Data-Driven Network Performance Model (NPM) for Urban Rail Systems

Baichuan Mo
Zhenliang Ma, Haris N. Koutsopoulos, Jinhua Zhao

Jan, 2020

Motivation

- Monitoring network performance (online/offline) is crucial
- Understand system
- Improve service attractiveness
- Assist planning and operations
- Objective
- Develop a self-calibrated data-driven monitoring \& decision support platform
- Performance monitoring
- Operations planning

Network Performance Model (NPM)

Network Performance Model (NPM)

Self-calibration/Optimization

NPM Engine

- Event-based simulation:
- First-come-first-serve
- Strick capacity constraints

- Train arrival:
- Offload passengers
- Train departure:
- Load passengers
- Update states of train and platform

Train Capacity

- Effective train capacity:

- Number of passengers in the train when it departures while there are leftbehind passengers on the platform.
- Train capacity may vary by station and crowding levels
- Platform geometry and access impact passenger distribution along the platform, and hence, load distribution on trains.
- Different crowding levels affect passenger willingness to board
- Expectation:
- High train load \rightarrow high effective capacity [Liu et al. 2018]
- High crowding on the platform \rightarrow high effective capacity

Effective Capacity Model

- Effective capacity of a train at platform $i\left(E C_{i}\right)$ is:

$$
E C_{i}= \begin{cases}C+\beta_{1} L_{i}+\beta_{2} Q_{i} & \text { if platform } i \text { is in the list of congested stations } \\ C & \text { otherwise }\end{cases}
$$

where C_{i} : base capacity
L_{i} : train load and
Q_{i} : number of passengers waiting at platform

Estimation of Capacity Model Parameters

- Simulation-Based Optimization
- Minimize the error between
- observed OD exit flow and model-derived OD exit flow
- observed journey time distribution (JTD) and model-derived JTD

$$
\begin{array}{cl}
\min _{\beta_{1}, \beta_{2}} & \left.w_{1} \sqrt{\sum_{i, j, t}\left(q^{i, j_{t}}-\tilde{q}^{i}, j_{t}\right.}\right)^{2}+w_{2} 2 \sum_{i, j, t} D_{\mathrm{KL}}\left(p_{i, j_{t}}(x) \| \tilde{p}_{i, j_{t}}(x)\right) \\
\text { s.t. } & q^{i, j_{t}}, p_{i, j_{t}}(x)=\operatorname{NPM}\left(\beta_{1}, \beta_{2}\right) \quad \forall i, j, t \\
& D_{\mathrm{KL}}\left(p_{i, j_{t}}(x) \| \tilde{p}_{i, j_{t}}(x)\right)=\int_{x} p_{i, j_{t}}(x) \cdot \log \frac{p_{i, j_{j}}(x)}{\tilde{p}_{i, j_{t}}(x)} \mathrm{d} x .
\end{array}
$$

Applications

- Hong Kong MTR network
- Demand on March $16^{\text {th }}$, 2017. Evening Peak
- Path choice from survey
- Validation
- OD exit flow by time
- Left behind survey at key stations

Path Choice

- Path choices are modeled using a C-logit model from survey data

$$
p_{r}^{i_{m}, j}=\frac{\exp \left(\beta_{X} \cdot X_{r, m}+\beta_{C F} \cdot C F_{r}\right)}{\sum_{r^{\prime} \in \mathscr{R}(i, j)} \exp \left(\beta_{X} \cdot X_{r^{\prime}, m}++\beta_{C F} \cdot C F_{r^{\prime}}\right)}
$$

TABLE 3: Route Choice Model Estimation Results

	Estimate	Std. Error	t-value	
In-vehicle time	-0.147	0.011	-13.64	$* * *$
Relative walking time	-1.271	0.278	-4.56	$* * *$
Number of transfers	-0.573	0.084	-6.18	$*^{* *}$
CF	-3.679	1.273	-2.89	$*^{*}$
$\rho^{2}=0.54$				
$* * *: \mathrm{p}<0.01 ;{ }^{* *}: \mathrm{p}<0.05$.				

- AFC-data based path choice estimation [Poster session A139]

Results: Effective Capacity

- Parameter estimation (Bayesian Optimization Algorithm)

$$
E C_{i}=\left\{\begin{array}{l}
C+\beta_{1} L_{i}+\beta_{2} Q_{i} \\
C
\end{array}\right.
$$

$$
C=230 \mathrm{pax} / \mathrm{car} \times \mathrm{Num}
$$ of cars in a train (fixed)

Optimal Solution:

$$
\begin{aligned}
& \beta_{1}=0.0904 \\
& \beta_{2}=0.0718
\end{aligned}
$$

Results: Effective Capacity

- Train load (pax/train) at Admiralty station

Peak period

Validation: OD Exit Flow Estimates

Validation: Left Behind Estimates

Applications

- [History] Monitor crowding patterns: train load, left behind, waiting time, ...
- [History] Diagnose crowding sources: where does the congestion come from?
- [History] Evaluate network resilience: how does system change if link disruption happens?
- [Future] Operations planning: time table evaluation, dispatching strategies, ...

Dispatching strategies evaluation

- Impact of dispatching an empty train from upstream to relieve the crowding in the platform at Admiralty station

Interactive Visualization

- What is happening?
- What is the problem?
- Why it happens?
- What will happen
- if nothing change?
- if things change?
- if actions taken?

Conclusion

- Data-driven NPM platform:
- Performance monitoring (what was/is...)
- Operations control and strategic planning (what if...)
- Effective train capacity formulation
- Effective train calibration using AFC data
- Future work
- Simultaneous calibration of route choice and train capacity

Thanks

Q\&A

