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Abstract

The theory of NP-hardness has been remarkably successful in identifying problems
that are unlikely to be solvable in polynomial time. However, many other important
problems do have polynomial-time algorithms, but large exponents in their runtime
bounds can make them inefficient in practice. For example, quadratic-time algorithms,
although practical on moderately sized inputs, can become inefficient on big data
problems that involve gigabytes or more of data. Although for many data analysis
problems no sub-quadratic time algorithms are known, any evidence of quadratic-time
hardness has remained elusive.

In this thesis we present hardness results for several text analysis and machine
learning tasks:

∙ Lower bounds for edit distance, regular expression matching and other pattern
matching and string processing problems.

∙ Lower bounds for empirical risk minimization such as kernel support vectors
machines and other kernel machine learning problems.

All of these problems have polynomial time algorithms, but despite extensive amount
of research, no near-linear time algorithms have been found. We show that, under a
natural complexity-theoretic conjecture, such algorithms do not exist. We also show
how these lower bounds have inspired the development of efficient algorithms for some
variants of these problems.

Thesis Supervisor: Piotr Indyk
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Classically, an algorithm is called “efficient” if its runtime is bounded by a polynomial
function of its input size. Many well-known computational problems are amenable
to such algorithms. For others, such as satisfiability of logical formulas (SAT), no
polynomial time algorithms are not known. Although we do not know how to prove
that no such algorithm exists, its non-existence can be explained by the fact that
SAT is NP-hard. That is, a polynomial-time algorithm for SAT would imply that the
widely believed P ̸= NP hypothesis is false. Thus, no polynomial-time algorithm for
SAT and other NP-hard problems exists, as long as P ̸= NP.

As the data becomes large, however, even polynomial time algorithms often cannot
be considered “efficient”. For example, a quadratic-time algorithm can easily take
hundreds of CPU-years on inputs of gigabyte size. For even larger (say terabyte-size)
inputs, the running time of an “efficient” algorithm must be effectively linear. For
many problems such algorithms exist; for others, despite decades of effort, no such
algorithms has been discovered so far. Unlike for SAT, however, an explanation for the
lack of efficient solutions is hard to come by, even assuming P ̸= NP. This is because
the class P puts all problems solvable in polynomial time into one equivalence class,
not making any distinctions between different exponents in their runtime bounds.
Thus, in order to distinguish between, say, linear, quadratic or cubic running times,
one needs stronger hardness assumptions, as well as efficient reduction techniques that
transfer hardness from the assumptions to the problems. Over the last few years, these
research directions has been a focus of an emerging field of fine-grained complexity.

The goal of this thesis is to investigate the fine-grained complexity of several funda-
mental computational problems, by developing conditional lower bounds under strong
yet plausible complexity-theoretic assumptions. On a high level, the implications of
our results are two-fold. On the one hand, a lower bound that matches a known
upper bound gives an evidence that a faster algorithm is not possible or at least
demonstrates a barrier for a further improvement. On the other hand, the lack of
conditional hardness for a problem suggests that a better algorithm might be possible.
Indeed, in this thesis we present several new algorithms inspired by this approach.
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1.1 Main contributions: an overview

Here we will give an overview of the main contributions. We describe the results in
more detail in the subsequent sections.

Sequence similarity and pattern matching Measuring (dis)-similarity between
sequences and searching for patterns in a large data corpus are basic building blocks for
many data analysis problems, including computational biology and natural language
processing. In this thesis we study the fine-grained complexity of these problems. First,
we show a conditional (nearly) quadratic-time lower bound for computing the edit
distance between two sequences. The edit distance (a.k.a. the Levenshtein distance)
between two sequences is equal to the minimum number of symbol insertions, deletions
and substitutions needed to transform the first sequence into the second. This is a
classical computational task with a well-known quadratic-time algorithm based on
dynamic programming. Our hardness result is the first complexity-theoretic evidence
that this runtime is essentially optimal.

The techniques developed for this problem allows us to show computational hard-
ness for several other similarity measures, such as the longest common subsequence and
dynamic time warping. We also give evidence that some of those computational tasks
are hard to solve even approximately, at least for deterministic algorithms. Finally,
we also study pattern matching with regular expressions. In turn, this study has led
to faster algorithms for the word break problem, a popular interview question.

This part of the thesis is based on the following papers:

∙ Arturs Backurs, Piotr Indyk, Edit Distance Cannot Be Computed in Strongly
Subquadratic Time (unless SETH is false), appeared at STOC 2015 and HALG
2016 [BI15]. Accepted to the special issue of the SIAM Journal of Computing.

∙ Amir Abboud, Arturs Backurs, Virginia Vassilevska Williams, Tight Hardness
Results for LCS and Other Sequence Similarity Measures, appeared at FOCS
2015 [ABVW15].

∙ Amir Abboud, Arturs Backurs, Towards Hardness of Approximation for Poly-
nomial Time Problems, appeared at ITCS 2017 [AB17].

∙ Arturs Backurs, Piotr Indyk, Which Regular Expression Patterns are Hard to
Match?, appeared at FOCS 2016 [BI16].

Statistical data analysis and machine learning In the second part of this thesis
we study the complexity of a number of commonly used machine learning problems and
subroutines, all of which are solvable in polynomial time. These include a collection of
kernel problems, such as support vector machines (SVMs) and density estimation, as
well as (batch) gradient evaluation in neural networks. We show that, in the typical
case when the underlying kernel is Gaussian or exponentially decaying, all of those
problems require essentially quadratic time to solve up to high accuracy. In contrast,
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we give a nearly linear-time algorithm for density estimation for kernel functions with
polynomial decay.

This part of the thesis is based on the following two papers:

∙ Arturs Backurs, Piotr Indyk, Ludwig Schmidt, On the Fine-Grained Complexity
of Empirical Risk Minimization: Kernel Methods and Neural Networks, appeared
at NIPS 2017 [BIS17].

∙ Arturs Backurs, Moses Charikar, Piotr Indyk, Paris Siminelakis, Efficient Den-
sity Evaluation for Smooth Kernels, appeared at FOCS 2018 [BCIS18].

1.2 Hardness assumption

Given a problem that is solvable in quadratic 𝑂(𝑛2) time, how can we argue that it
cannot be solved in a strongly sub-quadratic 𝑂(𝑛2−𝜀) time, for a constant 𝜀 > 0? As
we discussed above, the P ̸= NP conjecture seems to be insufficient for this purpose,
as it does not make a distinction between problems that are solvable in linear time
and those that require quadratic time. Thus, we need a stronger hardness assumption
to achieve such separations.

One such commonly used hardness assumption is known as the Strong Exponential
Time Hypothesis (SETH) [IPZ01, IP01]. SETH is a statement about the complexity
of the 𝑘-SAT problem: decide whether a given conjunctive normal form formula on
𝑁 variables and 𝑀 clauses, where each clause has at most 𝑘 literals, is satisfiable. It
postulates that 𝑘-SAT cannot be solved in time 𝑂

(︀
2(1−𝜀)𝑁

)︀
where 𝜀 > 0 is a constant

independent of 𝑘. In contrast, despite decades of research, the best known algorithm
for 𝑘-SAT runs in time 2𝑁−𝑁/𝑂(𝑘) (e.g., [PPSZ05]), so the constant in the exponent
approaches 1 for large 𝑘. Thus, SETH is a strengthening of the P ̸= NP hypothesis, as
the latter merely states that the satisfiability problem cannot be solved in polynomial
time. Over the last few years, the hypothesis has served as the basis for proving
conditional lower bounds for several important computational problems, including the
diameter in sparse graphs [RVW13, CLR+14], local alignment [AVWW14], dynamic
graph problems [AVW14], Fréchet distance [Bri14], and the approximate nearest
neighbor search [Rub18].

Many of the aforementioned are in fact obtained via a reduction from an inter-
mediary problem, known as the Orthogonal Vectors Problem (OVP), whose hardness
is implied by SETH. It is defined as follows. Given two sets 𝐴,𝐵 ⊆ {0, 1}𝑑 such
that |𝐴| = |𝐵| = 𝑁 , the goal is to determine whether there exists a pair of vectors
𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 such that the dot product 𝑎 · 𝑏 =

∑︀𝑑
𝑖=1 𝑎𝑖𝑏𝑖 (taken over reals) is

equal to 0, that is, the vectors are orthogonal. An alternative formulation of this
problem is: given two collections of 𝑁 sets each, determine if there is a set in the first
collection that does not intersect a set from the second collection.1 It is known [Wil05]
that a strongly subquadratic-time algorithm for OVP, i.e., with a running time of

1Equivalently, after complementing sets from the second collection, determine if there is a set in
the first collection that is contained in a set from the second collection.
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𝑂(𝑑𝑂(1)𝑁2−𝛿), would imply that SETH is false, even in the setting 𝑑 = 𝜔(log𝑁). In
this thesis we adopt this approach and obtain our conditional hardness results via
reductions from OVP.

1.3 Pattern matching and text analysis

1.3.1 Hardness for sequence alignment problems

The edit distance measures the similarity of two input sequences and is defined as
the minimum number of insertions, deletions or substitutions of symbols needed to
transform one sequence into another. The metric and its generalizations are widely
used in computational biology, text processing, information theory and other fields.
In particular, in computational biology it can be used to identify regions of similarity
between DNA sequences that may be due to functional, structural, or evolutionary
relationships [Gus97]. The problem of computing the edit distance between two
sequences is a classical computational task, with a well-known algorithm based on
the dynamic programming. Unfortunately, that algorithm runs in quadratic time,
which is prohibitive for long sequences.2 A considerable effort has been invested into
designing faster algorithms, either by assuming that the edit distance is bounded,
by considering the average case or by resorting to approximation.3 However, the
fastest known exact algorithm, due to [MP80, BFC08, Gra16], has a running time of
𝑂(𝑛2(log log 𝑛)/ log2 𝑛) for sequences of length 𝑛, which is still nearly quadratic.

In this thesis we provide evidence that the (near)-quadratic running time bounds
known for this problem might, in fact, be tight. Specifically, we show that if the
edit distance can be computed in time 𝑂(𝑛2−𝜀) for some constant 𝜀 > 0, then the
Orthogonal Vectors Problem can be solved in 𝑂(𝑑𝑂(1)𝑁2−𝛿) time for a constant 𝛿 > 0.
The latter result would violate the Strong Exponential Time Hypothesis, as described
in the previous section.

How do we reduce the Orthogonal Vectors Problem to the edit distance computa-
tion? The key component in the reduction is the construction of a function that maps
binary vectors into sequences in a way that two sequences are “close” if and only if the
vectors are orthogonal. The first step of our reduction mimics the approach in [Bri14].
We assign a “gadget” sequence for each 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵. Then, the gadget sequences
𝐺(𝑎) for all 𝑎 ∈ 𝐴 are concatenated together to form the first input sequence, and
the gadget sequences 𝐺′(𝑏) for all 𝑏 ∈ 𝐵 are concatenated to form the second input
sequence. The correctness of the reduction is proven by showing that:

∙ If there is a pair of orthogonal vectors 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵, then one can align the
two sequences in a way that the gadgets assigned to 𝑎 and 𝑏 are aligned, which

2For example, the analysis given in [Fri08] estimates that aligning human and mouse genomes
using this approach would take about 95 years.

3There is a rather large body of work devoted to edit distance algorithms and we will not attempt
to list all relevant works here. Instead, we refer the reader to the survey [Nav01] for a detailed
overview of known exact and probabilistic algorithms, and to papers [AKO10, CDG+18] for an
overview of approximation algorithms.
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implies that the distance induced by the global alignment is “small”.

∙ If there is no orthogonal pair, then no such global alignment exists, which implies
that the distance induced by any global alignment is “large”.

For a fixed ordering 𝑎1, . . . , 𝑎𝑁 of vectors in 𝐴 and ordering 𝑏1, . . . , 𝑏𝑁 of vectors
in 𝐵, the edit distance between the final two sequences is (roughly) captured by the
formula:

𝑁

min
𝑖=1

𝑁∑︁
𝑗=1

edit(𝐺(𝑎𝑗), 𝐺′(𝑏𝑗+𝑖)),

where 𝑏𝑡 = 𝑏𝑡−𝑁 for 𝑡 > 𝑁 . The edit distance finds an alignment between the sequences
of gadgets such that the sum of the distances is minimized. The cost of the optimal
alignment is a sum of 𝑁 distances and we need that it is small if and only if there is
a pair of orthogonal vectors.

What requirements does this impose on the construction of the gadgets? First
of all, the distance between gadgets should be small if and only if the vectors are
orthogonal. Furthermore, when vectors are not orthogonal, we need that the distance
is equal to some quantity 𝐶 that does not depend on the vectors. Otherwise, if 𝐶
grew with the number of overlapping 1s between the vectors, the contribution from
highly non-orthogonal pairs of vectors could overwhelm a small contribution from a
pair of orthogonal vectors. Therefore, we need that there exists a value 𝐶 such that if
two vectors 𝑎 and 𝑏 are not orthogonal, the distance between their gadgets is equal to
𝐶 and otherwise it is less than 𝐶. Because of this condition, our gadget design and
analysis become more involved.

Fortunately, the edit distance is expressive enough to support this functionality.
The basic idea behind the gadget construction is to use the fact that the edit distance
between two gadget sequences, say 𝐺 (from the first sequence) and 𝐺′ (from the
second sequence), is the minimum cost over all possible alignments between 𝐺 and 𝐺′.
Thus, we construct gadgets that allow two alignment options. The first option results
in a cost that is linear in the number of overlapping 1s of the corresponding vectors
(this is easily achieved by using substitutions only). On the other hand, the second
“fallback” option has a fixed cost (say 𝐶1) that is slightly higher than the cost of the
first option when no 1s are overlapping (say, 𝐶0). Thus, by taking the minimum of
these two options, the resulting cost is equal to 𝐶0 when the vectors are orthogonal
and equal to 𝐶1 (> 𝐶0) otherwise, which is what is needed.

Longest common subsequence and dynamic time warping distance We
refine the ideas from the above construction to show quadratic hardness for other
popular measures, including the longest common subsequence (LCS) and the dynamic
time warping (DTW) distance. For the LCS problem we construct gadgets with similar
properties as for the edit distance. For the DTW distance we obtain a conditional
lower bound by showing how to embed the constructed hard sequences for the edit
distance problem into DTW instances.
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Approximation hardness for sequence alignment problems The hardness
results described above are for algorithms that solve the problems exactly. If one
allows approximation, often it is possible to obtain significantly faster algorithms.
For example, one can compute a poly-logarithmic approximation to the edit distance
in near-linear time [AKO10] and constant approximation in strongly sub-quadratic
time [CDG+18]. However, no limitations for the approximate problem are known. In
this thesis we make the first step to close this gap by showing quadratic hardness
for approximately solving the edit distance and the LCS problems for deterministic
algorithms, assuming a plausible hypothesis. Furthermore, we show that disproving
the hypothesis would imply new circuit lower bounds currently not known to be true.

1.3.2 Regular expression pattern matching and membership

Regular expressions constitute a fundamental notion in formal language theory and are
frequently used in computer science to define search patterns. In particular, regular
expression pattern matching and membership testing are widely used computational
primitives, employed in many programming languages and text processing utilities
such as Perl, Python, JavaScript, Ruby, AWK, Tcl and Google RE2. Apart from
text processing and programming languages, regular expressions are used in computer
networks [KDY+06], databases and data mining [GRS99].

The two key computational problems that involve regular expressions are pat-
tern matching and membership testing. In pattern matching the goal is to determine
whether a given sequence contains a substring that matches a given pattern; in mem-
bership testing the goal is to decide if the entire sequence matches the given regular
expression. A classic algorithm for these problems constructs and simulates a non-
deterministic finite automaton corresponding to the expression, resulting in an 𝑂(𝑚𝑛)
running time (where 𝑚 is the length of the pattern and 𝑛 is the length of the text).
This running time can be improved slightly (by a poly-logarithmic factor), but no sig-
nificantly faster solutions are known. At the same time, much faster algorithms exist
for various special cases of regular expressions, including dictionary matching [AC75],
wildcard matching [FP74, Ind98, Kal02, CH02], subset matching [CH97, CH02], word
break problem [folklore] etc. This raises a natural question: Is it possible to charac-
terize easy pattern matching and membership tasks and separate them from those
that are hard?

In this thesis we answer this question affirmatively and show that the complexity
of regular expression pattern matching can be characterized based on its depth (when
interpreted as a formula). Our results hold for expressions involving concatenation,
OR, Kleene star and Kleene plus. For regular expressions of depth two (involving
any combination of the above operators), we exhibit the following dichotomy: pat-
tern matching and membership testing can be solved in near-linear time, except for
“concatenations of stars”, which cannot be solved in strongly sub-quadratic time as-
suming the Strong Exponential Time Hypothesis (SETH). For regular expressions of
depth three the picture is more complex. Nevertheless, we prove that each problem
can either be solved in strongly sub-quadratic time, or cannot be solved in strongly
sub-quadratic time assuming SETH.
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An intriguing special case of membership testing involves regular expressions of
the form “a star of an OR of concatenations”, e.g., [𝑎|𝑎𝑏|𝑏𝑐]*. This corresponds to the
so-called word break problem (a popular interview question [Tun11, Lee]), for which a
dynamic programming algorithm with a runtime of (roughly) 𝑂(𝑛

√
𝑚) is known. We

show that the latter bound is not tight and improve the runtime to 𝑂(𝑛𝑚0.44...). This
runtime has been further improved in a follow-up work [BGL17].

1.4 Statistical data analysis and machine learning

1.4.1 Kernel methods and neural networks

Empirical risk minimization (ERM) has been highly influential in modern machine
learning [Vap98]. ERM underpins many core results in statistical learning theory and
is one of the main computational problems in the field. Several important methods
such as support vector machines (SVM), boosting, and neural networks follow the
ERM paradigm [SSBD14]. As a consequence, the algorithmic aspects of ERM have
received a vast amount of attention over the past decades. This naturally motivates
the following basic question: What are the computational limits for ERM algorithms?

In this thesis, we address this question both in convex and non-convex settings.
Convex ERM problems have been highly successful in a wide range of applications,
giving rise to popular methods such as SVMs and logistic regression. Using tools
from convex optimization, the resulting problems can be solved in polynomial time.
However, the exact time complexity of many important ERM problems such as kernel
SVMs is not yet well understood. In this thesis we show that, assuming SETH,
the kernel SVM, kernel ridge regression and kernel principal component analysis as
well as training the last layer of a neural net require essentially quadratic time for
a sufficiently small approximation factor. All of these methods are popular learning
algorithms due to the expressiveness of the kernel or network embedding. Our results
show that this expressiveness also leads to an expensive computational problem.

Non-convex ERM problems have also attracted extensive research interest, e.g., in
the context of deep neural networks. First order methods that follow the gradient of
the empirical loss are not guaranteed to find the global minimizer in this setting. Nev-
ertheless, variants of gradient descent are by far the most common method for training
large neural networks. Here, the computational bottleneck is to compute a number
of gradients, not necessarily to minimize the empirical loss globally. Although we can
compute gradients in polynomial time, the large number of parameters and examples
in modern deep learning still makes this a considerable computational challenge. We
prove a matching conditional lower bound for (batch) gradient evaluation in neural
nets, assuming SETH. In particular, we show that computing (or even approximating,
up to polynomially large factors) the norm of the gradient of the top layer in a neural
network takes time that is “rectangular”. The time complexity cannot be significantly
better than 𝑂(𝑛 · 𝑚), where 𝑚 is the number of examples and 𝑛 is the number of
units in the network. Hence, there are no algorithms that compute batch gradients
faster than handling each example individually, unless SETH fails.
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Our results hold for a significant range of the accuracy parameter. For kernel
methods, our bounds hold for algorithms approximating the empirical risk up to a
factor of 1+𝜀, for log(1/𝜀) = 𝜔(log2 𝑛). Thus, they provide conditional quadratic lower
bounds for algorithms with, say, a log 1/𝜀 runtime dependence on the approximation
error 𝜀. A (doubly) logarithmic dependence on 1/𝜀 is generally seen as the ideal
rate of convergence in optimization, and algorithms with this property have been
studied extensively in the machine learning community (cf. [BS16]). At the same time,
approximate solutions to ERM problems can be sufficient for good generalization
in learning tasks. Indeed, stochastic gradient descent (SGD) is often advocated
as an efficient learning algorithm despite its polynomial dependence on 1/𝜀 in the
optimization error [SSSS07, BB07]. Our results support this viewpoint since SGD
sidesteps the quadratic time complexity of our lower bounds.

For other problems, our assumptions about the accuracy parameter are less strin-
gent. In particular, for training the top layer of the neural network, we only need to
assume that 𝜀 ≈ 1/𝑛. Finally, our lower bounds for approximating the norm of the
gradient in neural networks hold even if 𝜀 = 𝑛𝑂(1), i.e., for polynomial approximation
factors (or alternatively, a constant additive factor for ReLU and sigmoid activation
functions).

1.4.2 Efficient density evaluation for smooth kernels

The work on the kernel problems leads us to the study of the kernel density evaluation
problem. Given a kernel function 𝑘(·, ·) and point-sets 𝑃,𝑄 ⊂ R𝑑, the kernel density
evaluation problem asks to approximate

∑︀
𝑝∈𝑃 𝑘(𝑞, 𝑝) for every point 𝑞 ∈ 𝑄. This

task has numerous applications in scientific computing [GS91], statistics [RW10],
computer vision [GSM03], machine learning [SSPG16] and other fields. Assuming
SETH we show that the problem requires essentially |𝑃 | · |𝑄| time for Gaussian kernel
𝑘(𝑞, 𝑝) = exp(−‖𝑞−𝑝‖2) and any constant approximation factor. This hardness result
crucially relies on the property that the Gaussian kernel function decays very fast.
We complement the lower bound with a better algorithm for “polynomially-decaying”
kernel functions. For example, for the Cauchy kernel 𝑘(𝑞, 𝑝) = 1

1+‖𝑞−𝑝‖2 we achieve
roughly |𝑃 |+ |𝑄|/𝜀2 runtime for 1± 𝜀 approximation.

The main idea behind the faster algorithm is to combine a randomized dimension-
ality reduction with a hierarchical partitioning of the space, via multi-dimensional
quadtrees. This allows us to construct a randomized data structure such that, given a
query point 𝑞, we can partition 𝑃 into a short sequence of sets such that the variance
of the kernel with respect to 𝑞 is small in each of the sets. The overall estimator then
can be obtained by computing and aggregating the estimators for individual layers.
A convenient property of the overall estimator is that it is unbiased, which makes
easy to extend the algorithm to other metrics via low-distortion embeddings. This
property is due to the fact that we use the dimensionality reduction only to partition
the points, while the kernel values are always evaluated in the original space. This
means that the distortion induced by the dimensionality reduction only affects the
variance, not the mean of the estimator.
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Chapter 2

Preliminaries

Our hardness assumption is about the complexity of the SAT problem, which is
defined as follows: given a conjunctive normal form formula, decide if the formula
is satisfiable. The 𝑘-SAT problem is a special case when the input formula has at
most 𝑘 literals in each of the clauses. Throughout the paper we will use the following
conjecture.

Conjecture 2.1 (Strong exponential time hypothesis (SETH) [IPZ01, IP01]). For
every constant 𝜀 > 0 there exists a large enough constant 𝑘 such that 𝑘-SAT problem
on 𝑁 variables cannot be solved in time 𝑂

(︀
2(1−𝜀)𝑁

)︀
.

To show conditional lower bounds that are based on SETH, it is often convenient
to perform the reductions from the following intermediary problem.

Definition 2.2 (Orthogonal vectors problem). Given two sets 𝐴,𝐵 ⊆ {0, 1}𝑑 such
that |𝐴| = |𝐵| = 𝑁 , determine whether there exists a pair of vectors 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵
such that the dot product 𝑎 · 𝑏 =

∑︀𝑑
𝑖=1 𝑎𝑖𝑏𝑖 (taken over reals) is equal to 0, that is, the

vectors are orthogonal.

The orthogonal vectors problem has an easy 𝑂(𝑁2𝑑)-time solution. The cur-
rently best known algorithm for this problem runs in time 𝑛2−1/𝑂(log 𝑐), where 𝑐 =
𝑑/ log𝑁 [AWY15, CW16]. The following theorem enables us to use the orthogonal
vectors problem as a starting point for our reductions.

Theorem 2.3 ([Wil05]). The orthogonal vectors problem cannot be solved in 𝑂(𝑑𝑂(1)𝑁2−𝛿)
time, unless SETH is false. The statement holds for any 𝑑 = 𝜔(log𝑁).

The orthogonal vectors problem is a special case of the following more general
problem.

Definition 2.4 (Almost orthogonal vectors problem). Given two sets 𝐴,𝐵 ⊆ {0, 1}𝑑
such that |𝐴| = |𝐵| = 𝑁 and an integer 𝑟 ∈ {0, . . . , 𝑑}, determine whether there
exists a pair of vectors 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 such that the dot product 𝑎 · 𝑏 =

∑︀𝑑
𝑖=1 𝑎𝑖𝑏𝑖

(taken over reals) is at most 𝑟. We call any two vectors that satisfy this condition as
𝑟-orthogonal.
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For 𝑟 = 0 we ask to determine if there exists a pair of orthogonal vectors, which
recovers the orthogonal vectors problem.

Clearly, an 𝑂(𝑑𝑂(1)𝑁2−𝛿) algorithm for the almost orthogonal vectors problem in
𝑑 dimensions implies a similar algorithm for the orthogonal vectors problem, while
the other direction might not be true. In fact, while mildly sub-quadratic algo-
rithms are known for the orthogonal vectors problem when 𝑑 is poly-logarithmic, with
𝑁2/(log𝑁)𝜔(1) running times [CIP02, ILPS14, AWY15], we are not aware of any such
algorithms for the almost orthogonal vectors problem.

The lemma below shows that such algorithms for the almost orthogonal vectors
problem would imply new 2𝑛/𝑛𝜔(1) algorithms for MAX-SAT Problem on a polyno-
mial number of clauses. Given a conjunctive normal form formula on 𝑛 variables,
the MAX-SAT Problem asks to output the maximum number of clauses that an
assignment to the variables can satisfy. While such upper bounds are known for
the SAT problem [AWY15, DH09], 2𝑛/𝑛𝜔(1) upper bounds are known for MAX-SAT
only when the number of clauses is a sufficiently small polynomial in the number of
variables [DW06, SSTT17]. The reductions that we present in Chapters 3 and 4 from
the almost orthogonal vectors to edit distance, LCS and DTW incur only a poly-
logarithmic overhead (for poly-logarithmic dimension 𝑑). This implies that shaving
a super-poly-logarithmic factor over the quadratic running times for these problems
might be difficult.

Lemma 2.5. If the almost orthogonal vectors problem on 𝑁 vectors in {0, 1}𝑑 can be
solved in 𝑇 (𝑁, 𝑑) time, then given a conjunctive normal form formula on 𝑛 variables
and 𝑚 clauses, we can compute the maximum number of satisfiable clauses (MAX-
SAT), in 𝑂(𝑇 (2𝑛/2,𝑚) · log𝑚) time.

Proof. We will use the split-and-list technique from [Wil05]. Given a conjunctive
normal form formula on 𝑛 variables and 𝑚 clauses, split the variables into two sets
of size 𝑛/2 and list all 2𝑛/2 partial assignments to each set. Define a vector 𝑎(𝛼) for
each partial assignment 𝛼 to the first half of variables. 𝑎(𝛼) contains 0 at coordinate
𝑗 ∈ [𝑚] if 𝛼 sets any of the literals of the 𝑗-th clause of the formula to true, and
1 otherwise. In other words, it contains a 0 if the partial assignment satisfies the
clause and 1 otherwise. In the same way construct a vector 𝑏(𝛽) for each partial
assignment 𝛽 to the second half of variables. Now, observe that if 𝛼, 𝛽 is a pair of
partial assignments for the first and second set of variables, then the inner product of
𝑎(𝛼) and 𝑏(𝛽) is equal to the number of clauses that the combined assignment 𝛼 and
𝛽 does not satisfy. Therefore, to find the assignment that maximizes the number of
satisfied clauses, it is enough to find a pair of partial assignments 𝛼, 𝛽 such that the
inner product of 𝑎(𝛼), 𝑏(𝛽) is minimized. The latter can be easily reduced to 𝑂(log𝑚)
calls to an oracle for the almost orthogonal vectors problem on 𝑁 = 2𝑛/2 vectors in
{0, 1}𝑚 with the standard binary search.

By the above discussion, a lower bound that is based on the almost orthogonal
vectors problem can be considered stronger than one that is based on the orthogonal
vectors problem. In our hardness proofs for the kernel problems it will be more
convenient to work with the following closely related problem.
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Definition 2.6 (Bichromatic Hamming close pair (BHCP) problem). Given two sets
𝐴,𝐵 ⊆ {0, 1}𝑑 such that |𝐴| = |𝐵| = 𝑁 and an integer 𝑡 ∈ {0, . . . , 𝑑}, determine
whether there exists a pair of vectors 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 such that the number of
coordinates in which they differ is less than 𝑡. Formally, the Hamming distance is less
than 𝑡: Hamming(𝑎, 𝑏) , ‖𝑎− 𝑏‖1 < 𝑡. If there is such a pair 𝑎, 𝑏 of vectors, we call
it a close pair.

It turns out that the best runtimes for the bichromatic Hamming close pair problem
and the almost orthogonal vectors problem are the same up to factors polynomial in
𝑑 as is shown by the following lemma.

Lemma 2.7. If the bichromatic Hamming close pair problem can be solved in 𝑇 (𝑁, 𝑑)
time, then the almost orthogonal vectors problem can be solved in 𝑂(𝑑2𝑇 (𝑁, 𝑑)) time.
Similarly, if the almost orthogonal vectors problem can be solved in 𝑇 ′(𝑁, 𝑑), then the
bichromatic Hamming close pair problem can be solved in 𝑂(𝑑2𝑇 ′(𝑁, 𝑑)) time.

Proof. We show how to reduce the almost orthogonal vectors problem to (𝑑 + 1)2

instances of the bichromatic Hamming close pair problem. Let 𝐴 and 𝐵 be the sets of
input vectors to the almost orthogonal vectors problem. Let 𝑟 be the threshold. We
split 𝐴 = 𝐴0 ∪ 𝐴1 ∪ . . . ∪ 𝐴𝑑 into 𝑑+ 1 sets such that 𝐴𝑖 contains only those vectors
that have exactly 𝑖 entries equal to 1. Similarly, we split 𝐵 = 𝐵0 ∪𝐵1 ∪ . . .∪𝐵𝑑. Let
𝐵𝑗 be the set of vectors 𝐵𝑗 except we replace all entries that are equal to 1 with 0 and
vice versa. We observe that 𝐴𝑖 and 𝐵𝑗 have a pair of vectors that are 𝑟-orthogonal
(dot product is ≤ 𝑟) if and only if there is a pair of vectors from 𝐴𝑖 and 𝐵𝑗 with the
Hamming distance at most 𝑑− 𝑖−𝑗+2𝑟. Thus, to solve the almost orthogonal vectors
problem, we invoke an algorithm for the bichromatic Hamming close pair problem on
all (𝑑+ 1)2 pairs 𝐴𝑖 and 𝐵𝑗.

It remains to show how to reduce the Hamming close pair problem to (𝑑 + 1)2

instances of the bichromatic almost orthogonal vectors problem. As before, we split
𝐴 = 𝐴0 ∪𝐴1 ∪ . . . ∪𝐴𝑑 and 𝐵 = 𝐵0 ∪𝐵1 ∪ . . . ∪𝐵𝑑. Let 𝑡 be the distance threshold.
We observe that 𝐴𝑖 and 𝐵𝑗 have a pair of vectors that differ in less than 𝑡 entries if
and only if 𝐴𝑖 and 𝐵𝑗 have a pair of vectors with dot product < (𝑖− 𝑗 + 𝑡)/2. Thus,
to solve the bichromatic Hamming close pair problem, we invoke an algorithm for the
almost orthogonal vectors problem on all (𝑑+ 1)2 pairs 𝐴𝑖 and 𝐵𝑗.

Unbalanced orthogonal vectors problem. Some of our reductions are from the
unbalanced version of the orthogonal vectors problem in which the sets of the input
vectors have different sizes. More precisely, |𝐴| = 𝑁 and |𝐵| = 𝑀 , where 𝑀 = 𝑁𝛼

for a constant 𝛼 > 0. It turns out that this variant of the problem cannot be solved
in 𝑑𝑂(1)(𝑁𝑀)1−𝛿 time unless SETH is false [BK15]. The following short argument
proves this. Without loss of generality we assume that 𝛼 ≤ 1. Given a balanced
instance of orthogonal vectors problem with |𝐴′| = |𝐵′| = 𝑁 , we split the set 𝐵′

into 𝑁/𝑀 subsets of size 𝑀 : 𝐵′ = 𝐵′1 ∪ . . . ∪ 𝐵′𝑁/𝑀 . This gives 𝑁/𝑀 instances of
the unbalanced problem: one instance for every pair of sets 𝐴′ and 𝐵′𝑖. If a faster
algorithm for the unbalanced problem exists, then we can solve the balanced problem
in time 𝑁/𝑀 · 𝑑𝑂(1)(𝑁𝑀)1−𝛿 = 𝑑𝑂(1)𝑁2−𝛼𝛿, which contradicts SETH.
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The same argument works for the unbalanced version of the bichromatic Hamming
close pair problem, which we will use in our hardness proofs for the empirical risk
minimization problems.

Notation. We use the �̃�(·) notation to hide poly log factors. For an integer 𝑖, we
use [𝑖] to denote the set {1, . . . , 𝑖}. For a symbol (or a sequence) 𝑠 and an integer 𝑖,
𝑠𝑖 denotes the symbol (or the sequence) 𝑠 repeated 𝑖 times. We use

∑︀
-style notation

to denote the concatenation of sequences. For sequences 𝑠1, 𝑠2, . . . , 𝑠𝑘, we write

○𝑘
𝑖=1𝑠𝑖 = 𝑠1 ∘ 𝑠2 ∘ . . . ∘ 𝑠𝑘 = 𝑠1 𝑠2 . . . 𝑠𝑘

to denote the concatenation of the sequences.
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Part I

Pattern matching and text analysis
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Chapter 3

Edit distance

Many applications require comparing long sequences. For instance, in biology, DNA
or protein sequences are frequently compared using sequence alignment tools to iden-
tify regions of similarity that may be due to functional, structural, or evolutionary
relationships. In speech recognition, sequences may represent time-series of sounds.
Sequences could also be English text, computer viruses, points in the plane, and so on.
Because of the large variety of applications, there are many notions of sequence simi-
larity. Some of the most important and widely used notions are the edit distance, the
longest common subsequence (LCS) and the dynamic time warping (DTW) distance.

In this section we show conditional lower bound for the edit distance problem.
We obtain the hardness by a reduction from the orthogonal vectors problem. In
Section 3.2.5 we show how to modify the construction so that the reduction is from
the almost orthogonal vectors problem.

3.1 Preliminaries
Edit distance. For any two sequences 𝑃 and 𝑄 over an alphabet Σ, the edit distance
edit(𝑃,𝑄) is equal to the minimum number of symbol insertions, symbol deletions
or symbol substitutions needed to transform 𝑃 into 𝑄. It is well known that the
edit distance induces a metric; in particular, it is symmetric and satisfies the triangle
inequality.

In our hardness proof we will use use an equivalent definition of the edit distance
that will make the analysis of our reductions easier.

Observation 3.1.1. For any two sequences 𝑃,𝑄, edit(𝑃,𝑄) is equal to the minimum,
over all sequences 𝑇 , of the number of deletions and substitutions needed to transform
𝑃 into 𝑇 and 𝑄 into 𝑇 .

Proof. It follows directly from the metric properties of the edit distance that edit(𝑃,𝑄)
is equal to the minimum, over all sequences 𝑇 , of the number of insertions, deletions
and substitutions needed to transform 𝑃 into 𝑇 and 𝑄 into 𝑇 . Furthermore, observe
that if, while transforming 𝑃 , we insert a symbol that is later aligned with some
symbol of 𝑄, we can instead delete the corresponding symbol in 𝑄. Thus, it suffices
to allow deletions and substitutions only.
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Definition 3.1.2. We define the following similarity distance between sequences 𝑃
and 𝑄 and call it the pattern matching distance between 𝑃 and 𝑄.

pattern(𝑃,𝑄) , min
𝑄′ is a contiguous
subsequence of 𝑄

edit(𝑃,𝑄′).

Simplifying assumption. We assume that in the orthogonal vectors problem, for
all vectors 𝑏 ∈ 𝐵, 𝑏1 = 1, that is, the first entry of any vector 𝑏 ∈ 𝐵 is equal to 1. We
can make this assumption without loss of generality because we can always add a 1
to the beginning of each 𝑏 ∈ 𝐵, and add a 0 to the beginning of each 𝑎 ∈ 𝐴. Note
that the added entries do not change orthogonality of any pair of vectors.

3.2 Reductions
The key component in the reduction is the construction of a function that maps binary
vectors into sequences in a way that two sequences are “close” if and only if the vectors
are orthogonal. The first step of our reduction mimics the approach in [Bri14]. We
assign a “gadget” sequence for each 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵. Then, the gadget sequences
𝐺(𝑎) for all 𝑎 ∈ 𝐴 are concatenated together to form the first input sequence, and
the gadget sequences 𝐺′(𝑏) for all 𝑏 ∈ 𝐵 are concatenated to form the second input
sequence. The correctness of the reduction is proven by showing that:

∙ If there is a pair of orthogonal vectors 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵, then one can align the
two sequences in a way that the gadgets assigned to 𝑎 and 𝑏 are aligned, which
implies that the distance induced by the global alignment is “small”.

∙ If there is no orthogonal pair, then no such global alignment exists, which implies
that the distance induced by any global alignment is “large”.

For a fixed ordering 𝑎1, . . . , 𝑎𝑁 of vectors in 𝐴 and ordering 𝑏1, . . . , 𝑏𝑁 of vectors
in 𝐵, the edit distance between the final two sequences is (roughly) captured by the
formula:

𝑁

min
𝑖=1

𝑁∑︁
𝑗=1

edit(𝐺(𝑎𝑗), 𝐺′(𝑏𝑗+𝑖)),

where 𝑏𝑡 = 𝑏𝑡−𝑁 for 𝑡 > 𝑁 . The edit distance finds an alignment between the sequences
of gadgets such that the sum of the distances is minimized. The cost of the optimal
alignment is a sum of 𝑁 distances and we need that it is small if and only if there is
a pair of orthogonal vectors.

3.2.1 Vector gadgets

We now describe vector gadgets as well as provide some intuition behind the construc-
tion.

We will construct sequences over an alphabet Σ = {0, 1, 2, 3, 4, 5, 6}. We start by
defining an integer parameter 𝑙0 , 10𝑑, where 𝑑 is the dimensionality of the vectors
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𝑍1 = 4𝑙1

𝐿 = ○𝑖∈[𝑑]CG(𝑎𝑖)

𝑉0 = 3𝑙1

𝑅 = ○𝑖∈[𝑑]CG(𝑎′𝑖)

𝑍2 = 4𝑙1

𝑉1 = 3𝑙1 𝑉2 = 3𝑙1

𝐷 = ○𝑖∈[𝑑]CG′(𝑏𝑖)

G(𝑎, 𝑎′)

G′(𝑏)

Figure 3-1: A visualization of the vector gadgets. A black rectangle denotes a run of
3s, while a white rectangle denotes a run of 4s. A gray rectangle denotes a sequence
that contains 0s, 1s and 2s. A short rectangle denotes a sequence of length 𝑙, while a
long one denotes a sequence of length 𝑙1.

in the orthogonal vectors problem. We then define coordinate gadget sequences CG
and CG′ as follows. For an integer 𝑥 ∈ {0, 1} we set

CG(𝑥) ,

{︃
2𝑙0 0 1 1 1 2𝑙0 if 𝑥 = 0;

2𝑙0 0 0 0 1 2𝑙0 if 𝑥 = 1,

CG′(𝑥) ,

{︃
2𝑙0 0 0 1 1 2𝑙0 if 𝑥 = 0;

2𝑙0 1 1 1 1 2𝑙0 if 𝑥 = 1.

The coordinate gadgets were designed so that they have the following properties.
For any two integers 𝑥, 𝑥′ ∈ {0, 1},

edit(CG(𝑥),CG′(𝑥′)) =

{︃
1 if 𝑥 · 𝑥′ = 0;

3 if 𝑥 · 𝑥′ = 1.

Further, we define another parameter 𝑙1 , (10𝑑)2. For vectors 𝑎, 𝑎′, 𝑏 ∈ {0, 1}𝑑, we
define the vector gadget sequences as

G(𝑎, 𝑎′) , 𝑍1 𝐿(𝑎)𝑉0𝑅(𝑎′)𝑍2 and G′(𝑏) , 𝑉1𝐷(𝑏)𝑉2,

where we set
𝑉0 = 𝑉1 = 𝑉2 , 3𝑙1 , 𝑍1 = 𝑍2 , 4𝑙1 ,

𝐿(𝑎) , ○𝑖∈[𝑑]CG(𝑎𝑖), 𝑅(𝑎′) , ○𝑖∈[𝑑]CG(𝑎′𝑖), 𝐷(𝑏) , ○𝑖∈[𝑑]CG′(𝑏𝑖).

In what follows we skip the arguments of 𝐿, 𝑅 and 𝐷. We denote the length of 𝐿, 𝑅
and 𝐷 by 𝑙 , |𝐿| = |𝑅| = |𝐷| = 𝑑(4 + 2𝑙0).

We visualize the defined vector gadgets in Fig. 3-1.

