𝑇𝑒] on normal

days, then the disappearance of the trip on the incident day is highly likely an atypical behavior (i.e., canceling the trip or switching
to undetected modes). Define the event that 𝑝 canceled the trip or switched to undetected modes on the incident day as 𝐶𝑇𝑆𝑀𝑝.
According to the assumption above and Eq. (17):

P(𝐶𝑇𝑆𝑀𝑝 ∣ 𝑝 ∈ 𝐵𝑆17,18
) =

# normal days 𝑝 having rail trips in [𝑇1, 𝑇𝑒]
𝑀𝑝

∀𝑝 ∈ 𝐻 (A.10)

However, as 𝑝 may cancel the trip or switch to other undetected modes for other reasons, not necessarily due to the incident.
e have 1{𝑝∈𝑆17} = 1{𝑝∈𝐵𝑆17,18 }

⋅ 1{𝐶𝑇𝑆𝑀𝑝∩𝐴𝑝 ∣𝑝∈𝐵𝑆17,18 }
⋅ 1{𝑈𝑀𝑂𝑆𝑝}. Since 1{𝑈𝑀𝑂𝑆𝑝} and 1{𝐶𝑇𝑆𝑀𝑝∩𝐴𝑝 ∣𝑝∈𝐵𝑆17,18 }

are independent, similar
to Eqs. (19)–(21), we have

E[𝑁𝑆17
] =

∑

𝑝∈
E[1{𝑝∈𝑆17}] =

∑

𝑝∈
1{𝑝∈𝐵𝑆17,18 }

⋅ 𝛽𝑝 ⋅ P(𝐶𝑇𝑆𝑀𝑝, 𝐴𝑝 ∣ 𝑝 ∈ 𝐵𝑆17,18
)

= 𝑁𝐶𝑇𝑆𝑀1 − �̃�𝐶𝑇𝑆𝑀1 (A.11)

where 𝑁𝐶𝑇𝑆𝑀1 ∶=
∑

𝑝∈ 1{𝑝∈𝐵𝑆17,18 }
⋅𝛽𝑝 ⋅P(𝐶𝑇𝑆𝑀𝑝 ∣ 𝑝 ∈ 𝐵𝑆17,18

) is the expected number of passengers using other undetected modes
on the incident day (not necessarily due to the incident). �̃�𝐶𝑇𝑆𝑀1 ∶=

∑

𝑝∈ 1{𝑝∈𝐵𝑆17,18 }
⋅ 𝛽𝑝 ⋅ P(𝐶𝑇𝑆𝑀𝑝 ∣ 𝑝 ∈ 𝐵𝑆17,18

) ⋅ P((𝐴𝑝)𝑐 ∣
𝑇𝑆𝑀𝑝, 𝑝 ∈ 𝐵𝑆17,18

) is the expected number of passengers using other undetected modes and the reason is not the incident day,

hich can be approximated by the number of passengers using other undetected modes on normal days: �̃�𝐶𝑇𝑆𝑀1 =
∑𝑀

𝑗=1 �̃�
(𝑗)
𝐶𝑇𝑆𝑀1

𝑀 ,
where �̃� (𝑗)

𝐶𝑇𝑆𝑀1 is the expected number of passengers using other undetected modes on the 𝑗th normal day, which is calculated with
the same method as calculating 𝑁𝐶𝑇𝑆𝑀1 but with the AFC data on the 𝑗th normal day.

And the variance of 𝑁17 is

Var[𝑁𝑆17
] =

∑

𝑝∈
1{𝑝∈𝐵𝑆17,18 }

⋅[𝛽𝑝 ⋅ P(𝐶𝑇𝑆𝑀𝑝 ∣ 𝑝 ∈ 𝐵𝑆17,18
) ⋅ P(𝐴𝑝 ∣ 𝐶𝑇𝑆𝑀𝑝, 𝑝 ∈ 𝐵𝑆17,18

)−

𝛽2𝑝 ⋅ P(𝐶𝑇𝑆𝑀𝑝 ∣ 𝑝 ∈ 𝐵𝑆17,18
)2 ⋅ P(𝐴𝑝 ∣ 𝐶𝑇𝑆𝑀𝑝, 𝑝 ∈ 𝐵𝑆17,18

)2] (A.12)

where

P(𝐴𝑝 ∣ 𝐶𝑇𝑆𝑀𝑝, 𝑝 ∈ 𝐵𝑆17,18
) =

𝑁𝐶𝑇𝑆𝑀 − �̃�𝐶𝑇𝑆𝑀
𝑁𝐶𝑇𝑆𝑀

. ∀𝑝 ∈ 𝐵𝑆17,18
(A.13)

