Calibrating Route Choice for Urban Rail System: A Comparative Analysis Using Simulation-Based Optimization Methods

Zhenliang (Mike) Ma*
mike.ma@monash.edu
Department of Civil Engineering
Monash University
Haris N. Koutsopoulos
h.koutsopoulos@northeastern.edu
Department of Civil and Environmental Engineering Northeastern University

Jinhua Zhao
jinhua@mit.edu
Department of Urban Studies and Planning Massachusetts Institute of Technology

1 INTRODUCTION

- The Network Performance Model (NPM) provides performance monitoring and strategic decision support for urban railways
Learning passengers' path choice behavior under station crowding (denied boarding) from automated fare collection (AFC) data is challenging
Current path choice studies are formulated based on AFC journey times, assuming no crowding and independence of individual journey times
The research addresses the path choice gaps by
- Proposing a simulation-based optimization (SBO) framework to estimate

- Proposing a simulation-based optimization (SBO) framework to estimate
route choice using AFC data
- Comparing the performance of SBO optimizers

2 METHODOLOGY

Problem formulation

Minimize the difference (between estimated and observed) of OD exit flows and journey time distribution

$$
\begin{array}{cll}
\min _{\beta} & w_{1} \sum_{i, j_{n}}\left(q^{i, j_{n}}-\tilde{q}^{i, j_{n}}\right)^{2}+w_{2} \sum_{i, j_{n} \in \mathscr{D}} D_{\mathrm{KL}}\left(p_{i, j_{n}}(x) \| \tilde{p}_{i, j_{n}}(x)\right) \\
\text { s.t. } & q^{i, j_{n}}=\operatorname{NPM}\left(\beta, q^{i_{m}, j}, \theta\right) & \forall i, j_{n}, \\
& p_{i, j_{n}}(x)=\operatorname{NPM}\left(\beta, q^{i_{m}, j}, \theta\right) & \forall i, j_{n} \in \mathscr{D}, \\
& L_{\beta} \leq \beta \leq U_{\beta} &
\end{array}
$$

$q^{i_{m, j}}$: Number of passengers entering station i during time interval m and exiting at station j
$q^{i, j_{n}}$: Number of passengers exiting at station i during time interval n with origin i
$p_{i, j_{n}}$: Journey time distribution for passengers with origin i, destination j, and exit at time interval n
β : Path choice parameters of a C-logit model
L_{β} : Lower bound of β.
U_{β} : Upper bound of β.
θ : External inputs to the NPM model, including time table and transit network typology.

[^0]
3 SIMULATION-BASED OPTIMIZATION ALGORITHMS

Algorithms Summary

Type	Algorithm	Source
Direct search	Nelder-Mead Simplex Algorithm (NMSA) Mesh Adaptive Direct Search (MADS)	Gao and Han (31) Abramson et al. (32)
Gradient-based	Simultaneous Perturbation Stochastic Approximation (SPSA)	Spall et al. (33)
Response surface	Bayesian Optimization (BYO) Constrained Optimization using Response Surfaces (CORS)	Snoek et al. (34)

4 RESULTS

- Synthetic data using Hong Kong MTR System - Generate transaction tap-out times given a 'true' path choice model and tap-in times

Model convergence and estimation results

	40Number of Function Evaluations				100	
Variable Name	"True"	Estimated Parameters of C-logit Model				
		NMSA	MADS	SPSA	BYO	CORS
In-vehicle time	-0.0663	-0.0656	-0.0542	-0.063	-0.062	-0.0645
Number of transfers	-0.4380	-0.4295	-0.3100	-0.3015	-0.4641	-0.4450
Transer walking time	-0.1830	-0.1430	-0.1800	-0.2132	-0.1698	-0.1840
Map distance	-0.0767	-0.0639	-0.1000	-0.0946	-0.0792	${ }^{-0.0739}$
Commonality factor	-0.9410	-0.6757	-0.9000	-0.6764	-0.9476	-0.9690
Objective function	0	25795.9	24447.2	25092.2	17551.5	16300

5 CONCLUSION

- All algorithms converge to a small objective value with a limited number of function evaluations
- The response surface methods (BYO and CORS) perform best in terms of the convergence speed, objective values and parameter estimates (compared to the 'true' choice model parameters).
- Despite a similar objective function value, algorithms may give different β estiamtes. For example, NMSA results in good value for the coefficients of in-vehicle time and number of transfers, but less accurate results for the commonality factors. SPSA shows similar properties.

ACKNOWLGEMENT

The authors would like to thank the Mass Transit Railway (MTR) in Hong Kong for providing the funding and data for this research

[^0]: ## Model assumption

 - The route choice fractions are estimated using a C-logit model. $C F$ is the commonality factor.

 $$
 p_{r}^{i_{m}, j}=\frac{\exp \left(\beta_{X} \cdot X_{r, m}+\beta_{C F} \cdot C F_{r}\right)}{\sum_{r^{\prime}} \exp \left(\beta_{X} \cdot X_{r^{\prime}, m}++\beta_{C F} \cdot C F_{r^{\prime}}\right)}
 $$