Intuition behind the construction. Before going into the analysis of the gadgets
in Section 3.2.2, we will first provide some intuition behind the construction. Given
three vectors 𝑎, 𝑎′, 𝑏 ∈ {0, 1}𝑑, we want that edit(G(𝑎, 𝑎′),G′(𝑏)) grows linearly in the
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minimum of 𝑎 · 𝑏 and 𝑎′ · 𝑏. More precisely, we want that

edit(G(𝑎, 𝑎′),G′(𝑏)) = 𝑐+ 𝑡 ·min(𝑎 · 𝑏, 𝑎′ · 𝑏), (3.1)

where the integers 𝑐, 𝑡 > 0 are values that depend on 𝑑 only. In fact, we will have
that 𝑡 = 2. To realize this, we construct our vector gadgets G and G′ such that there
are only two possibilities to achieve small edit distance. In the first case, the edit
distance grows linearly in 𝑎 · 𝑏. In the second case, the edit distance grows linearly in
𝑎′ · 𝑏. Because the edit distance is equal to the minimum over all possible alignments,
we take the minimum of the two inner products. After taking the minimum, the edit
distance will satisfy the properties stated in Eq. (3.1). More precisely, we achieve the
minimum edit distance cost between G and G′ by following one of the following two
possible sequences of operations:

∙ Case 1. Delete 𝑍1 and 𝐿. Substitute 𝑍2 with 𝑉2. This costs 𝑐′ , |𝑍1| + |𝐿| +
|𝑍2| = 2𝑙1 + 𝑙. Transform 𝑅 and 𝐷 into the same sequence by transforming the
corresponding coordinate gadgets into the same sequences. By the construction
of the coordinate gadgets, the cost of this step is 𝑑+ 2 · (𝑎′ · 𝑏). Therefore, this
case corresponds to edit distance cost 𝑐′ + 𝑑 + 2 · (𝑎′ · 𝑏) = 𝑐 + 2 · (𝑎′ · 𝑏) for
𝑐 , 𝑐′ + 𝑑.

∙ Case 2. Delete 𝑅 and 𝑍2. Substitute 𝑍1 with 𝑉1. This costs 𝑐′. Transform 𝐿
and 𝐷 into the same sequence by transforming the corresponding coordinate
gadgets. Similarly as before, the cost of this step is 𝑑+2 · (𝑎 · 𝑏). Therefore, this
case corresponds to edit distance cost 𝑐′ + 𝑑+ 2 · (𝑎 · 𝑏) = 𝑐+ 2 · (𝑎 · 𝑏).

Taking the minimum of these two cases yields the desired Eq. (3.1).
In the reduction given in Section 3.2.3, we ensure that the dot product 𝑎′ · 𝑏 is

always equal to 1 by setting 𝑎′ to be equal to a fixed vector. This gives us a gadget
G(𝑎) , G(𝑎, 𝑎′) with the property that edit(G(𝑎),G′(𝑏)) is small (equal to 𝐶0) if the
vectors 𝑎 and 𝑏 are orthogonal, and is slightly larger (equal to 𝐶1) otherwise. That is:

edit(G(𝑎),G′(𝑏)) =

{︃
𝐶0 if 𝑎 · 𝑏 = 0

𝐶1 otherwise

for 𝐶1 > 𝐶0. This property is crucial for our construction, as it guarantees that the
sum of several terms edit(G(𝑎),G′(𝑏)) is smaller than some threshold if and only if
𝑎 ·𝑏 = 0 for at least one pair of vectors 𝑎 and 𝑏. This enables us to detect whether such
a pair exists. In contrast, this would not hold if edit(G(𝑎),G′(𝑏)) depended linearly
on the value of 𝑎 · 𝑏.

3.2.2 Properties of the vector gadgets

Theorem 3.2.1. For any vectors 𝑎, 𝑎′, 𝑏 ∈ {0, 1}𝑑,

edit(G(𝑎, 𝑎′),G ′(𝑏)) = 2𝑙1 + 𝑙 + 𝑑+ 2 ·min (𝑎 · 𝑏, 𝑎′ · 𝑏) .
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Proof. Follows from Lemmas 3.2.2 and 3.2.3 below.

Lemma 3.2.2. For any vectors 𝑎, 𝑎′, 𝑏 ∈ {0, 1}𝑑,

edit(G(𝑎, 𝑎′),G ′(𝑏)) ≤ 2𝑙1 + 𝑙 + 𝑑+ 2 ·min (𝑎 · 𝑏, 𝑎′ · 𝑏) .

Proof. Without loss of generality, 𝑎 · 𝑏 ≤ 𝑎′ · 𝑏. We delete 𝑅 and 𝑍2 from G(𝑎, 𝑎′).
This costs 𝑙1 + 𝑙. We transform 𝑍1 𝐿𝑉0 into 𝑉1𝐷𝑉2 by using substitutions only. This
costs 𝑙1 + 𝑑+ 2 · (𝑎 · 𝑏). We get the upper bound on the edit cost and this finishes the
proof.

Lemma 3.2.3. For any vectors 𝑎, 𝑎′, 𝑏 ∈ {0, 1}𝑑,

edit(G(𝑎, 𝑎′),G ′(𝑏)) ≥ 𝑋 , 2𝑙1 + 𝑙 + 𝑑+ 2 ·min (𝑎 · 𝑏, 𝑎′ · 𝑏) .

Proof. Consider an optimal transformation of G(𝑎, 𝑎′) and G′(𝑏) into the same se-
quence. Every symbol (say 𝑥) in the first sequence is either substituted, preserved
or deleted in the process. If a symbol is not deleted but instead is preserved or sub-
stituted by another symbol (say 𝑦), we say that 𝑥 is aligned with 𝑦, or that 𝑥 and 𝑦
have an alignment.

We state the following fact without a proof.

Fact 3.2.4. Suppose we have two sequences 𝑃 and 𝑄 of symbols. Let 𝑖 < 𝑗 and 𝑖′ < 𝑗′

be four positive integers. If 𝑃𝑖 is aligned with 𝑄𝑗′, then 𝑃𝑗 cannot be aligned with 𝑄𝑖′.

From now on we proceed by considering three cases.
Case 1. The subsequence 𝐷 has alignments with both 𝑍1 𝐿 and 𝑅𝑍2. In this

case, the cost induced by symbols from 𝑍1 and 𝑍2, and 𝑉0 is 𝑙1 for each one of these
sequences because the symbols must be deleted or substituted. This implies that
edit(G(𝑎, 𝑎′),G′(𝑏)) ≥ 3𝑙1, which contradicts an easy upper bound. We have an upper
bound edit(G(𝑎, 𝑎′),G′(𝑏)) ≤ 2𝑙1 + 3𝑙 and it is obtained by deleting 𝐿, 𝑅, 𝐷, 𝑍1 and
replacing 𝑍2 with 𝑉2 symbol by symbol. Remember that 𝑙0 = 10𝑑 and 𝑙1 = (10𝑑)2,
and 𝑙 = 𝑑(4 + 𝑙0). Thus, 𝑙1 > 3𝑙 and the lower bounds contradicts the upper bound.
Therefore, this case cannot occur.

Case 2. 𝐷 does not have any alignments with 𝑍1 𝐿. We will show that, if this
case happens, then

edit(G(𝑎, 𝑎′),G′(𝑏)) ≥ 2𝑙1 + 𝑙 + 𝑑+ 2 · (𝑎′ · 𝑏) .

We start by introducing the following notion. Let 𝑃 and 𝑄 be two sequences
that decompose as 𝑃 = 𝑃1𝑃2 and 𝑄 = 𝑄1𝑄2. Consider two sequences 𝒯 and ℛ of
deletions and substitutions that transform 𝑃 into 𝑆 and 𝑄 into 𝑆, respectively. An
operation in 𝒯 or ℛ is called internal to 𝑃2 and 𝑄2 if it is either a (1) deletion of a
symbol in 𝑃2 or 𝑄2, or (2) a substitution of a symbol in 𝑃2 so that it aligns with a
symbol in 𝑄2, or vice versa. All other operations, including substitutions that align
with symbols in 𝑃2 (𝑄2, resp.) to those outside of 𝑄2 (𝑃2, resp.) are called external
to 𝑃2 and 𝑄2.

We state the following fact without a proof.
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Fact 3.2.5. Let 𝑃1 𝑃2 and 𝑄1𝑄2 be sequences such that 𝑃2 = 4𝑡, 𝑄2 = 3𝑡 for an
integer 𝑡 and 𝑃1 and 𝑄1 are arbitrary sequences over an arbitrary alphabet. Consider
edit(𝑃1 𝑃2, 𝑄1𝑄2) and the corresponding operations minimizing the distance. Among
those operations, the number of operations that are internal to 𝑃2 and 𝑄2 is at least 𝑡.

Given that |𝑍2| = |𝑉2| = 𝑙1 and 𝑍2 consists only of 4s and 𝑉2 consists of only 3s,
Fact 3.2.5 implies that the number of operations that are internal to 𝑍2 and 𝑉2 is at
least 𝑆1 , 𝑙1.

Because 𝐷 does not have any alignments with 𝑍1 𝐿, we must have that every
symbol in 𝑍1 𝐿 gets deleted or substituted. Thus, the total contribution from symbols
in 𝑍1 𝐿 to an optimal alignment is 𝑆2 , |𝑍1 𝐿| = 𝑙1 + 𝑙. Now we will lower bound
the contribution to an optimal alignment from symbols in sequences 𝑅 and 𝐷. First,
observe that both 𝑅 and 𝐷 have 𝑑 runs of 1s. We consider the following two subcases.

Case 2.1. There exist 𝑖, 𝑗 ∈ [𝑑] with 𝑖 ≠ 𝑗 such that the 𝑖th run in 𝐷 has
alignments with the 𝑗th run in 𝑅. The number of symbols of type 2 to the right of
the 𝑖th run in 𝐷 and the number of symbols of type 2 to the right of the 𝑗th run in 𝑅
differ by at least 2𝑙0. Therefore, the induced edit cost of symbols of type 2 in 𝑅 and
𝐷 is at least 2𝑙0 ≥ 𝑆3 , 𝑑+ 2 · (𝑎′ · 𝑏), from which we conclude that

edit(G(𝑎, 𝑎′),G′(𝑏)) ≥ 𝑆1 + 𝑆2 + 𝑆3

= 𝑙1 + (𝑙1 + 𝑙) + (𝑑+ 2 · (𝑎′ · 𝑏))
= 𝑋.

In the inequality we used the fact that the contributions from 𝑆1, 𝑆2 and 𝑆3

are disjoint. This follows from the definitions of the quantities. More precisely, the
contribution from 𝑆1 comes from operations that are internal to 𝑉2 and 𝑍2. Thus, it
remains to show that the contributions from 𝑆2 and 𝑆3 are disjoint. This follows from
the fact that the contribution from 𝑆2 comes from symbols 𝑍1 𝐿 and the assumption
that 𝐷 does not have any alignments with 𝑍1 𝐿.

Case 2.2. (The complement of Case 2.1.) Consider any 𝑖 ∈ [𝑑]. If a symbol of
type 1 from the 𝑖th run in 𝐷 is aligned with a symbol of type 1 in 𝑅, then the symbol
of type 1 comes from the 𝑖th run in 𝑅. Define the set 𝑍 as the set of all numbers
𝑖 ∈ [𝑑] such that the 𝑖th run of 1s in 𝐷 has alignment with the 𝑖th run of 1s in 𝑅.

For all 𝑖 ∈ 𝑍, the 𝑖th run in 𝑅 aligns with the 𝑖th run in 𝐷. By the construction
of coordinate gadgets, the 𝑖th run in 𝑅 and 𝐷 incur edit cost ≥ 1 + 2𝑎′𝑖𝑏𝑖.

For all 𝑖 ̸∈ 𝑍, the 𝑖th run in 𝐷 incurs edit cost at least 2 (since there are at least
two symbols of type 1). Similarly, the 𝑖th run in 𝑅 incurs edit cost at least 1 (since
there is at least one symbol of type 1). Therefore, for every 𝑖 /∈ 𝑍, the 𝑖th run in 𝑅
and 𝐷 incur edit cost ≥ 1 + 2 ≥ 1 + 2𝑎′𝑖𝑏𝑖.

We get that the total contribution to the edit cost from the 𝑑 runs in 𝐷 and the
𝑑 runs in 𝑅 is

∑︁
𝑖∈𝑍

(1 + 2𝑎′𝑖𝑏𝑖) +
∑︁

𝑖∈[𝑑]∖𝑍

3 ≥
𝑑∑︁

𝑖=1

(1 + 2𝑎′𝑖𝑏𝑖) = 𝑆4 , 𝑑+ 2 · (𝑎′ · 𝑏) .
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We conclude:

edit(G(𝑎, 𝑎′),G′(𝑏)) ≥ 𝑆1 + 𝑆2 + 𝑆4

= 𝑙1 + (𝑙1 + 𝑙) + (𝑑+ 2 · (𝑎′ · 𝑏))
= 𝑋.

We used the fact that the contributions from 𝑆1, 𝑆2 and 𝑆4 are disjoint. The
argument is analogous as in the previous case.

Case 3. The symbols of 𝐷 are not aligned with any symbols in 𝑅𝑍2. If this case
happens, then

edit(G(𝑎, 𝑎′),G′(𝑏)) ≥ 2𝑙1 + 𝑙 + 𝑑+ 2 · (𝑎 · 𝑏) = 𝑋.

The analysis of this case is analogous to the analysis of Case 2. More concretely,
for any sequence 𝑃 , define reverse(𝑃 ) to be the sequence 𝑄 of length |𝑃 | such that
𝑄𝑖 = 𝑃|𝑃 |+1−𝑖 for all 𝑖 = 1, 2, . . . , |𝑃 |. Now we repeat the proof in Case 2 but for

edit(reverse(G(𝑎, 𝑎′)), reverse(G′(𝑏))).

This yields exactly the lower bound that we need.
The proof of the lemma follows. We showed that Case 1 cannot happen. By

combining lower bounds corresponding to Cases 2 and 3, we get the lower bound
stated in the lemma.

We set 𝑎′ , 1 0𝑑−1, that is, 𝑎′ is a binary vector of length 𝑑 such that 𝑎′1 = 1 and
𝑎′𝑖 = 0 for 𝑖 = 2, . . . , 𝑑. We define

G(𝑎) , G(𝑎, 𝑎′).

Theorem 3.2.6. Let 𝑎 ∈ {0, 1}𝑑 be any binary vector and 𝑏 ∈ {0, 1}𝑑 be any binary
vector that starts with 1, that is, 𝑏1 = 1. Then,

edit(G(𝑎),G ′(𝑏)) =

{︃
𝐶0 , 2𝑙1 + 𝑙 + 𝑑 if 𝑎 · 𝑏 = 0;

𝐶1 , 2𝑙1 + 𝑙 + 𝑑+ 2 if 𝑎 · 𝑏 ≥ 1.

Proof. Follows from Theorem 3.2.1 by setting 𝑎′ = 1 0𝑑−1 and observing that 𝑎′ · 𝑏 = 1
because 𝑏1 = 1.

3.2.3 Hardness for pattern matching

We proceed by concatenating vector gadgets into sequences.
We note that the length of the vector gadgets G depends on the dimensionality 𝑑

of the vectors but not on the entries of the vectors. The same is true about G′. We
set 𝑙′ to be the maximum of the two lengths. Furthermore, we set 𝑙2 , 10𝑑𝑙′. We
define Ĝ(𝑎) , 5𝑙2 G(𝑎) 5𝑙2 and Ĝ

′
(𝑎) , 5𝑙2 G′(𝑎) 5𝑙2 . Let 𝑏′ be a vector consisting of 𝑑

entries equal to 1, that is, 𝑏′𝑖 = 1 for 𝑖 = 1, . . . , 𝑑.
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Let 𝐴 and 𝐵 be sets from the orthogonal vectors instance. We define sequences

𝑃 , ○𝑎∈𝐴Ĝ(𝑎),

𝑄 ,
(︁
○|𝐴|−1𝑖=1 Ĝ

′
(𝑏′)
)︁(︁

○𝑏∈𝐵Ĝ
′
(𝑏)
)︁(︁

○|𝐴|−1𝑖=1 Ĝ
′
(𝑏′)
)︁
.

Theorem 3.2.7. Let 𝐶 , |𝐴|𝐶1. If there are two orthogonal vectors, one from set 𝐴,
another from set 𝐵, then pattern(𝑃,𝑄) ≤ 𝐶−2; otherwise we have pattern(𝑃,𝑄) = 𝐶.

Proof. Follows from Lemmas 3.2.8 and 3.2.9 below.

Lemma 3.2.8. If there are two orthogonal vectors, one from 𝐴, another from 𝐵, then

pattern(𝑃,𝑄) ≤ 𝐶 − (𝐶1 − 𝐶0) = 𝐶 − 2.

Proof. Let 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 be vectors such that 𝑎 · 𝑏 = 0.
We can choose a contiguous subsequence 𝑄′ of 𝑄 consisting of a sequence of |𝐴|

vector gadgets Ĝ
′
such that 𝑄′ has the following property: transforming the vector

gadgets Ĝ from 𝑃 and their corresponding vector gadgets Ĝ
′
from 𝑄′ into the same

sequence one by one as per Theorem 3.2.6, we achieve a cost smaller than the upper
bound. We use the fact that at least one transformation is cheap because 𝑎 · 𝑏 = 0

and we choose 𝑄′ so that Ĝ(𝑎) and Ĝ
′
(𝑏) get transformed into the same sequence.

Lemma 3.2.9. If there are no two orthogonal vectors, one from 𝐴, another from 𝐵,
then

pattern(𝑃,𝑄) = 𝐶.

Proof. Consider a graph (𝑉 ∪ 𝑉 ′, 𝐸) with vertices 𝑣(𝑎) ∈ 𝑉 , 𝑎 ∈ 𝐴, 𝑣′(𝑏) ∈ 𝑉 ′, 𝑏 ∈ 𝐵.
We also add 2|𝐴| − 2 copies of 𝑣′(𝑏′) to the set 𝑉 ′ corresponding to 2|𝐴| − 2 vectors
𝑏′ in sequence 𝑉 ′. Consider an optimal transformation of 𝑃 and a subsequence of 𝑄
into the same sequence according to Definition 3.1.2. We connect two vertices 𝑣(𝑎)
and 𝑣′(𝑏) if and only if G(𝑎) and G′(𝑏) have an alignment in the transformation.

We want to claim that every vector gadget G(𝑎) from 𝑃 contributes a cost of at
least 𝐶1 to the final cost of pattern(𝑃,𝑄). This will give pattern(𝑃,𝑄) ≥ |𝐴|𝐶1 = 𝐶.
We consider the connected components of the graph. We will show that a connected
component that has 𝑟 ≥ 1 vertices from 𝑉 , contributes ≥ 𝑟𝐶1 to the final cost of
pattern(𝑃,𝑄). From the case analysis below we will see that these contributions
for different connected components are separate. Therefore, by summing up the
contributions for all the connected components, we get pattern(𝑃,𝑄) ≥ |𝐴|𝐶1 = 𝐶.

Consider a connected component of the graph with at least one vertex from 𝑉 .
We examine several cases.

Case 1. The connected component has only one vertex from 𝑉 . Let 𝑣(𝑎) be the
vertex.

Case 1.1. 𝑣(𝑎) is connected to more than one vertex. In this case, G(𝑎) induces
a cost of at least 2𝑙2 > 𝐶1 (this cost is induced by symbols of type 5).
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Case 1.2. 𝑣(𝑎) (corresponding to vector gadget G(𝑎)) is connected to only one
vertex 𝑣′(𝑏) (corresponding to vector gadget G′(𝑏)). Let 𝑄′ be a contiguous substring
of 𝑄 that achieves the minimum of edit(𝑃,𝑄′) (see Definition 3.1.2).

Case 1.2.1. The vector gadget G′(𝑏) is fully contained in the substring 𝑄′. We
claim that the contribution from symbols in the sequences G(𝑎) and G′(𝑏) is at least
edit(G(𝑎),G′(𝑏)). This is sufficient because we know that edit(G(𝑎),G′(𝑏)) ≥ 𝐶1 from
Theorem 3.2.6. If no symbol in G(𝑎) or G′(𝑏) is aligned with a symbol of type 5, the
claim follows directly by applying Theorem 3.2.6. Otherwise, every symbol that is
aligned with a symbol of type 5 contributes cost 1 to the final cost. The contribution
from symbols in the sequences G(𝑎) and G′(𝑏) is at least edit(G(𝑎),G′(𝑏)) because we
can transform the sequences G(𝑎) and G′(𝑏) into the same sequence by first deleting
the symbols that are aligned with symbols of type 5 (every such alignment contributes
cost 1) and then transforming the remainders of the sequences G(𝑎) and G′(𝑏) into
the same sequence.

Case 1.2.2. The complement of Case 1.2.1. We need to consider this case
because of the following reason. We could potentially achieve a contribution of G(𝑎)
to pattern(𝑃,𝑄) that is smaller than 𝐶1 by transforming G(𝑎) and a contiguous
substring of G′(𝑏) into the same string (instead of transforming G(𝑎) and G′(𝑏) into
the same string). In the next paragraph we show that this cannot happen.

G′(𝑏) shares symbols with 𝑄′ and is not fully contained in 𝑄′. G′(𝑏) must be the
left-most (right-most, resp.) vector gadget in 𝑄′ but then 𝑙2 left-most (right-most,
resp.) symbols of type 5 of Ĝ(𝑎) induce a cost of at least 𝑙2 > 𝐶1 since the symbols of
type 5 cannot be preserved and must be substituted or deleted.

Case 1.3. 𝑣(𝑎) is connected to no vertex. We get that G(𝑎) induces cost of at
least |G(𝑎)| > 𝐶1.

Case 2. The connected component has 𝑟 > 1 vertices 𝑣(𝑎) from 𝑉 . In this case,
the cost induced by the vector gadgets G(𝑎) corresponding to the vertices from 𝑉 in
the connected component is at least 2𝑙2(𝑟− 1) > 𝑟𝐶1 (this cost is induced by symbols
of type 5).

This finishes the argument that pattern(𝑃,𝑄) ≥ 𝐶. It remains to argue that
we can achieve cost 𝐶 (to show that pattern(𝑃,𝑄) ≤ 𝐶) and it can be done as in
Lemma 3.2.8.

3.2.4 Hardness for edit distance

We set 𝑃 ′ , 6|𝑄| 𝑃 6|𝑄| and 𝑄′ , 𝑄. The following theorem immediately implies
hardness for the edit distance problem.
Theorem 3.2.10. Let 𝐶 ′ , 2|𝑄′| + 𝐶. If there are no two orthogonal vectors, then
edit(𝑃 ′, 𝑄′) = 𝐶 ′; otherwise edit(𝑃 ′, 𝑄′) ≤ 𝐶 ′ − 2.
Proof. Follows from Lemmas 3.2.11 and 3.2.12 below.
Lemma 3.2.11. If there are two orthogonal vectors, then edit(𝑃 ′, 𝑄′) ≤ 𝐶 ′ − 2.
Proof. We transform 𝑃 and a subsequence of 𝑄′ into the same sequence as in
Lemma 3.2.8. We replace the remaining prefix and suffix of 𝑄′ with the symbols
of type 6 and delete the excess of symbols of type 6 from 𝑃 ′.
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Lemma 3.2.12. If there are no two orthogonal vectors, then

edit(𝑃 ′, 𝑄′) = 𝐶 ′.

Proof. We can easily check that edit(𝑃 ′, 𝑄′) ≤ 𝐶 ′ as in Lemma 3.2.11. It remains to
prove the opposite inequality.

𝑃 ′ contains 2|𝑄′| symbols of type 6. Those will incur a cost of at least 2|𝑄′|. 𝑃 ′

has the remaining subsequence 𝑃 , which will incur cost at least pattern(𝑃,𝑄′). Using
Lemma 3.2.9, we finish the proof.

3.2.5 Reduction from the almost orthogonal vectors problem

We do the following changes to the above reduction to obtain a reduction from the
almost orthogonal vectors problem. First, we change the simplifying assumption in
Section 3.1. Instead of making an assumption that the first entry of the vector 𝑏 is 1,
we make an assumption that the first 𝑟+1 entries are equal to 1. Remember that 𝑟 is
the threshold in the almost orthogonal vectors instance and our goal is to determine
if there is a pair of vectors with the dot product at most 𝑟. Next, at the end of
Section 3.2.2 we set 𝑎′ , 1𝑟+1 0𝑑−𝑟−1 (instead of 1 0𝑑−1). Finally, in Theorem 3.2.6 we
set 𝐶0 , 2𝑙1+ 𝑙+𝑑+2𝑟 and 𝐶1 , 2𝑙1+ 𝑙+𝑑+2𝑟+2. The rest of the construction goes
through by replacing the condition that the vectors are orthogonal with the condition
that the vectors are 𝑟-orthogonal.
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Chapter 4

Longest common subsequence and
dynamic time warping

In this section we extend hardness results described in Chapter 3 to other similarity
measures, including longest common subsequence and dynamic time warping.

Longest common subsequence. This problem asks to output the length of the
longest common subsequence between two given sequences of length 𝑛. LCS has
attracted an extensive amount of research, both due to its mathematical simplic-
ity and to its large number of important applications, including data comparison
programs (e.g., diff in UNIX) and bioinformatics (e.g., [JP04]). There are many algo-
rithms for LCS, beyond the classical quadratic-time dynamic programming solution,
in many different settings, e.g., [Hir75, HS77] (see [BHR00] for a survey). Never-
theless, the best algorithms on arbitrary sequences are only slightly sub-quadratic
and have an 𝑂(𝑛2/ log2 𝑛) running time [MP80] if the alphabet size is constant, and
𝑂(𝑛2(log log 𝑛)/ log2 𝑛) otherwise [BFC08, Gra16].

Dynamic time warping distance. DTW distance assumes a distance measure
between any two symbols and is defined in terms of a “best” joint traversal of the
sequences. The traversal places a marker at the beginning of each sequence and during
each step one or both markers are moved forward one symbol, until the end of both
sequences is reached. Each step aligns two symbols, one from each sequence. DTW
defines the quality of the traversal to be the sum of distances between all pairs of
aligned symbols.

Dynamic time warping is useful in scenarios in which one needs to cope with
differing speeds and time deformations of time-dependent data. Because of its gen-
erality, DTW has been successfully applied in a large variety of domains: automatic
speech recognition [RJ93], music information retrieval [Mül07] , bioinformatics [AC01],
medicine [CPB+98], identifying songs from humming [ZS03], indexing of historical
handwriting archives [RM03], databases [RK05, KR05] and more.

DTW compares sequences over an arbitrary feature space, equipped with a distance
function for any pair of symbols. The sequences may represent time series or features
sampled at equidistant points in time. The cost function differs with the application.
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For instance, if the features are real numbers, then the distance could be ℓ𝑝. A simple
cost function which is useful when comparing text is to have the cost between two
letters be 1 if they are different and 0 if they are the same (See Example 4.2. in [Mül07]
for this version).

A simple dynamic programming algorithm solves DTW in 𝑂(𝑛2) time and the
best known algorithm takes 𝑂(𝑛2(log log log 𝑛)/ log log 𝑛) time on the worst-case case
inputs [GS17]. Besides algorithms for the worst-case inputs, many heuristics were
designed in order to obtain faster runtimes in practice (see Wang et al. [WDT+10] for
a survey).

Unfortunately, despite substantial research, the current best algorithms for LCS
and DTW problems are only mildly sub-quadratic—one can shave small poly-logarithmic
factors, but there is no known strongly sub-quadratic, 𝑂(𝑛2−𝜀) time algorithm, for a
constant 𝜀 > 0. In this part of the thesis we show that neither LCS nor DTW admits
strongly sub-quadratic algorithms, unless SETH fails. Our lower bounds hold when
the input sequences are over a constant size alphabet.

Related work. In [BK15] a quadratic lower bound was independently obtained
for LCS and DTW. [AHVWW16] showed that it is possible to relax the hardness
assumption and replace SETH with a weaker assumption. Essentially, hardness of
satisfiability of circuits as opposed of conjunctive normal form formulas. This was
further strengthened in [AB18]. In [BK18] tight conditional lower bounds were shown
for various parameterization of the LCS problem.

4.1 Preliminaries
Longest common subsequence. For two sequences 𝑃 and 𝑄 of length 𝑛 over an
alphabet Σ, the longest sequence 𝑋 that appears in both 𝑃 and 𝑄 as a subsequence
is the longest common subsequence (LCS) of 𝑃,𝑄 and we say that LCS(𝑃,𝑄) , |𝑋|.
The LCS problem asks to output LCS(𝑃,𝑄).

Dynamic time warping distance. For two sequences 𝑃 and 𝑄 of 𝑛 points from a
set Σ and a distance function 𝑑 : Σ×Σ → [0,∞), the dynamic time warping distance,
denoted by DTW(𝑃,𝑄), is the minimum cost of a (monotone) traversal of 𝑃 and 𝑄.

A traversal of the two sequences 𝑃,𝑄 has the following form. We have two
markers and initially one is located at the beginning of 𝑃 and the other is located at
the beginning of 𝑄. At every step, one or both of the markers simultaneously move
one point forward in their corresponding sequences. At the end, both markers must
be located at the last point of their corresponding sequence.

To determine the cost of a traversal, we consider all the 𝑂(𝑛) steps of the traversal,
and add up the following quantities to the final cost. Let the configuration of a step
be the pair of symbols 𝑝 and 𝑞 that the first and second markers are pointing at,
respectively. The contribution of this step to the final cost is 𝑑(𝑝, 𝑞).

The DTW problems asks to output DTW(𝑃,𝑄).
In the rest we will be interested in the following special case of DTW.
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DTW over symbols. The DTW problem over sequences of symbols, is the special
case of DTW in which the points come from an alphabet Σ and the distance function
is such that for any two symbols 𝑝, 𝑞 ∈ Σ, 𝑑(𝑝, 𝑞) = 1 if 𝑝 ̸= 𝑞 and 𝑑(𝑝, 𝑞) = 0 if 𝑝 = 𝑞.

4.2 Hardness for longest common subsequence
In this section we show a conditional lower bound for the longest common subsequence
problem.

4.2.1 Weighted LCS

It will be more convenient to work with the following more general version of the LCS
problem.

Definition 4.2.1 (Weighted longest common subsequence (WLCS)). For two se-
quences 𝑃 and 𝑄 of length 𝑛 over an alphabet Σ and a weight function 𝑤 : Σ → [𝐾],
let 𝑋 be the sequence that appears in both 𝑃,𝑄 as a subsequence and maximizes the
total weight (weighted length) 𝑊 (𝑋) ,

∑︀|𝑋|
𝑖=1𝑤(𝑋𝑖). We say that 𝑋 is the weighted

longest common subsequence of 𝑃,𝑄 and write WLCS(𝑃,𝑄) , 𝑊 (𝑋). The WLCS
problem asks to output WLCS(𝑃,𝑄).

Note that a common subsequence 𝑋 of two sequences 𝑃,𝑄 can be thought of as
an alignment or a matching 𝑀 = {(𝑝𝑖, 𝑞𝑖)}|𝑋|𝑖=1 between the two sequences, so that for
all 𝑖 ∈ [|𝑋|] : 𝑃𝑝𝑖 = 𝑄𝑞𝑖 , and 𝑝1 < . . . < 𝑝|𝑋| and 𝑞1 < . . . < 𝑞|𝑋|. Clearly, the weight∑︀|𝑋|

𝑖=1 𝑃𝑝𝑖 =
∑︀|𝑋|

𝑖=1𝑄𝑞𝑖 of the matching 𝑀 corresponds to the weight length 𝑊 (𝑋) of
the common subsequence 𝑋.

In our proofs, we will find useful the following relation between pairs of indices.
For a pair (𝑝, 𝑞) and a pair (𝑝′, 𝑞′) of indices we say that they are in conflict or they
cross if 𝑝 < 𝑝′ and 𝑞 > 𝑞′ or 𝑝 > 𝑝′ and 𝑞 < 𝑞′.

The following simple reduction from WLCS to LCS gives a way to translate a
lower bound for WLCS to a lower bound for LCS, and allows us to simplify our proofs.

Lemma 4.2.2. Computing WLCS of two sequences of length 𝑛 over Σ with weights
𝑤 : Σ → [𝐾] can be reduced to computing the LCS of two sequences of length 𝑂(𝐾𝑛)
over (unweighted) Σ.

Proof. The reduction simply copies each symbol 𝑠 ∈ Σ in each of the sequences 𝑤(𝑠)
times. That is, we define a mapping 𝑓 from symbols in Σ to sequences of length up
to 𝐾 so that for any 𝑠 ∈ Σ, 𝑓(𝑠) , 𝑥𝑤(𝑠) ∈ Σ𝑤(𝑠). For a sequence 𝑆 of length 𝑚 over
Σ, let 𝑓(𝑆) , ○𝑚

𝑖=1𝑓(𝑆𝑖). That is, replace the 𝑖-th symbol 𝑆𝑖 with the sequence 𝑓(𝑆𝑖)
as defined above. Note that |𝑓(𝑃 )| ≤ 𝐾|𝑃 |.

The reduction follows from the next claim.

Claim 4.2.3. For any two sequences 𝑃,𝑄 of length 𝑛 over Σ, the mapping 𝑓 satisfies:

WLCS(𝑃,𝑄) = 𝐿𝐶𝑆(𝑓(𝑃 ), 𝑓(𝑄)).
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Proof. For brevity of notation, we let 𝑃 ′ , 𝑓(𝑃 ) and 𝑄′ , 𝑓(𝑄).
First, observe that WLCS(𝑃,𝑄) ≤ LCS(𝑃 ′, 𝑄′), since for any common subsequence

𝑋 of 𝑃 and 𝑄, the sequence 𝑓(𝑋) is a common subsequence of 𝑃 ′ and 𝑄′ and has
length |𝑓(𝑋)| =

∑︀𝑚
𝑖=1 |𝑓(𝑋𝑖)| =

∑︀𝑚
𝑖=1 𝑤(𝑋𝑖) = 𝑊 (𝑋), where 𝑚 , |𝑆|.

In the remainder of this proof, we show that WLCS(𝑃,𝑄) ≥ LCS(𝑃 ′, 𝑄′). Let 𝑋
be the LCS of 𝑃 ′, 𝑄′ and consider a corresponding matching 𝑀 as defined above.

We say that a symbol 𝑠 in 𝑃 ′ at index 𝑖 ∈ [|𝑃 ′|] belongs to interval 𝐼𝑃 (𝑖) ∈ [|𝑃 |] if
and only if this symbol was generated when mapping 𝑃𝐼𝑃 (𝑖) to the subsequence 𝑓(𝑠).
Moreover, we say that it is at index 𝐽𝑃 (𝑖) ∈ [𝑤(𝑠)] in interval 𝐼𝑃 (𝑖) if and only if it is
the 𝐽𝑃 (𝑖)-th symbol in that interval (in the subsequence 𝑓(𝑠)). We define 𝐼𝑄(𝑖) and
𝐽𝑄(𝑖) in the same manner.

We will go over the symbols 𝑠 ∈ Σ of the alphabet in an arbitrary order, and
perform the following modifications to 𝑋 and the corresponding matching 𝑀 for each
such symbol in turn.

Go over the indices 𝑖 of 𝑃 ′ that are matched in 𝑀 to some index 𝑗 of 𝑄′, and
for which 𝑃 ′𝑖 = 𝑠, in increasing order. Consider the intervals 𝐼𝑃 (𝑖) and 𝐼𝑄(𝑗), both
of which contain the symbol 𝑠, 𝑤(𝑠) times. Throughout our scan, we maintain the
invariant that: 𝑖 is the first index to be matched to the interval 𝐼𝑄(𝑗).

If 𝐽𝑃 (𝑖) = 𝐽𝑄(𝑗) = 1, and the next 𝑤(𝑠)−1 pairs in our matching 𝑀 are matching
the rest of the interval 𝐼𝑃 (𝑖) to the interval 𝐼𝑄(𝑗), we do not need to modify anything,
and we move on to the next index 𝑖′ that is not a part of this interval 𝐼𝑃 (𝑖) and is
matched to some index 𝑗′—note that at this point, 𝑖′ satisfies the invariant, since it
cannot also be matched to the interval 𝐼𝑄(𝑗), and therefore 𝐼𝑄(𝑗

′) > 𝐼𝑄(𝑗) and 𝑖′ is
the first index to be matched to the interval 𝐼𝑄(𝑗′).

If 𝐽𝑃 (𝑖) = 𝐽𝑄(𝑗) = 1 does not hold, we modify the matching 𝑀 so that now the
whole intervals 𝐼𝑃 (𝑖) and 𝐼𝑄(𝑗) are matched to one another: for each 𝑖′, 𝑗′ such that
𝐼𝑃 (𝑖

′) = 𝐼𝑃 (𝑖), 𝐼𝑄(𝑗
′) = 𝐼𝑄(𝑗), and 𝐽𝑃 (𝑖

′) = 𝐽𝑄(𝑗
′), we add pair (𝑖′, 𝑗′) to the matching

𝑀 , and remove any conflicting pairs from 𝑀 . We claim that we obtain a matching of
at least the original size, since we add 𝑤(𝑠) pairs and we remove only up to 𝑤(𝑠) pairs.
To see this, note that for a pair (𝑖′′, 𝑗′′) to be in conflict with one of the pairs we added,
it must be one of the following three types: (1) 𝐼𝑃 (𝑖

′′) = 𝐼𝑃 (𝑖) and 𝐼𝑄(𝑗
′′) = 𝐼𝑄(𝑗),

or (2) 𝐼𝑃 (𝑖
′′) = 𝐼𝑃 (𝑖) but 𝐼𝑄(𝑗

′′) > 𝐼𝑄(𝑗), or (3) 𝐼𝑄(𝑗
′′) = 𝐼𝑄(𝑗) but 𝐼𝑃 (𝑖

′′) > 𝐼𝑃 (𝑖).
Here, we use the invariant to rule out pairs for which 𝐼𝑃 (𝑖

′′) < 𝐼𝑃 (𝑖) or 𝐼𝑄(𝑗′′) < 𝐼𝑄(𝑗).
However, in any matching 𝑀 , there cannot be both pairs of type (2) and pairs of type
(3), since any such two pairs would cross. Therefore, we conclude that all conflicting
pairs either come from the interval 𝐼𝑃 (𝑖) or they all come from the interval 𝐼𝑄(𝑗),
and in any case, there are only 𝑤(𝑠) of them. After this modification, we move on to
the next index 𝑖′ that is not a part of this interval 𝐼𝑃 (𝑖) and is matched (in the new
matching 𝑀) to some index 𝑗′—as before, this 𝑖′ satisfies the invariant.

After we are done with all these modifications, we end up with a matching 𝑀
of size at least |𝑋| in which complete intervals are aligned to each other. Now, we
can define a matching 𝑀 ′ between 𝑃 and 𝑄 that contains all pairs (𝐼𝑃 (𝑖), 𝐼𝑄(𝑗))
for which (𝑖, 𝑗) ∈ 𝑀 . In words, we contract the intervals of 𝑃 ′, 𝑄′ to the original
symbols of 𝑃,𝑄. Finally, 𝑀 ′ corresponds to a common subsequence 𝑋 ′ of 𝑃1, 𝑃2, and
𝑊 (𝑋 ′) = |𝑀 | ≥ |𝑋| since each matched interval corresponds to some symbol 𝑠 and
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contributes 𝑤(𝑠) matches to 𝑀 and a single match of weight 𝑤(𝑠) to 𝑀 ′.

4.2.2 Reducing the almost orthogonal vectors problem to LCS

We are now ready to present our reduction from the almost orthogonal vectors problem
to the longest common subsequence problem.

We will proceed in two steps. First, we will show that WLCS is at least as hard
as the almost orthogonal vectors problem. Second, given that the symbols in the
constructed WLCS instance will have small weights, an application of Lemma 4.2.2
will allow as to conclude that LCS is at least as hard as the almost orthogonal vectors
problem. Our alphabet will be Σ = {0, 1, 2, 3, 4, 5}.

We start with the reduction from the almost orthogonal vectors to WLCS. We
define coordinate gadget sequence CG as follows. For an integer 𝑥 ∈ {0, 1} we set

CG(𝑥) ,

{︃
1 0 1 if 𝑥 = 0;

1 1 if 𝑥 = 1.

We set the weight function 𝑤(0) , 1 and 𝑤(1) , 𝑙0 , 10𝑑.
This gadget satisfy the following equalities:

WLCS(CG(𝑥),CG(𝑥′)) =

{︃
2𝑙0 + 1 if 𝑥 · 𝑥′ = 0;

2𝑙0 if 𝑥 · 𝑥′ = 1.

Now, we define the vector gadgets as a concatenation of the coordinate gadgets.
For vectors 𝑎, 𝑏 ∈ {0, 1}𝑑 we set

G(𝑎) , 2 ∘○𝑖∈[𝑑]CG(𝑎𝑖),

G′(𝑏) ,
(︀
○𝑖∈[𝑑]CG(𝑏𝑖)

)︀
∘ 2.

The weight of the symbol of type 2 is 𝑤(2) = 𝑙1 − 1, where 𝑙1 , 𝑑 · 2𝑋 + 𝑑− 𝑟. It
is now easy to prove the following two claims.

Claim 4.2.4. If two vectors 𝑎 and 𝑏, are 𝑟-orthogonal (𝑎 · 𝑏 ≤ 𝑟), then

WLCS(G(𝑎),G ′(𝑏)) ≥ 𝑙1.

Proof. For each 𝑖 ∈ [𝑑], match CG(𝑎𝑖) with CG(𝑏𝑖) optimally to get a weight at least
𝑙1 = 𝑟 · 2𝑋 + (𝑑− 𝑟)(2𝑋 + 1).

Claim 4.2.5. If two vectors 𝑎 and 𝑏, are not 𝑟-orthogonal (𝑎 · 𝑏 ≥ 𝑟 + 1), then

WLCS(G(𝑎),G ′(𝑏)) = 𝑙1 − 1.
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Proof. WLCS(G(𝑎),G′(𝑏)) ≥ 𝑙1 − 1 is true because we can match the symbols of type
2, which gives cost 𝑙1 − 1.

Now we prove that WLCS(G(𝑎),G′(𝑏)) ≤ 𝑙1 − 1. If we match the symbols of
type 2 symbols, then we cannot match any symbols which are not of type 2 and the
inequality is true. Thus, we assume that the symbols of type 2 are not matched.

Now we can check that, if the symbols of type 1 in G(𝑎) and G′(𝑏) are not matched,
then we cannot achieve weight 𝑙1 − 1 even if we match all the other symbols (except
for the symbols of type 2). Therefore, we assume that all the symbols of type 1 are
matched. As there are at least 𝑟+1 coordinates where 𝑎 and 𝑏 both are 1 (the vectors
are not 𝑟-orthogonal), by the construction of the coordinate gadgets it follows that
WLCS(G(𝑎),G ′(𝑏)) ≤ (𝑟 + 1) · 2𝑋 + (𝑑− (𝑟 + 1))(2𝑋 + 1) = 𝑙1 − 1 as required.