𝑁𝐶𝑇𝑆𝑀 , �̃�𝐶𝑇𝑆𝑀 are calculated the same way as 𝑁𝐶𝑇𝑆𝑀1, �̃�𝐶𝑇𝑆𝑀1 by replacing 𝛽𝑝 to 1.
Similarly, for passengers in 𝑆18, E[𝑁𝑆18

] and Var[𝑁𝑆18
] are calculated the same way as E[𝑁𝑆17

] and Var[𝑁𝑆17
], respectively, by

eplacing 𝛽 to 1 − 𝛽 .
22
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A.2.3. Inferring 𝑆19
Passengers in 𝑆19 are those who continued to use their original routes but delayed their departure times. In this study, we define

‘‘delay departure time’’ as departing 2𝜎𝑝 later than 𝜇𝑝, where 𝜇𝑝 is the mean departure time of 𝑝’s first rail trip in the analysis period
on the normal days, and 𝜎𝑝 is the corresponding standard deviation. 𝜇𝑝 and 𝜎𝑝 can be calculated using the tap-in times of previous
rail trips at station 𝑜𝑝1 on normal days. We define 𝐵𝑆19

= {𝑝 ∶ 𝑡𝑝1 ≥ 𝑇2, 𝑚𝑝1 = rail, 𝑡𝑝1 > 𝜇𝑝 + 2𝜎𝑝}, which is the set of passengers
who delayed their departure times and departed after 𝑇2 (i.e., after system recovery). However, as passengers may delay departure
time for different reasons, not necessarily because of the incidents, similar to Eq. (19), we have

E[𝑁𝑆19
] =

∑

𝑝∈
E[1{𝑝∈𝑆19}] =

∑

𝑝∈
1{𝑝∈𝐵𝑆19 }

⋅ P(𝐴𝑝 ∣ 𝑝 ∈ 𝐵𝑆19
) (A.14)

=
∑

𝑝∈
1{𝑝∈𝐵𝑆19 }

[1 − P((𝐴𝑝)𝑐 ∣ 𝑝 ∈ 𝐵𝑆19
)]

= 𝑁𝐷𝐷 − �̃�𝐷𝐷

here 𝑁𝐷𝐷 ∶=
∑

𝑝∈ 1{𝑝∈𝐵𝑆19 }
is the expected number of passengers who delayed departure time on the incident day. And

̃𝐷𝐷 ∶=
∑

𝑝∈ 1{𝑝∈𝐵𝑆19 }
P((𝐴𝑝)𝑐 ∣ 𝑝 ∈ 𝐵𝑆16

) is the expected number of passengers who delayed departure time but not because of the

ncident, which can be approximated by the number of passengers delaying departure time on normal days. Therefore, similar to
q. (22), we have

E[𝑁𝑆16
] = 𝑁𝐷𝐷 − �̃�𝐷𝐷 = 𝑁𝐷𝐷 −

∑𝑀
𝑗=1 �̃�

(𝑗)
𝐷𝐷

𝑀
(A.15)

where �̃� (𝑗)
𝐷𝐷 is the number of passengers delaying departure time on 𝑗th normal day, calculated with the same method of calculating

𝑁𝐷𝐷 but using the 𝑗th normal day AFC data. Similar to Eqs. (23) and (24), we can calculate the variance of 𝑁𝑆19
as:

Var[𝑁𝑆19
] =

∑

𝑝∈
1{𝑝∈𝐵𝑆19 }

[P(𝐴𝑝 ∣ 𝑝 ∈ 𝐵𝑆19
) − P(𝐴𝑝 ∣ 𝑝 ∈ 𝐵𝑆19

)2] (A.16)

where P(𝐴𝑝 ∣ 𝑝 ∈ 𝐵𝑆16
) = (𝑁𝐷𝐷 − �̃�𝐷𝐷)∕𝑁𝐷𝐷 as per Eq. (23).

A.3. Subsequent trip information only (continued)

A.3.1. Inferring 𝑆16
Passengers in 𝑆16 are those who did not change tap-in stations, but chose to transfer halfway to avoid the blocked stations.

