Data-Driven Network Performance Model (NPM) for Urban Rail Systems

Baichuan Mo Zhenliang Ma, Haris N. Koutsopoulos, Jinhua Zhao

Jan, 2020

Motivation

- Monitoring network performance (online/offline) is crucial
 - Understand system
 - Improve service attractiveness
 - Assist planning and operations
- Objective
 - Develop a self-calibrated data-driven monitoring & decision support platform
 - Performance monitoring
 - Operations planning

Network Performance Model (NPM)

Network Performance Model (NPM)

Self-calibration/Optimization

NPM Engine

- Event-based simulation:
 - First-come-first-serve
 - Strick capacity constraints

- Train arrival:
 - Offload passengers
- Train departure:
 - Load passengers
 - Update states of train and platform

Train Capacity

• Effective train capacity:

- Number of passengers in the train when it departures while there are leftbehind passengers on the platform.
- Train capacity may vary by station and crowding levels
 - Platform geometry and access impact passenger distribution along the platform, and hence, load distribution on trains.
 - Different crowding levels affect passenger willingness to board
- Expectation:
 - High train load \rightarrow high effective capacity [Liu et al. 2018]
 - High crowding on the platform \rightarrow high effective capacity

Effective Capacity Model

• Effective capacity of a train at platform $i (EC_i)$ is:

 $EC_{i} = \begin{cases} C + \beta_{1}L_{i} + \beta_{2}Q_{i} & \text{if platform } i \text{ is in the list of congested stations} \\ C & \text{otherwise} \end{cases}$

where C_i : base capacity L_i : train load and Q_i : number of passengers waiting at platform

Estimation of Capacity Model Parameters

- Simulation-Based Optimization
- Minimize the error between
 - observed OD exit flow and model-derived OD exit flow
 - observed journey time distribution (JTD) and model-derived JTD

$$\begin{array}{ll} \min_{\beta_{1},\beta_{2}} & w_{1} \sum_{i,j,t} (q^{i,j_{t}} - \tilde{q}^{i,j_{t}})^{2} + w_{2} \sum_{i,j,t} D_{\mathrm{KL}}(p_{i,j_{t}}(x)) || \tilde{p}_{i,j_{t}}(x)) \\ \text{s.t.} & q^{i,j_{t}}, p_{i,j_{t}}(x) = \mathrm{NPM}(\beta_{1},\beta_{2}) & \forall i,j,t \\ & D_{\mathrm{KL}}(p_{i,j_{t}}(x)) || \tilde{p}_{i,j_{t}}(x)) = \int_{x} p_{i,j_{t}}(x) \cdot \log \frac{p_{i,j_{t}}(x)}{\tilde{p}_{i,j_{t}}(x)} \mathrm{d}x. \end{array}$$

Applications

- Hong Kong MTR network
- Demand on March 16th, 2017. Evening Peak
- Path choice from survey
- Validation
 - OD exit flow by time
 - Left behind survey at key stations

Path Choice

• Path choices are modeled using a C-logit model from survey data

$$p_r^{i_m,j} = \frac{\exp\left(\beta_X \cdot X_{r,m} + \beta_{CF} \cdot CF_r\right)}{\sum_{r' \in \mathscr{R}(i,j)} \exp\left(\beta_X \cdot X_{r',m} + \beta_{CF} \cdot CF_{r'}\right)}$$

TABLE 3: Route Choice Model Estimation Results

	Estimate	Std. Error	t-value	
In-vehicle time	-0.147	0.011	-13.64	***
Relative walking time	-1.271	0.278	-4.56	***
Number of transfers	-0.573	0.084	-6.18	***
CF	-3.679	1.273	-2.89	**
$\rho^2 = 0.54$				

***: p<0.01; **:p<0.05.

• AFC-data based path choice estimation [Poster session A139]

Results: Effective Capacity

• Parameter estimation (Bayesian Optimization Algorithm)

$$EC_i = \begin{cases} C + \beta_1 L_i + \beta_2 Q_i \\ C \end{cases}$$

C = 230 pax/car × Num of cars in a train (fixed)

Optimal Solution: $\beta_1 = 0.0904$ $\beta_2 = 0.0718$

Results: Effective Capacity

Validation: OD Exit Flow Estimates

Validation: Left Behind Estimates

Applications

- [History] Monitor crowding patterns: train load, left behind, waiting time, ...
- [History] **Diagnose crowding sources**: where does the congestion come from?
- [History] **Evaluate network resilience**: how does system change if link disruption happens?
- [Future] **Operations planning**: time table evaluation, dispatching strategies, ...

Dispatching strategies evaluation

• Impact of dispatching an empty train from upstream to relieve the crowding in the platform at Admiralty station

Interactive Visualization

- What is happening?
- What is the problem?
- Why it happens?
- What will happen
 - *if nothing change?*
 - if things change?
 - if actions taken?

Conclusion

- Data-driven NPM platform:
 - Performance monitoring (what was/is...)
 - Operations control and strategic planning (what if...)
- Effective train capacity formulation
- Effective train calibration using AFC data
- Future work
 - Simultaneous calibration of route choice and train capacity

Thanks

Q&A