Finally, we combine the vector gadgets into two sequences. Let Ĝ(𝑎) , 3∘G(𝑎)∘4
and Ĝ

′
(𝑏) , 3 ∘ G(𝑏) ∘ 4 ∘ 5. Let 𝑏′ be a vector consisting of 𝑑 entries equal to 1, that

is, 𝑏′𝑖 = 1 for 𝑖 = 1, . . . , 𝑑.

𝑃 , 5|𝑄| ∘
(︁
○𝑎∈𝐴Ĝ(𝑎)

)︁
∘ 5|𝑄|,

𝑄 , 5 ∘
(︁
○𝑖∈[𝑁−1]Ĝ

′
(𝑏′)
)︁
∘
(︁
○𝑏∈𝐵Ĝ

′
(𝑏)
)︁
∘
(︁
○𝑖∈[𝑁−1]Ĝ

′
(𝑏′)
)︁
.

Note that the number of symbols of type 3 in the first sequence 𝑃 is defined in terms
of the number of symbols in the second sequence 𝑄. This is well defined because the
second sequence does not use the construction of the first sequence.

And set the weights so that 𝑤(5) , 𝑙2 , 𝑙21 and 𝑤(3) = 𝑤(4) , 𝑙3 , 𝑙22. Additionally
we define useful quantities 𝑙′ , 2𝑙3 + 𝑙1 − 1 and 𝑙 , 𝑁𝑙′ + 2𝑁𝑙2.

The following two lemmas prove that there is a gap in the WLCS score of our two
sequences between cases when there is a pair of vectors that are 𝑟-orthogonal and
when there is no such pair.

Lemma 4.2.6. If there is a pair of vectors that are 𝑟-orthogonal, then WLCS(𝑃,𝑄) ≥
𝑙 + 1.

Proof. Let 𝑎 and 𝑏 be a pair of vectors that are 𝑟-orthogonal. Let 𝑖 ∈ [𝑁 ] be the index
of the gadget Ĝ(𝑎) in 𝑃 corresponding to the vector 𝑎. Match Ĝ(𝑎) and Ĝ

′
(𝑏) to get

a weight of at least 2𝑙3 + 𝑙1 ≥ 𝑙′ + 1. Match the 𝑖 − 1 vector gadgets to the left of
Ĝ(𝑎) to the 𝑖− 1 corresponding vector gadgets immediately to the left of Ĝ

′
(𝑏), and

similarly, match the 𝑁 − 𝑖 gadgets to the right. The total additional weight we get
is at least (𝑁 − 1)𝑙′. Finally, note that after the above matches, only 𝑁 − 1 out of
the 3𝑁 − 1 symbols of type 3 in the sequence 𝑄 are surrounded by matched symbols.
The remaining 2𝑁 symbols of type 3 can be matched, giving an additional weight of
2𝑁𝑙2. The total weight is at least (𝑙′ + 1) + (𝑁 − 1)𝑙′ + 2𝑁𝑙2 = 𝑙 + 1.

Lemma 4.2.7. If there are no pairs of vectors that are 𝑟-orthogonal, then the upper
bound WLCS(𝑃,𝑄) ≤ 𝑙 holds.

Proof. The main part of the proof will be dedicated to showing that if the 𝑁 vector
gadgets in 𝑃 are matched to a substring of 𝑁 ′ vector gadgets from 𝑄, then 𝑁 ′ must
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be equal to 𝑁 . This will follow since: if 𝑁 ′ < 𝑁 , then at least one of the symbols of
type 3 or 4 in 𝑃 will remain unmatched, and, if 𝑁 ′ > 𝑁 , then less than 2𝑁 of the
symbols of type 3 in 𝑄 can be matched. The large weights we gave to symbols of type
3,4 and 5 make this impossible in an optimal matching. It will be easy to see that in
any matching in which 𝑁 = 𝑁 ′, the total weight is at most 𝑙.

Now, we introduce some notation. Let 1 ≤ 𝐿,𝐿′ be two integers and define
𝑍(𝐿,𝐿′) to be the maximum score of matching two sequence 𝑃 ′, 𝑄′ where 𝑃 ′ is
composed of 𝐿 vector gadgets Ĝ(𝑎) and 𝑄′ is composed of 𝐿′ vector gadgets Ĝ

′
(𝑏),

where no pair 𝑎, 𝑏 is 𝑟-orthogonal. Define 𝑍0(𝐿,𝐿
′) similarly, except that we restrict

the matchings so that all symbols of type 3 and 4 in 𝑃 ′ must be matched. In the
following two claims we prove an upper bound on 𝑍(𝐿,𝐿′) by first establishing an
upper bound on 𝑍0(𝐿,𝐿

′). Below we assume 1 ≤ 𝐿 ≤ 𝐿′; analogous proof shows that
𝑍0(𝐿,𝐿

′) ≤ 𝐿′𝑙′ + (𝐿− 𝐿′)(𝑙2 − 1) for 1 ≤ 𝐿′ ≤ 𝐿.

Claim 4.2.8. For any integers 1 ≤ 𝐿 ≤ 𝐿′, we have upper bound 𝑍0(𝐿,𝐿
′) ≤

𝐿𝑙′ + (𝐿′ − 𝐿)(𝑙2 − 1).

Proof. Let 𝑃 ′, 𝑄′ be two sequences with 𝐿,𝐿′ vector gadgets Ĝ, Ĝ
′
, respectively. Con-

sider an optimal matching of 𝑃 ′ and 𝑄′ in which all the symbols of type 3 and 4 of 𝑃 ′ are
matched. Let 𝑍 ′0 be the total score; our goal is to show that 𝑍 ′0 ≤ 𝐿𝑙′+(𝐿′−𝐿)(𝑙2−1).
Note that in such a matching, each vector gadget of 𝑃 ′ must be matched completely
within one or more vector gadget of 𝑄′, and each vector gadget of 𝑄′ has matches to
at most one vector gadget from 𝑃 ′ (otherwise, it must be the case that some 3 or 4
symbols in 𝑃 ′ are not matched, which contradicts our assumption).

Let 𝑥 be the number of vector gadgets of 𝑃 ′ that contribute at most 𝑙′ to the
weight of our optimal matching. Note that any of the 𝐿 − 𝑥 other vector gadgets
must be matched to a substring of 𝑄′ that contains at least two vector gadgets for the
following reason. The 3 and 4 symbols of the vector gadget of 𝑄′ must be matched,
and, if the matching stays within a single vector gadget of 𝑄′ and has more than 𝑙′

weight, then we have a pair which is 𝑟-orthogonal because of Claim 4.2.5. Thus, using
the fact that there are only 𝐿′ vector gadgets in 𝑄′, we get the condition,

𝑥+ 2(𝐿− 𝑥) ≤ 𝐿′. (4.1)

We now give an upper bound on the weight of our matching, by summing the
contributions of each vector gadget of 𝑃 ′: there are 𝑥 vector gadgets contributing
≤ 𝑙′ weight, and there are (𝐿 − 𝑥) vector gadgets matched to 𝑄′ with unbounded
contribution, but we know that even if all the symbols of an vector gadget are matched,
it can contribute at most 𝑙′′ , 2𝑙3 + (𝑙1 − 1) + 𝑑(2𝑙0 + 1). Therefore, the total weight
of the matching can be upper bounded by

𝑍 ′0 ≤ 𝑥𝑙′ + (𝐿− 𝑥)𝑙′′. (4.2)

We claim that no matter what 𝑥 ≥ 0 is, as Eqs. (4.1) and (4.2) hold, this expression
is less than 𝐿𝑙′ + (𝐿′ − 𝐿)(𝑙2 − 1), which is what we need.
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To maximize the right hand side of Eq. (4.2), we choose the smallest possible
integer 𝑥 that satisfies Eq. (4.1), since 𝑙′′ > 𝑙′. This implies that 𝑥 = max(0, 2𝐿− 𝐿′).
A key inequality, which we will use multiple times in the proof, following from the
fact that the symbols of type 3 and 4 are much more important than the rest, is that
𝑙′′ < 𝑙′ + 𝑙2 − 1, which follows since 𝑙′′ − 𝑙′ = 𝑑(2𝑙0 + 2) < 100𝑑2 < 𝑙2.

First, consider the case where 𝐿 ≤ 𝐿′/2, and therefore 𝑥 = 0, which means that
all the vector gadgets of 𝑃 ′ might be fully matched. Using that 𝑙′′ < 𝑙′ + 𝑙2 − 1 and
that 𝐿′ − 𝐿 ≥ 𝐿′/2 ≥ 𝐿, we get the desired upper bound:

𝑍 ′0 ≤ 𝐿𝑙′′ ≤ 𝐿(𝑙′ + 𝑙2 − 1) ≤ 𝐿𝑙′ + (𝐿′ − 𝐿)(𝑙2 − 1).

Now, assume that 𝐿 > 𝐿′/2, and therefore 𝑥 = 2𝐿 − 𝐿′. In this case the upper
bound becomes:

𝑍 ′0 ≤ (2𝐿− 𝐿′)𝑙′ + (𝐿′ − 𝐿)𝑙′′ = 𝐿𝑙′ + (𝐿′ − 𝐿)(𝑙′′ − 𝑙′),

which is less than 𝐿𝑙′ + (𝐿′ − 𝐿)(𝑙2 − 1), since 𝑙′′ < 𝑙′ + 𝑙2 − 1.

Next, we prove by induction that leaving the symbols of type 3 and 4 in sequence
𝑃 ′ unmatched will only worsen the weight of the optimal matching. Below we assume
1 ≤ 𝐿 ≤ 𝐿′; analogous proof shows that 𝑍0(𝐿,𝐿

′) ≤ 𝐿′𝑙′ + (𝐿 − 𝐿′)(𝑙2 − 1) for
1 ≤ 𝐿′ ≤ 𝐿.

Claim 4.2.9. For any integers 1 ≤ 𝐿 ≤ 𝐿′, we have upper bound 𝑍(𝐿,𝐿′) ≤ 𝐿𝑙′ +
(𝐿′ − 𝐿)(𝑙2 − 1).

Proof. We will prove by induction on integer 𝑖 ≥ 2 that: for all 𝐿′ ≥ 𝐿 ≥ 1 with
𝐿 + 𝐿′ ≤ 𝑖, 𝑍(𝐿,𝐿′) ≤ 𝐿𝑙′ + (𝐿′ − 𝐿)(𝑙2 − 1). The base case is when 𝑖 = 2 and
𝐿 = 𝐿′ = 1. Then 𝑍(1, 1) = 𝑙′ and we are done.

For the inductive step, assume that the statement is true for all 𝑖′ ≤ 𝑖 − 1 and
we will prove it for 𝑖. Let 𝐿,𝐿′ be so that 1 ≤ 𝐿 ≤ 𝐿′ and 𝐿 + 𝐿′ = 𝑖 and let
𝑃 ′, 𝑄′ be sequences with 𝐿,𝐿′ vector gadgets, respectively. Consider the optimal
matching between 𝑃 ′ and 𝑄′. Let 𝑍 ′ be the total score; our goal is to show that
𝑍 ′ ≤ 𝐿𝑙′ + (𝐿′ − 𝐿)(𝑙2 − 1).

If every symbol of type 3 and 4 in 𝑃 ′ is matched then, by definition, the weight
cannot be more than 𝑍0(𝐿,𝐿

′), and by Claim 4.2.8 we are done. Otherwise, consider
the first unmatched symbol of type 3 or 4, call it 𝑠, and there are two cases.

Symbol 𝑠 is of type 3. If 𝑠 is the first symbol of type 3 in 𝑃 ′, then the first
symbol of type 3 in 𝑄′ must be matched to some symbol of type 3 after 𝑠 (otherwise
we can add this pair to the matching without violating any other pairs). This implies
that none of the symbols in the vector gadget starting with the symbol 𝑠 can be
matched, since such matches will be in conflict with the pair containing the first
symbol of type 3 in the sequence 𝑄′. If 𝑠 is not the first symbol of type 3 in 𝑃 ′,
consider the symbol of type 4 that appears right before 𝑠 and note that it must be
matched to some symbol 𝑠′ of type 4 in 𝑄′, by our choice of symbol 𝑠 as the first
unmatched symbol of type 3 or 4. Now, there are two possibilities: either there are
no more vector gadgets in 𝑄′ after the symbol 𝑠′, or there is a symbol of type 3 right
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after the symbol 𝑠′ in 𝑄′ that is matched to a symbol of type 3 in 𝑃 ′ that is after
the symbol 𝑠 (from a later vector gadget in 𝑃 ′). Note that in all considered cases
above, the interval vector gadget starting at symbol 𝑠 (and ending with the next
symbol of type 4 after 𝑠) is completely unmatched in our matching. Therefore, in
this case, we let 𝑃 ′′ be the sequence with 𝐿− 1 vector gadgets which is obtained from
𝑃 ′ by removing the vector gadget starting with 𝑠. The weight of our matching will
not change if we look at it as a matching between 𝑄′ and 𝑃 ′′ instead of 𝑃 ′, which
implies that 𝑍 ′ ≤ 𝑍(𝐿 − 1, 𝐿′). Using our inductive hypothesis we conclude that
𝑍 ′ ≤ (𝐿− 1)𝑙′ + (𝐿′−𝐿+ 1)(𝑙2 − 1) ≤ 𝐿𝑙′ + (𝐿′−𝐿)(𝑙2 − 1), since 𝑙′ > 𝑙2, and we are
done.

Symbol 𝑠 is of type 4. The symbol of type 3 at the start of the vector gadget
that the symbol 𝑠 is part of must have been matched to some symbol 𝑠′ in 𝑄′. Let
symbol 𝑠′′ be the symbol of type 4 at the end of the vector gadget that 𝑠′ is part of.
Note that the symbol 𝑠′′ must be matched to some symbol 𝑠′′′ of type 4 in 𝑃 ′ after 𝑠,
since otherwise, we can add the pair that matches symbols 𝑠 and 𝑠′′ to the matching,
gaining a cost of 𝑙3, and the only possible conflicts we would create is with pairs
containing a symbol between the symbols between 𝑠′ and 𝑠′′ or inside vector gadget
containing 𝑠, and if we remove all such pairs, we would lose at most 2(𝑙1−1+𝑑(2𝑙0+1))
in the cost, which is much less than the gain of 𝑙3—implying that our matching could
not have been optimal. Therefore, there are 𝑥 ≥ 2 vector gadgets in 𝑃 ′ that are
matched to a single vector gadget in 𝑄′: all the vector gadgets starting at the symbol
of type 3 right before 𝑠 and ending at the symbol 𝑠′′′ are matched to the vector gadget
starting with 𝑠′ and ending with 𝑠′′. We denote the subsequence of 𝑃 ′ consisting of
the 𝑥 vector gadget by 𝑃 ′′′. Let 𝑃 ′′ be the reminder of 𝑃 ′—consisting of the prefix
and the suffix. We denote the subsequence of 𝑄′ consisting of the single vector gadget
by 𝑄′′′. Let 𝑄′′ be the reminder of 𝑄′—consisting of the prefix and the suffix. By
the above discussion, 𝑍 ′ ≤ WLCS(𝑃 ′′, 𝑄′′) + WLCS(𝑃 ′′′, 𝑄′′′). The contribution of
the latter part to the weight of the matching can be at most the weight of all the
symbols (that are not of type 5) in 𝑄′′′; this can be upper bounded by 𝑙′′. By the
inductive hypothesis, we know that any matching of 𝑃 ′′ and 𝑄′′ can have weight at
most 𝑍(𝐿 − 𝑐, 𝐿′ − 1) ≤ (𝐿 − 𝑥)𝑙′ + (𝐿′ − 1 − 𝐿 + 𝑥)(𝑙2 − 1). Summing up the two
bounds on the contributions, we get that the total weight of the matching is at most:

𝑍 ′ ≤ 𝑙′′ + (𝐿− 𝑥)𝑙′ + (𝐿′ − 1− 𝐿+ 𝑥)(𝑙2 − 1)

≤ 𝐿𝑙′ + (𝐿′ − 𝐿)(𝑙2 − 1) + (𝑥− 1)(𝑙2 − 1) + 𝑙′′ − 𝑥𝑙′

However, note that 𝑙′′ < 1.1𝑙′ and that (𝑥− 1)𝑙2 < 10(𝑥− 1.1)𝑙2 < (𝑥− 1.1)𝑙′, which
implies that 𝑍 ′ can be upper bounded by 𝐿𝑙′ + (𝐿′−𝐿)(𝑙2 − 1), and we are done.

We are now ready to complete the proof of the lemma. Consider the optimal
matching of 𝑃 and 𝑄. Let 𝑠 and 𝑠′ be the first and last symbols of type 5 in 𝑄
that are not matched, respectively. Note that there cannot be any matched symbols
of type 5 between 𝑠 and 𝑠′, since otherwise we could match either 𝑠 or 𝑠′ and gain
extra weight without incurring any loss. Moreover, note that 𝑠 cannot be the first
symbol in 𝑄 and 𝑠′ cannot be the last one, since those must be matched in an optimal
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alignment. Let 𝑁 ′ be the number of vector gadgets starting with the vector gadget
that the symbol 𝑠 is part of and ending with the vector gadget immediately right
from the symbol 𝑠′. We have 2 ≤ 𝑁 ′ ≤ 3𝑁 − 2. We note that it cannot be that all
symbols of type 5 are matched as the contribution from all such symbols and at most
one pair of vector gadgets is less than what we could get by matching all symbols of
type 3 and 4 from the first sequence.

We can now bound the total weight of the matching by the sum of the maximum
possible contribution of these 𝑁 ′ vector gadgets, and the contribution of the rest of
𝑄. The prefix of 𝑄 that ends at the symbol of type 5 to the left of 𝑠 and the suffix of
𝑄 that start at the symbol of type 5 to the right of 𝑠′ can only contribute symbols of
type 5 to the matching, and they contain exactly (3𝑁 − 1− (𝑁 ′ − 1)) such symbols
of type 5, giving a contribution of (3𝑁 − 𝑁 ′)𝑙2. To bound the contribution of the
𝑁 ′ vector gadgets, we use Claim 4.2.9: we obtain two sequences 𝑃 ′, 𝑄′ composed of
𝑁,𝑁 ′ vector gadgets, respectively, in which no pair is 𝑟-orthogonal. The contribution
of the 𝑃 ′, 𝑄′ part, depends on 𝑁,𝑁 ′:

If 𝑁 ′ ≤ 𝑁 , then by the above claims, the contribution of 𝑃 ′ and 𝑄′ is at most
𝑁 ′𝑙′ + (𝑁 −𝑁 ′)(𝑙2 − 1) and the total weight of our matching can be upper bounded
by

(3𝑁 −𝑁 ′)𝑙2 + (𝑁 ′𝑙′ + (𝑁 −𝑁 ′)(𝑙2 − 1)),

which is maximized when 𝑁 ′ is as large as possible, since 𝑙′ > 2𝑙2 − 1. Thus, setting
𝑁 ′ = 𝑁 , we get the upper bound 2𝑁𝑙2 +𝑁𝑙′ = 𝑙, which is what we wanted.

Otherwise, if 𝑁 ′ > 𝑁 , then by the above claims, we get that the contribution is
at most 𝑁𝑙′ + (𝑁 ′ −𝑁)(𝑙2 − 1), and the total weight of our matching can be upper
bounded by

(3𝑁 −𝑁 ′)𝑙2 + (𝑁𝑙′ + (𝑁 ′ −𝑁)(𝑙2 − 1)) = 𝑁𝑙′ + 2𝑁𝑙2 − (𝑁 ′ −𝑁) < 𝑙.

To conclude our reduction, we note that the largest weight used in our weight
function is polynomial in 𝑑, and therefore the reduction of Lemma 4.2.2 gives two
unweighted sequences 𝑓(𝑃 ), 𝑓(𝑄) of length 𝑑𝑂(1)𝑛, for which LCS(𝑓(𝑃 ), 𝑓(𝑄)) =
WLCS(𝑃,𝑄).

4.3 Hardness for dynamic time warping

In this section we show conditional hardness for the problem of computing the dynamic
time warping distance. We obtain the lower bound by a reduction from the almost
orthogonal vectors problem. To simplify the argument, we do not do a direct reduction
from the almost orthogonal vectors to the DTW problem. Instead, we show a reduction
from the edit distance problem. In Chapter 3 (see Section 3.2.5) we already provided a
conditional lower bound for the edit distance by a reduction from the almost orthogonal
vectors. Below we show that there is a simple transformation 𝑓 of sequences such
that edit(𝑃,𝑄) = DTW(𝑓(𝑃 ), 𝑓(𝑄)) for any two sequences 𝑃 and 𝑄. This implies

48



the following theorem.

Theorem 4.3.1. If DTW can be computed in time 𝑂(𝑛2−𝛿) for some 𝛿 > 0 on two
sequences of length 𝑛 over an alphabet of size 8, then the almost orthogonal vectors
problem with 𝐴,𝐵 ⊆ {0, 1}𝑑 and |𝐴| = |𝐵| = 𝑁 can be solved in time 𝑑𝑂(1)𝑁2−𝛿.

We note that a quadratic lower bound for DTW between two sequences of symbols
over an alphabet of size 8 implies a quadratic lower lower bound for DTW between
two sequences of points from 8-dimensional ℓ𝑝 space for any 𝑝 ≥ 1. This follows from
the observation that we can choose 8 (appropriately scaled) vectors from the standard
basis such that the distance between any two distinct vectors is 1.

In this section we prove Theorem 4.3.1. We start by defining the transformation
𝑓 . Given an arbitrary sequence 𝑇 over an alphabet Σ and a symbol 𝑠 ̸∈ Σ that does
not belong to the alphabet, let

𝑓(𝑇 ) , 𝑠 𝑇1 𝑠 𝑇2 𝑠 . . . 𝑠 𝑇|𝑇 |𝑠

be the transformation that inserts the symbol 𝑠 before every symbol in 𝑇 and also
adds the symbol 𝑠 at the end. Theorem 4.3.1 follows from Lemmas 4.3.2 and 4.3.3
below. Since in Section 3.2.5 we obtain sequences over an alphabet of size 7 and 𝑓
introduces a new symbol, the final alphabet size for the hard DTW instances is 8.

Lemma 4.3.2. For any two sequences 𝑃 and 𝑄 over an alphabet Σ and 𝑠 ̸∈ Σ we
have the inequality

edit(𝑃,𝑄) ≤ DTW(𝑓(𝑃 ), 𝑓(𝑄)).

Proof. We do the proof inductively on 𝑖 , |𝑃 | + |𝑄|. We observe that if |𝑃 | = 0
or |𝑄| = 0, then we have the equality edit(𝑃,𝑄) = DTW(𝑓(𝑃 ), 𝑓(𝑄)) and there
is nothing to prove. This also deals with the base case 𝑖 = 1. Thus, we assume
that |𝑃 |, |𝑄| ≥ 1. Fix an optimal traversal of 𝑃 and 𝑄 that achieves the cost
DTW(𝑓(𝑃 ), 𝑓(𝑄)). It is equal to the total cost of all configurations during the
traversal. We call a configuration good if both markers point to a symbol of type 𝑠.
Suppose that there exists a good configuration during the traversal that aligns two
symbols of type 𝑠 and at least one of them do not start or end sequence 𝑃 or 𝑄.
In this case we can write 𝑃 = 𝑃1 𝑃2 and 𝑄 = 𝑄1𝑄2 such that 𝑖 > |𝑃1| + |𝑄1| and
𝑖 > |𝑃2|+ |𝑄2| and DTW(𝑓(𝑃 ), 𝑓(𝑄)) = DTW(𝑓(𝑃1), 𝑓(𝑄1)) + DTW(𝑓(𝑃2), 𝑓(𝑄2)).
We use the inductive assumption and prove the required inequality:

DTW(𝑓(𝑃 ), 𝑓(𝑄)) = DTW(𝑓(𝑃1), 𝑓(𝑄1)) + DTW(𝑓(𝑃2), 𝑓(𝑄2))

≥ edit(𝑃1, 𝑄1) + edit(𝑃2, 𝑄2)

≥ edit(𝑃,𝑄).

It remains to consider the case in which all internal symbols of type 𝑠 in sequences
𝑃 and 𝑄 do not participate in any good configuration. The number of such internal
symbols of type 𝑠 is (|𝑃 | − 1)+ (|𝑄| − 1). These symbols contribute cost |𝑃 |+ |𝑄| − 2
to the final DTW cost. Without loss of generality we assume that |𝑃 | ≥ |𝑄| ≥ 1. We
consider two subcases.
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Case 𝑃1 ̸= 𝑄1. That is, sequences 𝑃 and 𝑄 start with different symbols. This
implies that the second configuration in the traversal of 𝑓(𝑃 ) and 𝑓(𝑄) will contribute
cost 1 to the final DTW score. Thus, we can lower bound the DTW score by (|𝑃 |+
|𝑄| − 2) + 1 = |𝑃 |+ |𝑄| − 1 ≥ |𝑃 | ≥ edit(𝑃,𝑄) as required.

Case 𝑃1 = 𝑄1. In this case we can lower bound the DTW score by |𝑃 |+ |𝑄|−2 ≥
|𝑃 | − 1 ≥ edit(𝑃,𝑄).

Lemma 4.3.3. For any two sequences 𝑃 and 𝑄 over an alphabet Σ and 𝑠 ̸∈ Σ we
have the inequality

edit(𝑃,𝑄) ≥ DTW(𝑓(𝑃 ), 𝑓(𝑄)).

Proof. Fix any two sequences 𝑃 and 𝑄 and consider an optimal alignment between
the sequences that achieves the edit distance cost edit(𝑃,𝑄). We will show how
to transform the alignment into a traversal of the sequences 𝑓(𝑃 ) and 𝑓(𝑄) that
achieves the DTW cost edit(𝑃,𝑄). This is sufficient to show that edit(𝑃,𝑄) ≥
DTW(𝑓(𝑃 ), 𝑓(𝑄)) as the optimal traversal can only be cheaper.

Initially both markers are at the first symbols of 𝑓(𝑃 ) and 𝑓(𝑄). We work through
the alignment of 𝑃 and 𝑄 from the beginning to the end. If the alignment performs a
substitution or matches two equal symbols, we advance both markers by two symbols
in 𝑓(𝑃 ) and 𝑓(𝑄). If the alignment deletes a symbol from the first sequence, we
advance the marker in 𝑓(𝑃 ) by two symbols. If the alignment inserts a symbol in
the first sequence, we advance the marker in 𝑓(𝑄) by two symbols. We can check
the DTW cost is 1 in all cases except when we match two equal symbols, in which
case the DTW cost is 0. This gives a traversal of 𝑓(𝑃 ) and 𝑓(𝑄) with DTW cost
edit(𝑃,𝑄).
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Chapter 5

Regular expressions

A regular expression (regexp) is a formula that describes a set of words over some
alphabet Σ. It consists of individual symbols from Σ, as well as operators such as OR
“|” (an alternative between several pattern arguments), Kleene star “*” (which allows
0 or more repetitions of the pattern argument), Kleene plus “+” (which allows 1 or
more repetitions of the pattern argument), wildcard “.” (which matches an arbitrary
symbol), etc. For example, [𝑎|𝑏]+ describes any sequence of symbols 𝑎 and 𝑏 of length
at least 1. See Preliminaries for the formal definition.

In addition to being a fundamental notion in formal language theory, regular
expressions are widely used in computer science to define search patterns. Formally,
given a regular expression (pattern) 𝑃 of size 𝑚 and a sequence of symbols (text) 𝑇
of length 𝑛, the goal of regular expression matching is to check whether a substring
of 𝑇 can be derived from 𝑃 . A closely related problem is that of membership testing
where the goal is to check whether the text 𝑇 itself can be derived from 𝑃 . Regular
expression matching and membership testing are widely used computational primitives,
employed in several programming languages and text processing utilities such as Perl,
Python, JavaScript, Ruby, AWK, Tcl and Google RE2. Apart from text processing and
programming languages, regular expressions are used in computer networks [KDY+06],
databases and data mining [GRS99], computational biology [NR03], human-computer
interaction [KHDA12] etc.

A classic algorithm for both problems constructs and simulates a non-deterministic
finite automaton corresponding to the expression, resulting in the “rectangular” 𝑂(𝑚𝑛)
running time. A sequence of improvements, first by Myers [Mye92] and then by [BT09],
led to an algorithm that achieves roughly 𝑂(𝑚𝑛/ log1.5 𝑛) running time. The latter
result constitutes the fastest algorithm for this problem known to date, despite an
extensive amount of research devoted to this topic. The existence of faster algorithms
is a well-known open problem ([Gal85], Problem 4).

However, significantly faster algorithms are known for various well-studied special
cases of regular expressions. For example:

1. If the pattern is a concatenation of symbols (i.e., we search for a specific se-
quence of symbols in the text), the pattern matching problem corresponds to
the “standard” string matching problem and can be solved in linear time, e.g.,
using the Knuth-Morris-Pratt algorithm [KMP77].
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2. If the pattern is of the form 𝑃1|𝑃2| . . . |𝑃𝑘 where 𝑃𝑖 are sequences of symbols, then
the pattern matching problem corresponds to the dictionary matching problem
that can be solved in linear time using the Aho-Corasick algorithm [AC75].

3. If the pattern is a concatenation of symbols and single character wildcards
“.” matching any symbol, the pattern matching problem is known as the wild-
card matching and can solved in (deterministic) 𝑂(𝑛 log𝑚) time using convolu-
tions [FP74, Ind98, Kal02, CH02].

4. More generally, if the pattern is a concatenation of single character ORs of the
form 𝑠1|𝑠2| . . . |𝑠𝑘 for 𝑠1, . . . , 𝑠𝑘 ∈ Σ (e.g., [𝑎|𝑏][𝑎|𝑐][𝑏|𝑐]), the pattern matching
problem is known as superset matching and can be solved in (deterministic)
𝑂(𝑛 log2𝑚) time [CH97, CH02].

5. Finally, if the goal is to test whether a text 𝑇 can be derived from a pattern 𝑃
of the form (𝑃1|𝑃2| . . . |𝑃𝑘)

+ where 𝑃𝑖 are sequences of symbols, the problem is
known as the word break problem. It is a popular interview question [Tun11, Lee],
and the known solutions can be implemented to run in

√
𝑚𝑛 log𝑂(1) 𝑛 time.

The first two examples were already mentioned in [Gal85] as a possible reason
why a faster algorithm for the general problem might be possible. Despite the exis-
tence of such examples, any super-poly-logarithmic improvements to the algorithms
of [Mye92, BT09] in the general case remain elusive. Furthermore, we are not aware
of any systematic classification of regular expressions into “easy” and “hard” cases for
the pattern matching and membership testing problems. The goal of this part of the
thesis is to address this gap.

Our results. Our main result is a classification of the computational complexity
of regular expression matching and membership checking for patterns that involve
operators “|”, “+”, “*” and concatenation “∘”, based on the pattern depth. Our
classification enables us to distinguish between the cases that are solvable in sub-
quadratic time (including the five problems listed above) and the cases that do
not have strongly sub-quadratic time algorithms under SETH. Our results therefore
demonstrate a non-trivial dichotomy for the complexity of these problems.

To formulate our results, we consider pattern formulas that are homogeneous, i.e.,
in which the operators at the same level of the formula are equal (note that the five
aforementioned problems involve patterns that satisfy this condition). We say that
a homogeneous formula of depth 𝑘 has type 𝑜1𝑜2 . . . 𝑜𝑘 if for all levels 𝑖 the operators
at level 𝑖 are equal to 𝑜𝑖 (note that, in addition to the operators, a level might also
contain leaves, i.e., symbols; for example, the expression [𝑎|𝑏]𝑎[𝑏|𝑐] is a depth-2 formula
of type “∘|”). We will assume that no two consecutive operators in the type descriptor
are equal, as otherwise they can be collapsed into one operator.

Our results are described in Table 5.1 (for depth-2 expressions) and Table 5.2 (for
depth-3 expressions). The main findings can be summarized as follows:
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1. Almost all pattern matching and membership problems involving depth-2 ex-
pressions can be solved in near-linear time. The lone exception involve patterns
of type “∘*”, for which we show that matching and membership problems can-
not be solved in time 𝑂((𝑚𝑛)1−𝛿) for any constant 𝛿 > 0 and 𝑚 ≤ 𝑛 assuming
SETH. Interestingly, we show that pattern matching with a very similar depth-2
type, namely “∘+”, can be solved in 𝑂(𝑛 log2𝑚) time.

2. Pattern matching problems with depth-2 expressions contain a “high density” of
interesting algorithmic problems, with non-trivial algorithms existing for types
“∘+” (our result), “∘|” [CH02] , “|∘” [AC75] and “+∘” (essentially solved in
[KMP77], since + can be dropped). In contrast, membership problems with
depth-2 expressions have a very restrictive structure that makes them mostly
trivially solvable in linear time, with the aforementioned exception for the “∘*”
type.

3. Pattern matching problems with depth-3 expressions have a more diversified
structure. All types starting with ∘ are SETH-hard; all types starting with |
are either-SETH hard (if followed by ∘) or easily solvable in linear time; all
types starting from * are trivially solvable in linear time (since * allows zero
repetitions); all types starting from + inherit their complexity from the last two
operators in the type description (since + allows exactly one repetition).

4. Finally, membership checking with depth-3 expressions presents the most com-
plex picture. As before, all types starting with ∘ are SETH-hard. On the
other hand, types starting with | (except for |∘*) have linear time algorithms,
with difficulty levels that range from trivial observations to undergraduate-level
exercises. Types starting with * or + include “*|∘” and “+|∘”, which corre-
spond to the aforementioned word break problem [Tun11, Lee]. This is the only
problem in the table whose (conditional) complexity is not determined up to
logarithmic factors. However, we show that the running time of the standard
dynamic-programming based algorithm can be improved, from roughly 𝑛𝑚0.5

to roughly 𝑛𝑚0.5−1/18. This runtime has been further improved in a follow-up
work [BGL17].

Our techniques. Our upper bounds for depth-2 expressions follow either from
known near-linear time algorithms for specific variants of regular expressions, or rela-
tively simple constructions of such algorithms. In particular, we observe that type “∘|”
expressions (concatenations of ORs) correspond to superset matching, type “|∘” ex-
pressions (OR of sequences) correspond to dictionary matching and type “+∘” reduces
to “∘” and thus corresponds to the standard pattern matching problem. Furthermore,
we give a near-linear time algorithm for pattern matching with type “∘+” expressions,
where patterns are concatenations of expressions of the form 𝑠≥𝑘 or 𝑠𝑘, where 𝑠≥𝑘

denotes a sequence of symbols 𝑠 repeated at least 𝑘 ≥ 1 times.1 We show that this

1For example, the expression 𝑎𝑎+𝑏𝑐+ generates all words of the form 𝑎≥2𝑏1𝑐≥1.
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Type Example Pattern matching Membership
∘+ 𝑎+𝑎𝑏+ 𝑂(𝑛 log2𝑚) (Section 5.4.2) 𝑂(𝑛+𝑚) (immediate)
∘* 𝑎*𝑎𝑏* Ω((𝑚𝑛)1−𝛼) (Section 5.2.3) Ω((𝑚𝑛)1−𝛼) (Section 5.3.1)

∘| [𝑎|𝑏][𝑏|𝑐] 𝑂(𝑛 log2𝑚)
(superset
matching [CH02]) 𝑂(𝑛+𝑚) (immediate)

|∘ 𝑎𝑏|𝑐 𝑂(𝑛+𝑚)
(dictionary
matching [AC75]) 𝑂(𝑛+𝑚) (immediate)

|* 𝑎*|𝑎|𝑏* 𝑂(𝑛+𝑚) (immediate) 𝑂(𝑛+𝑚) (immediate)
|+ 𝑎+|𝑎|𝑏+ 𝑂(𝑛+𝑚) (reducible to “|”) 𝑂(𝑛+𝑚) (immediate)
*∘ [𝑎𝑏]* 𝑂(𝑛+𝑚) (immediate) 𝑂(𝑛+𝑚) (immediate)
*+ [𝑎+]* 𝑂(𝑛+𝑚) (immediate) 𝑂(𝑛+𝑚) (reducible to “+”)
*| [𝑎|𝑏]* 𝑂(𝑛+𝑚) (immediate) 𝑂(𝑛+𝑚) (immediate)

+∘ [𝑎𝑏]+ 𝑂(𝑛+𝑚)
(string
matching [KMP77]) 𝑂(𝑛+𝑚) (equivalent to “*∘”)

+| [𝑎|𝑏]+ 𝑂(𝑛+𝑚) (reducible to “|”) 𝑂(𝑛+𝑚) (equivalent to “*|”)
+* [𝑎*]+ 𝑂(𝑛+𝑚) (immediate) 𝑂(𝑛+𝑚) (reducible to “+”)

Table 5.1: Classification of the complexity of the pattern matching and the membership
test problems for depth-2 expressions. All lower bounds assume SETH and 𝑚 ≤ 𝑛.
Some upper bounds use randomization (notably hashing).

problem can be solved in near-linear time by reducing it to one instance of subset
matching and one instance of wildcard matching. All other problems can be solved
in linear time, with the exception of type “∘*”. The latter expressions correspond to
patterns obtained by concatenating patterns of the form 𝑠≥𝑘 and 𝑠𝑘. Unlike in the
“∘+” case, however, here we cannot assume that 𝑘 ≥ 1, since each symbol could be
repeated zero times. We show that this simple change makes the problem SETH-hard.
This is accomplished by a reduction from the unbalanced version of the orthogonal
vectors problem, see the preliminaries (Chapter 2).2

Our results for depth-3 expression pattern matching are multi-fold. First, all types
starting from * are trivially solvable in linear time, since * allows zero repetitions.
Second, all types starting from + inherit their complexity from the last two operators
in the type description, since + allows exactly one repetition. Third, all types starting
from |* or |+ have simple linear time solutions.

The remaining cases lead to SETH-hard problems. For six types this follows
immediately from the analogous result for type “∘*”. For the six remaining types the
hardness is shown via individual reductions from the orthogonal vectors problem. For
some types, such a reduction is immediate. For example, for type “|∘|” expressions
(ORs of concatenations of ORs), we form the text by concatenating all vectors in 𝐵
(separated by some special symbol), and we form the pattern by taking an OR of the
vectors in 𝐴, modified by replacing 0 with [0|1] and 1 with 0. A similar approach
works for type “|∘+” expressions.