We assume that passengers who make decisions after the incident are informed of the service interruption. Hence, if they decided
to still use rail between 𝑇1 and 𝑇2, the possible situations for them are (1) changing tap-in station (𝑆15), (2) choosing alternative
routes by transferring (𝑆16), and (3) not affected. Let 𝐵𝑆16

= {𝑝 ∶ 𝑇1 < 𝑡𝑝1 < 𝑇2, 𝑚𝑝1 = rail}, which means passengers with a rail
trip during the incident time. We notice that the third possibility can be excluded if we find that a passenger’s original path is
blocked. Therefore, for all passengers in 𝐹 , we first infer their destinations based on the next non-transfer trip after (𝑡𝑝1 , 𝑜𝑝1 , 𝑚𝑝1 )
(see Section 3.2). Given an inferred destination 𝑑 ∈ 𝑝1 , denote the event that 𝑝’s original path is blocked but a transfer option
is available as 𝑅𝐵𝑇𝐴𝑝(𝑑). From the above analysis, we know that all passengers in 𝐵𝑆16

and with 1{𝑅𝐵𝑇𝐴𝑝(𝑑)} = 1 can only be in
𝑆15 and 𝑆16. Define 𝑁𝐵𝑆16∩𝑅𝐵𝑇𝐴

∶=
∑

𝑝∈
∑

𝑑∈𝑝1
1{𝑝∈𝐵𝑆16 }

⋅1{𝑅𝐵𝑇𝐴𝑝(𝑑)} ⋅1{𝑑𝑝1=𝑑}
, which is the number of passengers with a rail trip

during the incident and the original route blocked. Therefore, the mean of 𝑁𝑆16
can be calculated as:

E[𝑁𝑆16
] = E[𝑁𝐵𝑆16∩𝑅𝐵𝑇𝐴

−𝑁𝑆15
] =

∑

𝑝∈

∑

𝑑∈𝑝1

1{𝑝∈𝐵𝑆16 }
⋅ 1{𝑅𝐵𝑇𝐴𝑝(𝑑)} ⋅ P(𝑑𝑝1 = 𝑑) − E[𝑁𝑆15

] (A.17)

here E[𝑁𝑆15
] is estimated as in Appendix A.2.1. To calculate Var[𝑁𝑆16

], we notice that the covariance between 𝑁𝐵𝑆16∩𝑅𝐵𝑇𝐴
and

𝑆15
is zero:

Cov[𝑁15, 𝑁𝐵𝑆16∩𝑅𝐵𝑇𝐴
]

= Cov
⎡

⎢

⎢

⎣

∑

𝑝∈
1{𝑝∈𝐵𝑆15 }

⋅ 1{𝐶𝑆𝑝 ,𝐴𝑝 ∣𝑝∈𝐵𝑆15 }
,
∑

𝑝∈

∑

𝑑∈𝑝1

1{𝑝∈𝐵𝑆16 }
⋅ 1{𝑅𝐵𝑇𝐴𝑝(𝑑)} ⋅ 1{𝑑𝑝1=𝑑}

⎤

⎥

⎥

⎦

= 0 (A.18)

his is based on the observation that Cov[1{𝐶𝑆𝑝 ,𝐴𝑝 ∣𝑝∈𝐵𝑆15 }
,1{𝑑𝑝′1

=𝑑}] = 0 for all 𝑝, 𝑝′ ∈  (even if 𝑝 = 𝑝′, this still holds because the

erivation of destination relies on future information while the derivation of atypical behavior relies on historical information).
ence, the variance of 𝑁𝑆16

can be estimated as.

Var[𝑁𝑆16
] =

∑ ∑

1{𝑝∈𝐵𝑆16 }
⋅ 1{𝑅𝐵𝑇𝐴𝑝(𝑑)} ⋅ [P(𝑑𝑝1 = 𝑑) − P(𝑑𝑝1 = 𝑑)2] + Var[𝑁𝑆15

] (A.19)
23

𝑝∈ 𝑑∈𝑝1
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A.4. Other

Passengers in 𝑆6 and 𝑆13 are those who are not affected by the incident. They are inferred based on the results of other groups,
hich do not belong to any formulation cases and thus are described separately in this section.

.4.1. Inferring 𝑆6 and 𝑆13
Passengers in 𝑆6 are those who were not affected by the incident even though they were in the rail system while the incident

appened. According to the diagram in Fig. 2, we can infer 𝑁6 as all passengers in the rail system subtracting other subgroups of
assengers given the mutually exclusive definition. Define 𝐵𝑆6

= {𝑝 ∶ ∃𝑘 ∈ {1,… , 𝐾𝑝} s.t. 𝑡𝑝𝑘 < 𝑇1, 𝑚𝑝𝑘 = rail}, which means all
assengers who might be in the rail system when the incident happened. Therefore, we have

E[𝑁𝑆6
] =

∑

𝑝∈
1{𝑝∈𝐵𝑆6 }

−
5
∑

𝑖=1
E[𝑁𝑆𝑖

] −
12
∑

𝑖=7
E[𝑁𝑆𝑖

] (A.20)

ote that E[𝑁𝑆3
+𝑁𝑆10

], E[𝑁𝑆4
+𝑁𝑆12

], and E[𝑁𝑆5
+𝑁𝑆11

] are calculated as a whole (see Sections 3.4, 3.3, and Appendix A.1.1).
The calculation of variance needs to consider the possible correlation among 𝑁𝑆𝑖