The remaining four types are grouped into two classes: “∘+∘” is grouped with

2The reduction is somewhat complex, so we will not outline it here. However, we give an overview
of other reductions from the orthogonal vectors problem in the next few paragraphs.
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Type Example Pattern matching Membership
∘|∘ [𝑎|𝑏𝑏][𝑏𝑎|𝑏] Ω((𝑚𝑛)1−𝛼) (Section 5.2.5) Ω((𝑚𝑛)1−𝛼) (Section 5.3.3)
∘|* [𝑎*|𝑏*][𝑐*|𝑏] Ω((𝑚𝑛)1−𝛼) (from “∘*”) Ω((𝑚𝑛)1−𝛼) (from “∘*”)
∘|+ [𝑎+|𝑏+][𝑐+|𝑏] Ω((𝑚𝑛)1−𝛼) (Section 5.2.7) Ω((𝑚𝑛)1−𝛼) (Section 5.3.5)
∘+∘ [𝑎𝑏]+[𝑏𝑐𝑎]+ Ω((𝑚𝑛)1−𝛼) (Section 5.2.4) Ω((𝑚𝑛)1−𝛼) (Section 5.3.2)
∘+| [𝑎|𝑏]+[𝑎|𝑐|𝑑]+ Ω((𝑚𝑛)1−𝛼) (Section 5.2.6) Ω((𝑚𝑛)1−𝛼) (Section 5.3.4)
∘+* [𝑎][𝑎+]*[𝑏+] Ω((𝑚𝑛)1−𝛼) (from “∘*”) Ω((𝑚𝑛)1−𝛼) (from “∘*”)
∘ * ∘ [𝑎𝑏]*[𝑏𝑐𝑎]* Ω((𝑚𝑛)1−𝛼) (from “∘*”) Ω((𝑚𝑛)1−𝛼) (from “∘*”)
∘*| [𝑎|𝑏]*[𝑎|𝑏|𝑐]* Ω((𝑚𝑛)1−𝛼) (from “∘*”) Ω((𝑚𝑛)1−𝛼) (from “∘*”)
∘*+ [𝑎*]𝑏[𝑏+]* Ω((𝑚𝑛)1−𝛼) (from “∘*”) Ω((𝑚𝑛)1−𝛼) (from “∘*”)
|∘| [(𝑎|𝑏)(𝑏|𝑐)]|𝑏 Ω((𝑚𝑛)1−𝛼) (Section 5.2.1) 𝑂(𝑛+𝑚) (immediate)
|∘* [𝑎*𝑏*]|[𝑏*𝑐*] Ω((𝑚𝑛)1−𝛼) (from “∘*”) Ω((𝑚𝑛)1−𝛼) (from “∘*”)
|∘+ [𝑎+𝑏+]|[𝑏+𝑐+] Ω((𝑚𝑛)1−𝛼) (Section 5.2.2) 𝑂(𝑛+𝑚) (Section 5.4.4)
|*∘ [𝑎𝑏𝑐]*|[𝑏𝑐]* 𝑂(𝑛+𝑚) (reducible to “|”) 𝑂(𝑛+𝑚) (Section 5.4.3)
|*| [𝑎|𝑏|𝑐]*|[𝑏|𝑐]* 𝑂(𝑛+𝑚) (reducible to “|”) 𝑂(𝑛+𝑚) (immediate)
|*+ [𝑎+]*|[𝑏+]* 𝑂(𝑛+𝑚) (reducible to “|”) 𝑂(𝑛+𝑚) (immediate)
|+∘ [𝑎𝑏𝑐]+|[𝑏𝑐]+ 𝑂(𝑛+𝑚) (reducible to “|∘”) 𝑂(𝑛+𝑚) (Section 5.4.3)
|+| [𝑎|𝑏|𝑐]+|[𝑏|𝑐]+ 𝑂(𝑛+𝑚) (reducible to “|”) 𝑂(𝑛+𝑚) (same as “|*|”)
|+* [𝑎*]+|[𝑏*]+ 𝑂(𝑛+𝑚) (reducible to “|”) 𝑂(𝑛+𝑚) (immediate)
*∘| [[𝑎|𝑏][𝑏|𝑐]]* 𝑂(𝑛+𝑚) (immediate) 𝑂(𝑛+𝑚) (immediate)
*∘* [𝑎*𝑏*𝑐*]* 𝑂(𝑛+𝑚) (immediate) Ω((𝑚𝑛)1−𝛼) (from “∘*”)
*∘+ [𝑎+𝑏+𝑐+]* 𝑂(𝑛+𝑚) (immediate) 𝑂(𝑛+𝑚) (Section 5.4.4)

*|∘ [𝑎|𝑎𝑏|𝑏𝑐]* 𝑂(𝑛+𝑚) (immediate) 𝑂(𝑛𝑚0.44...)
(word break—
Section 5.4.1)

*|* [𝑎*|𝑏*|𝑐*]* 𝑂(𝑛+𝑚) (immediate) 𝑂(𝑛+𝑚) (immediate)
*|+ [𝑎+|𝑏+|𝑐+]* 𝑂(𝑛+𝑚) (immediate) 𝑂(𝑛+𝑚) (immediate)
*+∘ [[𝑎𝑏𝑐𝑑]+]* 𝑂(𝑛+𝑚) (immediate) 𝑂(𝑛+𝑚) (immediate)
*+| [[𝑎|𝑏|𝑐|𝑑]+]* 𝑂(𝑛+𝑚) (immediate) 𝑂(𝑛+𝑚) (immediate)
*+* [[𝑎*]+]* 𝑂(𝑛+𝑚) (immediate) 𝑂(𝑛+𝑚) (immediate)
+∘| [[𝑎|𝑏][𝑏|𝑐]]+ 𝑂(𝑛 log2𝑚) (reducible to “∘|”) 𝑂(𝑛+𝑚) (same as “*∘|”)
+∘* [𝑎*𝑏*𝑐*]+ Ω((𝑚𝑛)1−𝛼) (from “∘*”) Ω((𝑚𝑛)1−𝛼) (same as “*∘*”)
+∘+ [𝑎+𝑏+𝑐+]+ 𝑂(𝑛 log2𝑚) (reducible to “∘+”) 𝑂(𝑛+𝑚) (same as “*∘+”)

+|∘ [𝑎|𝑎𝑏|𝑏𝑐]+ 𝑂(𝑛+𝑚) (reducible to “|∘”) 𝑂(𝑛𝑚0.44...)
(word break—
Section 5.4.1)

+|* [𝑎*|𝑏*|𝑐*]+ 𝑂(𝑛+𝑚) (reducible to “|*”) 𝑂(𝑛+𝑚) (same as “*|*”)
+|+ [𝑎+|𝑏+|𝑐+]+ 𝑂(𝑛+𝑚) (reducible to “|+”) 𝑂(𝑛+𝑚) (same as “*|+”)
+*∘ [[𝑎𝑏𝑐𝑑]*]+ 𝑂(𝑛+𝑚) (reducible to “*∘”) 𝑂(𝑛+𝑚) (same as “*∘”)
+*| [[𝑎|𝑏|𝑐|𝑑]*]+ 𝑂(𝑛+𝑚) (reducible to “*|”) 𝑂(𝑛+𝑚) (same as “*|”)
+*+ [[𝑎+]*]+ 𝑂(𝑛+𝑚) (reducible to “*+”) 𝑂(𝑛+𝑚) (same as “*+”)

Table 5.2: Classification of the complexity of the pattern matching and the membership
test problems for depth-3 expressions. See Fig. 5-1 for the visualization of the table.

55



Pattern matching:

∘

hard

|

*

+

easy

∘ hard

*,+ easy

∘
* hard

|,+ easy

|, * easy

Membership:

∘

hard

|

*

+

∘
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*,+ easy

∘
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|,+ easy
| ∘ word break

*,+ easy
+ easy

∘
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|,+ easy
| ∘ word break

*,+ easy
* easy

Figure 5-1: Tree diagrams visualizing Table 5.2. Depth-3 types are classified as “easy”
(near-linear time), “hard” (near-quadratic time, assuming SETH), or “word break”
(whose complexity is not determined). The leftmost operators in each tree correspond
to the leftmost operators in type descriptions.

“∘|∘” and “∘+|” is grouped with “∘|+”. For each group, we first show hardness of the
first type in the group (i.e., of “∘+∘” and “∘+|”, respectively). We then show that the
second type in each group is hard by making changes to the hardness proof for the
first type.

The hardness proof for “∘+∘” proceeds as follows. We form the pattern 𝑃 by
concatenating (appropriately separated) pattern vector gadgets for each vector in 𝐴,
and form the text 𝑇 by concatenating (appropriately separated) text vector gadgets
for each vector in 𝐵. We then show that if there is a pair of orthogonal vectors
𝑎𝑖 ∈ 𝐴, 𝑏𝑗 ∈ 𝐵 then 𝑃 can be matched to a substring of 𝑇 , and vice versa. To show
this, we construct 𝑃 and 𝑇 so that any pair of gadgets (in particular the gadgets for
𝑎𝑖 and 𝑏𝑗) can be aligned. We then show that (i) each vector gadget for a vector in 𝐴
can be matched with “most” of the gadget for the corresponding 𝑏 ∈ 𝐵 (ii) matching
the gadgets for orthogonal vectors 𝑎𝑖 and 𝑏𝑗 allows us to make a “smaller step”, i.e.,
to match the gadget for 𝑎𝑖 with a smaller part of the gadget for 𝑏𝑗, and (iii) at least
one “smaller step” is necessary to completely derive a substring of 𝑇 from 𝑃 . We then
conclude that there is a pair of orthogonal vectors 𝑎𝑖 ∈ 𝐴, 𝑏𝑗 ∈ 𝐵 if and only if 𝑃
can be matched to a substring of 𝑇 . The hardness proof for “∘+|” follows a similar
general approach, although the technical development is different. In particular, we
construct the gadgets such that the existence of orthogonal vectors makes it possible
to make a “bigger step”, i.e., to derive a bigger part of 𝑇 , and that one bigger step is
necessary to complete the derivation.

To show hardness of the second type in each group, we adapt the arguments
for the first type in the group. In particular, to show hardness for type “∘|∘” , we
construct 𝑃 and 𝑇 as in the reduction for type “∘+∘” and then transform 𝑃 into a
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type “∘|∘” regular expression 𝑃 ′. The transformation has the property that 𝑃 ′ is less
expressive than 𝑃 (i.e., the language corresponding to 𝑃 is a superset of the language
corresponding to 𝑃 ′), but the specific substrings of the text 𝑇 needed for the reduction
can be still derived from 𝑃 ′. The hardness proof for “∘|+” is obtained via a similar
transformation of the hardness proof for “∘+|”.

Finally, consider the membership checking problem for depth-3 expressions. As
before, all types starting with ∘ are shown to be SETH-hard. The reductions are
similar to those for the pattern matching problem, but in a few cases require some
modifications. On the other hand, types starting with | (with the exception of |∘*)
have linear time algorithms. The algorithms are not difficult, but require the use of
basic algorithmic notions, such as periodicity (for types “|*∘” and “|+∘”) and run-
length encoding (for type “|∘+”). Types starting with * are mostly solvable in linear
time, with two exceptions: type “*∘*” inherits the hardness from “∘*”,3 while the type
“*|∘” corresponds to the aforementioned word break problem which we discuss in the
next paragraph. Finally, types starting with + are analogous to those starting with *.

The word break problem is the only problem in the table whose (conditional)
complexity is not determined up to logarithmic factors. There are several known
solutions to this problem based on dynamic programming [Tun11, Lee]. A careful
implementation of those algorithms (using substring hashing and pruning) leads to
a runtime of 𝑂(𝑛𝑚0.5 log𝑂(1) 𝑛). However, we show that this bound is not tight, and
can be further improved to roughly 𝑂(𝑛𝑚0.5−1/18). Our new algorithm speeds up the
dynamic program by using convolutions to pre-compute information that is reused
multiple times during the execution of the algorithm. We note that the algorithm is
randomized and has a one-sided error.

Related work. Our hardness results come on the heels of several recent works
demonstrating quadratic hardness of sequence alignment problems assuming SETH
or other conjectures. The technical development in this chapter is, however, quite
different, since regular expression matching is not defined by a sequence similarity
measure. Instead, our gadget constructions are tailored to the specific sets of operators
and expression types defining the problem variants. Furthermore, we exploit the
similarity between related expression types (such as “∘+∘” and “∘|∘”) and show how
to convert a hardness proof for one type into a hardness proof for the other type.

The reduction in Section 5.2.1 has been independently discovered by Kasper
Larsen and Raphael Clifford (personal communication). Conditional lower bounds (via
reductions from 3SUM) for certain classes of regular expressions have been investigated
in [AKL+16]. Estimating the complexity of regular expression matching using specific
algorithms has also been a focus of several papers. See, e.g., [WvdMBW16] and
the references therein. The work [BGL17] extends the classification to higher depth

3Let a regular expression 𝑃 and a text 𝑇 be a hard instance for the “∘*” membership problem.
Let 𝑠 be a symbol that does not appear in 𝑃 or 𝑇 . Then 𝑃 ′ , (𝑠 ∘ 𝑃 ∘ 𝑠)* and 𝑇 ′ , 𝑠 𝑇 𝑠 is a hard
instance for the membership problem of type “*∘*”. Since 𝑇 ′ starts and ends with the unique symbol,
we must use the argument regular expression 𝑠 ∘ 𝑃 ∘ 𝑠 exactly once. Thus we get “∘*” membership
problem.
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regular expressions as well as provided more general and faster algorithms. See
also the discussion at the beginning of Section 5.4.1. In [ARW17] the authors show
conditional lower bounds for approximately solving the membership problem. This
is further strengthened in [CGL+18]. The later work also shows circuit lower bound
consequences for solving the matching and membership problems faster.

5.1 Preliminaries
Subset matching problem. In the subset matching problem, we are given a
pattern string 𝑃 and a text string 𝑇 where each pattern and text location is a set
of symbols drawn from some alphabet. The pattern is said to occur at the text
position 𝑖 if the set 𝑃𝑗 is a subset of the set 𝑇𝑖+𝑗 for all 𝑗. The goal of the problem is
find all positions where 𝑃 occurs in 𝑇 . The problem can be solved in deterministic
𝑂(𝑁 log2𝑁) time, where 𝑁 ,

∑︀
𝑖 |𝑇𝑖|+

∑︀
𝑖 |𝑃𝑖| [CH02].

Superset matching problem. This problem is analogous to subset matching ex-
cept that we require that 𝑃𝑗 is a superset of the set 𝑇𝑖+𝑗 for all 𝑗. The aforementioned
algorithm of [CH02] applies to this problem as well.

Wildcard matching problem. In the wildcard matching problem, we are given
a pattern string 𝑃 and a text string 𝑇 where each pattern and text location is an
element from Σ∪ {.}, where “.” is the special wildcard symbol. The pattern is said to
occur at the text position 𝑖 if for all 𝑗 we have that (i) one of the symbols 𝑃𝑗 and 𝑇𝑖+𝑗

is equal to “.”, or (ii) 𝑃𝑗 = 𝑇𝑖+𝑗. The goal of the problem is find all positions where 𝑃
occurs in 𝑇 . The problem can be solved in deterministic 𝑂(𝑛 log 𝑛) time [CH02].

Regular expressions. Regular expressions over a symbol set Σ and an operator
set 𝑂 , {∘, |,+, *} are defined recursively as follows:

∙ 𝑎 is a regular expression, for any 𝑎 ∈ Σ;

∙ if 𝑅 and 𝑆 are regular expressions then so are [𝑅]|[𝑆], [𝑅] ∘ [𝑆], [𝑅]+ and [𝑅]*.

For the sake of simplicity, in the rest of this section we will typically omit the
concatenation operator ∘, and also omit some of the parenthesis if the expression is
clear from the context.

A regular expression 𝑃 determines a language 𝐿(𝑃 ) over Σ. Specifically, for any
regular expressions 𝑅, 𝑆 and any 𝑎 ∈ Σ, we have: 𝐿(𝑎) = {𝑎}; 𝐿(𝑅|𝑆) = 𝐿(𝑅)∪𝐿(𝑆);
𝐿(𝑅 ∘ 𝑆) = {𝑢𝑣 : 𝑢 ∈ 𝐿(𝑅), 𝑣 ∈ 𝐿(𝑆)}; 𝐿(𝑅+) = ∪𝑖≥1 ○𝑖

𝑗=1 𝐿(𝑅); and 𝐿(𝑅*) =
𝐿(𝑅+) ∪ {𝜖}, where 𝜖 denotes the empty sequence.

Regular expressions can be viewed as rooted labeled trees, with internal nodes
labeled with operators from 𝑂 and leaves labeled with symbols from Σ. Note that
the number of children of an internal node is not fixed, and can range between 1 (for
+ and *) and 𝑚. We say that a regular expression is homogeneous if all internal node
labels at the same tree level are equal. Note that this definition does not preclude
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expressions such as 𝑎𝑎+ where not all leaves have the same depth. A homogeneous
formula of depth 𝑘 has type 𝑜1𝑜2 . . . 𝑜𝑘, 𝑜𝑖 ∈ 𝑂, if for all levels 𝑖 the operators at level
𝑖 are equal to 𝑜𝑖. For example, 𝑎𝑎+ has type “∘+”.

To state our results, it is convenient to identify depth-3 homogeneous regular
expressions that are equivalent to some depth-2 regular expressions. In particular, in
all types starting from +, the operator + can be removed, since 𝑃+ occurs in the text
𝑇 if and only if 𝑃 occurs in 𝑇 . Similarly, in all types starting from |+, the operator
+ can be removed, for the same reasons.

Notation. Given an integer 𝑑, 0𝑑 (1𝑑, resp.) denotes the vector with all entries equal
to 0 (1, resp.) in 𝑑 dimensions.

Simplifying assumptions. To simplify our proofs, we will make several simplifying
assumptions about the orthogonal vectors instance (different assumptions are used
in different proofs). In what follows, we describe what kind of assumptions we make,
and how to satisfy them:

1. The number of vectors 𝑀 in set 𝐴 is odd or even (depending on the proof): this
can be achieved without loss of generality since we can add a vector to the set
𝐴 consisting only of 1s.

2. The dimensionality 𝑑 of vectors from sets 𝐴 and 𝐵 is odd or even (depending
on the proof): this can be achieved without loss of generality since we can add
new coordinate to every vector and set this coordinate to 0.

3. Let 𝐴 , {𝑎1, . . . , 𝑎𝑀} and 𝐵 , {𝑏1, . . . , 𝑏𝑁}. If there are 𝑖, 𝑗 such that
𝑎𝑖 · 𝑏𝑗 = 0, then there are 𝑖′, 𝑗′ such that 𝑎𝑖

′ · 𝑏𝑗′ = 0 and 𝑖′ = 𝑗′ (mod 2):
this can be assumed without loss of generality since we can define a set 𝐴′ ,
{𝑎𝑀 , 𝑎1, 𝑎2, 𝑎3, . . . , 𝑎𝑀−1} and perform two reductions, one on the pair of sets
𝐴 and 𝐵 and another one on the pair of sets 𝐴′ and 𝐵. If a pair of orthogonal
vectors exists, one of these reductions will detect it.

4. The dimensionality 𝑑 is greater than 100: we can assume this since otherwise
Orthogonal Vectors problem can be solved in 𝑂(2𝑑𝑁) = 𝑂(𝑁) time.

5. 𝑑 is odd and 𝑏𝑡1 = 𝑏𝑡𝑑 = 0 for all 𝑡 ∈ [𝑁 ]: first, we make 𝑑 odd as described above.
Then we add two entries for every vector from 𝐴 or 𝐵, one at the beginning
and one at the end, and set both entries to 0.

6. The first vector 𝑎1 from the set 𝐴 is not orthogonal to all vectors from 𝐵: first,
we can detect whether this is the case in 𝑂(𝑑𝑁) time. If 𝑎1 is orthogonal to
a vector from 𝐵, we have found a pair of orthogonal vectors. Otherwise we
proceed with the reduction.

5.2 Reductions for the pattern matching problem
We start this section by showing hardness for regular expressions of type “|∘|” and
“|∘+”. These hardness proofs are quite simple, and will help us introduce notation
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used in more complex reductions presented later. Next we present the hardness proof
for regular expressions of type “∘*”. After that we present hardness proofs for the
other cases.

5.2.1 Hardness for type “ |∘|”
Theorem 5.2.1. Given sets 𝐴 , {𝑎1, . . . , 𝑎𝑀} ⊆ {0, 1}𝑑 and 𝐵 , {𝑏1, . . . , 𝑏𝑁} ⊆
{0, 1}𝑑, we can construct a regular expression 𝑃 and a sequence of symbols 𝑇 , in
𝑂(𝑁𝑑) time, such that a substring of 𝑇 can be derived from 𝑃 if and only if there are
𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 such that 𝑎 · 𝑏 = 0. Furthermore, 𝑃 has type “|∘|”, |𝑃 | ≤ 𝑂(𝑀𝑑)
and |𝑇 | ≤ 𝑂(𝑁𝑑).

Proof. First, we will construct our pattern 𝑃 . For an integer 𝑣 ∈ {0, 1}, we construct
the following pattern coordinate gadget

CG(𝑣) ,

{︃
[0|1] if 𝑣 = 0;

[0] if 𝑣 = 1.

For a vector 𝑎 ∈ {0, 1}𝑑, we define a pattern vector gadget

G(𝑎) , CG(𝑎1)CG(𝑎2)CG(𝑎3) . . . CG(𝑎𝑑).

Our pattern 𝑃 is then defined as “|” of all pattern vector gadgets:

𝑃 , G
(︀
𝑎1
)︀
|G
(︀
𝑎2
)︀
|G
(︀
𝑎3
)︀
|G
(︀
𝑎4
)︀
| . . . |G

(︀
𝑎𝑀−1

)︀
|G
(︀
𝑎𝑀
)︀
.

Now we construct the text 𝑇 . First, for a vector 𝑏 ∈ {0, 1}𝑑, we define text vector
gadget as concatenation of all entries of 𝑏: G′(𝑏) , 𝑏1 𝑏2 𝑏3 𝑏4 . . . 𝑏𝑑. Note that we can
derive G′(𝑏) from G(𝑎) if and only if 𝑎 ·𝑏 = 0. Our text 𝑇 is defined as a concatenation
of all text vector gadgets with a symbol of type 2 in between any two neighboring
vector gadgets:

𝑇 , G′
(︀
𝑏1
)︀
2G′

(︀
𝑏2
)︀
2G′

(︀
𝑏3
)︀
2G′

(︀
𝑏4
)︀
2 . . . 2G′

(︀
𝑏𝑁−1

)︀
2G′

(︀
𝑏𝑁
)︀
.

We need to show that we can derive a substring of 𝑇 from 𝑃 if and only if there
are two orthogonal vectors in 𝐴 and 𝐵. This follows from Lemmas 5.2.2 and 5.2.3
below.

Lemma 5.2.2. If there are two vectors 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 that are orthogonal, then a
substring of 𝑇 can be derived from 𝑃 .

Proof. Suppose that 𝑎𝑖 · 𝑏𝑗 = 0 for some 𝑖 ∈ [𝑀 ], 𝑗 ∈ [𝑁 ]. We choose a pattern
vector gadget G(𝑎𝑖) from the pattern 𝑃 and transform it into a text vector gadget
G′(𝑏𝑗). This is possible because of the orthogonality and the construction of the vector
gadgets.

Lemma 5.2.3. If a substring of 𝑇 can be derived from 𝑃 , then there are two orthogonal
vectors.
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Proof. By the construction of pattern 𝑃 , we have to choose one pattern vector gadget,
say, G(𝑎𝑖), that is transformed into a binary substring of 𝑇 of length 𝑑. The text 𝑇
has the property that it is a concatenation of binary strings of length 𝑑 separated by
symbols 2. This means that G(𝑎𝑖) will be transformed into binary string G′(𝑏𝑗) for
some 𝑗. This implies that 𝑎𝑖 · 𝑏𝑗 = 0 by the construction of the vector gadgets.

5.2.2 Hardness for type “ |∘+”

Theorem 5.2.4. Given sets 𝐴 , {𝑎1, . . . , 𝑎𝑀} ⊆ {0, 1}𝑑 and 𝐵 , {𝑏1, . . . , 𝑏𝑁} ⊆
{0, 1}𝑑, we can construct a regular expression 𝑃 and a sequence of symbols 𝑇 , in
𝑂(𝑁𝑑) time, such that a substring of 𝑇 can be derived from 𝑃 if and only if there are
𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 such that 𝑎 · 𝑏 = 0. Furthermore, 𝑃 has type “|∘+”, |𝑃 | ≤ 𝑂(𝑀𝑑)
and |𝑇 | ≤ 𝑂(𝑁𝑑).

Proof. First, we will construct our pattern. For an integer 𝑣 ∈ {0, 1}, we construct
the following pattern coordinate gadget

CG(𝑣) ,

{︃
𝑥+ if 𝑣 = 0;

𝑥+ 𝑥+ if 𝑣 = 1.

For a vector 𝑎 ∈ {0, 1}𝑑, we define a pattern vector gadget as concatenation of
coordinate gadgets for all coordinates with a symbol of type 𝑦 in between every two
neighboring coordinate gadgets:

G(𝑎) , CG(𝑎1) 𝑦CG(𝑎2) 𝑦CG(𝑎3) 𝑦 . . . 𝑦CG(𝑎𝑑).

Our pattern 𝑃 is then defined as an OR (“|”) of all the pattern vector gadgets:

𝑃 , G
(︀
𝑎1
)︀
|G
(︀
𝑎2
)︀
|G
(︀
𝑎3
)︀
|G
(︀
𝑎4
)︀
| . . . |G

(︀
𝑎𝑀−1

)︀
|G
(︀
𝑎𝑀
)︀
.

Now we proceed with the construction of our text 𝑇 . For an integer 𝑣 ∈ {0, 1},
we define the following text coordinate gadget

CG′(𝑣) ,

{︃
𝑥𝑥 if 𝑣 = 0;

𝑥 if 𝑣 = 1.

For vector 𝑏 ∈ {0, 1}𝑑, we define the text vector gadget as

G′(𝑏) , CG′(𝑏1) 𝑦CG′(𝑏2) 𝑦CG′(𝑏3) 𝑦 . . . 𝑦CG′(𝑏𝑑).

Note that we can derive G′(𝑏) from G(𝑎) if and only if 𝑎 · 𝑏 = 0. Our text 𝑇 is defined
as a concatenation of all text vector gadgets with a symbol of type 𝑧 in between any
two neighboring vector gadgets:

𝑇 , G′(𝑏1) 𝑧 G′(𝑏2) 𝑧 G′(𝑏3) 𝑧 G′(𝑏4) 𝑧 . . . 𝑧 G′(𝑏𝑁−1) 𝑧 G′(𝑏𝑁).
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We need to show that we can derive a substring of 𝑇 from 𝑃 if and only if there
are two orthogonal vectors. This follows from Lemmas 5.2.5 and 5.2.6 below.

Lemma 5.2.5. If there are two vectors 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 that are orthogonal, then a
substring of 𝑇 can be derived from 𝑃 .

Proof. Suppose that 𝑎𝑖 · 𝑏𝑗 = 0 for some 𝑖 ∈ [𝑀 ], 𝑗 ∈ [𝑁 ]. We choose a pattern
vector gadget G(𝑎𝑖) from the pattern 𝑃 and transform it into a text vector gadget
G′(𝑏𝑗). This is possible because of the orthogonality and the construction of the vector
gadgets.

Lemma 5.2.6. If a substring of 𝑇 can be derived from 𝑃 , then there are two orthogonal
vectors.

Proof. We call a sequence of symbols nice if and only if it can be derived from the
regular expression 𝑥+ 𝑦 𝑥+ 𝑦 𝑥+ 𝑦 . . . 𝑦 𝑥+, where “𝑥+” appears 𝑑 times.

By the construction of the pattern 𝑃 , we have to choose one pattern vector gadget,
say, G(𝑎𝑖), that is transformed into a nice sequence. The text 𝑇 has the property that
it is a concatenation of nice sequences separated by symbols of type 𝑧. This means
that G(𝑎𝑖) will be transformed into a sequence G′(𝑏𝑗) for some 𝑗. This implies that
𝑎𝑖 · 𝑏𝑗 = 0 by the construction of vector gadgets.

5.2.3 Hardness for type “∘*”
Theorem 5.2.7. Given sets 𝐴 , {𝑎1, . . . , 𝑎𝑀} ⊆ {0, 1}𝑑 and 𝐵 , {𝑏1, . . . , 𝑏𝑁} ⊆
{0, 1}𝑑 with 𝑀 ≤ 𝑁 , we can construct the regular expression 𝑃 and the text 𝑇 in
time 𝑂(𝑁𝑑), such that a substring of 𝑇 can be derived from 𝑃 if and only if there are
𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 such that 𝑎 · 𝑏 = 0. Furthermore, 𝑃 is of type “∘*”, |𝑃 | ≤ 𝑂(𝑀𝑑)
and |𝑇 | ≤ 𝑂(𝑁𝑑).

Proof. Without loss of generality we can assume that 𝑀 = 1 (mod 2) and 𝑑 =
1 (mod 2), 𝑑 ≥ 100. Also, if there are 𝑖 ∈ [𝑀 ], 𝑗 ∈ [𝑁 ] such that 𝑎𝑖 · 𝑏𝑗 = 0, then
there are 𝑖′ ∈ [𝑀 ], 𝑗′ ∈ [𝑁 ] such that 𝑎𝑖

′ · 𝑏𝑗′ = 0 and 𝑖′ = 𝑗′ (mod 2). Furthermore,
we assume 𝑏𝑗1 = 𝑏𝑗𝑑 = 0 for all 𝑗 ∈ [𝑁 ] and that 𝑎1 is not orthogonal to any vector 𝑏𝑗.

First, we will construct our pattern. For an integer 𝑣 ∈ {0, 1} and an integer
𝑖 ∈ [𝑑], we construct the following pattern coordinate gadget

CG(𝑣, 𝑖) ,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑦𝑦* if 𝑣 = 0 and 𝑖 = 1 (mod 2);

𝑦𝑦𝑦𝑦* if 𝑣 = 1 and 𝑖 = 1 (mod 2);

𝑥𝑥* if 𝑣 = 0 and 𝑖 = 0 (mod 2);

𝑥𝑥𝑥𝑥* if 𝑣 = 1 and 𝑖 = 0 (mod 2).

For a vector 𝑎 ∈ {0, 1}𝑑, we define a pattern vector gadget

G(𝑎) , CG(𝑎1, 1)CG(𝑎2, 2)CG(𝑎3, 3) . . . CG(𝑎𝑑, 𝑑).

We also need another pattern vector gadget G0 , (𝑦* 𝑥*)𝑑+10 𝑦*.

62



Our pattern is then defined as follows:

𝑃 , 𝑦6 ○𝑗∈[𝑀−1]
(︀
𝑥10 G(𝑎𝑗)𝑥10 G0

)︀
𝑥10 𝑉 𝐺(𝑎𝑀)𝑥10 𝑦6.

Now we proceed with the construction of our text. For integers 𝑣 ∈ {0, 1}, 𝑖 ∈ [𝑑],
we define the following text coordinate gadget

CG′(𝑣, 𝑖) ,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑦𝑦𝑦 if 𝑣 = 0 and 𝑖 = 1 (mod 2);

𝑦 if 𝑣 = 1 and 𝑖 = 1 (mod 2);

𝑥𝑥𝑥 if 𝑣 = 0 and 𝑖 = 0 (mod 2);

𝑥 if 𝑣 = 1 and 𝑖 = 0 (mod 2).

For a vector 𝑏 ∈ {0, 1}𝑑 and an integer 𝑗 = 1 (mod 2), we define the text vector gadget
as

G′(𝑏, 𝑗) , CG′(𝑏1, 1)CG′(𝑏2, 2)CG′(𝑏3, 3) . . . CG′(𝑏𝑑, 𝑑).

We also define G′(𝑏, 𝑗) when 𝑗 = 0 (mod 2). In this case, G′(𝑏, 𝑗) is equal to G′(𝑏, 1)
except that we replace every occurrence of the substring 𝑦3 with the substring 𝑦6.

One can verify that for any vectors 𝑎, 𝑏 ∈ {0, 1}𝑑 and any integer 𝑖, G′(𝑏, 𝑖) can be
derived from G(𝑎) if and only if 𝑎 · 𝑏 = 0.

We will also need an additional text vector gadget

G′0 , 𝑦3 (𝑥3 𝑦3)(𝑑−1)/2.

Our text is then defined as follows:

𝑇 , ○3𝑁
𝑗=−2𝑁

(︀
𝑥10 G′0 𝑥

10 G′(𝑏𝑗, 𝑗)
)︀
,

where we assume 𝑏𝑗 , 0111 . . . 1110 for 𝑗 ̸∈ [𝑁 ]. That is, for 𝑗 ̸∈ [𝑁 ], all entries of 𝑏𝑗
are equal to 1 except the first and the last entry, which are equal to 0.

We have to show that we can derive a substring of 𝑇 from 𝑃 if and only if there
are two orthogonal vectors. This follows from Lemmas 5.2.8 and 5.2.9 below.

Lemma 5.2.8. If there are two vectors 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 that are orthogonal, then a
substring of 𝑇 can be derived from 𝑃 .

Proof. Without loss of generality we have that 𝑎𝑘 · 𝑏𝑘 = 0 for some 𝑘 ∈ [𝑀 ]. The
proof for the case when 𝑎𝑘 · 𝑏𝑟 = 0, 𝑘 ∈ [𝑀 ], 𝑟 ∈ [𝑁 ] and 𝑘 = 𝑟 (mod 2) is analogous.

The pattern 𝑃 starts with 𝑦6. We transform it into CG′(𝑏0𝑑, 𝑑) appearing in G′(𝑏0, 0).
We can do this since 𝑏0𝑑 = 0.

For 𝑗 = 1, 2, . . . , 𝑘 − 2 we transform 𝑥10 G(𝑎𝑗)𝑥10 G0 into 𝑥10 G′0 𝑥10 G′(𝑏𝑗, 𝑗) by
transforming G(𝑎𝑗) into G′0 and G0 into G′(𝑏𝑗, 𝑗).

Next, we transform

𝑥10 G(𝑎𝑘−1)𝑥10 G0 𝑥
10 G(𝑎𝑘)𝑥10 G0
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into

𝑥10 G′0 𝑥
10 G′(𝑏𝑘−1, 𝑘 − 1)𝑥10 G′0 𝑥

10 G′(𝑏𝑘, 𝑘)𝑥10 G′0 𝑥
10 G′(𝑏𝑘+1, 𝑘 + 1)

Notice that we use the fact that 𝑘 ≥ 2 (we assumed that 𝑎1 is not orthogonal to any
vector from 𝐵). Note that G′(𝑏𝑘+1, 𝑘 + 1) appears in the text 𝑇 even if 𝑘 = 𝑁 . This
is because in the definition of the text 𝑇 , integer 𝑗 ranges from −2𝑁 up to 3𝑁 .

We perform the transformation by performing the following steps:

1. transform G(𝑎𝑘−1) into G′0;

2. transform G0 into G′(𝑏𝑘−1, 𝑘 − 1)𝑥10 G′0;

3. transform G(𝑎𝑘) into G′(𝑏𝑘, 𝑘) (we can do this since 𝑎𝑘 · 𝑏𝑘 = 0);

4. transform G0 into G′0 𝑥10 G′(𝑏𝑘+1, 𝑘 + 1).

Now, for 𝑗 = 𝑘+1, . . . ,𝑀−1 transform 𝑥10 G(𝑎𝑗)𝑥10 G0 into 𝑥10 G′0 𝑥10 G′(𝑏𝑗+1, 𝑗+
1) similarly as before. Next, transform 𝑥10 G(𝑎𝑀)𝑥10 into 𝑥10 G′0 𝑥10. Finally, trans-
form 𝑦6 into CG′(𝑏𝑀+1

1 ) appearing in G′(𝑏𝑀+1,𝑀 + 1). We can do this since 𝑏𝑀+1
1 =

0.

Lemma 5.2.9. If a substring of 𝑇 can be derived from 𝑃 , then there are two orthogonal
vectors.

Proof. By the construction, every substring 𝑥10 from 𝑃 must be mapped to a unique
substring 𝑥10 in 𝑇 (there are no substrings of 𝑇 that have more than 10 symbols
𝑥). Because of this, every G(𝑎𝑖) must be mapped to G′0 or G′(𝑏𝑗, 𝑗) for some 𝑗. If
the latter case occurs, the corresponding vectors are orthogonal and we are done. It
remains to consider the case that all vector gadgets G(𝑎𝑖) get mapped to G′0. Consider
any vector gadget G0 in 𝑃 . To the left of it we have the sequence 𝑥10 and to the
right of it we have the sequence 𝑥10. Each one of these two sequences 𝑥10 in 𝑃 gets
mapped to a unique sequence 𝑥10 in 𝑇 . We call the vector gadget G0 nice if the two
unique sequences 𝑥10 are neighboring in 𝑇 , that is, there is no other sequence 𝑥10 in
𝑇 between the two unique sequences. We consider two cases below.

Case 1. There is a vector gadget G0 in 𝑃 that is not nice. Take any vector gad-
get G0 that is not nice and denote it by 𝑉 . The gadget 𝑉 is immediately to the
right of the expression G(𝑎𝑖

′
)𝑥10 in 𝑃 for some 𝑖′ ∈ [𝑀 ]. G(𝑎𝑖

′
) is mapped to G′0

(otherwise, we have found an orthogonal pair of vectors, as per the discussion above)
and this G′0 is to the left of the substring 𝑥10 G′(𝑏𝑗′′ , 𝑗′′) in 𝑇 for some 𝑗′′. Because
𝑉 is not nice, a prefix of it must map to G′(𝑏𝑗′′ , 𝑗′′)𝑥10 G′0. We claim that entire
𝑉 gets mapped to G′(𝑏𝑗′′ , 𝑗′′)𝑥10 G′0. If this is not the case, then a prefix of 𝑉
must be mapped to G′(𝑏𝑗′′ , 𝑗′′)𝑥10 G′0 𝑥10 G′(𝑏𝑗′′+1, 𝑗′′ + 1) (since the sequence 𝑥10 in
𝑃 to the right of 𝑉 must be mapped to 𝑥10). A prefix of 𝑉 cannot be mapped to
G′(𝑏𝑗′′ , 𝑗′′)𝑥10 G′0 𝑥10 G′(𝑏𝑗′′+1, 𝑗′′ + 1) since 𝑉 = (𝑦* 𝑥*)𝑑+10 𝑦* can produce sequence
with at most 𝑑+ 11 substrings of maximal length consisting entirely of symbols 𝑦 but
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the sequence G′(𝑏𝑗′′ , 𝑗′′)𝑥10 𝑉 𝐺′0 𝑥
10 𝑉 𝐺′(𝑏𝑗

′′+1, 𝑗′′ + 1) has 3𝑑+1
2

> 𝑑+ 11 (if 𝑑 ≥ 100)
subsequences of maximal length consisting entirely of 𝑦. Therefore, we are left with
the case that the entire 𝑉 is mapped to G′(𝑏𝑗′′ , 𝑗′′)𝑥10 𝑉 𝐺′0. The gadget 𝑉 is to the left
of the vector gadget G(𝑎𝑖

′+1) and G′(𝑏𝑗′′ , 𝑗′′)𝑥10 𝑉 𝐺′0 is to the left of the vector gadget
G′(𝑏𝑗′′+1, 𝑗′′ + 1). We conclude that G(𝑎𝑖

′+1) must be mapped to G′(𝑏𝑗′′+1, 𝑗′′ + 1).
This implies that 𝑎𝑖

′+1 · 𝑏𝑗′′+1 = 0 and we are done.

Case 2. All vector gadgets G0 in 𝑃 are nice. The pattern 𝑃 starts with 𝑦6 followed
immediately by 𝑥10. This means that 𝑦6 is mapped to CG′(𝑏𝑗

′

𝑑 , 𝑗
′) for some even 𝑗′

(by the construction of the coordinate gadgets CG′). Consider vector gadgets in 𝑃
from the left to the right. We must have that G(𝑎1) is mapped to G′0, that G0 is
mapped to G′(𝑏1, 1) (since every G0 in 𝑃 is nice), that G(𝑎2) is mapped to G′0, that
G0 is mapped to G′(𝑏2, 2) (since every G0 in 𝑃 is nice) and so forth. Since 𝑀 is odd,
we have that G(𝑎𝑀) is mapped to G′0 and that this vector gadget G′0 is followed by
𝑥10 G′(𝑏𝑗′+𝑀 , 𝑗′ +𝑀). G(𝑎𝑀) is followed by 𝑥10 𝑦6 and this means that 𝑦6 is mapped
to the beginning of G′(𝑏𝑗′+𝑀 , 𝑗′+𝑀). This is impossible since G′(𝑏𝑗′+𝑀 , 𝑗′+𝑀) does
not contain a substring of length 6 or more consisting of symbols 𝑦 (observe that
𝑗′+𝑀 is odd and see the construction of the vector gadget G′). We get that this case
(Case 2) cannot happen.

5.2.4 Hardness for type “∘+∘”
Theorem 5.2.10. Given sets 𝐴 , {𝑎1, . . . , 𝑎𝑀} ⊆ {0, 1}𝑑 and 𝐵 , {𝑏1, . . . , 𝑏𝑁} ⊆
{0, 1}𝑑 with 𝑀 ≤ 𝑁 , we can construct a regular expression 𝑃 and a sequence of
symbols 𝑇 , in 𝑂(𝑁𝑑) time, such that a substring of 𝑇 can be derived from 𝑃 if and
only if there are 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 such that 𝑎·𝑏 = 0. Furthermore, 𝑃 is a concatenation
of “+” of sequences, |𝑃 | ≤ 𝑂(𝑀𝑑) and |𝑇 | ≤ 𝑂(𝑁𝑑).

Proof. Without loss of generality 𝑑 is even. First, we will construct our pattern 𝑃 .
For an integer 𝑣 ∈ {0, 1} and an integer 𝑖 ∈ [𝑑], we construct the following pattern
coordinate gadget

CG(𝑣, 𝑖) ,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[𝑥]+ if 𝑣 = 0 and 𝑖 = 1 (mod 2);

[𝑥𝑥]+ if 𝑣 = 1 and 𝑖 = 1 (mod 2);

[𝑦]+ if 𝑣 = 0 and 𝑖 = 0 (mod 2);

[𝑦𝑦]+ if 𝑣 = 1 and 𝑖 = 0 (mod 2).

For a vector 𝑎 ∈ {0, 1}𝑑, we define a pattern vector gadget as [𝑥4]+ [𝑦4]+ followed by
the concatenation of all coordinate gadgets:

G(𝑎) , [𝑥4]+ [𝑦4]+ CG(𝑎1, 1)CG(𝑎2, 2)CG(𝑎3, 3) . . . CG(𝑎𝑑, 𝑑).

We also need two other pattern vector gadgets

G0 , [𝑥4 𝑦4]+ ([𝑥]+ [𝑦]+)𝑑/2; G1 , [𝑥4]+ [𝑦4]+ ([𝑥]+ [𝑦8]+)𝑑/2.
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Our pattern is then defined as follows:

𝑃 , G1

(︀
○𝑗∈[𝑀 ]

(︀
G(1𝑑)G0 G(𝑎𝑗)G0

)︀)︀
G(1𝑑)G(1𝑑)G1.

Now we proceed with the construction of our text. For integers 𝑣 ∈ {0, 1}, 𝑖 ∈ [𝑑],
we define the following text coordinate gadget

CG′(𝑣, 𝑖) ,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑥𝑥 if 𝑣 = 0 and 𝑖 = 1 (mod 2);

𝑥 if 𝑣 = 1 and 𝑖 = 1 (mod 2);

𝑦𝑦 if 𝑣 = 0 and 𝑖 = 0 (mod 2);

𝑦 if 𝑣 = 1 and 𝑖 = 0 (mod 2).

For vector 𝑏 ∈ {0, 1}𝑑, we define the text vector gadget as 𝑥4 𝑦4 followed by the
concatenation of all coordinate gadgets:

G′(𝑏) , 𝑥4 𝑦4 CG′(𝑏1, 1)CG′(𝑏2, 2)CG′(𝑏3, 3) . . . CG′(𝑏𝑑, 𝑑).

In what follows, we will use the following important property of vector gadgets G
and G′. First, observe that for integers 𝑢, 𝑣 ∈ {0, 1}, 𝑖 ∈ [𝑑], we can derive CG′(𝑣, 𝑖)
from CG(𝑣, 𝑖) if and only if 𝑢𝑣 = 0. It means that for any vectors 𝑎, 𝑏 ∈ {0, 1}𝑑, G′(𝑏)
can be derived from G(𝑎) if and only if 𝑎 · 𝑏 = 0.

We will also need additional text vector gadgets

G′0 , 𝑥4 𝑦4 (𝑥4 𝑦4)𝑑/2; G′1 , 𝑥4 𝑦4 (𝑥 (𝑦)8)𝑑/2.

Our text is then defined as follows:

𝑇 , ○6𝑁
𝑗=−5𝑁

(︀
G′(0𝑑)G′0 G′(𝑏𝑗)G′(0𝑑)G′0 G′1

)︀
,

where we assume 𝑏𝑗 , 1𝑑 for 𝑗 ̸∈ [𝑁 ]. That is, 𝑏𝑗 is a vector with 𝑑 entries all equal
to 1 for 𝑗 ̸∈ [𝑁 ].

We have to show that we can derive a substring of 𝑇 from 𝑃 if and only if there
are two orthogonal vectors in 𝐴 and 𝐵. This follows from Lemmas 5.2.11 and 5.2.12
below.

Lemma 5.2.11. If there are two vectors 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 that are orthogonal, then
a substring of 𝑇 can be derived from 𝑃 .

Proof. We assume that 𝑎𝑘 · 𝑏𝑟 = 0 for some 𝑘 ∈ [𝑀 ], 𝑟 ∈ [𝑁 ].
Observe that the pattern 𝑃 starts with a prefix G1, which is then followed by the

sequence
G(1𝑑)G0 G(𝑎𝑖)G0

repeated 𝑀 times for different 𝑖 ∈ [𝑀 ] and ends with the suffix G(1𝑑)G(1𝑑)G1. We
refer to

G(1𝑑)G0 G(𝑎𝑖)G0
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corresponding to a specific 𝑖 ∈ [𝑀 ] as the 𝑖-th group of 𝑃 . Similarly, we observe that
the text 𝑇 is concatenation of sequences

G′(0𝑑)G′0 G′(𝑏𝑗)G′(0𝑑)G′0 G′1

corresponding to different 𝑗 = −5𝑁, . . . , 6𝑁 . We refer to that sequence corresponding
to particular 𝑗 = −5𝑁, . . . , 6𝑁 as the 𝑗-th group of 𝑇 .

We transform 𝑃 into the following substring 𝑇 ′ of 𝑇 :

𝑇 ′ , G′1 ○𝑀+𝑟−𝑘
𝑗=1+𝑟−𝑘

(︀
G′(0𝑑)G′0 G′(𝑏𝑗)G′(0𝑑)G′0 G′1

)︀
.

Note that 𝑇 ′ starts with the prefix G′1 which is a suffix of the (𝑟−𝑘)-th group of 𝑇 . Then
it consists of groups 1+𝑟−𝑘 to 𝑀+𝑟−𝑘 of 𝑇 . We transform 𝑃 into 𝑇 ′ from the left to
the right. First, we transform G1 into G′1 in the unique way. Then, for 𝑖 = 1, . . . , 𝑘−1,
we transform the 𝑖-th group of 𝑃 into the (𝑖 + 𝑟 − 𝑘)-th group of 𝑇 ′. We do that
as follows. For each 𝑖 ∈ {1, . . . , 𝑘 − 1}, we perform the following transformations:
transform G(1𝑑) into G′(0𝑑); transform G0 into G′0 G′(𝑏𝑖+𝑟−𝑘); transform G(𝑎𝑖) into
G′(0𝑑); transform G0 into G′0 G′1.

Now we transform the 𝑘-th and the (𝑘 + 1)-th group of 𝑃 into the prefix

G′(0𝑑)G′0 G′(𝑏𝑟)G′(0𝑑)G′0 G′1 G′(0𝑑)G′0 G′(𝑏𝑟+1)

of the remainder of 𝑇 ′. This is done by transforming G(1𝑑) into G′(0𝑑), G0 into G′0,
G(𝑎𝑘) into G′(𝑏𝑟) (which can be done because 𝑎𝑘 · 𝑏𝑟 = 0), G0 into G′(0𝑑), G(1𝑑) into
G′0, G0 into G′1, G(𝑎𝑘+1) into G′(0𝑑) and G0 into G′0 G′(𝑏𝑟+1). The remainder of the
pattern 𝑃 consists of groups 𝑘 + 2, . . . ,𝑀 and the suffix G(1𝑑)G(1𝑑)G1, while the
remainder of 𝑇 ′ is

𝑇 ′′ ,
(︀
○𝑀+𝑟−𝑘

𝑗=𝑟+2

(︀
G′(0𝑑)G′0 G′1 G′(0𝑑)G′0 G′(𝑏𝑗)

)︀)︀
G′(0𝑑)G′0 G′1.

We transform group 𝑖 = 𝑘 + 2, . . . ,𝑀 of 𝑃 into a substring G′(0𝑑)G′0 G′1 G′(0𝑑)G′0
G′(𝑏𝑖+𝑟−𝑘), as follows. We transform G(1𝑑) into G′(0𝑑), G0 into G′0 G′1, G(𝑎𝑖) into
G′(0𝑑) and G0 into G′0 G′(𝑏𝑖+𝑟−𝑘). It remains to transform the suffix G(1𝑑)G(1𝑑)G1 of
𝑃 into the suffix G′(0𝑑)G′0 G′1 of 𝑇 ′′, which can be done in a non-ambiguous way.

Lemma 5.2.12. If a substring of 𝑇 can be derived from 𝑃 , then there are two vectors
𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 that are orthogonal.

Proof. Notice that 𝑃 starts and ends with G1 and that this vector gadget does not
appear anywhere else in the pattern. G1 contains 𝑑/2 patterns [𝑦8]+. This means
that it must map to a substring of 𝑇 containing 𝑑/2 substrings consisting of only
symbols 𝑦 of length divisible by 8. The text 𝑇 contains vector gadgets G′1 that has
substrings of symbols 𝑦 of length divisible by 8. No other vector gadget in 𝑇 has this
property. Therefore, both vector gadgets G1 of 𝑃 must map to G′1 in 𝑇 . Consider G1

at the beginning of 𝑃 . Suppose that it maps to G′1 that comes from the 𝑟-th group
of 𝑇 , for some 𝑟. The pattern 𝑃 contains 2𝑀 vector gadgets G0. Each one of them
starts with [𝑥4 𝑦4]+. In the proof of Lemma 5.2.11 we transform [𝑥4 𝑦4]+ into 𝑥4 𝑦4 so
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that G0 maps to a single corresponding vector gadget in 𝑇 or we transform [𝑥4 𝑦4]+

into (𝑥4 𝑦4)2+𝑑/2 so that G0 maps to two vector gadgets in 𝑇 . Here we consider the
first copy 𝑉 of the vector gadget G0 of 𝑃 such that the corresponding [𝑥4 𝑦4]+ does
not map to (𝑥4 𝑦4)2+𝑑/2. If there is no such a vector gadget, we can check that the
𝑗-th group of 𝑃 must be transformed into the (𝑗 + 𝑟)-th group of 𝑇 for all 𝑡 ∈ [𝑀 ].
That means that the suffix G(1𝑑)G(1𝑑)G1 of 𝑃 must be transformed into the prefix
of the (𝑀 + 𝑟+1)-st group of 𝑇 . This implies that G1 is transformed into G′(𝑏𝑀+𝑟+1),
which is impossible by the construction of the vector gadgets. Therefore, there must
be vector gadget 𝑉 with the stated properties.

Suppose that 𝑉 comes from the 𝑖-th group in 𝑃 . For all vector gadgets of type
G0 to the left of 𝑉 , the prefix [𝑥4 𝑦4]+ got mapped to (𝑥4 𝑦4)2+𝑑/2. This means that
group 𝑘 = 1, . . . , 𝑖− 1 of 𝑃 is transformed into the group 𝑘 + 𝑟 of 𝑇 . There are two
cases to consider, depending on whether 𝑉 comes before or after the vector gadget
G(𝑎𝑖) in the group 𝑖 of 𝑃 .

Case 1: 𝑉 comes after G(𝑎𝑖). We show that this case cannot occur. We start
by observing that G(𝑎𝑖) maps to G′(0𝑑). The sequence [𝑥4 𝑦4]+ in 𝑉 cannot map to
3+𝑑/2 or more copies of 𝑥4 𝑦4 because it would imply that the first substring 𝑥 (𝑦)8 of
G′1 can be derived from [𝑥4 𝑦4]+, which is impossible. It follows that [𝑥4 𝑦4]+ maps to
1+𝑑/2 or fewer copies of 𝑥4 𝑦4. Note that 𝑉 is followed by G(1𝑑) and G(1𝑑) starts with
[𝑥4]+ [𝑦4]+. This means that [𝑥4 𝑦4]+ of 𝑉 must map to only one copy of 𝑥4 𝑦4 (i.e.,
G0 is mapped to G′0), so that [𝑥4]+ [𝑦4]+ at the beginning of G(1𝑑) can map to 𝑥4 𝑦4

at the beginning of G′1. This in turn implies that G(1𝑑) must be transformed into a
suffix of G′1, which is again impossible since G′1 contain a single symbol 𝑥 surrounded
by symbols 𝑦 on both sides and the regular expression G(1𝑑) cannot produce such a
substring. Thus, this case (Case 1) cannot occur.

Case 2: 𝑉 comes before G(𝑎𝑖). The argument is similar to the previous paragraph
except we will conclude that 𝑎𝑖 · 𝑏𝑖+𝑟 = 0. Similarly as before, we can conclude that
[𝑥4 𝑦4]+ in 𝑉 cannot be mapped to 3 + 𝑑/2 or more copies of 𝑥4 𝑦4. This is because
G′(𝑏𝑖+𝑟) starts with 𝑥4 𝑦4 CG′(𝑏𝑖+𝑟

1 , 1) and, if [𝑥4 𝑦4]+ in 𝑉 was mapped to 3 + 𝑑/2
or more copies of 𝑥4 𝑦4, CG′(𝑏𝑖+𝑟

1 , 1) would be a prefix of a sequence that can be
derived from [𝑥4 𝑦4]+. We can verify that it is impossible. Assume that [𝑥4 𝑦4]+ maps
to 1 + 𝑑/2 or fewer copies of 𝑥4 𝑦4. Because G(𝑎𝑖) starts with [𝑥4]+ [𝑦4]+, we have
that G(𝑎𝑖) is transformed into G′(𝑏𝑖+𝑟). This is possible only if 𝑎𝑖 · 𝑏𝑖+𝑟 = 0 by the
construction of the coordinate gadgets.

5.2.5 Hardness for type “∘|∘”
Theorem 5.2.13. Given sets 𝐴 , {𝑎1, . . . , 𝑎𝑀} ⊆ {0, 1}𝑑 and 𝐵 , {𝑏1, . . . , 𝑏𝑁} ⊆
{0, 1}𝑑 with 𝑀 ≤ 𝑁 , we can construct a regular expression 𝑃 and a sequence of
symbols 𝑇 , in 𝑂(𝑁𝑑) time, such that a substring of 𝑇 can be derived from 𝑃 if and
only if there are 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 such that 𝑎 · 𝑏 = 0. Furthermore, 𝑃 is of type “∘|∘”,
|𝑃 | ≤ 𝑂(𝑀𝑑) and |𝑇 | ≤ 𝑂(𝑁𝑑).
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Proof. We will modify the construction for type “∘+∘” so that it gives a hardness
proof for type “∘|∘”. The text 𝑇 remains the same. We will modify pattern 𝑃 as
follows. First, recall that 𝑃 is a repeated concatenation of regular expressions of the
form [𝑥]+, [𝑥 𝑥]+, [𝑦]+, [𝑦 𝑦]+, [𝑥4]+, [𝑦4]+, [𝑥4 𝑦4]+, [𝑦8]+ in some order. In the proof of
Lemma 5.2.11, all of those sequences get repeated at most 8 times, except for the
sequence 𝑥4 𝑦4 which gets repeated once or 2 + 𝑑/2 times. Therefore, we replace [𝑆]+

with [𝑆 |𝑆2 |𝑆3 |𝑆4 |𝑆5 |𝑆6 |𝑆7 |𝑆8] for all 𝑆, except when 𝑆 = 𝑥4 𝑦4. In the latter
case we replace [𝑥4 𝑦4]+ with [𝑥4 𝑦4 | (𝑥4 𝑦4)2+𝑑/2]. The proof of Lemma 5.2.11 goes
through as before. The proof of Lemma 5.2.12 also goes through because, after these
modifications, if a sequence can be derived from the modified pattern, it can be also
derived from the original pattern.

5.2.6 Hardness for type “∘+|”
Theorem 5.2.14. Given sets 𝐴 , {𝑎1, . . . , 𝑎𝑀} ⊆ {0, 1}𝑑 and 𝐵 , {𝑏1, . . . , 𝑏𝑁} ⊆
{0, 1}𝑑 with 𝑀 ≤ 𝑁 , we can construct a regular expression 𝑃 and a sequence of
symbols 𝑇 , in 𝑂(𝑁𝑑) time, such that a substring of 𝑇 can be derived from 𝑃 if and
only if there are 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 such that 𝑎 · 𝑏 = 0. Furthermore, 𝑃 has type “∘+|”,
|𝑃 | ≤ 𝑂(𝑀𝑑) and |𝑇 | ≤ 𝑂(𝑁𝑑).

Proof. Without loss of generality 𝑀 = 0 (mod 2) and 𝑑 = 0 (mod 2). Also, if there
are two orthogonal vectors, then there are 𝑎𝑖 ∈ 𝐴, 𝑏𝑗 ∈ 𝐵 with 𝑎𝑖 · 𝑏𝑗 = 0 and
𝑖 = 𝑗 (mod 2).

First, we will construct our pattern. We need the following coordinate gadget
construction. For integers 𝑣 ∈ {0, 1} and 𝑖 ∈ [𝑑] define

CG(𝑣, 𝑖) ,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[𝑥 | 𝑦 | 0 | 1]+ if 𝑣 = 0 and 𝑖 = 1 (mod 2);

[𝑥 | 𝑦 | 0]+ if 𝑣 = 1 and 𝑖 = 1 (mod 2);

[𝑥 | 𝑦 | 0′ | 1′]+ if 𝑣 = 0 and 𝑖 = 0 (mod 2);

[𝑥 | 𝑦 | 0′]+ if 𝑣 = 1 and 𝑖 = 0 (mod 2).

For a vector 𝑎 ∈ {0, 1}𝑑, we define pattern vector gadget G(𝑎) as concatenation of all
coordinate gadgets for entries of the vector:

G(𝑎) , CG(𝑎1, 1)CG(𝑎2, 2)CG(𝑎3, 3) . . . CG(𝑎𝑑, 𝑑).

We also need another vector gadget

G0 , ([0|1]+ [0′|1′]+)𝑑/2,

that is, G0 is equal to the vector gadget G(0𝑑) except it cannot produce symbols 𝑥
and 𝑦. Our pattern 𝑃 is then defined as follows:

𝑃 , 𝑥+
(︀
○𝑖∈[𝑀 ]

(︀
G0 [𝑥|𝑦]+ G(𝑎𝑖) [𝑥|𝑦]+

)︀)︀
G0 𝑥+.

Now we construct our text 𝑇 . First, for a vector 𝑏 ∈ {0, 1}𝑑, we define text vector
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gadget
G′(𝑏) , 𝑏1 𝑏

′
2 𝑏3 𝑏

′
4 𝑏5 . . . 𝑏′𝑑,

that is, it is concatenation of all entries and we add ′ for every second entry. Note
that we can derive G′(𝑏) from G(𝑎) if and only if 𝑎 · 𝑏 = 0. Also, we can derive G′(𝑏)
from G0 for any 𝑏. Our text 𝑇 is defined as

𝑇 , ○10𝑁
𝑗=−9𝑁

(︀
𝑥𝑑+10 G′(𝑏2𝑗) 𝑦𝑑+10 G′(𝑏2𝑗+1)

)︀
,

where, for 𝑗 ̸∈ [𝑁 ], we set 𝑏𝑗 , 1𝑑 (vector consisting of 1s only).
We need to show that we can derive a substring of 𝑇 from 𝑃 if and only if there

are two orthogonal vectors. This follows from Lemmas 5.2.15 and 5.2.16 below.

Lemma 5.2.15. If there are two vectors 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 that are orthogonal, then
a substring of 𝑇 can be derived from 𝑃 .

Proof. We assume that 𝑎𝑘 ·𝑏𝑘 = 0 for some 𝑘 ∈ [𝑀 ]. In the general case when 𝑎𝑘 ·𝑏𝑟 = 0
for 𝑘 ∈ [𝑀 ], 𝑟 ∈ [𝑁 ] and 𝑘 = 𝑟 (mod 2), the proof is analogous. Furthermore, we
assume that 𝑘 = 1 (mod 2) (the case 𝑘 = 0 (mod 2) is analogous).

We transform 𝑃 into the following substring 𝑇 ′ of 𝑇 :

𝑇 ′ , 𝑥G′(𝑏0) 𝑦𝑑+10 G′(𝑏1)𝑥𝑑+10 G′(𝑏2) 𝑦𝑑+10 G′(𝑏3)𝑥𝑑+10 G′(𝑏4) 𝑦𝑑+10 G′(𝑏5)𝑥𝑑+10

. . . 𝑥𝑑+10 G′(𝑏𝑀) 𝑦𝑑+10 G′(𝑏𝑀+1)𝑥.

Note that 𝑇 ′ starts and ends with 𝑥, because 𝑀 = 0 (mod 2).
To show how to transform 𝑃 into 𝑇 ′, it is helpful to write pattern 𝑃 as 𝑃 = 𝑃 ′′ 𝑃 ′′′,

where

𝑃 ′′ , 𝑥+ G0 [𝑥|𝑦]+ G(𝑎1) [𝑥|𝑦]+ G0 [𝑥|𝑦]+ G(𝑎2) [𝑥|𝑦]+ . . . G(𝑎𝑘−1) [𝑥|𝑦]+ G0,

𝑃 ′′′ , [𝑥|𝑦]+ G(𝑎𝑘) [𝑥|𝑦]+ G0 [𝑥|𝑦]+ G(𝑎𝑘+1) [𝑥|𝑦]+ G0 . . . G0 [𝑥|𝑦]+ G(𝑎𝑀) [𝑥|𝑦]+ G0 𝑥
+

and text 𝑇 as 𝑇 = 𝑇 ′′ 𝑇 ′′′, where

𝑇 ′′ , 𝑥G′(𝑏0) 𝑦𝑑+10 G′(𝑏1)𝑥𝑑+10 G′(𝑏2) 𝑦𝑑+10 G′(𝑏3)𝑥𝑑+10 G′(𝑏4)
. . . G′(𝑏𝑘−3) 𝑦𝑑+10 G′(𝑏𝑘−2)𝑥𝑑+10 G′(𝑏𝑘−1),

𝑇 ′′′ , 𝑦𝑑+10 G′(𝑏𝑘)𝑥𝑑+10 G′(𝑏𝑘+1) 𝑦𝑑+10 G′(𝑏𝑘+2)𝑥𝑑+10 G′(𝑏𝑘+3) 𝑦𝑑+10 G′(𝑏𝑘+4)𝑥𝑑+10

. . . 𝑥𝑑+10 G′(𝑏𝑀) 𝑦𝑑+10 G′(𝑏𝑀+1)𝑥.

Now we transform 𝑃 into 𝑇 in two steps—transform 𝑃 ′′ into 𝑇 ′′ and 𝑃 ′′′ into 𝑇 ′′′.

Transform 𝑃 ′′ into 𝑇 ′′. 𝑃 ′′ starts with 𝑥+, which we transform into 𝑥. For the
rest of 𝑃 ′′, we make transformations according to the following rules. We make
transformations starting from the beginning of 𝑃 ′′. If we see G0, we transform it into
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the corresponding G′(𝑏𝑗). If we see [𝑥|𝑦]+, we transform it into 𝑥5 or 𝑦5 (according to
which symbols are in the corresponding positions in 𝑇 ′′). If we see G(𝑎𝑖), we transform
it into 𝑥𝑑 or 𝑦𝑑 (according to which symbols are in the corresponding positions in 𝑇 ′′).

Transform 𝑃 ′′′ into 𝑇 ′′′. Notice that 𝑇 ′′′ starts with 𝑦. This is because 𝑘 =
1 (mod 2). Now we make the following 3 transformations to the prefix of 𝑃 ′′′: trans-
form [𝑥|𝑦]+ into 𝑦𝑑+10, G(𝑎𝑘) into G′(𝑏𝑘) (we can do this because 𝑎𝑘 ·𝑏𝑘 = 0) and [𝑥|𝑦]+
into 𝑥𝑑+10. Now we transform the rest of 𝑃 ′′′ into the remainder of 𝑇 ′′′. We do that
starting from the beginning of the remainder of 𝑃 ′′′. If we see G0, we transform it into
the corresponding G′(𝑏𝑗). If we see [𝑥|𝑦]+, we transform it into 𝑥5 or 𝑦5 (depending on
which symbols are in the corresponding positions in 𝑇 ). If we see G(𝑎𝑖), we transform
it into 𝑥𝑑 or 𝑦𝑑 (depending on which symbols are in the corresponding positions in
𝑇 ). Finally, to finish the transformation, we transform 𝑥+ into 𝑥.

Lemma 5.2.16. If a substring of 𝑇 can be derived from 𝑃 , then there are two
orthogonal vectors.

Proof. Recall that the pattern 𝑃 consists of 𝑀 + 1 vector gadgets G0. We enumerate
the gadgets with integers 0, 1, 2, 3, . . . ,𝑀 . Each of them consists of 𝑑 symbols from
the alphabet {0, 1, 0′, 1′}. Therefore, by the construction of 𝑇 , it must be the case that
every vector gadget G0 transforms into G′(𝑏𝑗) for some 𝑗. Assume that the 0-th G0

transforms into G′(𝑏0). If it transforms into G′(𝑏𝑗) for some other 𝑗 and 𝑗 = 0 (mod 2),
the proof is analogous. The modularity constraint on 𝑗 holds because 𝑃 starts with
𝑥 and the symbol 𝑥 must precede G′(𝑏𝑗). We consider two cases below:

Case 1. There exists 𝑡 ∈ {0, 1, 2, . . . ,𝑀} such that the 𝑡-th G0 is not transformed
into G′(𝑏𝑡). Pick smallest such 𝑡. This means that G′(𝑏𝑡) has been derived from G(𝑎𝑡).
From the construction of G(𝑎𝑡) and G′(𝑏𝑡), we conclude that 𝑎𝑡 · 𝑏𝑡 = 0.

Case 2. For every 𝑡 ∈ {0, 1, 2, . . . ,𝑀}, the 𝑡-th G0 is transformed into G′(𝑏𝑡). Con-
sider the 𝑀 -th vector gadget G0. It is transformed into G′(𝑏𝑀). The 𝑀 -th vector
gadget G0 is followed by 𝑥+ and G′(𝑏𝑀) is followed by 𝑦. This means that we cannot
derive this substring of 𝑇 from 𝑃 . Thus, this case (Case 2) cannot happen.

5.2.7 Hardness for type “∘|+”

Theorem 5.2.17. Given sets 𝐴 , {𝑎1, . . . , 𝑎𝑀} ⊆ {0, 1}𝑑 and 𝐵 , {𝑏1, . . . , 𝑏𝑁} ⊆
{0, 1}𝑑 with 𝑀 ≤ 𝑁 , we can construct a regular expression 𝑃 and a sequence of
symbols 𝑇 , in 𝑂(𝑁𝑑) time, such that a substring of 𝑇 can be derived from 𝑃 if and
only if there are 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 such that 𝑎 · 𝑏 = 0. Furthermore, 𝑃 has type “∘|+”,
|𝑃 | ≤ 𝑂(𝑀𝑑) and |𝑇 | ≤ 𝑂(𝑁𝑑).

Proof. We will modify the construction for “∘+|” so that it gives the hardness proof
for “∘|+”. Whenever we have a regular expression in 𝑃 of the form [𝑠1|𝑠2|𝑠3| . . . |𝑠𝑙]+
for 𝑙 ≥ 1 symbols 𝑠1, 𝑠2, . . . , 𝑠𝑙, we replace it with [𝑠+1 |𝑠+2 |𝑠+3 | . . . |𝑠+𝑙 ]. Let 𝑃 ′ be the new
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regular expression that we obtain this way. The text 𝑇 remains unchanged. Observe
that, if we can derive some sequence 𝑆 from 𝑃 ′, we were able to derive 𝑆 from 𝑃
as well. Because of this, if a subsequence of 𝑇 can be derived from 𝑃 , then we can
conclude that there are two orthogonal vectors between 𝐴 and 𝐵. It remains to show
that, if there are two orthogonal vectors, then a subsequence of 𝑇 can be derived from
𝑃 ′. This follows from the proof of Lemma 5.2.15. In particular, we observe that in the
proof of Lemma 5.2.15, if we derive a sequence from [𝑠1|𝑠2|𝑠3| . . . |𝑠𝑙]+, such sequence
is of the form 𝑠𝑗𝑖 for some 𝑗 ≥ 1 and 𝑖 ∈ [𝑙].

5.3 Reductions for the membership problem

5.3.1 Hardness for type “∘*”
Theorem 5.3.1. Given sets 𝐴 , {𝑎1, . . . , 𝑎𝑁} ⊆ {0, 1}𝑑 and 𝐵 , {𝑏1, . . . , 𝑏𝑁} ⊆
{0, 1}𝑑, we can construct a regular expression 𝑃 and a sequence of symbols 𝑇 , in
𝑂(𝑁𝑑) time, such that 𝑇 can be derived from 𝑃 if and only if there are 𝑎 ∈ 𝐴 and
𝑏 ∈ 𝐵 such that 𝑎 · 𝑏 = 0. Furthermore, 𝑃 is of type “∘*”, |𝑃 |, |𝑇 | ≤ 𝑂(𝑁𝑑).

Proof. We slightly modify the construction from Theorem 5.2.7. We instantiate the
construction from Theorem 5.2.7 with 𝑀 = 𝑁 . We obtain a pattern 𝑃 ′ and a text
𝑇 such that a substring of 𝑇 can be derived from 𝑃 ′ if and only if there are two
orthogonal vectors. We define the pattern 𝑃 as follows:

𝑃 ,
(︁
○|𝑇 |𝑗=1(𝑥

* 𝑦*)
)︁
∘ 𝑃 ′ ∘

(︁
○|𝑇 |𝑗=1(𝑥

* 𝑦*)
)︁
.

We claim that 𝑇 can be derived from 𝑃 if and only if there are two orthogonal vectors.
This follows from the construction of 𝑃 and Theorem 5.2.7. We know that a substring
of 𝑇 can be derived from 𝑃 ′ if and only if there are two orthogonal vectors. The
expressions ○|𝑇 |𝑗=1(𝑥

* 𝑦*) allow us to derive the remaining prefix and suffix of 𝑇 .

5.3.2 Hardness for type “∘+∘”
Theorem 5.3.2. Given sets 𝐴 , {𝑎1, . . . , 𝑎𝑁} ⊆ {0, 1}𝑑 and 𝐵 , {𝑏1, . . . , 𝑏𝑁} ⊆
{0, 1}𝑑, we can construct a regular expression 𝑃 and a sequence of symbols 𝑇 , in
𝑂(𝑁𝑑) time, such that 𝑇 can be derived from 𝑃 if and only if there are 𝑎 ∈ 𝐴 and
𝑏 ∈ 𝐵 such that 𝑎 · 𝑏 = 0. Furthermore, 𝑃 is a concatenation of “+” of sequences,
|𝑃 |, |𝑇 | ≤ 𝑂(𝑁𝑑).

Proof. We will adapt the construction from Theorem 5.2.10. We instantiate the
construction from Theorem 5.2.10 with 𝑀 = 𝑁 . We obtain a pattern 𝑃 ′ and a text
𝑇 such that a substring of 𝑇 can be derived from 𝑃 ′ if and only if there are two
orthogonal vectors. The final pattern 𝑃 , 𝑃1 ∘ 𝑃 ′ ∘ 𝑃2 is a concatenation of three
expressions 𝑃1, 𝑃

′, 𝑃2. Each one of the expressions 𝑃1, 𝑃
′ and 𝑃2 is a concatenation of

“+” of sequences. Clearly, if 𝑇 can be derived from 𝑃 , then a substring of 𝑇 can be
derived from 𝑃 ′. By the statement of Theorem 5.2.10, there must be two orthogonal
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vectors in this case. Therefore, our goal is to construct 𝑃1 and 𝑃2 such that the text
𝑇 can be derived from 𝑃 = 𝑃1 ∘ 𝑃 ′ ∘ 𝑃2 if there are two orthogonal vectors. In the
rest of the proof we achieve this goal.

If there are two orthogonal vectors, then by the proof of Theorem 5.2.10, the text

𝑇 = ○6𝑁
𝑗=−5𝑁

(︀
G′(0𝑑)G′0 G′(𝑏𝑗)G′(0𝑑)G′0 G′1

)︀
can be written as 𝑇 = 𝑇1 𝑇2 𝑇

′ 𝑇3 𝑇4, where the sequences 𝑇1, 𝑇2, 𝑇
′, 𝑇3 and 𝑇4 have

the following properties.

∙
𝑇1 , ○𝑤−𝑁

𝑗=−5𝑁 (G′(0𝑑)G′0 G′(1𝑑)G′(0𝑑)G′0 G′1) .

∙

𝑇2 ,
(︀
○𝑤−1

𝑗=𝑤−𝑁+1

(︀
G′(0𝑑)G′0 G′(𝑏𝑗)G′(0𝑑)G′0 G′1

)︀)︀
∘ G′(0𝑑)G′0 G′(𝑏𝑤)G′(0𝑑)G′0.

∙
𝑇 ′ , G′1 ○𝑁+𝑤

𝑗=1+𝑤

(︀
G′(0𝑑)G′0 G′(𝑏𝑗)G′(0𝑑)G′0 G′1

)︀
for some 𝑤 ∈ {1−𝑁, . . . , 𝑁 − 1} and 𝑡′ can be derived from 𝑝′.

∙
𝑇3 , ○𝑤+2𝑁−1

𝑗=𝑁+𝑤+1

(︀
G′(0𝑑)G′0 G′(𝑏𝑗)G′(0𝑑)G′0 G′1

)︀
.

∙
𝑇4 , ○6𝑁

𝑗=𝑤+2𝑁 (G′(0𝑑)G′0 G′(1𝑑)G′(0𝑑)G′0 G′1) .

Our goal is to construct expressions 𝑃1 and 𝑃2 such that 𝑇1 𝑇2 can be derived from
𝑃1 (independently of the value 𝑤) and 𝑇3 𝑇4 can be derived from 𝑃2 (independently
of the value 𝑤). We construct 𝑃1 and 𝑃2 as follows.

∙ We note that the expression

𝑃 , ○𝑁
𝑗=1 (G

′(0𝑑)G′0 G′(1𝑑)G′(0𝑑)G′0 G′1)
+

can derive the sequence 𝑇1 independently of the value 𝑤. Let 𝑆 be an arbitrary
sequence of symbols 𝑥 and 𝑦. As long as there are two neighboring symbols 𝑥
(𝑦, resp.), we replace those two symbols by one copy of symbol 𝑥 (𝑦, resp.). Let
𝑆 ′ be the resulting sequence. We define the expression 𝑓(𝑆) as follows:

𝑓(𝑆) , ○|𝑆
′|

𝑗=1(𝑆
′
𝑗)

+.

That is, in the expressions 𝑓(𝑆) we allow to repeat any symbol in 𝑆 ′ one or
more times. Note that 𝑓(𝑇2) can derive 𝑇2 independently of the value 𝑤 and
that 𝑓(𝑇2) does not depend on vectors 𝑏𝑗. This implies that the expression
𝑃1 , 𝑃 ∘ 𝑓(𝑇2) can derive 𝑇1 𝑇2 which is what we needed.
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∙ We define 𝑃2 , 𝑓(𝑇3) ∘ 𝑃 . We can check that 𝑓(𝑇3) and 𝑃 do not depend on
the value 𝑤 and vectors 𝑏𝑗. We can also check that we can derive 𝑇3 𝑇4 from 𝑃2.

5.3.3 Hardness for type “∘|∘”
Theorem 5.3.3. Given sets 𝐴 , {𝑎1, . . . , 𝑎𝑁} ⊆ {0, 1}𝑑 and 𝐵 , {𝑏1, . . . , 𝑏𝑁} ⊆
{0, 1}𝑑, we can construct a regular expression 𝑃 ′′ and a sequence of symbols 𝑇 , in
𝑂(𝑁𝑑) time, such that 𝑇 can be derived from 𝑃 ′′ if and only if there are 𝑎 ∈ 𝐴 and
𝑏 ∈ 𝐵 such that 𝑎 · 𝑏 = 0. Furthermore, 𝑃 ′′ is of type “∘|∘”, |𝑃 ′′|, |𝑇 | ≤ 𝑂(𝑁𝑑).

Proof. We will modify the construction for “∘+∘” (Theorem 5.3.2) so that it gives a
hardness proof for “∘|∘”. The text 𝑇 remains the same. We will modify pattern 𝑃
as follows. First, recall that 𝑃 = 𝑃1 ∘ 𝑃 ′ ∘ 𝑃2. We transform 𝑃 into an expression of
type “∘|∘” in two steps.

∙ We transform 𝑃 ′ into a sequence of type “∘|∘” in the same way as it is done in
the proof of Theorem 5.2.13.

∙ Expressions 𝑃1 and 𝑃2 are repeated concatenations of expressions

[𝑥]+, [𝑦]+, [G′(0𝑑)G′0 G′(1𝑑)G′(0𝑑)G′0 G′1]
+
.

In the proof of Theorem 5.3.2 we can repeat each one of argument expressions

𝑥, 𝑦, G′(0𝑑)G′0 G′(1𝑑)G′(0𝑑)G′0 G′1

at most 8 times so that we are still able to derive sequences 𝑇1 𝑇2 and 𝑇3 𝑇4 from
𝑃1 and 𝑃2, respectively. Thus, we replace [𝑆]+ by [𝑆 |𝑆2 |𝑆3 |𝑆4 |𝑆5 |𝑆6 |𝑆7 |𝑆8]
for each

𝑆 = 𝑥, 𝑦, G′(0𝑑)G′0 G′(1𝑑)G′(0𝑑)G′0 G′1
in 𝑃1 and 𝑃2.

Let 𝑃 ′′ be the resulting expression. If the sequence 𝑇 can be derived from 𝑃 , it can
still be derived from 𝑃 ′′. This follows from Theorem 5.2.13 and the construction of
𝑇 . It remains to argue that if 𝑇 cannot be derived from 𝑃 , then it cannot be derived
from 𝑃 ′′. This is true by the transformation above and Theorem 5.2.13.

5.3.4 Hardness for type “∘+|”
Theorem 5.3.4. Given sets 𝐴 , {𝑎1, . . . , 𝑎𝑀} ⊆ {0, 1}𝑑 and 𝐵 , {𝑏1, . . . , 𝑏𝑁} ⊆
{0, 1}𝑑 with 𝑀 ≤ 𝑁 , we can construct a regular expression 𝑃 and a sequence of
symbols 𝑇 , in 𝑂(𝑁𝑑) time, such that 𝑇 can be derived from 𝑃 if and only if there are
𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 such that 𝑎 · 𝑏 = 0. Furthermore, 𝑃 has type “∘+|”, |𝑃 | ≤ 𝑂(𝑀𝑑)
and |𝑇 | ≤ 𝑂(𝑁𝑑).
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Proof. We adapt the hardness proof from Theorem 5.2.14. We instantiate the con-
struction from Theorem 5.2.14 and we obtain a pattern 𝑃 ′ and a text 𝑇 such that a
substring of 𝑇 can be derived from 𝑃 ′ if and only if there are two orthogonal vectors.
We define the new pattern 𝑃 as follows:

𝑃 , [0 | 1 | 0′ | 1′ |𝑥 | 𝑦]+ ∘ 𝑃 ′ ∘ [0 | 1 | 0′ | 1′ |𝑥 | 𝑦]+.

We claim that 𝑇 can be derived from 𝑃 if and only if there are two orthogonal
vectors. If 𝑇 can be derived from 𝑃 , then a substring of 𝑇 can be derived from 𝑃 ′

and by Theorem 5.2.14 there are two orthogonal vectors. Conversely, if there are two
orthogonal vectors then by Theorem 5.2.14 we can derive a substring of 𝑇 from 𝑃 ′. We
derive the remaining prefix and suffix of 𝑇 from the expressions [0 | 1 | 0′ | 1′ |𝑥 | 𝑦]+.

5.3.5 Hardness for type “∘|+”

Theorem 5.3.5. Given sets 𝐴 , {𝑎1, . . . , 𝑎𝑁} ⊆ {0, 1}𝑑 and 𝐵 , {𝑏1, . . . , 𝑏𝑁} ⊆
{0, 1}𝑑, we can construct a regular expression 𝑃 and a sequence of symbols 𝑇 , in
𝑂(𝑁𝑑) time, such that 𝑇 can be derived from 𝑃 if and only if there are 𝑎 ∈ 𝐴 and
𝑏 ∈ 𝐵 such that 𝑎 · 𝑏 = 0. Furthermore, 𝑃 has type “∘|+”, |𝑃 |, |𝑇 | ≤ 𝑂(𝑁𝑑).

Proof. We adapt the hardness proof from Theorem 5.2.17. We instantiate the con-
struction from Theorem 5.2.17 with 𝑀 = 𝑁 . We obtain a pattern 𝑃 ′ and a text
𝑇 such that a substring of 𝑇 can be derived from 𝑃 ′ if and only if there are two
orthogonal vectors. From the proof of Theorem 5.2.14 we have that

𝑇 = ○10𝑁
𝑗=−9𝑁

(︀
𝑥𝑑+10 G′(𝑏2𝑗) 𝑦𝑑+10 G′(𝑏2𝑗+1)

)︀
.

Let 𝑘 , |𝑥𝑑+10 G′(𝑏2𝑗) 𝑦𝑑+10 G′(𝑏2𝑗+1)| be the length of the sequence 𝑥𝑑+10 G′(𝑏2𝑗) 𝑦𝑑+10

G′(𝑏2𝑗+1). Notice that 𝑘 does not depend on 𝑗. Our new sequence 𝑃 is constructed
as follows:

𝑃 ,
(︀
○7𝑁𝑘

𝑗=1 [0
+ | 1+ | [0′]+ | [1′]+ |𝑥+ | 𝑦+]

)︀
∘ 𝑃 ′ ∘ ○7𝑁𝑘

𝑗=1 [0
+ | 1+ | [0′]+ | [1′]+ |𝑥+ | 𝑦+].

If 𝑇 can be derived from 𝑃 , then a substring of 𝑇 can be derived from 𝑃 ′ and
by Theorem 5.2.17 there are two orthogonal vectors. Conversely, if there are two
orthogonal vectors, then we can derive a substring of 𝑇 from 𝑃 ′. We can easily
check that we can derive the remaining prefix and suffix of 𝑇 from the expressions
○7𝑁𝑘

𝑗=1 [0
+ | 1+ | [0′]+ | [1′]+ |𝑥+ | 𝑦+].
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5.4 Algorithms

5.4.1 Algorithm for the word break problem

Word break problem. Given a binary sequence 𝑇 of length 𝑛 , |𝑇 | and a collec-
tion of binary4 sequences 𝑃 with total length 𝑚 ,

∑︀
𝑃 ′∈𝑃 |𝑃 ′|, decide if the sequence

𝑇 can be written as a concatenation 𝑇 = 𝑇1 . . . 𝑇𝑘 such that 𝑇𝑖 ∈ 𝑃 for every 𝑖 ∈ [𝑘].
If 𝑇 can be written in such a way, we call 𝑇 decomposable.

We will solve this problem in time �̃�(𝑛𝑚0.4444...) = �̃�
(︀
𝑛𝑚0.5−1/18

)︀
. The runtime

has been further improved to �̃�(𝑛𝑚1/3) in a follow-up work [BGL17]. They also
provided a matching conditional lower bound for a certain class of algorithms.

As a warm-up, we first solve the problem in time �̃�(𝑛
√
𝑚) and then we present

the �̃�
(︀
𝑛𝑚0.5−1/18

)︀
time algorithm.

�̃�(𝑛
√
𝑚) time algorithm for the word break problem

Let 𝑑(𝑃 ) , {|𝑃 ′| : 𝑃 ′ ∈ 𝑃} be the set of distinct lengths of the pattern sequences
𝑃 ′ ∈ 𝑃 . We will show how to solve the word break problem in time �̃�(𝑛|𝑑(𝑃 )|). Since∑︀

𝑃 ′∈𝑃 |𝑃 ′| = 𝑚, we have that |𝑑(𝑃 )| ≤ 𝑂(
√
𝑚), which implies the upper bound.

We will use the following lemma.

Lemma 5.4.1. We can randomly choose a hash function ℎ : {0, 1}* → N and prepro-
cess 𝑇 in �̃�(𝑛) time so that the following holds:

∙ Given any (contiguous) substring 𝑇 ′ of 𝑇 , we can compute the hash ℎ(𝑇 ′) in
�̃�(1) time.

∙ For any two sequences 𝑇 ′′ ̸= 𝑇 ′ (not necessarily substrings of 𝑇 ), Pr[ℎ(𝑇 ′′) =
ℎ(𝑇 ′)] ≤ 1/𝑛10.

∙ For any sequence 𝑇 ′ (necessarily substring of 𝑇 ), we can compute ℎ(𝑇 ′) in time
�̃�(|𝑇 ′|).

Proof. E.g., use Rabin-Karp rolling hash.

Theorem 5.4.2. The word break problem can be solved in time �̃�(𝑛|𝑑(𝑃 )|).

Proof. Preprocess 𝑇 according to Lemma 5.4.1 and compute ℎ(𝑃 ) , {ℎ(𝑃 ′) : 𝑃 ′ ∈ 𝑃}.
We solve the problem using dynamic programming. We use the table 𝐷 : [𝑛+1] →

{0, 1}. The algorithm determines the values 𝐷(𝑛), 𝐷(𝑛− 1), . . . , 𝐷(1) (in this order).
We set 𝐷(𝑖) = 1 if and only if the sequence 𝑇𝑖 𝑇𝑖+1 . . . 𝑇𝑛 is decomposable.

∙ Set 𝐷(𝑖) = 0 for all 𝑖 = 1, . . . , 𝑛 and set 𝐷(𝑛+ 1) = 1.

∙ For 𝑖 = 𝑛, . . . , 1, set 𝐷(𝑖) = 1 if and only if there exists 𝑗 > 𝑖 such that 𝐷(𝑗) = 1
and (𝑗 − 𝑖) ∈ 𝑑(𝑃 ), and ℎ(𝑇𝑖 . . . 𝑇𝑗−1) ∈ ℎ(𝑃 ).

4Without loss of generality we assume that all sequences are binary. If this is not so, we encode
every symbol of the alphabet using a binary sequence of length ⌈log𝑤⌉ where 𝑤 is the size of the
alphabet. This increases the lengths of the sequences by a logarithmic multiplicative factor.
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∙ Out that 𝑇 is decomposable if and only if 𝐷(1) = 1.

�̃�
(︀
𝑛𝑚0.5−1/18

)︀
time algorithm for the word break problem

Similarly as in the �̃�(𝑛
√
𝑚) time algorithm, we fill out the table 𝐷 : [𝑛+ 1] → {0, 1}:

∙ Set 𝐷(𝑖) = 0 for all 𝑖 = 1, . . . , 𝑛 and set 𝐷(𝑛+ 1) = 1.