. First of all, 𝐵𝑆1
, 𝐵𝑆2

, 𝐵𝑆8
, 𝐵𝑆9

, and 𝐵𝑆4,12
do

not intersect with other 𝐵𝑆𝑖
’s, which implies 𝑁𝑆1

, 𝑁𝑆2
, 𝑁𝑆8

, 𝑁𝑆9
, and 𝑁𝑆4

+𝑁𝑆12
are independent and they are also independent

of other 𝑁𝑆𝑖
’s (because the behavior of different passengers is assumed to be independent). As shown in Section 3.4, the inference

of 𝑁𝑆5
+𝑁𝑆11

uses the historical trip while the inference of 𝑁𝑆3
+𝑁𝑆10

and 𝑁𝑆7
relies on the information of subsequent trips (after

the incident). Hence, 𝑁𝑆5
+𝑁𝑆11

is independent of 𝑁𝑆3
+𝑁𝑆10

and 𝑁𝑆7
. Then, the variance of 𝑁𝑆6

can be calculated as

Var[𝑁𝑆6
] =

2
∑

𝑖=1
Var[𝑁𝑆𝑖

] +
9
∑

𝑖=8
Var[𝑁𝑆𝑖

] + Var[𝑁𝑆4
+𝑁𝑆12

] + Var[𝑁𝑆5
+𝑁𝑆11

] + Var[𝑁𝑆3
+𝑁𝑆10

+𝑁𝑆7
] (A.21)

ote that the variance of 𝑁𝑆3
+𝑁𝑆10

+𝑁𝑆7
can be calculated as a whole according to Section 3.4:

Var[𝑁𝑆3
+𝑁𝑆10

+𝑁𝑆7
]

=
∑

𝑝∈

∑

𝑑∈𝑝𝐾

1{𝑝∈𝐵𝑆3,7,10 }
⋅ [1{𝑅𝐵𝑇𝐴𝑝(𝑑)} + 1{𝑅𝐵𝑇𝑁𝑝(𝑑)}] ⋅ [P(𝑑𝑝𝐾 = 𝑑) − P(𝑑𝑝𝐾 = 𝑑)2] + Var[𝑁𝑆5

+𝑁𝑆11
] (A.22)

𝑁𝑆13
can be inferred in a similar way as the total number of potentially affected passengers outside the system minus the number

f passengers in other groups. It is worth noting that the potentially affected passengers include those who do not have tap-in records
n the incident day (e.g., 𝐵𝑆17,18

). Define 𝐵𝑆13
= {𝑝 ∶ 𝑡𝑝1 ≥ 𝑇1}∪𝐵𝑆17,18

as the set of passengers outside the system who were potentially
ffected. Then,

E[𝑁𝑆13
] =

∑

𝑝∈
1{𝑝∈𝐵𝑆13 }

−
19
∑

𝑖=14
E[𝑁𝑆𝑖

] (A.23)

The variance of 𝑁𝑆13
also needs to consider the correlations. Notice that 𝐵𝑆14

and 𝐵𝑆19
do not intersect with other 𝐵𝑆𝑖

’s. So, 𝑁𝑆14
nd 𝑁𝑆19

are independent of other 𝑁𝑆𝑖
’s. According to Appendix A.2.2, the variance of 𝑁𝑆17

+𝑁𝑆18
can be estimated as a whole:

Var[𝑁𝑆17
+𝑁𝑆18

] =
∑

𝑝∈
1{𝑝∈𝐵𝑆17,18 }

⋅[P(𝐶𝑇𝑆𝑀𝑝 ∣ 𝑝 ∈ 𝐵𝑆17,18
) ⋅ P(𝐴𝑝 ∣ 𝐶𝑇𝑆𝑀𝑝, 𝑝 ∈ 𝐵𝑆17,18

)−

P(𝐶𝑇𝑆𝑀𝑝 ∣ 𝑝 ∈ 𝐵𝑆17,18
)2 ⋅ P(𝐴𝑝 ∣ 𝐶𝑇𝑆𝑀𝑝, 𝑝 ∈ 𝐵𝑆17,18

)2] (A.24)

nd from Appendix A.3.1, 𝑁𝑆15
and 𝑁𝑆16

are independent, and independent of 𝑁𝑆17
+𝑁𝑆18

since 𝐵𝑆17,18
does not intersect with 𝐵𝑆15

r 𝐵𝑆16
. Therefore, The variance of 𝑁𝑆13

can be estimated as:

Var[𝑁𝑆13
] =

16
∑

𝑖=14
Var[𝑁𝑆𝑖

] + Var[𝑁𝑆17
+𝑁𝑆18

] + Var[𝑁𝑆19
] (A.25)
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