∙ For every 𝑖 = 𝑛, . . . , 1 in this order, set 𝐷(𝑖) = 1 if and only if the sequence
𝑇𝑖 𝑇𝑖+1 . . . 𝑇𝑛 is decomposable.

∙ Output that 𝑇 is decomposable if and only if 𝐷(1) = 1.

We will show that the second step can be performed in �̃�(𝑛𝑚0.5−𝛼) time for a suffi-
ciently small constant 𝛼 > 0. We will later show that we can set 𝛼 = 1/18. For now
we can think of 𝛼 > 0 as a sufficiently small constant, say, 𝛼 = 0.01. We will make
the following two assumptions, justified by the next two lemmas.

Lemma 5.4.3. For all 𝑃 ′ ∈ 𝑃 , |𝑃 ′| ≥ 𝑚0.5−𝛼.

Proof. Let 𝑃 , {𝑃 ′ ∈ 𝑃 : |𝑃 ′| < 𝑚0.5−𝛼}. Clearly, we have that |𝑑(𝑃 )| < 𝑚0.5−𝛼.
Therefore, as we perform the second step of the algorithm, for every 𝑖 = 𝑛, . . . , 1, we
set 𝐷(𝑖) = 1 if there exists 𝑗 > 𝑖 with 𝐷[𝑗] = 1 and 𝑇𝑖 . . . 𝑇𝑗−1 ∈ 𝑃 in the same way as
it is done in the proof of Theorem 5.4.2. For every 𝑖 this takes �̃�(|𝑑(𝑃 )|) = �̃�(𝑚0.5−𝛼)
time. Therefore, the total runtime corresponding to processing sequences in 𝑃 is
�̃�(𝑛𝑚0.5−𝛼).

Lemma 5.4.4. For all 𝑃 ′ ∈ 𝑃 , |𝑃 ′| ≤ 𝑚0.5+𝛼.

Proof. Let 𝑃 , {𝑃 ′ ∈ 𝑃 : |𝑃 ′| > 𝑚0.5+𝛼}. Since
∑︀

𝑃 ′∈𝑃 |𝑃 ′| = 𝑚, we have |𝑑(𝑃 )| ≤
|𝑃 | ≤ 𝑚0.5−𝛼. Similarly as in the proof of Lemma 5.4.3 we can set 𝐷(𝑖) = 1 if
there exists 𝑗 > 𝑖 with 𝐷(𝑗) = 1 and 𝑇𝑖 . . . 𝑇𝑗−1 ∈ 𝑃 . Therefore, the total runtime
corresponding to processing sequences in 𝑃 is �̃�(𝑛|𝑃 |) ≤ �̃�(𝑛𝑚0.5−𝛼).

In the rest of the section we will show that the second step of the algorithm can
be implemented in �̃�(𝑛𝑚0.5−𝛼) time if 𝛼 > 0 is a sufficiently small constant. By
Lemmas 5.4.3 and 5.4.4, we can assume that for all 𝑃 ′ ∈ 𝑃 , 𝑚0.5−𝛼 ≤ |𝑃 ′| ≤ 𝑚0.5+𝛼.

We build a tree data structure for 𝑃 . It is a binary tree 𝑡 where each node has
two children. Each node corresponds to a prefix of a sequence in 𝑃 . The root node
corresponds to an empty sequence. If a node 𝑢 corresponds to the sequence 𝑆 and has
two children then one of the children corresponds to the sequence 𝑆 0 (𝑆 followed by 0)
and the other corresponds to the sequence 𝑆 1. If 𝑢 has only one child, it corresponds
to either 𝑆 0 or 𝑆 1. If a node 𝑢 corresponds to a sequence of length 𝑖 ≥ 0, 𝑢 has
depth 𝑖. If a node 𝑢 corresponds to a sequence 𝑃 ′ and 𝑃 ′ ∈ 𝑃 , then we call the node
𝑢 marked. We preprocess 𝑡 in such a way that for any node 𝑢 we have a pointer
to node 𝑣 such that 𝑣 is a marked ancestor of 𝑢 of maximal depth. A node is not
its own ancestor. This data structure can be constructed in 𝑂(𝑚) time. Because∑︀

𝑃 ′∈𝑃 |𝑃 ′| = 𝑚 and for all 𝑃 ′ ∈ 𝑃 , 𝑚0.5−𝛼 ≤ |𝑃 ′|, we have the number of marked
nodes in the tree is upper bounded by |𝑃 | ≤ 𝑚0.5+𝛼.
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Preprocessing of the tree 𝑡. We further preprocess the tree 𝑡 and the sequence 𝑇
such that given any index 𝑖 = 1, . . . , 𝑛, we can answer the following query in �̃�(1) time.
Specifically, the query algorithm outputs the maximal 𝑗 > 𝑖 such that 𝑇𝑖 𝑇𝑖+1 . . . 𝑇𝑗−1
is a prefix of a sequence in 𝑃 , and reports the node 𝑢 corresponding to 𝑇𝑖 𝑇𝑖+1 . . . 𝑇𝑗−1.
We build a data structure that stores the hash values for all non-empty prefixes of all
sequences in 𝑃 and supports lookups in �̃�(1) time. We use Rabin-Karp rolling hash
to compute the hashes. This takes �̃�(𝑚) time. We also preprocess the sequence 𝑇 so
that we can compute Rabin-Karp rolling hash value in �̃�(1) time for every substring.
This takes �̃�(𝑛). The total runtime of the preprocessing steps is �̃�(𝑚 + 𝑛). Given
𝑖, the query algorithm does the binary search to find the largest 𝑗 > 𝑖 such that the
hash of sequence 𝑇𝑖 𝑇𝑖+1 . . . 𝑇𝑗−1 is in the table. Since we can do lookups in the table
in �̃�(1) and there are �̃�(1) binary search steps, and we can compute the rolling hash
value for every substring in �̃�(1) time, we get the required upper bound �̃�(1) on the
query time. We can easily augment the data structure so that we can output the
corresponding node 𝑢 from the tree 𝑡.

For 𝑗 = 1, . . . , 𝑛/𝑚0.5−𝛼 we call the sequence 𝐷(𝑛 − 𝑗𝑚0.5−𝛼 + 1) . . . 𝐷(𝑛 − (𝑗 −
1)𝑚0.5−𝛼) the 𝑗-th chunk of the table 𝐷. We will show how to determine the values
in the 𝑗-th chunk in time �̃�(𝑚1−2𝛼) assuming that we have all values for chunks
with indices smaller than 𝑗. This gives the required upper bound on the runtime
because there are 𝑛/𝑚0.5−𝛼 chunks and �̃�(𝑚1−2𝛼)𝑛/𝑚0.5−𝛼 = �̃�(𝑛𝑚0.5−𝛼). Since for
all 𝑃 ′ ∈ 𝑃 , 𝑚0.5−𝛼 ≤ |𝑃 ′| ≤ 𝑚0.5+𝛼, the only previously computed values of 𝐷 that
are needed to compute the 𝑗-th chunk are:

𝐷(𝑛− (𝑗 − 1)𝑚0.5−𝛼 + 1) . . . 𝐷(𝑛− (𝑗 − 1)𝑚0.5−𝛼 +𝑚0.5+𝛼).

To simplify the notation, we relabel the table 𝐷 by defining the table 𝐷′. Specifically,
we identify 𝐷(𝑛−𝑗𝑚0.5−𝛼+1) . . . 𝐷(𝑛−(𝑗−1)𝑚0.5−𝛼+𝑚0.5+𝛼) with 𝐷′(1) . . . 𝐷′(𝑚0.5−𝛼+
𝑚0.5+𝛼). Thus, our goal is to find the values 𝐷′(1) . . . 𝐷′(𝑚0.5−𝛼) knowing the values
𝐷′(𝑚0.5−𝛼 + 1) . . . 𝐷′(𝑚0.5−𝛼 +𝑚0.5+𝛼). Let 𝑇 ′ be the corresponding substring of 𝑇
of length 𝑚0.5−𝛼 +𝑚0.5+𝛼.

Intuition. Suppose that we want to determine value of 𝐷′(𝑖). We look for the
largest 𝑗 > 𝑖 such that 𝑇 ′𝑖 . . . 𝑇

′
𝑗−1 is in 𝑃 . If 𝐷′(𝑗) = 1, we set 𝐷′(𝑖) = 1 and move

to determine 𝐷′(𝑖− 1). However, it might be that 𝐷′(𝑗) = 0 and there are integers
𝑗′ such that 𝑖 < 𝑗′ < 𝑗 and 𝑇 ′𝑖 . . . 𝑇

′
𝑗′−1 is in 𝑃 . For every such 𝑗′ we have to check

whether 𝐷′(𝑗′) = 1 and set 𝐷′(𝑖) = 1 if this happens. If there are not too many such
𝑗′, we can work through all of them. It might happen that there are many such 𝑗′.
In this case we build a characteristic vector of the set of such 𝑗′s, i.e., set the entry
corresponding to each such 𝑗′ to 1. We then convolve the characteristic vector with 𝐷′.
Although this does not reduce the runtime when working with 𝐷′(𝑖), the saving will
occur in the future if we will need to determine 𝐷′(𝑖′) such that 𝑖′ < 𝑖 and 𝑇 ′𝑖 𝑇

′
𝑖+1 . . .

and 𝑇 ′𝑖′ 𝑇
′
𝑖′+1 . . . share long prefixes. We will make this more precise below.

We determine the unknown values of 𝐷′ in two phases—preprocessing phase and
online phase. In the preprocessing phase we preprocess the known part of 𝐷′ together
with 𝑡 in �̃�(𝑚1−2𝛼) time. In the online phase we determine the unknown values 𝐷′(𝑖)
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for 𝑖 = 𝑚0.5−𝛼, . . . , 1 in this order. We spend time 𝑂(𝑚0.5−𝛼) for every 𝐷′(𝑖).

Preprocessing phase. In the following we will define a subset of the marked nodes
that we call special. Initially the set of special nodes is empty. We will keep the
invariant that if a node is special, then all its marked ancestors are also special. Since
|𝑃 | ≤ 𝑚0.5+𝛼, there are at most 𝑚0.5+𝛼 leaves in the tree 𝑡. Fix an arbitrary ordering
of the leaves and consider the leaves one by one. Let ℓ be the current leaf that we
consider. Let 𝑐 be the number of marked ancestors of ℓ that are not special. We
can determine 𝑐 in time 𝑂(𝑐) because every node in 𝑡 keeps a pointer to the marked
ancestor of maximal depth. We distinguish two cases.

Case 1: 𝑐 > 𝑚0.5−3𝛼. We mark ℓ and all its marked ancestors as special. Since
|𝑃 | ≤ 𝑚0.5+𝛼, the number of marked nodes is at most 𝑚0.5+𝛼. This means that we
happen to be in this case at most 𝑚0.5+𝛼/𝑚0.5−3𝛼 = 𝑚4𝛼 times. Let 𝑑 denote the
depth of the node ℓ. Since for every 𝑃 ′ ∈ 𝑃 , |𝑃 ′| ≤ 𝑚0.5+𝛼, we have that 𝑑 ≤ 𝑚0.5+𝛼.
Let 𝑢0, 𝑢1, . . . , 𝑢𝑑 = ℓ be the nodes on the path from the root of 𝑡 to ℓ. The node 𝑢0 is
the root of 𝑡. Let 𝑙 , 𝑚0.5−𝛼. We define ⌊𝑑/𝑙⌋ binary vectors 𝑟1, . . . , 𝑟⌊𝑑/𝑙⌋ ∈ {0, 1}𝑙 as
follows. For 𝑖 = 1, . . . , ⌊𝑑/𝑙⌋ and 𝑗 = 1, . . . , 𝑙 we set the 𝑗-th entry 𝑟𝑖(𝑗) of the vector
𝑟𝑖 to be equal to 𝑟𝑖(𝑗) = 1 if the node 𝑢(𝑖−1)𝑙+𝑗 is marked and equal to 𝑟𝑖(𝑗) = 0 if the
node is not marked. For every 𝑖 = 1, . . . , ⌊𝑑/𝑙⌋, we compute the convolution between
the binary vector 𝑟𝑖 and the binary vector 𝐷′(𝑚0.5−𝛼 + 1) . . . 𝐷′(𝑚0.5−𝛼 +𝑚0.5+𝛼) in
the following sense. We output a binary vector 𝑐𝑖 with 𝑚0.5−𝛼 +𝑚0.5+𝛼 + 𝑙− 1 entries
such that for 𝑗 = 1, . . . ,𝑚0.5−𝛼 +𝑚0.5+𝛼 + 𝑙 − 1,

𝑐𝑖(𝑗) ,
𝑙∑︁

𝑘=1

(︀
𝑟𝑖(𝑘) ·𝐷′(𝑘 + 𝑗 +𝑚0.5−𝛼 − 𝑙)

)︀
.

When computing 𝑐𝑖(𝑗), if we need to access an entry 𝐷′(𝑧) with 𝑧 ≤ 𝑚0.5−𝛼 or
𝑧 ≥ 𝑚0.5−𝛼 +𝑚0.5+𝛼 + 1, we assume that it is equal to 0. Computing the convolution
𝑐𝑖 for 𝑟𝑖 takes 𝑂(𝑚0.5+𝛼 log𝑚) time using the Fast Fourier Transform. Since we have
to compute the convolution for 𝑖 = 1, . . . , ⌊𝑑/𝑙⌋, in total it takes 𝑂(𝑚0.5+𝛼 log𝑚)𝑑/𝑙 =
𝑂(𝑚0.5+3𝛼 log𝑚) time. Since we happen to be in this case at most 𝑚4𝛼 times, the
total runtime corresponding to this case is bounded by 𝑂(𝑚0.5+7𝛼 log𝑚) = �̃�(𝑚1−2𝛼)
assuming that 𝛼 ≤ 1/18.

Case 2: 𝑐 ≤ 𝑚0.5−3𝛼. In this case we do not do anything. Since there are at
most 𝑚0.5+𝛼 leaves, the total time corresponding to this case is upper bounded by
𝑚0.5+𝛼𝑂(𝑐) ≤ 𝑂(𝑚1−2𝛼) which is what we wanted.

See Figure 5-2 for an example run of the preprocessing phase.
Notice that after the preprocessing phase, the set of marked and special nodes of

𝑡 form a rooted subtree among all marked nodes of 𝑡.

Online phase. We determine the values of 𝐷′(𝑖) for 𝑖 = 𝑚0.5−𝛼, . . . , 1 in this order.
Fix 𝑖 for which we want to determine 𝐷′(𝑖). Let 𝑗 > 𝑖 be the largest integer such that
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Tree 𝑡:

depth 𝑚0.5−𝛼

depth 𝑚0.5+𝛼

ℓ1

ℓ2

ℓ4

ℓ3

Figure 5-2: An example of the preprocessing phase of tree 𝑡 and vector 𝐷′. Each
white circle denotes a marked node that is not special. Each black circle denotes a
marked node that is special. We do not depict the nodes that are not marked. Each
solid line is a sequence of marked or unmarked nodes. Notice that all marked nodes
are at depth at least 𝑚0.5−𝛼 and at most 𝑚0.5+𝛼. The tree has 4 leaves ℓ1, ℓ2, ℓ3, ℓ4.
We process them in order ℓ1, ℓ2, ℓ3, ℓ4:

∙ Leaf ℓ1 has 𝑐 = 5 marked ancestors. We assume that 𝑚0.5−3𝛼 = 5 and therefore
we happen to be in case 𝑐 ≤ 𝑚0.5−3𝛼. We do not make the marked ancestors
special.

∙ Leaf ℓ2 has 𝑐 = 9 marked ancestors. We are in 𝑐 > 𝑚0.5−3𝛼 case and we make
ℓ2 and all marked ancestors of ℓ2 special. We split the path from the root to
ℓ2 into shorter paths of length 𝑙. For every shorter path we construct a binary
characteristic vector where we set entry to be equal to 1 if the corresponding
node is marked. Then we convolve each characteristic vector with binary vector
𝐷′.

∙ Leaf ℓ3 has 𝑐 = 6 marked ancestors that are not special and two marked ancestors
that are special. We are in 𝑐 = 6 > 𝑚0.5−3𝛼 case and we make ℓ3 and all marked
ancestors of ℓ3 special. Then we split the path from the root to ℓ3 into shorter
paths of length 𝑙 and proceed similarly as when processing leaf ℓ2.

∙ Leaf ℓ4 has 𝑐 = 4 marked ancestors. We are in 𝑐 ≤ 𝑚0.5−3𝛼 case and we do not
make any of the marked ancestors special.
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𝑇 ′𝑖 . . . 𝑇
′
𝑗−1 corresponds to a node 𝑢 in tree 𝑡. We find 𝑗 using the query algorithm

described before, in �̃�(1) time. Let 𝑎 be the ancestor of 𝑢 which is marked and special
and whose depth 𝑑 is the largest. Let 𝑐 be the number of marked ancestors of 𝑢 that
are marked but not special. By the preprocessing phase, 𝑐 ≤ 𝑚0.5−3𝛼. For every such
marked ancestor which is not special we want to determine whether the corresponding
entry of 𝐷′ is equal to 1. This takes at most 𝑂(𝑚0.5−3𝛼) total time. If we found such
an entry of 𝐷′ equal to 1, we set 𝐷′(𝑖) = 1 and move to determining the value of
𝐷′(𝑖− 1). By the choice of the node 𝑎, there are at most 𝑙 marked ancestors of 𝑢 that
are special and are of depth more than 𝑑′ , ⌈𝑑/𝑙⌉𝑙. We can determine whether the
corresponding entry of 𝐷′ is equal to 1 for any of those nodes and set 𝐷′(𝑖) = 1 if
this happens. This takes at most 𝑂(𝑙) total time. It remains to consider the marked
ancestors of 𝑢 of depth at most 𝑑′. For this we use the convolutions that we performed
in the preprocessing step. Let 𝑢0, 𝑢1, . . . , 𝑢𝑑′ = 𝑎 be the nodes on the path from the
root of 𝑡 to 𝑙. The node 𝑢0 is the root of 𝑡. Let 𝑟1, . . . , 𝑟𝑑′/𝑙 be the binary vectors of
length 𝑙 constructed as follows. For 𝑘 = 1, . . . , 𝑑′/𝑙 and 𝑗 = 1, . . . , 𝑙 we set the 𝑗-th
entry 𝑟𝑘(𝑗) of the vector 𝑟𝑘 to be equal to 𝑟𝑘(𝑗) = 1 if the node 𝑢(𝑘−1)𝑙+𝑗 is marked
and equal to 𝑟𝑘(𝑗) = 0 if the node is not marked. We want to determine whether
there is a marked node corresponding to an entry equal to 1 in 𝑟𝑘 such that the
corresponding entry in 𝐷′ is equal to 1. We can determine whether this is the case
in 𝑂(1) because this we can check whether the corresponding entry of 𝑐𝑘 is equal to
0 or at least 1. If the entry is at least 1, we set 𝐷′(𝑖) to be equal to 1 and continue
with 𝐷′(𝑖 − 1). We spend 𝑂(1) for each 𝑘 = 1, . . . , 𝑑′/𝑙. The whole process takes
𝑂(𝑑′/𝑙) time. The total runtime spent on computing the value of 𝐷′(𝑖) is bounded by
𝑂(𝑚0.5−3𝛼) +𝑂(𝑙) +𝑂(𝑑′/𝑙) ≤ 𝑂(𝑚0.5−𝛼).

The runtime of the algorithm. We have seen that the runtime of the algorithm
is bounded by �̃�(𝑛𝑚0.5−𝛼) for any constant 0 < 𝛼 ≤ 1/18. We obtain the required
runtime �̃�

(︀
𝑛𝑚0.5−1/18

)︀
by setting 𝛼 = 1/18.

5.4.2 Algorithm for type “∘+”

Theorem 5.4.5. Let 𝑃 be a regular expression of type “∘+” and 𝑇 be a text. In time
𝑂(|𝑃 |+ |𝑇 |) we can reduce the pattern matching problem on 𝑃 and 𝑇 to one instance
of the subset matching problem and one instance of the wildcard matching problem.

Proof. Below we reduce this regular expression pattern matching problem to the
subset matching and to the wildcard matching problems. Then we combine the two
outputs and solve the initial regexp problem.

Reduction to the subset matching problem. We partition the pattern 𝑃 into
substrings of maximal length such that all symbols in each substring are equal, i.e.,
each substrings is a concatenation of copies of 𝑎+ or 𝑎 for a symbol 𝑎. Consider one
particular substring and suppose that it contains 𝑙 copies of 𝑎 or 𝑎+. We replace
this substring with a set {(𝑎, 1), (𝑎, 2), . . . , (𝑎, 𝑙)}. We perform this operation for
every substring of maximal length and concatenate the resulting sets to obtain the

81



pattern 𝑃 ′ for subset matching. Similarly, we partition the text 𝑇 into substrings of
maximal length such that all symbols in each substring are equal. As before, every
such substring of length 𝑙 is replaced with a set {(𝑎, 1), (𝑎, 2), . . . , (𝑎, 𝑙)}. This yields
a text 𝑡′.

Now we run a subset matching algorithm on the pattern 𝑃 ′ and the text 𝑇 ′. For
each position 𝑖 of 𝑇 ′, we find whether 𝑃 ′ matches the substring of 𝑇 ′ that starts at 𝑖.

Reduction to the wildcard matching problem. Similarly as before, we partition
pattern 𝑃 into substrings of maximal length such that all symbols in each substring
are equal, i.e., each substrings is a concatenation of copies of 𝑎+ or 𝑎. There are two
kinds of substrings. If the substring contains only 𝑙 symbols 𝑎 (i.e., there are no 𝑎+s),
we replace this substring with the symbol (𝑎, 𝑙). If the substring has at least one 𝑎+,
we replace it with a wildcard. We concatenate all symbols and wildcards into one
regular expression 𝑃 ′′. If 𝑃 ′′ starts with a symbol, we replace it with a wildcard. Also,
if 𝑃 ′′ ends with a symbol, we replace it with a wildcard. Similarly, we partition the
text 𝑇 into substrings of maximal length such that all symbols in each substring are
equal. We replace each such substring, say 𝑎𝑙, with a symbol (𝑎, 𝑙). The symbols are
concatenated into the text 𝑇 ′′.

Now we run a wildcard matching algorithm on the pattern 𝑃 ′′ and the text 𝑇 ′′.
For each position 𝑖 of 𝑇 ′′, we find whether 𝑃 ′′ matches the substring of 𝑇 ′′ that starts
at 𝑖.

Combining the results. A substring of 𝑇 can be derived from 𝑃 if and only if
there is a position 𝑖 such that two conditions hold: 𝑃 ′ matches a substring of 𝑇 ′

starting at the position 𝑖 and 𝑃 ′′ matches a substring of 𝑇 ′′ starting at position 𝑖.
The first condition (coming from the subset matching instance) ensures that, if we
match 𝑃 to a substring of 𝑇 , the number of appropriate symbols in 𝑇 is at least as
large as in 𝑃 . The second condition (coming from the wildcard matching instance)
ensures that, if 𝑃 contains a maximal substring consisting only of symbols 𝑎 (no 𝑎+s)
for some 𝑎, then the corresponding position in 𝑇 contains exactly the same number
of symbols 𝑎. Notice that we do not need to satisfy this condition if 𝑃 starts or ends
with a maximal substring consisting only of 𝑎s, which is why we start and end 𝑃 ′′

with wildcards.

5.4.3 Algorithms for types “ |*∘” and “ |+∘”
Theorem 5.4.6. Let 𝑃 be a regular expression of type “|*∘” or “|+∘” and 𝑇 be a text.
In time 𝑂(|𝑃 |+ |𝑇 |) we can decide if 𝑇 can be derived from 𝑃 .

Proof. Let 𝑇 ′ , 𝑡 𝑡 be the sequence 𝑇 repeated twice. By [Gus97] (page 196), we can
use the suffix tree and the lowest common ancestor data structures to preprocess the
sequences 𝑇 ′ and 𝑇 in 𝑂(|𝑇 |) time such that the following holds. For any 𝑖 = 1, . . . , |𝑇 |,
we can in constant 𝑂(1) time decide if the substring 𝑇 ′𝑖 𝑇

′
𝑖+1 . . . 𝑇 ′𝑖+|𝑇 |−1 of the sequence

𝑇 ′ of length |𝑇 | is equal to the sequence 𝑇 .
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Let 𝑃 ′ be an arbitrary sequence of non-zero length. We notice that the sequence
𝑇 can be derived from [𝑃 ′]* (or, equivalently, from [𝑃 ′]+ if |𝑇 | > 0) if and only if 𝑃 ′
is a prefix of 𝑇 and the substring 𝑇 ′|𝑃 ′|+1 𝑇

′
|𝑃 ′|+2 . . . 𝑇 ′|𝑃 ′|+|𝑇 | is equal to 𝑇 , and |𝑇 | is

divisible by |𝑃 ′|. We can check the first condition in time 𝑂(|𝑃 ′|) and the second
condition in time 𝑂(1) assuming that we did the preprocessing step.

Let 𝑃 , [𝑃1]
* | [𝑃2]

* | . . . | [𝑃𝑘]
* be the input pattern to the membership problem

for some integer 𝑘 ≥ 1 and sequences 𝑃1, . . . , 𝑃𝑘. We do the preprocessing step on 𝑇 ′

and 𝑇 which takes 𝑂(|𝑇 |). For every 𝑃𝑖, 𝑘 ≥ 𝑖 ≥ 1 we decide in 𝑂(|𝑃𝑖|) time if 𝑇 can
be derived from [𝑃𝑖]

*. This yields the required runtime.
The algorithm for 𝑃 , [𝑃1]

+ | [𝑃2]
+ | . . . | [𝑃𝑘]

+ is the same except we cannot
derive the text 𝑇 if |𝑇 | = 0.

5.4.4 Algorithms for types “ |∘+” and “*∘+”

Theorem 5.4.7. Let 𝑃 be a regular expression of type “|∘+” or “*∘+” and 𝑇 be a
text. In time 𝑂(|𝑃 |+ |𝑇 |) we can decide if 𝑇 can be derived from 𝑃 .

Proof. We do the run-length encoding of 𝑇 defined as follows. Set 𝑇 ′ , 𝑇 and
initialize 𝑅 to be an empty ordered sequence of tuples. While |𝑇 ′| > 0, let 𝑎 be the
first symbol of 𝑇 ′ and let 𝑙 > 0 be the largest integer such that 𝑎𝑙 (the symbol 𝑎
repeated 𝑙 times) is a prefix of 𝑇 ′. Remove the prefix 𝑎𝑙 from 𝑇 ′ and add the tuple
(𝑎, 𝑙) at the end of the ordered sequence 𝑅, and repeat. This takes 𝑂(|𝑇 |) time in
total. Let |𝑅| be the number of tuples in 𝑅.

Type “ |∘+”. Let 𝑃 , 𝑃1 | . . . | 𝑃𝑘 for some integer 𝑘 > 0, where each 𝑃𝑖 is a
concatenation of 𝑎 and 𝑎+ for various symbols 𝑎. We want to decide if there exists an
integer 𝑖 = 1, . . . , 𝑘 such that the text 𝑇 can be derived from the expression 𝑃𝑖. Fix
an arbitrary 𝑖 = 1, . . . , 𝑘. We do the run-length encoding of the expression 𝑃𝑖 and
produce a sequence of tuples 𝑅(𝑃𝑖) defined as follows. Set 𝑃 ′𝑖 , 𝑃𝑖 and 𝑅(𝑃𝑖) to be
an empty sequence of tuples. While |𝑃 ′𝑖 | > 0, choose the largest integer 𝑙 > 0 such
that there exists a prefix of 𝑃 ′𝑖 of form 𝑎𝑎+𝑎+𝑎𝑎 . . . (an arbitrary concatenation of 𝑎
and 𝑎+) for some symbol 𝑎. Let 𝑙′ ≥ 0 be such that the prefix of 𝑃 ′𝑖 has 𝑙′ occurrences
of 𝑎 and 𝑙 − 𝑙′ occurrences of 𝑎+. If 𝑙′ = 𝑙, we add tuple (𝑎,= 𝑙) to the end of the
sequence of tuples 𝑅(𝑃𝑖). Otherwise, if 𝑙′ < 𝑙, we add tuple (𝑎,≥ 𝑙) to the end of the
sequence 𝑅(𝑃𝑖). We delete the prefix of 𝑃 ′𝑖 and repeat (until |𝑃 ′𝑖 | = 0). Let |𝑅(𝑃𝑖)| be
the number of tuples in 𝑅(𝑃𝑖). We can derive 𝑇 from the expression 𝑃𝑖 if and only if
the following two conditions hold:

∙ |𝑅| = |𝑅(𝑃𝑖)|.

∙ For all 𝑗 = 1, . . . , |𝑅|, if 𝑅𝑗 = (𝑎, 𝑙) (the 𝑗-th tuple of 𝑅 is (𝑎, 𝑙)), then 𝑅(𝑃𝑖)𝑗 =
(𝑎,= 𝑙) or 𝑅(𝑃𝑖)𝑗 = (𝑎,≥ 𝑙′) for some integer 𝑙′ ≤ 𝑙.

For every 𝑖 = 1, . . . , 𝑘 this takes 𝑂(|𝑃𝑖|) time and the required upper bound on the
runtime follows.
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Type “*∘+”. We have to consider the case when 𝑃 = [𝑃 ′]* for some regexp 𝑃 ′. We
do the run-length encoding on the sequence 𝑃 ′ and get the sequence of tuples 𝑅(𝑃 ′)
(as described in the case for type “| ∘+”). For every tuple (𝑎,= 𝑙) or (𝑎,≥ 𝑙), let 𝑎 be
its type. Consider two subcases.

The first and the last tuple of 𝑅(𝑃 ′) are of different types. We can derive
the text 𝑇 from the expression 𝑃 if and only if the following two conditions hold.

∙ |𝑅| is divisible by |𝑅(𝑃 ′)|.

∙ Let 𝑅′ , (𝑅(𝑃 ′), 𝑅(𝑃 ′), . . . , 𝑅(𝑃 ′)), where 𝑅(𝑃 ′) is repeated |𝑅|/|𝑅(𝑃 ′)| time
in the right hand side. For all 𝑗 = 1, . . . , |𝑅|, if 𝑅𝑗 = (𝑎, 𝑙), then 𝑅′𝑗 = (𝑎,= 𝑙)
or 𝑅′𝑗 = (𝑎,≥ 𝑙′) for some integer 𝑙′ ≤ 𝑙.

The first and the last tuple of 𝑅(𝑃 ′) are of the same type. If |𝑅(𝑃 ′)| = 1,
then we can check if 𝑇 can be derived from 𝑃 easily. If there is no integer 𝑘 ≥ 1 such
that |𝑅| = 𝑘|𝑅(𝑃 ′)| − (𝑘− 1), then 𝑇 cannot be derived from 𝑃 . Otherwise, let 𝑅′ be
𝑅(𝑃 ′) except the last tuple. Let 𝑅′′ be 𝑅 except we change the first tuple of 𝑅. Let 𝑧
be the first and the last tuple of 𝑅 merged (in the natural way). We replace the first
tuple of 𝑅 by 𝑧 and get 𝑅′′. We define 𝑅′′′ = (𝑅′, 𝑅′′, 𝑅′′, 𝑅′′, . . . , 𝑅′′), where 𝑅′′ is
repeated 𝑘 − 1 times. Furthermore, we add the last tuple of 𝑅(𝑃 ′) at the end of 𝑅′′′.
The text 𝑇 can be derived from the expression 𝑃 if and only if for all 𝑗 = 1, . . . , |𝑟|,
if 𝑅𝑗 = (𝑎, 𝑙), then 𝑅′′′𝑗 = (𝑎,= 𝑙) or 𝑅′′′𝑗 = (𝑎,≥ 𝑙′) for some integer 𝑙′ ≤ 𝑙.

In the both subcases the runtime is upper bounded by 𝑂(|𝑃 |+ |𝑇 |).
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Chapter 6

Hardness of approximation

In Chapters 3 and 4 we presented hardness for the edit distance and the longest
common subsequence problems. The hardness results hold for algorithms that solve
the problems exactly. A natural question arises: How well can we approximate LCS
and edit distance in a strongly sub-quadratic (or near-linear) time?

We say that an algorithm 𝑐-approximates the edit distance edit(𝑃,𝑄) of two given
sequences 𝑃,𝑄 of length 𝑛 if it outputs a value 𝑥 that satisfies edit(𝑃,𝑄) ≤ 𝑥 ≤
𝑐 · edit(𝑃,𝑄). Since the edit distance is at most 𝑛, an 𝑛-approximation is trivial.
There are better approximation algorithms known. In [AKO10] it was shown that
for any fixed 𝜀 > 0, in 𝑂(𝑛1+𝜀) time it is possible to output a poly-logarithmic
approximation with 𝑐 = (log 𝑛)𝑂(1/𝜀). Recently, [CDG+18] presented an algorithm
that runs in 𝑂(𝑛2−𝜀) time, for a constant 𝜀 > 0, and outputs a constant factor
approximation to the edit distance. See [AKO10, CDG+18] for an overview of other
approximation algorithms.

While LCS and edit distance are closely related, they behave quite differently
with respect to approximations. We say that an algorithm 𝑐-approximates the LCS
of two given sequences 𝑃,𝑄 if it outputs a value 𝑥 that satisfies LCS(𝑃,𝑄)/𝑐 ≤ 𝑥 ≤
LCS(𝑃,𝑄).

A simple observation shows that the LCS of binary sequences can be approximated
within a factor of 2 in linear time: the longest common subsequence that consists
entirely of zeroes or entirely of ones is at least half from the optimal solution. In
general, for an alphabet of size 𝑠, it is easy to get an 𝑠-approximation for the LCS
and it is an open question to design an (𝑠− 𝛿)-approximation in near-linear time or
even strongly sub-quadratic time for any constant integer 𝑠 ≥ 2 and constant 𝛿 > 0.
See [Nav01, BHR00] for surveys on the algorithms for the LCS problem.

6.1 Our results

The results from Chapters 3 and 4 immediately imply quadratic hardness for ap-
proximating LCS and edit distance within the factor of 1 + 1/𝑛. In this part of the
thesis we present an evidence against algorithms that achieve 1+ 1/(log𝑛)𝜔(1) or 1+ 𝑜(1)
approximation and run in strongly sub-quadratic and deterministic time.
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We prove a connection of the following form: if there is a strongly sub-quadratic
and deterministic algorithm for LCS that achieves 1 + 𝑜(1) approximation on two
sequences of length 𝑛 over an alphabet of size 𝑛𝛽 for an arbitrary small constant 𝛽 > 0,
then the complexity class ENP does not have non-uniform linear size series parallel
circuits.1 This consequence (explained in more detail below) is widely believed to
be true. However, proving it unconditionally would be a breakthrough in complexity
theory and in the study of non-uniform circuit lower bounds. As stated, this is
merely a “difficulty” or a “no-pass” result for LCS, not “hardness”. It provides a
“circuit lower bounds” barrier for designing a fast (1 + 𝑜(1))-approximation algorithm
for LCS: it is at least as difficult as resolving a longstanding (and considered to be
difficult) open question in circuit complexity. Furthermore, we prove a stronger result
(Theorem 6.1.4 below), which we think should be regarded as a “hardness” result as
well, giving evidence that such algorithms for LCS might not exist.

Our result for LCS will be based on the presumed difficulty of solving the following
problem in a strongly sub-quadratic deterministic time.

Definition 6.1.1 (Orthogonal row problem). Given two sets of Boolean matrices
𝐴,𝐵 ⊆ {0, 1}𝐾×𝐷 of size |𝐴| = |𝐵| = 𝑁 , we say that a pair 𝐴𝑖 ∈ 𝐴,𝐵𝑗 ∈ 𝐵 is a
“good” pair if there exists a 𝑘 ∈ [𝐾] such that the rows 𝐴𝑖

𝑘,* and 𝐵𝑗
𝑘,* are orthogonal,

that is,
∑︀

ℎ∈[𝐷] 𝐴
𝑖
𝑘,ℎ𝐵

𝑗
𝑘,ℎ = 0.

The orthogonal row problem asks to distinguish the following two cases (and if we
are in neither, the output can be arbitrary):

1. (no good pairs) none of the pairs 𝐴𝑖 ∈ 𝐴,𝐵𝑗 ∈ 𝐵 are good;

2. (many good pairs) at least 𝑁2(1− 1/log102 𝑁) pairs 𝐴𝑖 ∈ 𝐴,𝐵𝑗 ∈ 𝐵 are good.

A trivial algorithm solves this problem in quadratic deterministic time, by going
over all pairs of matrices, but can we do better? Note that if we ask whether at least
one good pair exists (without the above promise that either there is none or many)
then the problem requires 𝑁2−𝑜(1) under SETH (which is conjectured to hold also for
randomized algorithms), even when 𝐾 = 1 and 𝐷 is any 𝜔(log𝑁) (see Theorem 2.3).

We introduce the hypothesis that the orthogonal row problem cannot be solved
by a deterministic algorithm in a strongly sub-quadratic time in the following sense.

Hypothesis 6.1.2. There is no 𝛿 > 0 and 𝛼 > 0 such that for all constant 𝑑 we
can solve the orthogonal row problem on binary matrices of size 𝑁𝛼 × 𝑑 log𝑁 in
deterministic 𝑂(𝑁2−𝛿) time.

We observe that a randomized algorithm can quickly solve the problem by sampling
a few pairs of matrices. But can a deterministic algorithm do anything clever enough
to solve the problem in a strongly sub-quadratic time? Such an algorithm is not
known and, in fact, Lemma 6.1.3 below suggests that it would be a breakthrough.

To state our results, we use the series-parallel circuits [Val77, Cal08, Vio09,
CDL+12]. See Section 6.2 for a formal definition. In [Val77] Valiant introduced

1The class ENP or TIME[2𝑂(𝑛)]NP is the class of problems solvable in exponential time with access
to an NP oracle.
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these circuits and argued that most known computer programs fit under this restric-
tion. His hope was that understanding these circuits would be easier than the general
case. Four decades later we still do not know how to resolve basic challenges proposed
in his paper, like showing an explicit function that does not have linear size series-
parallel circuits. It is still conceivable that the complexity class ENP can be computed
by such circuits, and proving otherwise would be a major achievement. Our first
lemma states that refuting Hypothesis 6.1.2 is at least as difficult as showing such
results.

Lemma 6.1.3. If Hypothesis 6.1.2 is false, then the class ENP does not have non-
uniform Valiant series-parallel circuits of linear size.

Thus, we contribute to the growing body of known connections between algorithm
design and circuit lower bounds (see the recent survey [Wil14]). We stress that the
circuit lower bounds consequence is only meant to show that the hypothesis is hard
to refute. As an evidence that the hypothesis is plausible, we remark that none of
the current (e.g., [CW16, GM16]) or conjectured-to-exist derandomization techniques
(e.g., if P = BPP) are enough to refute it.

Reduction to approximate LCS. Our main theorem shows that the orthogonal
row problem can be reduced to LCS while creating a multiplicative gap, giving the
first nontrivial hardness of approximation for LCS.

Theorem 6.1.4. If for some 𝛿 > 0 and 𝛽 > 0 there is a deterministic algorithm that
can approximate LCS of two given sequences of length 𝑛 over an alphabet of size 𝑛𝛽

to within a 1 + 𝑜(1) factor in 𝑂(𝑛2−𝛿) time, then Hypothesis 6.1.2 is false (and the
class ENP does not have non-uniform Valiant series-parallel circuits of linear size).

We remark that our approximation hardness for LCS immediately transfers to
other problems. For example, we get that the RNA folding problem [Edd04, BGSW16]
cannot be approximated within a 1 + 𝑜(1) factor in a strongly sub-quadratic time.

Another application of our approach gives a weaker lower bound for the edit
distance and LCS on binary sequences. In Section 6.5 we show that a determinis-
tic (1 + 1/(log𝑛)𝜔(1))-approximation for these problems in strongly sub-quadratic time
implies that ENP does not have non-uniform NC1 circuits.

Subsequent works. In [AR18] the circuit lower bound connection is improved
and the authors show that any constant factor approximation for LCS in 𝑂(𝑛2−𝛿)
deterministic time implies that ENP does not have non-uniform linear-size NC1 circuits.
The work [CGL+18] strengthens the connection further and shows barriers for larger
approximation factors and bigger classes of circuits.

6.2 Valiant series-parallel circuits
Definition 6.2.1 (Valiant series-parallel graphs [Val77, Cal08, Vio09, CDL+12]). A
multidag 𝐺 = (𝑉,𝐸) is a directed acyclic multigraph. Let input(𝐺) be the set of
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vertices of 𝐺 with in-degree 0. Let output(𝐺) be the set of vertices of 𝐺 with out-
degree 0. We say that the multidag 𝐺 is a Valiant series parallel (VSP) graph if there
exists a labelling 𝑙 : 𝑉 → Z of 𝐺 with the following properties:

∙ For all directed edges (𝑢, 𝑣) ∈ 𝐸 we have that 𝑙(𝑢) < 𝑙(𝑣).

∙ There exists an integer 𝑑 ∈ Z such that for all 𝑣 ∈ input(𝐺), 𝑙(𝑣) = 𝑑. The
definition from [Cal08] asks that 𝑑 = 0. It is not hard to verify that our definition
is equivalent to theirs.

∙ There exists an integer 𝑑′ ∈ Z such that for all 𝑣 ∈ output(𝐺), 𝑙(𝑣) = 𝑑′.

∙ There is no pair of directed edges (𝑢, 𝑣), (𝑢′, 𝑣′) ∈ 𝐸 such that the inequality
𝑙(𝑢) < 𝑙(𝑢′) < 𝑙(𝑣) < 𝑙(𝑣′) holds.

Definition 6.2.2 (Valiant series-parallel circuits [Val77, Cal08, Vio09, CDL+12]). A
circuit is a Valiant series-parallel circuit if the underlying multidag is a VSP graph
and the fan-in (in-degree) of every gate is at most 2.

Definition 6.2.3 (Size of a circuit). The size of a circuit on 𝑛 input variables is equal
to the number of gates in it. We do not count the 𝑛 + 2 input nodes, i.e., the input
variables and the two constant values 0 and 1 (which are assumed to be given as the
last two input nodes to the circuit).

Definition 6.2.4 (VSP𝑐). We define class VSP𝑐 to be the set of languages recognizable
by VSP circuits of size at most ≤ 𝑐𝑛 where 𝑛 is the number of input variables. The
set of allowed gates is the set of all gates of fan-in at most 2.

Below we show properties of the class VSP𝑐 that we will use later.
We need the following definition from [BSV14].

Definition 6.2.5 ([BSV14]). Let 𝐹𝑛 be a family of functions from {0, 1}𝑛 to {0, 1}.
We say that 𝐹𝑛 is efficiently closed under projections if functions in 𝐹𝑛 have a
𝑛𝑂(1)-size description and given (the description of) a function 𝑓 ∈ 𝐹𝑛, indices
𝑖, 𝑗 ≤ 𝑛, and a bit 𝑏 ∈ {0, 1}, we can compute in time 𝑛𝑂(1) the functions ¬𝑓 ,
𝑓(𝑥1, . . . , 𝑥𝑖−1, 𝑏 XOR 𝑥𝑗, 𝑥𝑖+1, . . . , 𝑥𝑛) and 𝑓(𝑥1, . . . , 𝑥𝑖−1, 𝑏, 𝑥𝑖+1, . . . , 𝑥𝑛), all of which
are in 𝐹𝑛.

Lemma 6.2.6. The class VSP𝑐 is efficiently closed under projections for any 𝑐 ≥ 1.

Proof. From Definition 6.2.4 it follows that the class VSP𝑐 has 𝑛𝑂(1)-size description:
the circuit itself. Consider a function 𝑓 on 𝑛 input variables from VSP𝑐 that has a
VSP circuit of size at most ≤ 𝑐𝑛. We show that the three functions from the statement
of Definition 6.2.5 can be computed in 𝑛𝑂(1) time and that all of them are in VSP𝑐.

Function ¬𝑓 . Consider the output of 𝑓 . If it is one of the inputs, we add the NOT
gate and remove all the other gates. If the output is none of the inputs, it must be
some gate 𝑔. We replace it with gate ¬𝑔. Since we allow all gates of fan-in at most 2
in the circuit, there is also the gate ¬𝑔. The number of gates did not increase and the
function ¬𝑓 is now in VSP𝑐. Clearly, the transformation can be done in time 𝑛𝑂(1).
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Function 𝑓(𝑥1, . . . , 𝑥𝑖−1, 𝑏 XOR 𝑥𝑗, 𝑥𝑖+1, . . . , 𝑥𝑛). If 𝑏 = 0, we rewire all gates that
used input 𝑥𝑖 to use input 𝑥𝑗. If 𝑏 = 1, we rewire all gates to use NOT 𝑥𝑗. Since we
have all gates of fan in at most 2, we do not need to introduce the NOT gate. Instead,
we replace the gate by another gate that negates the corresponding input. Similarly
as before, the transformation can be done in time 𝑛𝑂(1) and we did not increase the
number of gates. Thus, the resulting function is in VSP𝑐.

Function 𝑓(𝑥1, . . . , 𝑥𝑖−1, 𝑏, 𝑥𝑖+1, . . . , 𝑥𝑛). The transformation is similar as in the
previous case. Instead of rewiring to 𝑥𝑗, we rewire to the constant input 𝑏 which is
among the inputs.

Lemma 6.2.7. Let 𝑓1, 𝑓2, 𝑓3 ∈ VSP𝑐 be three functions on 𝑛 variables from the class
VSP𝑐. Then the function

𝑓 , ¬(𝑓1 OR 𝑓2 OR 𝑓3)

on the same 𝑛 variables belongs to VSP4𝑐 if 𝑐 ≥ 4 and 𝑛 ≥ 10.

Proof. For every 𝑖 = 1, 2, 3, let 𝐶𝑖 be the VSP circuit of size ≤ 𝑐𝑛 corresponding to
the function 𝑓𝑖 and let 𝐺𝑖 be the underlying VSP multidag of 𝐶𝑖. Let the multidag 𝐺
be the disjoint union of the underlying VSP multidags 𝐺1, 𝐺2, 𝐺3, and let input(𝐺𝑖) =
{𝑢1

𝑖 , . . . , 𝑢
𝑛
𝑖 , 𝑢

𝑛+1
𝑖 , 𝑢𝑛+2

𝑖 } be the 𝑛+2 input nodes for 𝐶𝑖, 𝑖 = 1, 2, 3 (see Definition 6.2.3),
where the first 𝑛 nodes 𝑢1

𝑖 , . . . , 𝑢
𝑛
𝑖 correspond to the 𝑛 input variables, and 𝑢𝑛+1

𝑖 and
𝑢𝑛+2
𝑖 correspond to the two constant inputs 0 and 1, respectively. We have that

input(𝐺) = input(𝐺1) ∪ input(𝐺2) ∪ input(𝐺3). Moreover, since |input(𝐺𝑖)| = 𝑛+ 2,
|input(𝐺)| = 3𝑛+ 6. Each 𝐶𝑖 has only one output gate. Thus, output(𝐺𝑖) = {𝑜𝑖} for
some node 𝑜𝑖. Therefore, |output(𝐺)| = 3.

A disjoint union of two VSP multidags is a multidag (see the proof of Lemma
3 in [Cal08]). Therefore, the multidag 𝐺 is a VSP multidag. Let 𝑙 be the labeling
of 𝐺 according to Definition 6.2.1 of VSP graphs. We construct a circuit 𝐶 for the
function 𝑓 as follows. First, we let 𝐶 be the disjoint union of 𝐶1, 𝐶2, 𝐶3 (each 𝐶𝑖

has its own 𝑛 + 2 input nodes). Therefore, the underlying graph of 𝐶 is 𝐺. Next,
whenever we add a node or an edge to 𝐺, we do the same for 𝐶, and the other way
around. As the circuits 𝐶1, 𝐶2, 𝐶3 do not share their inputs, we add 𝑛+2 input nodes
𝑢1, . . . , 𝑢𝑛, 𝑢𝑛+1, 𝑢𝑛+2 to 𝐶 (and to 𝐺). The first 𝑛 input nodes 𝑢1, . . . , 𝑢𝑛 correspond
to the 𝑛 input variables, and the 2 input nodes 𝑢𝑛+1 and 𝑢𝑛+2 correspond to the two
constant inputs 0 and 1, respectively. For every 𝑗 = 1, . . . , 𝑛 + 2 and 𝑖 = 1, 2, 3, we
connect 𝑢𝑗 to 𝑢𝑗

𝑖 .
For every newly added input node 𝑢𝑗, 𝑗 = 1, . . . , 𝑛 + 2, we update the labeling:

𝑙(𝑢𝑗) = 𝑑−1. As a result, the multidag 𝐺 has input(𝐺) = {𝑢1, . . . , 𝑢𝑛, 𝑢𝑛+1, 𝑢𝑛+2} and
all weights of these nodes are equal to 𝑑− 1. It remain to verify the fourth property
of VSP graphs. Since for every 𝑢𝑗, if (𝑢𝑗, 𝑣) is an edge in 𝐺, then 𝑙(𝑣) = 𝑑, the fourth
property also holds. Thus 𝐺 is VSP graph.

Now we have three functions 𝑓1, 𝑓2, 𝑓3 on the same set of 𝑛+ 2 inputs. To get the
function 𝑓 = ¬(𝑓1 OR 𝑓2 OR 𝑓3), we add two more gates 𝑢1, 𝑢2 to the circuit 𝐶. We
set the labeling: 𝑙(𝑢1) , 𝑑′ + 1 and 𝑙(𝑢2) , 𝑑′ + 2. 𝑢1 is an OR gate, and it computes
the OR of 𝑜1 and 𝑜2 (the outputs of the functions 𝑓1 and 𝑓2). The gate 𝑢2 is a ¬OR
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gate, and it computes the negation of the OR of 𝑢1 (the OR of 𝑓1 and 𝑓2) and 𝑜3 (the
output of the function 𝑓3). Since all gates of fan-in at most two are allowed, we can
implement the ¬OR gate. We can check that 𝐶 computes 𝑓 (the negation of the 𝑂𝑅 of
𝑓1, 𝑓2, 𝑓3). The size of the circuit 𝐶 is at most 3𝑐𝑛+|input(𝐺)|+2 = 3𝑐𝑛+3𝑛+8 ≤ 4𝑐𝑛
as required. It is not hard to verify that the resulting labeling of 𝑢1, 𝑢2 and the rest
of the multigraph 𝐺 satisfies the properties from Definition 6.2.1. Thus, we conclude
that the resulting underlying multidag 𝐺 is a VSP graph and that 𝐶 is a VSP4𝑐𝑛

circuit.

6.3 VSP circuits and the orthogonal row problem

Circuit lower bounds and derandomization. The connection between deran-
domizing circuits and lower bounds originates in the works of Impagliazzo, Kabanets,
and Wigderson [IKW02] and has been optimized in [Wil13, SW13, BSV14]. These
connections rely on “succinct PCP” theorems [Mie09, BSV14], and the recent opti-
mized construction of Ben-Sasson and Viola [BSV14] is crucial to our main result.
Our starting point is the following theorem.

Theorem 6.3.1 (Theorem 1.4 in [BSV14]). Let 𝐹𝑛 be a family of function from
{0, 1}𝑛 to {0, 1} that is efficiently closed under projections (see Definition 6.2.5).

If the fraction of satisfying assignment of a function of the form

∙ AND of fan-in 𝑛𝑂(1) of

∙ OR of fan-in 3 of

∙ functions from 𝐹𝑛+𝑂(log𝑛)

can be distinguished from being = 1 or ≤ 1/𝑛10 in TIME(2𝑛/𝑛𝜔(1)), then there is a
function 𝑓 in ENP on 𝑛 variables such that 𝑓 /∈ 𝐹𝑛.

We instantiate this theorem with VSP circuits and then simplify the resulting
circuits.

Lemma 6.3.2. To prove that ENP does not have non-uniform Valiant series parallel
circuits of size 𝑐𝑛 on 𝑛 input variables, it is enough to show a deterministic algorithm
that runs in 2𝑛/𝑛𝜔(1) time for the following problem. Given a circuit over 𝑛 input
variables of the form:

∙ OR of fan-in 𝑛𝑂(1) of

∙ negations of OR of fan-in 3 of

∙ VSP circuits of size 𝑐𝑛,

distinguish between the case where no assignments satisfy it, versus the case in which
at least a ≥ 1− 1/𝑛10 fraction of the assignments satisfy it.
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Lemma 6.3.2 follows from Theorem 6.3.1 almost directly: by Lemma 6.2.6, the
class VSP𝑐 (of functions recognizable by VSP circuits of size ≤ 𝑐𝑛) is efficiently closed
under projections. Therefore, we can instantiate Theorem 6.3.1 on VSP𝑐. Since
distinguishing the fraction of satisfying assignments = 1 from ≤ 1/𝑛10 is equivalent to
distinguishing the fraction of unsatisfying assignments = 0 from ≥ 1 − 1/𝑛10, we get
Lemma 6.3.2 by negating the function which is AND of OR of 𝐹𝑛+𝑂(log𝑛) and using
De Morgan’s law on the AND. Without loss of generality we replace the number of
inputs 𝑛+𝑂(log 𝑛) by 𝑛.

From derandomizing VSP circuits to the orthogonal row problem. Let 𝐶
be the circuit on 𝑛 variables as described in Lemma 6.3.2. We will convert this circuit
into a simpler form that will be easier to work with when reducing to other problems.
By Lemma 6.2.7, the circuit 𝐶 can be interpreted as:

∙ OR of fan-in 𝑛𝑂(1) of

∙ VSP circuits of size 4𝑐𝑛,

where the 𝑛𝑂(1) VSP circuits use the same set of 𝑛 inputs.
We use the following classical theorem of Valiant to convert each of these VSP

circuits into an OR of conjunctive normal form (CNF) formulas. The ideas in the
proof are due to Valiant [Val77], but the details were shown by Calabro [Cal08] and
Viola [Vio09] (cf. Cygan et al. [CDL+12]).

Theorem 6.3.3 (Depth reduction [Val77]). For all ℓ ≥ 1, we can convert any VSP
circuit of size 4𝑐𝑛 on 𝑛 variables into an equivalent formula which is OR of 2𝑛/ℓ CNF
formulas with clauses of size 𝑘 (𝑘-CNFs) on the same 𝑛 variables, where 𝑘 = 22

𝜇𝑐ℓ for
some absolute constant 𝜇 > 0. The reduction runs in 2𝑛/ℓ𝑛𝑂(1) time for any constants
𝑐 and 𝑙.

We will also need to apply the sparsification lemma [IP01, IPZ01].

Lemma 6.3.4. For all 𝑘 ≥ 3 and 𝜀 > 0 we can convert a 𝑘-CNF formula on 𝑛
variables into an equivalent OR of 2𝜀𝑛 𝑘-CNF formulas on the same variables where
each CNF has 𝑓(𝜀, 𝑘)𝑛 clauses and 𝑓(𝜀, 𝑘) = (𝑘/𝜀)𝑂(𝑘).

By combining the transformations of the circuits, we can simplify the circuits given
in Lemma 6.3.2 as described in the following claim.

Claim 6.3.5. Let 𝐶 be the circuit on 𝑛 variables as described in Lemma 6.3.2. For
all 𝑙 ≥ 1 and 𝜀 > 0, we can convert 𝐶 into an equivalent formula 𝐶 ′ on the same set
of 𝑛 inputs of the following form:

∙ OR of fan-in 𝑛𝑂(1) · 2𝑛/𝑙 · 2𝜀𝑛 of

∙ AND of fan-in 𝑓(𝜀, 𝑘)𝑛 where 𝑘 = 22
𝜇𝑐𝑙 of

∙ OR of fan-in 𝑘 of literals.
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Proof. We can think of circuits 𝐶 as OR of fan-in 𝑛𝑂(1) of series parallel circuits of
size ≤ 4𝑐𝑛. We want to decide if 𝐶 is unsatisfiable or at least a 1− 1/𝑛10 fraction of
the assignments satisfy it. First, we apply Theorem 6.3.3 on every VSP circuit of size
≤ 4𝑐𝑛. This produces a formula which is an OR of 2𝑛/𝑙 𝑘-CNFs. Then, we apply the
sparsification of Lemma 6.3.4 on every 𝑘-CNF to obtain a circuit as in the statement
of the claim.

The OR of AND of OR formula motivates the definition of the orthogonal row
problem (see Definition 6.1.1). Recall that Hypothesis 6.1.2 states that the orthogonal
row problem cannot be solved in a strongly sub-quadratic time with a deterministic
algorithm. We are now ready to prove that refuting the hypothesis implies a circuit
lower bound against linear size VSP circuits, thus establishing a “circuit lower bounds”
barrier for refuting the hypothesis. The following claim implies Lemma 6.1.3.

Claim 6.3.6. For all 𝑐 ≥ 1 and 𝛼 > 0, there exists a constant 𝑑 ≥ 1 such that if
there is a deterministic algorithm that solves the orthogonal row problem on two lists
of size 𝑁 of binary 𝑁𝛼 × 𝑑 log𝑁 matrices in 𝑁2/ log𝜔(1)𝑁 time, then ENP does not
have non-uniform VSP circuits of size 𝑐𝑛. The constant 𝑑 can be upper bounded by

𝑑 ≤ 22
2𝑂(𝑐/𝛼)

.

Proof. By Lemma 6.3.2, to show that ENP does not have non-uniform VSP circuits of
size 𝑐𝑛, it suffices to solve the derandomization problem (given in Lemma 6.3.2) on a
circuit 𝐶 with 𝑛 variables in 2𝑛/𝑛𝜔(1) time.

First, by Claim 6.3.5, we can transform the circuit 𝐶 into an equivalent formula
𝐶 ′ in the OR of AND of OR form. Below we show a reduction from the derandom-
ization problem on the formula 𝐶 ′ to the orthogonal row problem with the promised
parameters, as follows.

Let 𝑁 , 2𝑛/2. We apply the transformation from Claim 6.3.5 to 𝐶, with parameters
𝜀 , 𝛼

6
, 𝑙 , 6

𝛼
, and 𝑑 , 2𝑓(𝜀, 𝑘) ≤ (𝑘/𝜀)𝑂(𝑘), and get an equivalent formula 𝐶 ′ of the

following form:

∙ OR of fan-in 𝑛𝑂(1) · 2𝑛/ℓ · 2𝜀𝑛 ≤ 2𝛼𝑛/2 = 𝑁𝛼 of

∙ AND of fan-in 𝑓(𝜀, 𝑘)𝑛 = 𝑑 log𝑁 ≤ (𝑘/𝛼)𝑂(𝑘)𝑛 where 𝑘 = 22
𝜇𝑐ℓ ≤ 22

𝑂(𝑐/𝛼) of

∙ OR of fan-in 𝑘 of literals.

We think of the formula 𝐶 ′ as a disjunction of CNFs with clause size 𝑘.
Let us now transform 𝐶 ′ to an instance of the orthogonal row problem. The

formula 𝐶 ′ has 𝑛 binary input variables 𝑥1, . . . , 𝑥𝑛. We split these variables into two
parts: 𝑥1, . . . , 𝑥𝑛/2 and 𝑥1+(𝑛/2), . . . , 𝑥𝑛, and construct two sets 𝐴 and 𝐵 of matrices
for the orthogonal row problem.

Set of matrices 𝐴. Consider all 𝑁 = 2𝑛/2 partial assignments of the first half of
the variables 𝑥1, . . . , 𝑥𝑛/2. We will construct a matrix 𝐴𝑖, 𝑖 = 1, . . . 𝑁 , one for each
partial assignment 𝑝𝑖 of 𝑥1, . . . , 𝑥𝑛/2 as follows. For every 𝑘-CNF in 𝐶 ′ we have a
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corresponding row in 𝐴𝑖, such that every clause of the 𝑘-CNF has a corresponding
column. Thus, for 𝑟 = 1, . . . , 𝑁𝛼, the 𝑟-th row of the matrix 𝐴𝑖 corresponds to the
𝑟-th 𝑘-CNF in 𝐶 ′, and every clause of the 𝑟-th 𝑘-CNF has a corresponding column
in the 𝑟-th row such that the 𝑡-th clause corresponds to the 𝑡-th column in the 𝑟-th
row of 𝐴𝑖. We set 𝐴𝑖

𝑟,𝑡 to 0 if 𝑝𝑖 satisfies the 𝑡-th clause of the 𝑟-th 𝑘-CNF, and to
1 otherwise. A clause is satisfied by a partial assignment if and only if the partial
assignment sets at least one of the literals in the clause to “true”. We assume that the
number of 𝑘-CNFs is 𝑁𝛼 and the number of clauses in each 𝑘-CNF is 𝑑 log𝑁 . If this
is not the case, then we can add dummy 𝑘-CNFs that are not satisfiable, or clauses
that are satisfied by any partial assignment.

Set of matrices 𝐵. The second set of matrices 𝐵 is constructed in the same way
as the set 𝐴 but for the second half of variables 𝑥1+(𝑛/2), . . . , 𝑥𝑛.

Our construction satisfies all the parameters of the orthogonal row problem. In
particular, 𝑑 ≤ (𝑘/𝜀)𝑂(𝑘) ≤ 22

2𝑂(𝑐/𝛼)

.

Correctness of the reduction. To prove the correctness of our reduction, it suf-
fices to show that the fraction of pairs of matrices that form a good pair (see Defini-
tion 6.1.1), is the same as the fraction of assignments that satisfy the formula 𝐶 ′. We
show that the 𝑖-th partial assignment of 𝑥1, . . . , 𝑥𝑛/2 and the 𝑗-th partial assignment
of 𝑥1+(𝑛/2), . . . , 𝑥𝑛 satisfy 𝐶 ′ if and only if the matrices 𝐴𝑖 and 𝐵𝑗 form a good pair. If
𝐶 ′ is satisfied, then at least one of the 𝑘-CNFs in 𝐶 ′ is satisfied. Assume that the 𝑟-th
𝑘-CNF is satisfied. Our goal is to show that

∑︀
ℎ∈[𝐷] 𝐴

𝑖
𝑟,ℎ𝐵

𝑗
𝑟,ℎ = 0. This follows from

the fact that the 𝑟-th 𝑘-CNF is satisfied and from the construction of the matrices
𝐴𝑖 and 𝐵𝑗. If, on the other hand,

∑︀
ℎ∈[𝐷]𝐴

𝑖
𝑟,ℎ𝐵

𝑗
𝑟,ℎ ≥ 1 for all 𝑟, then the 𝑖-th partial

assignment of 𝑥1, . . . , 𝑥𝑛/2 and the 𝑗-th partial assignment of 𝑥1+(𝑛/2), . . . , 𝑥𝑛 do not
satisfy 𝐶 ′. This follows from the fact that no 𝑘-CNF is satisfied in this case and from
the construction of 𝐴𝑖 and 𝐵𝑗.

We observe that if the number of satisfying assignments to 𝐶 ′ is 1− 1/𝑛10, then the
fraction of good pairs of matrices is 1− 1/𝑛10 ≥ 1− 210/𝑛10 = 1− 1/log102 𝑁 as required.
Since 𝑁 = 2𝑛/2, an 𝑁2/ log𝜔(1)𝑁 algorithm for the orthogonal row problem implies a
2𝑛/𝑛𝜔(1) time algorithm for the derandomization problem.

6.4 The reduction to approximate LCS

In this section we prove Theorem 6.1.4. In our reduction we will use the weighted
longest common subsequence problem (see Definition 4.2.1). We obtain a reduction
to LCS problem by applying Lemma 4.2.2. Because of this connection we will write
LCS instead of WLCS.

We show that if we have a deterministic algorithm for the LCS problem that runs
in 𝑂(𝑛2−𝛿) time and that gives 1 + (𝜀/105) approximation, then we can solve the
orthogonal row problem in 𝑂(𝑁2−(𝛿/2)) time on binary matrices of size 𝑁𝛼 × 𝑑 log𝑁
for 𝛼 , 𝛿/10 and 𝑑 , 𝛼(1+𝜀)/𝜀. The alphabet size of the sequences will be 𝑂(𝑁2𝛼/𝜀).
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This proves Theorem 6.1.4 by observing that for arbitrary small 𝜀 > 0, 𝑑 becomes
arbitrary large. Without loss of generality we assume that 𝜀 ≥ 1/ log 𝑛 and 𝛿 ≤ 1/100.

We provide a deterministic reduction from the orthogonal row problem to the
LCS problem. Let 𝐴 , {𝐴1, . . . , 𝐴𝑁} and 𝐵 , {𝐵1, . . . , 𝐵𝑁} be two sets of binary
matrices given as an input to the orthogonal row problem. Each matrix is of size
𝑁𝛼 × 𝑑 log𝑁 . We construct a sequence 𝑃 from the set 𝐴 and a sequence 𝑄 from
the set 𝐵. The sequence 𝑃 is of (weighted) length 𝑛 , 𝑊 (𝑃 ) ≤ 𝑂(𝑁1+2𝛼𝑑/𝛼) and
the sequence 𝑄 is of length 𝑊 (𝑄) ≤ 𝑂(𝑛). For a fixed value 𝑇 the sequences 𝑃
and 𝑄 have the following property. LCS(𝑃,𝑄) ≤ 𝑇 if we are in the first case in
Definition 6.1.1 and LCS(𝑃,𝑄) ≥ (1 + (𝜀/105))𝑇 if we are in the second case.

If there exists a fast deterministic approximation algorithm for the LCS problem,
we run it and decide in which case we are. Since the reduction is deterministic, this
gives a deterministic algorithm for the orthogonal row problem that runs in time

𝑂(𝑛2−𝛿) ≤ 𝑂
(︁(︀

𝑁1+2𝛼𝑑/𝛼
)︀2−𝛿)︁ ≤ 𝑂

(︁(︀
𝑁1+(𝛿/5)/𝜀

)︀2−𝛿)︁
,

where we use the fact that 𝛼 = 𝛿/10 and 𝑑 = 𝛼(1 + 𝜀)/𝜀. Since 𝜀 ≥ 1/ log 𝑛 and
𝛿 ≤ 1/100, we get that the runtime is upper bounded by 𝑂(𝑁 (1+(𝛿/5))(2−𝛿) log2𝑁) ≤
𝑂
(︀
𝑁2−(𝛿/2))︀ as required.

Construction of the matrix gadgets. To construct sequences 𝑃 and 𝑄, we
need matrix gadgets G(𝐴𝑖), G′(𝐵𝑗) for every set 𝐴𝑖 ∈ 𝐴 and 𝐵𝑗 ∈ 𝐵. We want
that there exists fixed value 𝑇 ′ such that G(𝐴𝑖) and G′(𝐵𝑗) satisfy the property:
LCS(G(𝐴𝑖),G′(𝐵𝑗)) = 𝑇 ′ if the pair 𝐴𝑖, 𝐵𝑗 is not good and LCS(G(𝐴𝑖),G′(𝐵𝑗)) =
(1+ 𝜀)𝑇 ′ if the pair 𝐴𝑖, 𝐵𝑗 is good. Below we will construct such matrix gadgets with
𝑊 (G(𝐴𝑖)),𝑊 (G′(𝐵𝑗)) ≤ 𝑂(𝑁2𝛼𝑑/𝛼). After that we will construct the final sequences
𝑃 and 𝑄 with the promised properties by putting together matrix gadgets for all
matrices in 𝐴 and 𝐵.

We construct the matrix gadgets G(𝐴𝑖), G′(𝐵𝑗) by using the orthogonality gadgets
OG(𝐴𝑖

𝑘,*), OG′(𝐵𝑗
𝑘,*) for every row 𝑘 ∈ [𝐾] of matrices 𝐴𝑖 and 𝐵𝑗. The orthogonality

gadgets will satisfy the following properties.

∙ For every 𝑘 ∈ [𝐾], 𝑊 (OG(𝐴𝑖
𝑘,*)),𝑊 (OG′(𝐵𝑗

𝑘,*)) ≤ 𝑂(𝑁𝛼𝑑/𝛼).

∙ If
∑︀

ℎ∈[𝐷] 𝐴
𝑖
𝑘,ℎ𝐵

𝑗
𝑘,ℎ ≥ 1, then LCS(OG(𝐴𝑖

𝑘,*),OG′(𝐵𝑗
𝑘,*)) = 𝑇 ′. Otherwise we

have LCS(OG(𝐴𝑖
𝑘,*),OG′(𝐵𝑗

𝑘,*)) = (1 + 𝜀)𝑇 ′.

∙ For every 𝑘 ∈ [𝐾]: OG(𝐴𝑖
𝑘,*),OG′(𝐵𝑗

𝑘,*) ∈ Σ*𝑘 and Σ𝑘 ∩ Σ𝑘′ = ∅ for 𝑘 ̸= 𝑘′.

Given such orthogonality gadgets, we construct matrix gadgets G(𝐴𝑖) and G′(𝐵𝑗)
as follows:

G(𝐴𝑖) , ○𝑘∈[𝐾]OG(𝐴𝑖
𝑘,*)

= OG(𝐴𝑖
1,*)OG(𝐴𝑖

2,*)OG(𝐴𝑖
3,*) . . . OG(𝐴𝑖

𝐾,*),
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G′(𝐵𝑗) , ○𝑘∈[𝐾]OG′(𝐵𝑗
𝐾+1−𝑘,*)

= OG′(𝐵𝑗
𝐾,*)OG′(𝐵𝑗

𝐾−1,*)OG′(𝐵𝑗
𝐾−2,*) . . . OG′(𝐵𝑗

1,*).

Since Σ𝑘 ∩ Σ𝑘′ = ∅ for 𝑘 ̸= 𝑘′, the only way to get LCS(G(𝐴𝑖),G′(𝐵𝑗)) > 0 is by
matching symbols in OG(𝐴𝑖

𝑘,*) and OG′(𝐵𝑗
𝑘,*). By the construction of G(𝐴𝑖) and

G′(𝐵𝑗), if we match symbols between OG(𝐴𝑖
𝑘,*) and OG′(𝐵𝑗

𝑘,*), we cannot match
symbols between OG(𝐴𝑖

𝑘′,*) and OG′(𝐵𝑗
𝑘′,*) for 𝑘′ ̸= 𝑘. This means that

LCS(G(𝐴𝑖),G′(𝐵𝑗)) = max
𝑘∈[𝐾]

LCS(OG(𝐴𝑖
𝑘,*),OG′(𝐵𝑗

𝑘,*)).

The promised properties of the matrix gadgets follow from the properties of the
orthogonality gadgets.

Construction of the orthogonality gadgets. Now we will construct the or-
thogonality gadgets OG(𝐴𝑖

𝑘,*),OG′(𝐵𝑗
𝑘,*). 𝐴𝑖

𝑘,* is a binary (row) vector of length
𝑑 log𝑁 . We split it into 𝑑/𝛼 binary vectors 𝑣𝑡 ∈ {0, 1}𝛼 log𝑁 each with 𝛼 log𝑁 entries:
𝐴𝑖

𝑘,* = (𝑣1, . . . , 𝑣𝑑/𝛼). We define

OG(𝐴𝑖
𝑘,*) , 𝑐𝑘 ∘○𝑑/𝛼

𝑡=1𝑠𝑘,𝑡,𝑣𝑡 ,

where we set the weight of the symbol 𝑐𝑘 to 𝑤(𝑐𝑘) , (𝑑/𝛼) − 1. 𝑠𝑘,𝑡,𝑣𝑡 are symbols
of weight 1 and indexed by rows 𝑘, indices of vectors 𝑡 and vectors 𝑣𝑡. We have
OG(𝐴𝑖

𝑘,*) ∈ Σ*𝑘, where

Σ𝑘 , {𝑐𝑘} ∪ {𝑠𝑘,𝑡,𝑣 | 𝑣 ∈ {0, 1}𝛼 log𝑁 and 𝑡 ∈ [𝑑/𝛼]}.

Similarly, we split the binary vector 𝐵𝑗
𝑘,* of length 𝑑 log𝑁 into 𝑑/𝛼 binary vectors

𝑤𝑡 ∈ {0, 1}𝛼 log𝑁 each with 𝛼 log𝑁 entries: 𝐵𝑗
𝑘,* = (𝑤1, . . . , 𝑤𝑑/𝛼). We define

OG′(𝐵𝑗
𝑘,*) ,

(︁
○𝑑/𝛼

𝑡=1 ○𝑣 : 𝑣·𝑤𝑡=0 𝑠𝑘,𝑡,𝑣

)︁
∘ 𝑐𝑘,

where we do enumerate over all vectors 𝑣 that are orthogonal 𝑣 ·𝑤𝑡 to 𝑤𝑡. Notice that
𝑊 (OG(𝐴𝑖

𝑘,*)) ≤ 𝑂(𝑑/𝛼) and 𝑊 (OG′(𝐵𝑗
𝑘,*)) ≤ 𝑂(𝑁𝛼𝑑/𝛼) as required.

We claim that, if
∑︀

ℎ∈[𝐷] 𝐴
𝑖
𝑘,ℎ𝐵

𝑗
𝑘,ℎ ≥ 1, then

LCS(OG(𝐴𝑖
𝑘,*),OG′(𝐵𝑗

𝑘,*)) = 𝑇 ′ , (𝑑/𝛼)− 1

and LCS(OG(𝐴𝑖
𝑘,*),OG′(𝐵𝑗

𝑘,*)) = 𝑑/𝛼 = 𝑇 ′ + 1 otherwise. Since 𝑑 = 𝛼(1 + 𝜀)/𝜀, we
have that 𝑇 ′ satisfies the second property of the orthogonality gadgets. We now show
the claim.

Clearly, LCS(OG(𝐴𝑖
𝑘,*),OG′(𝐵𝑗

𝑘,*)) ≥ (𝑑/𝛼) − 1 because we can match the sym-
bols 𝑐𝑘. Also, we have the equality if we match the symbols 𝑐𝑘 in the optimal
alignment. Suppose that we do not match 𝑐𝑘. Then it is not hard to check that

95



LCS(OG(𝐴𝑖
𝑘,*),OG′(𝐵𝑗

𝑘,*)) = 𝑑/𝛼 if
∑︀

ℎ∈[𝐷] 𝐴
𝑖
𝑘,ℎ𝐵

𝑗
𝑘,ℎ = 0 and ≤ (𝑑/𝛼)− 1 otherwise.

Since we have to take maximum between the cases when we match the symbols 𝑐𝑘
and when we do not match 𝑐𝑘, we get the required equalities.

Construction of the sequences 𝑃 and 𝑄. In the remainder of the proof we
construct the final sequences 𝑃 and 𝑄 with the promised properties. The sequence 𝑃
is a concatenation of the matrix gadgets G(𝐴𝑖) with some additional symbols. The
sequence 𝑄 is a concatenation of the matrix gadgets G′(𝐵𝑗) with some additional
symbols. Each matrix gadget G′(𝐵𝑗) appears twice in the second sequence 𝑄.

We define integer values 𝑣0 < 𝑣1 < 𝑣2 < 𝑣3 as follows. We set 𝑣0 , 𝑇 ′ (see the
construction of the matrix gadgets), 𝑣1 , (1 + 𝜀)𝑇 ′, 𝑣2 , 10𝑣1, 𝑣3 , 100𝑣1. For
the simplicity of the notation, we will write 𝐴𝑖 instead of G(𝐴𝑖) and 𝐵𝑗 instead of
G′(𝐵𝑗). It will be clear from the context whether we refer to 𝐴𝑖 (𝐵𝑗, resp.) or to
G(𝐴𝑖) (G′(𝐵𝑗), resp.). We introduce new symbols of type 0, 1 and 2 and define the
sequence 𝑃 :

𝑃 , 23𝑁 ∘
(︀
○𝑁

𝑖=1(0𝐴
𝑖 1)
)︀
∘ 23𝑁 .

We define the sequence 𝑄:

𝑄 ,
(︀
○𝑁

𝑗=1

(︀
2 0𝐵𝑗 1

)︀)︀
∘
(︀
○𝑁

𝑗=1

(︀
2 0𝐵𝑗 1

)︀)︀
∘ 2.

We set the weight of the symbols of type 0, 1 and 2 as follows: 𝑤(2) , 𝑣2 and
𝑤(0) = 𝑤(1) , 𝑣3.

We have two goals. First, we want to show that if there are many good pairs of
matrices 𝐴𝑖 and 𝐵𝑗, then the LCS score between 𝑃 and 𝑄 is large: LCS(𝑃,𝑄) ≥
(1 + (𝜀/105))𝑇 . 𝑇 is some fixed value that we will define later. Second, if there are no
good pairs, then the LCS score is small: LCS(𝑃,𝑄) ≤ 𝑇 . We achieve these two goals
via the next two lemmas.

Lemma 6.4.1. If there are many good pairs (see Definition 6.1.1), then

LCS(𝑃,𝑄) ≥ 𝑇 ′′ , (𝑁 + 2)𝑣2 + 2𝑁𝑣3 + 0.99𝑁𝑣1 + 0.01𝑁𝑣0.

Proof. We will exhibit 𝑁 different alignments between 𝑃 and 𝑄 and we will show
that at least one of them achieves the LCS score 𝑇 ′′. This gives the lower bound on
LCS(𝑃,𝑄).

For 𝑘 = 1, . . . , 𝑁 we write

𝑄 =
(︀
○𝑘−1

𝑗=1

(︀
2 0𝐵𝑗 1

)︀)︀
∘ 2 ∘𝑄𝑘 ∘

(︀
○𝑁

𝑗=𝑘

(︀
2 0𝐵𝑗 1

)︀)︀
∘ 2,

where
𝑄𝑘 , (0𝐵𝑘 1) ∘

(︀
○𝑁

𝑗=𝑘+1

(︀
2 0𝐵𝑗 1

)︀)︀
∘
(︀
○𝑘−1

𝑗=1

(︀
2 0𝐵𝑗 1

)︀)︀
.

Clearly,

LCS(𝑃,𝑄) ≥ LCS
(︀
23𝑁 ,

(︀
○𝑘−1

𝑗=1

(︀
2 0𝐵𝑗 1

)︀)︀
∘ 2
)︀

+ LCS
(︀
○𝑁

𝑖=1(0𝐴
𝑖 1), 𝑄𝑘

)︀
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+ LCS
(︀
23𝑁 ,

(︀
○𝑁

𝑗=𝑘

(︀
2 0𝐵𝑗 1

)︀)︀
∘ 2
)︀
.

The total contribution of the first and the third term on the right hand side is (𝑁+2)𝑣2
because only symbols of type 2 can contribute to the LCS score and there are 𝑁 + 2
symbols of type 2. For the middle term we align matrix gadgets in pairs and match
all symbols of type 0 and 1. We get the lower bound

LCS(𝑃,𝑄) ≥ (𝑁 + 2)𝑣2 + 2𝑁𝑣3 +
𝑁∑︁
𝑖=1

LCS(𝐴𝑖, 𝐵𝑗𝑘(𝑖)),

where

𝑗𝑘(𝑖) ,

{︃
𝑖+ 𝑘 − 1 if 𝑖 ≤ 𝑁 + 1− 𝑘,

𝑖+ 𝑘 − 1−𝑁 otherwise.

By averaging the right hand side over all 𝑘 = 1, . . . , 𝑁 , we get

LCS(𝑃,𝑄) ≥ 1

𝑁

𝑁∑︁
𝑘=1

(︃
(𝑁 + 2)𝑣2 + 2𝑁𝑣3 +

𝑁∑︁
𝑖=1

LCS(𝐴𝑖, 𝐵𝑗𝑘(𝑖))

)︃

= (𝑁 + 2)𝑣2 + 2𝑁𝑣3 +
1

𝑁

𝑁∑︁
𝑖,𝑘=1

LCS(𝐴𝑖, 𝐵𝑗𝑘(𝑖))

= (𝑁 + 2)𝑣2 + 2𝑁𝑣3 +
1

𝑁

𝑁∑︁
𝑖,𝑗=1

LCS(𝐴𝑖, 𝐵𝑗)

≥ (𝑁 + 2)𝑣2 + 2𝑁𝑣3 + 0.99𝑁𝑣1 + 0.01𝑁𝑣0,

where in the last inequality we use the fact that there are many good pairs. This
finishes the proof of the lemma.

Lemma 6.4.2. If there are no good pairs, then

LCS(𝑃,𝑄) ≤ 𝑇 , (𝑁 + 2)𝑣2 + 2𝑁𝑣3 +𝑁𝑣0.

Proof. We start with the intuition behind the analysis.

Intuition. We saw in the proof of Lemma 6.4.1 that there is an alignment that
achieves a large LCS score. In the alignment we match the 𝑁 matrix gadgets from the
first sequence 𝑃 with 𝑁 consecutive matrix gadgets from the second sequence 𝑄 in
pairs. We want to claim that in an optimal alignment, we will do the same: map the
𝑁 matrix gadgets from the first sequence with 𝑁 consecutive matrix gadgets from the
second sequence in pairs. Intuitively, this is because of the following three reasons:

∙ We do not want to choose less than 𝑁 matrix gadgets from the second sequence
because otherwise we cannot match all symbols of type 0 and 1 from the first
sequence with their counterparts (symbols of type 0 and 1 have the largest
weight—we loose a lot by not matching them).
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∙ We do not want to choose more than 𝑁 matrix gadgets from the second sequence
because otherwise we have fewer symbols of type 2 from the second sequence
to be matched with their counterparts. Symbols 2 have smaller weight than
symbols of type 0 and 1 but still we loose a lot by not matching them.

∙ Finally, if we choose 𝑁 matrix gadgets from the second sequence we want to
match them in pairs. If we do not do that, we cannot match all symbols of type
0 and 1 which is again expensive.

We proceed to formalize the intuition.
Sequence 𝑃 starts with 3𝑁 copies of the symbol of type 2. Suppose that some of

those symbols are matched. If this is not the case, we can match one of these symbols
with the first symbol of type 2 from 𝑄 without decreasing the LCS score. Without
loss of generality the matched symbols form a suffix of ○3𝑁

𝑖=12. Consider the symbol of
type 2 from 𝑄 that is matched to the last symbol of type 2 from ○3𝑁

𝑖=12. Consider the
symbol to the right of the symbol of type 2 in 𝑄. It is of type 0. Let 𝑠 be its position
in 𝑄. Without loss of generality this symbol of type 0 is matched to the first symbol
of type 0 from 𝑃 . If this is not so, we can make this match and this cannot decrease
the LCS score. Analogously we can argue that the last symbol of type 1 from 𝑃 is
matched to a symbol of type 1 in 𝑄. Let 𝑡 be the location of the symbol of type 1 in
𝑄. Let 𝑃 ′ be the substring of 𝑃 that is to the right of the first symbol of type 0 in 𝑃
and to the left of the last symbol of type 1 in 𝑃 . Let 𝑄′ be the substring of 𝑄 that is
to the right of the symbol of type 0 at location 𝑠 in 𝑄 and to the left of the symbol of
type 1 at location 𝑡 in 𝑄. We write 𝑃 = 𝑃1 𝑃

′ 𝑃2 and 𝑄 = 𝑄1𝑄
′𝑄2. We can upper

bound the LCS score if we range over all such partitions of 𝑃 and 𝑄:

LCS(𝑃,𝑄) ≤ max
𝑃=𝑃1 𝑃 ′ 𝑃2
𝑄=𝑄1 𝑄′ 𝑄2

LCS(𝑃1, 𝑄1) + LCS(𝑃 ′, 𝑄′) + LCS(𝑃2, 𝑄2). (6.1)

Let 𝑚 ≥ 1 denote the number of matrix gadgets in 𝑄′.

Claim 6.4.3.

LCS(𝑃1, 𝑄1) + LCS(𝑃2, 𝑄2) ≤ 2𝑣3 + (2𝑁 + 1− (𝑚− 1))𝑣2.

Proof. The total number of symbols of type 2 in 𝑄1 and 𝑄2 is 2𝑁 +1− (𝑚− 1). The
total contribution from all symbols of type 2 is upper bounded by (2𝑁+1−(𝑚−1))𝑣2.
We can also match symbol of type 0 in 𝑃1 and symbol of type 1 in 𝑃2. This upper
bounds the total contribution from symbols of type 0 and 1 by 2𝑣3. There are no
other symbols that we can match. The claim follows.

It remains to give an upper bound on LCS(𝑃 ′, 𝑄′). For any two symbols of type
0 that are matched between 𝑃 ′ and 𝑄′, their neighboring symbols of type 1 form a
match too. If this does not true, we match the symbols of type 1 and this can only
increase the LCS score. Similarly, for any two symbols of type 1 that are matched,
their neighboring symbols of type 0 are matched too. Let 𝑀 ≥ 0 denote the number
of pairs of matched symbols of type 0 and 1. This allows us to upper bound the
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total contribution from symbols of type 0 and 1 to LCS(𝑃 ′, 𝑄′) by 𝑆 , 2𝑀𝑣2. The
𝑀 pairs of matched symbols split the sequence 𝑃 ′ into 𝑀 + 1 maximal substrings
𝑟1, . . . , 𝑟𝑀+1. In each one of the 𝑀 + 1 substrings 𝑟𝑖 the symbols of type 0 or 1 are
not matched. Similarly, we split 𝑄′ into 𝑀 + 1 maximal substrings 𝑝1, . . . , 𝑝𝑀+1 so
that each 𝑝𝑖 does not contain a symbol of type 0 or 1 that is matched. Symbols in 𝑟𝑖
can only be matched to symbols in 𝑝𝑖. The only symbols that can be matched from 𝑟𝑖
with symbols from 𝑝𝑖 come from the matrix gadgets by the definition of 𝑟𝑖 and 𝑝𝑖. Let
𝑑𝑖 ≥ 1 denote the number of the matrix gadgets in 𝑟𝑖 and 𝑙𝑖 ≥ 1 denote the number
of the matrix gadgets in 𝑝𝑖. Clearly,

∑︀𝑀+1
𝑖=1 𝑑𝑖 = 𝑁 and

∑︀𝑀+1
𝑖=1 𝑙𝑖 = 𝑚. We claim that

LCS(𝑟𝑖, 𝑝𝑖) ≤ (𝑑𝑖 + 𝑙𝑖 − 1)𝑣0. Since the pairs of matched symbols cannot cross, we can
easily check that the total number of pairs of matrix gadgets that can have a match
is upper bounded by 𝑑𝑖 + 𝑙𝑖 − 1. Because there are no good pairs, the upper bound
LCS(𝑟𝑖, 𝑝𝑖) ≤ (𝑑𝑖 + 𝑙𝑖 − 1)𝑣0 follows. From this we have

LCS(𝑃 ′, 𝑄′) ≤ 𝑆 +
𝑀+1∑︁
𝑖=1

LCS(𝑟𝑖, 𝑝𝑖) ≤ 2𝑀𝑣2 +
𝑀+1∑︁
𝑖=1

(𝑑𝑖 + 𝑙𝑖 − 1)𝑣0.

We combine this with the equalities
∑︀𝑀+1

𝑖=1 𝑑𝑖 = 𝑁 and
∑︀𝑀+1

𝑖=1 𝑙𝑖 = 𝑚 and get the
following Claim.

Claim 6.4.4.

LCS(𝑃 ′, 𝑄′) ≤ 2𝑀𝑣3 + (𝑁 +𝑚)𝑣0 − (𝑀 + 1)𝑣0.

We combine Eq. (6.1) with Claim 6.4.3 and Claim 6.4.4 and get the following
upper bound:

LCS(𝑃,𝑄) ≤ 2𝑣2 +𝑁(2𝑣2 + 𝑣0)

+ (𝑀 + 1)(2𝑣3 − 𝑣0)−𝑚(𝑣2 − 𝑣0).

From
∑︀𝑀+1

𝑖=1 𝑑𝑖 = 𝑁 and
∑︀𝑀+1

𝑖=1 𝑙𝑖 = 𝑚 we get that 𝑀 ≤ min(𝑁,𝑚) − 1. As we
increase 𝑀 , the right hand side of the upper bound only increases. We choose
𝑀 = min(𝑁,𝑚)− 1. Consider two cases.

∙ 𝑚 ≥ 𝑁 . We have 𝑀 = 𝑁−1 and LCS(𝑃,𝑄) ≤ 𝑣2(2𝑁+2)+2𝑁𝑣3−𝑚(𝑣2−𝑣0) ≤
𝑇 .

∙ 𝑚 ≤ 𝑁 . We have 𝑀 = 𝑚−1 and LCS(𝑃,𝑄) ≤ 𝑣2(2𝑁+2)+𝑁𝑣0+𝑚(2𝑣3−𝑣2) ≤
𝑇 .

From the above Lemmas 6.4.1 and 6.4.2 we have that LCS(𝑃,𝑄) ≥ 𝑇 ′′ if there are
many good pairs and LCS(𝑃,𝑄) ≤ 𝑇 if there are no good pairs. From the definition
of values 𝑣0, 𝑣1, 𝑣2, 𝑣3 (in particular, 𝑣1 = (1 + 𝜀)𝑣0), we can easily conclude that
𝑇 ′′ ≥ (1 + (𝜀/105))𝑇 which gives the properties of 𝑃 and 𝑄 that we need.
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Harder variants of the orthogonal row problem. In the paragraph “Construc-
tion of the orthogonality gadgets” we do the following construction. Given two vectors
𝑧𝑘 , 𝐴𝑖

𝑘,*, 𝑤
𝑘 , 𝐵𝑗

𝑘,* ∈ {0, 1}𝑑 log𝑁 , we construct sequences OG(𝑧𝑘) and OG(𝑤𝑘) such
that LCS between them is LCS(𝑧𝑘, 𝑤𝑘) = 𝑑/𝛼 if the vectors are orthogonal and
LCS(𝑧𝑘, 𝑤𝑘) = (𝑑/𝛼) − 1 otherwise. We split the vector 𝑧𝑘 into 𝑑/𝛼 shorter vec-
tors 𝑧𝑘1 , . . . , 𝑧

𝑘
𝑑/𝛼 ∈ {0, 1}𝛼 log𝑁 . Similarly, we split the vector 𝑤𝑘 into 𝑑/𝛼 shorter

vectors 𝑤𝑘
1 , . . . , 𝑧

𝑘
𝑑/𝛼 ∈ {0, 1}𝛼 log𝑁 . We construct OG(𝑧𝑘) by replacing each shorter

vector 𝑧𝑘𝑡 by a symbol corresponding to it (indexed by the 𝛼 log𝑁 binary values)
and its position. We construct OG(𝑤𝑘) by replacing each shorter vector 𝑤𝑘

𝑡 by a
sequence of symbols corresponding to all vectors that are orthogonal to 𝑤𝑘

𝑡 . This
implies that we have a large LCS score if there are many orthogonal pairs 𝑧𝑘𝑡 , 𝑤

𝑘
𝑡 of

short vectors. Instead of replacing 𝑤𝑘
𝑡 by a sequence of symbols corresponding to all

orthogonal vectors, we can take an arbitrary function 𝑓𝑘
𝑡 : {0, 1}2𝛼 log𝑁 → {0, 1} and

replace 𝑤𝑘
𝑡 by a sequence of symbols corresponding to all vectors 𝑢 ∈ {0, 1}𝛼 log𝑁 such

that 𝑓𝑘
𝑡 (𝑢,𝑤

𝑘
𝑡 ) = 1. We recover the orthogonality constraint by choosing functions

𝑓𝑘
𝑡 that evaluates to 1 if and only if the two vectors are orthogonal. For arbitrary

functions 𝑓𝑘
1 , . . . , 𝑓

𝑘
𝑑/𝛼 : {0, 1}2𝛼 log𝑁 → {0, 1}, we get that LCS(𝑧𝑘, 𝑤𝑘) = 𝑑/𝛼 if

𝑓𝑘
1 (𝑧

𝑘
1 , 𝑤

𝑘
1) = . . . = 𝑓𝑘

𝑑/𝛼(𝑧
𝑘
𝑑/𝛼, 𝑤

𝑘
𝑑/𝛼) = 1 and LCS(𝑧𝑘, 𝑤𝑘) = (𝑑/𝛼) − 1 otherwise.

Clearly, the new version of orthogonal row problem is harder to solve than the one
restricted to the orthogonality constraints.

To further increase the hardness of the orthogonal row problem we can define
functions 𝑔𝑘 : {0, 1}𝑑/𝛼 → {0, 1} and require that LCS(𝑧𝑘, 𝑤𝑘) = 𝑞 if

𝑔𝑘(𝑓𝑘
1 (𝑧

𝑘
1 , 𝑤

𝑘
1), . . . , 𝑓

𝑘
𝑑/𝛼(𝑧

𝑘
𝑑/𝛼, 𝑤

𝑘
𝑑/𝛼)) = 1

and LCS(𝑧𝑘, 𝑤𝑘) = 𝑞′ < 𝑞 otherwise (for some fixed values 𝑞 and 𝑞′). Notice that
previously all functions 𝑔𝑘 are AND functions. This modification requires that the
gap (𝑞/𝑞′)− 1 is at least a constant (we have a constant gap for the AND function)
and that the functions 𝑔𝑘 can be efficiently simulated with LCS.

6.5 Hardness for binary LCS and edit distance
The results in this section follow from simple observations over [AHVWW16] that are
easy to make with our framework in mind. We refer the reader to [AHVWW16] for
the definition and background on branching programs.

Theorem 6.5.1 (Theorem 2 in [AHVWW16]). There is a reduction from SAT on
nondeterministic branching programs on 𝑚 variables, length 𝑇 , and width 𝑊 , to
an instance of edit distance or LCS on two binary sequences 𝑃 and 𝑄 of length
𝑛 , 2𝑚/2𝑇𝑂(log𝑊 ), and the reduction runs in 𝑂(𝑛) time.

See also [AB18] for reductions between circuits and LCS. We need the following
additional properties of the reduction from Theorem 6.5.1.

Claim 6.5.2. Let 𝑃 be the branching program that we want to reduce.
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If we reduce a branching program 𝑋 to LCS problem then we have the following
two properties:

∙ If the branching problem 𝑋 is not satisfiable, then LCS(𝑃,𝑄) ≤ 𝐶 for some
integer value 𝐶 = 𝐶(𝑛,𝑚, 𝑇,𝑊 ) ≤ 𝑛.

∙ If at least half of the assignments satisfy the branching program 𝑋, then LCS(𝑥, 𝑦)
≥ 𝐶 + (2𝑚/2/2).

If we reduce the branching program 𝑃 to edit distance problem then we have the
following two properties:

∙ If the branching program 𝑋 is not satisfiable, then edit(𝑃,𝑄) ≥ 𝐶 for some
integer value 𝐶 = 𝐶(𝑛,𝑚, 𝑇,𝑊 ) ≤ 𝑛.

∙ If at least half of the assignments satisfy the branching program 𝑋, then edit(𝑃,𝑄)
≤ 𝐶 − (2𝑚/2/2).

Proof. The proof follows from the proof of Claim 9 in [AHVWW16]. We briefly sketch
the changes.

Consider the case when 𝑋 is not satisfiable. The proof does not change—we show
that LCS is upper bounded and the edit distance is lower bounded by some fixed
quantity 𝐶.

Consider the case when 𝑋 is satisfied by at least half of the assignments. In the
proof of Claim 9 the authors choose an integer Δ such that the corresponding alignment
pairs up two gadgets that form a satisfying assignment to the branching program 𝑋.
When there are many satisfying assignments (at least half), we can show that there
is an integer such in the corresponding alignment at least half of the assignments are
satisfying. By the properties of the gadgets constructed in [AHVWW16], we get the
required lower bound on LCS and the required upper bound on the edit distance.

Theorem 6.5.1 and Claim 6.5.2 combined give the following result.

Theorem 6.5.3. Given a branching program on 𝑚 variables, length 𝑇 and width
𝑊 , for some 𝐿 ≤ 𝑇𝑂(log𝑊 ) it is possible to construct two sequences of length 𝑛 ≤
𝑂(2𝑚/2𝐿) over a binary alphabet in 𝑂(𝑛) time such that the following holds. If we
can approximate LCS between the sequence within the factor of 1 + 1/𝐿 in time 𝑓(𝑛),
then in the same time we can distinguish the case when the branching program is
not satisfiable from the case when the branching program has more than half of its
assignments satisfying. The same statement holds for the edit distance problem.

From the discussion in [AHVWW16] on the connection between branching pro-
grams and NC circuits we obtain the following barrier. A deterministic algorithm that
achieves 1 + 1/(log𝑛)𝜔(1) approximation for LCS or the edit distance implies that there
exists 𝑓 ∈ ENP such that 𝑓 /∈ NC1.
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Part II

Statistical data analysis
and machine learning
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Chapter 7

Empirical risk minimization

Empirical risk minimization (ERM) is ubiquitous in machine learning and underlies
most supervised learning methods. While there is a large body of work on algorithms
for various ERM problems, the exact computational complexity of ERM is still not
understood. Since the problems have polynomial time algorithms, the classical ma-
chinery from complexity theory (such as NP hardness) is too coarse to apply. Oracle
lower bounds from optimization offer useful guidance for convex ERM problems, but
the results only hold for limited classes of algorithms. Moreover, they do not account
for the cost of executing the oracle calls, as they simply lower bound their number.
Overall, we do not know if common ERM problems allow for algorithms that compute
a high-accuracy solution in sub-quadratic or even nearly-linear time for all instances.1
Furthermore, we do not know if there are more efficient techniques for computing
(mini)-batch gradients than simply treating each example in the batch independently.2

We study the exact computational complexity of multiple popular ERM problems
including kernel SVMs, kernel ridge regression, and training the final layer of a neural
network. In particular, we give conditional hardness results for these problems based
on SETH. Under this hardness assumption we show that there are no algorithms that
solve the aforementioned ERM problems to high accuracy in sub-quadratic time. We
also give similar lower bounds for computing the gradient of the empirical loss, which
is the main computational burden in many non-convex learning tasks.

Our hardness results for the gradient computation apply to common activation
functions such as ReLU or sigmoid units. We remark that for polynomial activation
functions (for instance, studied in [LSSS14]), significantly faster algorithms do exist
(see Section 7.7). Thus, our results can be seen as mapping the “efficiency landscape”
of basic machine learning sub-routines. They distinguish between what is possible
and (likely) impossible, suggesting further opportunities for improvement.

1More efficient algorithms exist if the running time is allowed to be polynomial in the accuracy
parameter, e.g., [SSSS07] give such an algorithm for the kernel SVM problem that we consider as
well. See also the discussion in Section 7.1.4.

2Consider a network with one hidden layer containing 𝑛 units and a training set with 𝑚 examples,
for simplicity in small dimension 𝑑 = 𝑂(log 𝑛). No known results preclude an algorithm that
computes a full gradient in time 𝑂((𝑛 + 𝑚) log 𝑛). This would be significantly faster than the
standard 𝑂(𝑛 ·𝑚 · log 𝑛) approach of computing the full gradient example by example.
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7.1 Our contributions
We obtain our conditional hardness results via reductions from the orthogonal vectors
problem and from the bichromatic Hamming close pair problem.

For the orthogonal vectors problem we can assume without loss of generality that
all vectors in set 𝐵 have the same number of entries equal to 1. This can be achieved
by appending 𝑑 entries to every 𝑏 ∈ 𝐵 and setting the necessary number of them to 1
and the rest to 0. We then append 𝑑 entries to every 𝑎 ∈ 𝐴 and set all of them to 0.

7.1.1 Kernel ERM problems

We provide hardness results for multiple kernel problems. In the following, let
𝑥1, . . . , 𝑥𝑛 ∈ R𝑑 be the 𝑛 input vectors, where 𝑑 = 𝜔(log 𝑛). We use 𝑦1, . . . , 𝑦𝑛 ∈ R
as 𝑛 labels or target values. Finally, let 𝑘(𝑥, 𝑥′) denote a kernel function and let
𝐾 ∈ R𝑛×𝑛 be the corresponding kernel matrix, defined as 𝐾𝑖,𝑗 , 𝑘(𝑥𝑖, 𝑥𝑗) [SS01].
Specifically, we focus on the Gaussian kernel 𝑘(𝑥, 𝑥′) , exp (−𝐶‖𝑥− 𝑥′‖22) for some
𝐶 > 0. We note that our results can be generalized to any kernel with exponential
tail.

Kernel SVM. For simplicity, we present our result for hard-margin SVMs without
bias terms. This gives the following optimization problem.

Definition 7.1.1 (Hard-margin SVM). A (primal) hard-margin SVM is an optimiza-
tion problem of the following form:

minimize
𝛼1,...,𝛼𝑛≥0

1

2

𝑛∑︁
𝑖,𝑗=1

𝛼𝑖 𝛼𝑗 𝑦𝑖 𝑦𝑗 𝑘(𝑥
𝑖, 𝑥𝑗)

subject to 𝑦𝑖 𝑓(𝑥
𝑖) ≥ 1, 𝑖 = 1, . . . , 𝑛,

(7.1)

where 𝑓(𝑥) ,
∑︀𝑛

𝑖=1 𝛼𝑖 𝑦𝑖 𝑘(𝑥
𝑖, 𝑥).

The following theorem is our main result for SVMs, described in more detail in
Section 7.3.1. In Sections 7.3.2 and 7.3.3 we provide similar hardness results for other
common SVM variants, including the soft-margin version.

Theorem 7.1.2. Let 𝑘(𝑥, 𝑥′) be the Gaussian kernel with 𝐶 , 100 log 𝑛 and let
𝜀 , exp(−𝜔(log2 𝑛)). Then approximating the optimal value of Eq. (7.1) within the
multiplicative factor 1 + 𝜀 requires almost quadratic time assuming SETH.

Kernel Ridge Regression. Next we consider kernel ridge regression, which is
formally defined as follows.

Definition 7.1.3 (Kernel ridge regression). Given a real value 𝜆 ≥ 0, the goal of the
kernel ridge regression is to output

argmin
𝛼∈R𝑛

1

2
‖𝑦 −𝐾𝛼‖22 +

𝜆

2
𝛼T𝐾𝛼.
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This problem is equivalent to computing the vector (𝐾 +𝜆𝐼)−1𝑦. We focus on the
special case where 𝜆 = 0 and the vector 𝑦 has all equal entries 𝑦1 = . . . = 𝑦𝑛 = 1. In
this case, the sum of entries of 𝐾−1𝑦 is equal to the sum of the entries in 𝐾−1. Thus,
we show hardness for approximating the latter quantity (see Section 7.4).

Theorem 7.1.4. Let 𝑘(𝑥, 𝑥′) be the Gaussian kernel for any parameter 𝐶 , 𝜔(log 𝑛)
and let 𝜀 , exp(−𝜔(log2 𝑛)). Then approximating the sum of the entries in 𝐾−1 up
to the multiplicative factor of 1 + 𝜀 requires almost quadratic time assuming SETH.

Kernel PCA. Finally, we turn to the kernel PCA problem, which we define as
follows [Mur12].

Definition 7.1.5 (Kernel principal component analysis (PCA)). Let 1𝑛 be an 𝑛× 𝑛
matrix where each entry takes value 1/𝑛, and define 𝐾 ′ , (𝐼 − 1𝑛)𝐾(𝐼 − 1𝑛). The
goal of the kernel PCA problem is to output the 𝑛 eigenvalues of the matrix 𝐾 ′.

In the above definition, the output only consists of the eigenvalues, not the eigen-
vectors. This is because computing all 𝑛 eigenvectors trivially takes at least quadratic
time since the output itself has quadratic size. Our hardness proof applies to the
potentially simpler problem where only the eigenvalues are desired. Specifically, we
show that computing the sum of the eigenvalues (i.e., the trace of the matrix) is hard.
See Section 7.5 for the proof.

Theorem 7.1.6. Let 𝑘(𝑥, 𝑥′) be the Gaussian kernel with 𝐶 , 100 log 𝑛 and let
𝜀 , exp(−𝜔(log2 𝑛)). Then approximating the sum of the eigenvalues of 𝐾 ′ , (𝐼 −
1𝑛)𝐾(𝐼 − 1𝑛) within the multiplicative factor of 1 + 𝜀 requires almost quadratic time
assuming SETH.

All lower bounds for kernel problems in this sections can be further strengthened
to any 𝜀 = 𝑛−𝜔(1) by using [Rub18]. This conditionally rules out algorithms of the
form 𝑛2−Ω(1)/𝜀𝑜(1).

7.1.2 Neural network ERM problems

We now consider neural networks. We focus on the problem of optimizing the top
layer while keeping lower layers unchanged. An instance of this problem is transfer
learning with large networks that would take a long time and many examples to train
from scratch [RASC14]. We consider neural networks of depth-2, with the sigmoid or
ReLU activation function. Our hardness result holds for a more general class of “nice”
activation functions 𝑆 as described later (see Definition 7.6.2).

Given 𝑛 weight vectors 𝑤1, . . . , 𝑤𝑛 ∈ R𝑑 and 𝑛 weights 𝛼1, . . . , 𝛼𝑛 ∈ R, consider
the function 𝑓 : R𝑑 → R using a non-linearity 𝑆 : R → R:

𝑓(𝑥) ,
𝑛∑︁

𝑗=1

𝛼𝑗𝑆(𝑥 · 𝑤𝑗) .
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This function can be implemented as a neural net that has 𝑑 inputs, 𝑛 non-linear
activations (units), and one linear output.

To complete the ERM problem, we also require a loss function. Our hardness
results hold for a large class of “nice” loss functions, which includes the hinge loss and
the logistic loss.3 Given a nice loss function and 𝑚 input vectors 𝑥1, . . . , 𝑥𝑚 ∈ R𝑑

with corresponding labels 𝑦𝑖, we consider the following problem:

minimize
𝛼1,...,𝛼𝑛∈R

𝑚∑︁
𝑖=1

loss(𝑦𝑖, 𝑓(𝑥𝑖)). (7.2)

Our main result is captured by the following theorem (see Section 7.6 for the
proof). For simplicity, we set 𝑚 = 𝑛.

Theorem 7.1.7. For any 𝑑 , 𝜔(log 𝑛), approximating the optimal value in Eq. (7.2)
up to a multiplicative factor of 1 + 1

4𝑛
requires almost quadratic time assuming SETH.

7.1.3 Gradient computation

Finally, we consider the problem of computing the gradient of the loss function for a
given set of examples. We focus on the network architecture from the previous section.
Formally, we obtain the following result:

Theorem 7.1.8. Consider the empirical risk in Eq. (7.2) under the following as-
sumptions: (i) The function 𝑓 is represented by a neural network with 𝑛 units, 𝑛𝑑
parameters, and the ReLU activation function. (ii) We have 𝑑 , 𝜔(log 𝑛). (iii) The
loss function is the logistic loss or hinge loss. Then approximating the ℓ𝑝-norm (for
any 𝑝 ≥ 1) of the gradient of the empirical risk for 𝑚 examples within a multiplicative
factor of 𝑛𝐶 for any constant 𝐶 > 1 takes at least Ω

(︀
(𝑛𝑚)1−𝑜(1)

)︀
time assuming

SETH.

See Section 7.7 for the proof. We also prove a similar statement for the sigmoid
activation function. At the same time, we remark that for polynomial activation func-
tions, significantly faster algorithms do exist, using the polynomial lifting argument.
Specifically, for the polynomial activation function of the form 𝑆(𝑧) = 𝑧𝑟 for some
integer 𝑟 ≥ 2, all gradients can be computed in 𝑂((𝑛 +𝑚)𝑑𝑟) time. Note that the
running time of the standard backpropagation algorithm is 𝑂(𝑑𝑛𝑚) for networks with
this architecture. Thus, it is possible to improve over backpropagation for a non-trivial
range of parameters, especially for quadratic activation function when 𝑟 = 2. See
Section 7.7.

7.1.4 Related work

There is a long line of work on the oracle complexity of optimization problems,
going back to [NY83]. We refer the reader to [Nes04] for these classical results.

3In the binary setting we consider, the logistic loss is equivalent to the softmax loss commonly
employed in deep learning.
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The oracle complexity of ERM problems is still subject of active research, e.g., see
[AB15, CBMS15, WS16, AS16, AS17]. The work closest to ours is [CBMS15], which
gives quadratic time lower bounds for ERM algorithms that access the kernel matrix
through an evaluation oracle or a low-rank approximation.

The oracle results are fundamentally different from the lower bounds presented
in this section. Oracle lower bounds are typically unconditional, but inherently
apply only to a limited class of algorithms due to their information-theoretic nature.
Moreover, they do not account for the cost of executing the oracle calls, as they
merely lower bound their number. In contrast, our results are conditional (based on
the SETH and related assumptions), but apply to any algorithm and account for
the total computational cost. This significantly broadens the reach of our results.
We show that the hardness is not due to the oracle abstraction but instead inherent
in the computational problem. To the best of our knowledge, our result is the
first application of this methodology to continuous (as opposed to combinatorial)
optimization problems.

Finally, we note that our results do not rule out algorithms that achieve a sub-
quadratic running time for well-behaved instances, e.g., instances with low-dimensional
structure. Indeed, many such approaches have been investigated in the literature, for
instance the Nyström method or random features for kernel problems [WS01, RR08].
Our results offer an explanation for the wide variety of techniques. The lower bounds
are evidence that there is no “silver bullet” algorithm for solving the aforementioned
ERM problems in sub-quadratic time, to high accuracy, and for all instances.

7.2 Preliminaries

In this section we define several notions used later in this section. We start from the
soft-margin support vector machine (see [MMR+01]).

Definition 7.2.1 (Support vector machine (SVM)). Let 𝑥1, . . . , 𝑥𝑛 ∈ R𝑑 be 𝑛 vectors
and 𝑦1, . . . , 𝑦𝑛 ∈ {−1, 1} be 𝑛 labels. Let 𝑘(𝑥, 𝑥′) be a kernel function. An optimization
problem of the following form is a (primal) SVM.

minimize
𝛼1,...,𝛼𝑛≥0, 𝑏

𝜉1,...,𝜉𝑛≥0

𝜆

2

𝑛∑︁
𝑖,𝑗=1

𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑘(𝑥
𝑖, 𝑥𝑗) +

1

𝑛

𝑛∑︁
𝑖=1

𝜉𝑖

subject to 𝑦𝑖𝑓(𝑥
𝑖) ≥ 1− 𝜉𝑖, 𝑖 = 1, . . . , 𝑛,

where 𝑓(𝑥) , 𝑏 +
∑︀𝑛

𝑖=1 𝛼𝑖𝑦𝑖𝑘(𝑥
𝑖, 𝑥) and 𝜆 ≥ 0 is called the regularization parameter.

𝜉𝑖 are known as the slack variables.
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The dual SVM is defined as

maximize
𝛼1,...,𝛼𝑛≥0

𝑛∑︁
𝑖=1

𝛼𝑖 −
1

2

𝑛∑︁
𝑖,𝑗=1

𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑘(𝑥
𝑖, 𝑥𝑗)

subject to
𝑛∑︁

𝑖=1

𝛼𝑖𝑦𝑖 = 0,

𝛼1, . . . , 𝛼𝑛 ≤ 1

𝜆𝑛
.

We refer to the quantity 𝑏 as the bias term. When we require that the bias is 𝑏 = 0,
we call the optimization problem as SVM without the bias term. The primal SVM
without the bias term remains the same except 𝑓(𝑥) =

∑︀𝑛
𝑖=1 𝛼𝑖𝑦𝑖𝑘(𝑥

𝑖, 𝑥). The dual
SVM remains the same except we remove the equality constraint

∑︀𝑛
𝑖=1 𝛼𝑖𝑦𝑖 = 0.

The (primal) hard-margin SVM defined in the previous section corresponds to
soft-margin SVM in the setting when 𝜆 → 0. The dual hard-margin SVM is defined
as follows.

Definition 7.2.2 (Dual hard-margin SVM). Let 𝑥1, . . . , 𝑥𝑛 ∈ R𝑑 be 𝑛 vectors and
𝑦1, . . . , 𝑦𝑛 ∈ {−1, 1} be 𝑛 labels. Let 𝑘(𝑥, 𝑥′) be a kernel function. An optimization
problem of the following form is a dual hard-margin SVM.

maximize
𝛼1,...,𝛼𝑛≥0

𝑛∑︁
𝑖=1

𝛼𝑖 −
1

2

𝑛∑︁
𝑖,𝑗=1

𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑘(𝑥
𝑖, 𝑥𝑗)

subject to
𝑛∑︁

𝑖=1

𝛼𝑖𝑦𝑖 = 0.

If the primal hard-margin SVM is without the bias term (𝑏 = 0), then we omit the
inequality constraint

∑︀𝑛
𝑖=1 𝛼𝑖𝑦𝑖 = 0 in the dual SVM.

We will use the following fact (see [MMR+01]).

Fact 7.2.3. If 𝛼*1, . . . , 𝛼*𝑛 achieve the minimum in an SVM, then the same 𝛼*1, . . . , 𝛼
*
𝑛

achieve the maximum in the dual SVM. Also, the minimum value and the maximum
value are equal.

7.3 Hardness for kernel SVM
In this section we show conditional lower bounds for several variants of the kernel
SVM problem.

7.3.1 Hardness for SVM without the bias term

Let 𝐴 , {𝑎1, . . . , 𝑎𝑛} ⊆ {0, 1}𝑑 and 𝐵 , {𝑏1, . . . , 𝑏𝑛} ⊆ {0, 1}𝑑 be the two sets of
binary vectors from a BHCP instance with 𝑑 , 𝜔(log 𝑛). Our goal is to determine
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whether there is a close pair of vectors. We show how to solve this BHCP instance
by reducing it to three computations of SVM, defined as follows:

1. We take the first set 𝐴 of binary vectors, assign label 1 to all vectors, and solve
the corresponding SVM on the 𝑛 vectors:

minimize
𝛼1,...,𝛼𝑛≥0

1

2

𝑛∑︁
𝑖,𝑗=1

𝛼𝑖𝛼𝑗𝑘(𝑎
𝑖, 𝑎𝑗)

subject to
𝑛∑︁

𝑗=1

𝛼𝑗𝑘(𝑎
𝑖, 𝑎𝑗) ≥ 1, 𝑖 = 1, . . . , 𝑛.

(7.3)

Note that we do not have 𝑦𝑖 in the expressions because all labels are 1.

2. We take the second set 𝐵 of binary vectors, assign label −1 to all vectors, and
solve the corresponding SVM on the 𝑛 vectors:

minimize
𝛽1,...,𝛽𝑛≥0

1

2

𝑛∑︁
𝑖,𝑗=1

𝛽𝑖𝛽𝑗𝑘(𝑏
𝑖, 𝑏𝑗)

subject to −
𝑛∑︁

𝑗=1

𝛽𝑗𝑘(𝑏
𝑖, 𝑏𝑗) ≤ −1, 𝑖 = 1, . . . , 𝑛.

(7.4)

3. We take both sets 𝐴 and 𝐵 of binary vectors, assign label 1 to all vectors from
the first set 𝐴 and label −1 to all vectors from the second set 𝐵. We then solve
the corresponding SVM on the 2𝑛 vectors:

minimize
𝛼1,...,𝛼𝑛≥0
𝛽1,...,𝛽𝑛≥0

1

2

𝑛∑︁
𝑖,𝑗=1

𝛼𝑖𝛼𝑗𝑘(𝑎
𝑖, 𝑎𝑗) +

1

2

𝑛∑︁
𝑖,𝑗=1

𝛽𝑖𝛽𝑗𝑘(𝑏
𝑖, 𝑏𝑗)−

𝑛∑︁
𝑖,𝑗=1

𝛼𝑖𝛽𝑗𝑘(𝑎
𝑖, 𝑏𝑗)

subject to
𝑛∑︁

𝑗=1

𝛼𝑗𝑘(𝑎
𝑖, 𝑎𝑗)−

𝑛∑︁
𝑗=1

𝛽𝑗𝑘(𝑎
𝑖, 𝑏𝑗) ≥ 1, 𝑖 = 1, . . . , 𝑛 ,

−
𝑛∑︁

𝑗=1

𝛽𝑗𝑘(𝑏
𝑖, 𝑏𝑗) +

𝑛∑︁
𝑗=1

𝛼𝑗𝑘(𝑏
𝑖, 𝑎𝑗) ≤ −1, 𝑖 = 1, . . . , 𝑛 .

(7.5)

Intuition behind the construction. To show a reduction from the BHCP problem
to SVM computation, we have to consider two cases:

∙ The YES case of the BHCP problem when there are two vectors that are close
in the Hamming distance. That is, there exist 𝑎𝑖 ∈ 𝐴 and 𝑏𝑗 ∈ 𝐵 such that
Hamming(𝑎𝑖, 𝑏𝑗) < 𝑡.

∙ The NO case of the BHCP problem when there is no close pair of vectors. That
is, for all 𝑎𝑖 ∈ 𝐴 and 𝑏𝑗 ∈ 𝐵, we have Hamming(𝑎𝑖, 𝑏𝑗) ≥ 𝑡.
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We show that we can distinguish between these two cases by comparing the
objective value of the first two SVM instances above to the objective value of the
third.

Intuition for the NO case. We have Hamming(𝑎𝑖, 𝑏𝑗) ≥ 𝑡 for all 𝑎𝑖 ∈ 𝐴 and
𝑏𝑗 ∈ 𝐵. The Gaussian kernel then gives the inequality

𝑘(𝑎𝑖, 𝑏𝑗) = exp(−100 log 𝑛 · ‖𝑎𝑖 − 𝑏𝑗‖22) ≤ exp(−100 log 𝑛 · 𝑡)

for all 𝑎𝑖 ∈ 𝐴 and 𝑏𝑗 ∈ 𝐵. This means that the value 𝑘(𝑎𝑖, 𝑏𝑗) is very small. For
simplicity, assume that it is equal to 0, i.e., 𝑘(𝑎𝑖, 𝑏𝑗) = 0 for all 𝑎𝑖 ∈ 𝐴 and 𝑏𝑗 ∈ 𝐵.

Consider the third SVM Eq. (7.5). It contains three terms involving 𝑘(𝑎𝑖, 𝑏𝑗): the
third term in the objective function, the second term in the inequalities of the first
type, and the second term in the inequalities of the second type. We assumed that
these terms are equal to 0 and we observe that the rest of the third SVM is equal to
the sum of the first SVM Eq. (7.3) and the second SVM Eq. (7.4). Thus we expect
that the optimal value of the third SVM is approximately equal to the sum of the
optimal values of the first and the second SVMs. If we denote the optimal value of
the first SVM Eq. (7.3) by value(𝐴), the optimal value of the second SVM Eq. (7.4)
by value(𝐵), and the optimal value of the third SVM Eq. (7.5) by value(𝐴,𝐵), then
we can express our intuition in terms of the approximate equality

value(𝐴,𝐵) ≈ value(𝐴) + value(𝐵) .

Intuition for the YES case. In this case, there is a close pair of vectors 𝑎𝑖 ∈ 𝐴
and 𝑏𝑗 ∈ 𝐵 such that Hamming(𝑎𝑖, 𝑏𝑗) ≤ 𝑡−1. Since we are using the Gaussian kernel,
we have the following inequality for this pair of vectors:

𝑘(𝑎𝑖, 𝑏𝑗) = exp(−100 log 𝑛 · ‖𝑎𝑖 − 𝑏𝑗‖22) ≥ exp(−100 log 𝑛 · (𝑡− 1)) .

Therefore, we have a large summand in each of the three terms from the above
discussion. Thus, the three terms do not (approximately) disappear and there is no
reason for us to expect that the approximate equality holds. We can thus expect

value(𝐴,𝐵) ̸≈ value(𝐴) + value(𝐵) .

Thus, by computing value(𝐴,𝐵) and comparing it to value(𝐴) + value(𝐵) we
can distinguish between the YES and NO instances of BHCP. This completes the
reduction. In the rest of the section we formalize the intuition.

We start from the following two lemmas.

Lemma 7.3.1 (NO case). If for all 𝑎𝑖 ∈ 𝐴 and 𝑏𝑗 ∈ 𝐵 we have Hamming(𝑎𝑖, 𝑏𝑗) ≥ 𝑡,
then

value(𝐴,𝐵) ≤ value(𝐴) + value(𝐵) + 200𝑛6 exp(−100 log 𝑛 · 𝑡).
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Lemma 7.3.2 (YES case). If there exist 𝑎𝑖 ∈ 𝐴 and 𝑏𝑗 ∈ 𝐵 such that Hamming(𝑎𝑖, 𝑏𝑗)
≤ 𝑡− 1, then

value(𝐴,𝐵) ≥ value(𝐴) + value(𝐵) +
1

4
exp(−100 log 𝑛 · (𝑡− 1)).

Assuming the two lemmas we can distinguish the NO case from the YES case
because

200𝑛6 exp(−100 log 𝑛 · 𝑡) ≪ 1

4
exp(−100 log 𝑛 · (𝑡− 1)) (7.6)

by our choice of the parameter 𝐶 = 100 log 𝑛 for the Gaussian kernel.
Before we proceed with the proofs of the two lemmas, we prove the following

auxiliary statement.

Lemma 7.3.3. Consider SVM Eq. (7.3). Let 𝛼*1, . . . , 𝛼*𝑛 be the setting of values for
𝛼1, . . . , 𝛼𝑛 that achieves value(𝐴). Then for all 𝑖 = 1, . . . , 𝑛 we have that 𝑛 ≥ 𝛼*𝑖 ≥
1/2.

Analogous statement holds for SVM Eq. (7.4).

Proof. First we note that value(𝐴) ≤ 𝑛2/2 because the objective value of Eq. (7.3) is
at most 𝑛2/2 if we set 𝛼1 = . . . = 𝛼𝑛 = 1. Note that all inequalities of Eq. (7.3) are
satisfied for this setting of variables. Now we lower bound value(𝐴):

value(𝐴) =
1

2

𝑛∑︁
𝑖,𝑗

𝛼*𝑖𝛼
*
𝑗𝑘(𝑎

𝑖, 𝑎𝑗) ≥ 1

2

𝑛∑︁
𝑖=1

(𝛼*𝑖 )
2.

From value(𝐴) ≥ 1
2

∑︀𝑛
𝑖=1(𝛼

*
𝑖 )

2 and value(𝐴) ≤ 𝑛2/2 we conclude that 𝛼*𝑖 ≤ 𝑛 for all 𝑖.
Now we will show that 𝛼*𝑖 ≥ 1/2 for all 𝑖 = 1, . . . , 𝑛. Consider the inequality

𝑛∑︁
𝑗=1

𝛼*𝑗𝑘(𝑎
𝑖, 𝑎𝑗) = 𝛼*𝑖 +

∑︁
𝑗 : 𝑗 ̸=𝑖

𝛼*𝑗𝑘(𝑎
𝑖, 𝑎𝑗) ≥ 1,

which is satisfied by 𝛼*1, . . . , 𝛼
*
𝑛 because this is an inequality constraint in Eq. (7.3).

Note that 𝑘(𝑎𝑖, 𝑎𝑗) ≤ 1
10𝑛2 for all 𝑖 ̸= 𝑗 because 𝐶 = 100 log 𝑛 and ‖𝑎𝑖 − 𝑎𝑗‖22 =

Hamming(𝑎𝑖, 𝑎𝑗) ≥ 1 for all 𝑖 ≠ 𝑗. Also, we already obtained that 𝛼*𝑗 ≤ 𝑛 for all 𝑗.
This gives us the required lower bound for 𝛼*𝑖 :

𝛼*𝑖 ≥ 1−
∑︁

𝑗 : 𝑗 ̸=𝑖

𝛼*𝑗𝑘(𝑎
𝑖, 𝑎𝑗) ≥ 1− 𝑛 · 𝑛 · 1

10𝑛2
≥ 1/2.

Additive precision. For particular threshold 𝑡, the sufficient additive precision for
solving the three SVMs is 1

100
exp(−100 log 𝑛 · (𝑡 − 1)) to be able to distinguish the

NO case from the YES case. Since we want to be able to distinguish the two cases
for any 𝑡 ∈ {2, . . . , 𝑑}, it suffices to have an additive precision exp(−100 log 𝑛 · 𝑑) ≤
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1
100

exp(−100 log 𝑛 · (𝑡− 1)). From [AW15] we know that any 𝑑 = 𝜔(log 𝑛) is sufficient
to show hardness. Therefore, any additive approximation exp(−𝜔(log2 𝑛)) is sufficient
to show the hardness for SVM.

Multiplicative precision. Consider any 𝜀 , exp(−𝜔(log2 𝑛)) and suppose we can
approximate within multiplicative factor (1 + 𝜀) quantities value(𝐴), value(𝐵) and
value(𝐴,𝐵). From the proof of Lemma 7.3.3 we know that value(𝐴), value(𝐵) ≤ 𝑛2/2.
If value(𝐴,𝐵) ≤ 10𝑛2, then (1 + 𝜀)-approximation of the three quantities allows us to
compute the three quantities within additive exp(−𝜔(log2 𝑛)) factor and the hardness
follows from the previous paragraph. On the other hand, if value(𝐴,𝐵) > 10𝑛2, then
(1 + 𝜀)-approximation of value(𝐴,𝐵) allows us to determine that we are in the YES
case.

In the rest of the section we complete the proof of the theorem by proving Lem-
mas 7.3.1 and 7.3.2.

Proof of Lemma 7.3.1. Let 𝛼*1, . . . , 𝛼
*
𝑛 and 𝛽*1 , . . . , 𝛽

*
𝑛 be the optimal assignments to

SVMs Eq. (7.3) and Eq. (7.4), respectively. We use the notation 𝛿 , exp(−100 log 𝑛·𝑡).
Note that 𝑘(𝑎𝑖, 𝑏𝑗) = exp(−100 log 𝑛 · ‖𝑎𝑖 − 𝑏𝑗‖22) ≤ 𝛿 for all 𝑖, 𝑗 because ‖𝑎𝑖 − 𝑏𝑗‖22 =
Hamming(𝑎𝑖, 𝑏𝑗) ≥ 𝑡 for all 𝑖, 𝑗.

We define 𝛼′𝑖 , 𝛼*𝑖 +10𝑛2𝛿 and 𝛽′𝑖 , 𝛽*𝑖 +10𝑛2𝛿 for all 𝑖 = 1, . . . , 𝑛. We observe that
𝛼′𝑖, 𝛽

′
𝑖 ≤ 2𝑛 for all 𝑖 because 𝛼*𝑖 , 𝛽*𝑖 ≤ 𝑛 for all 𝑖 (Lemma 7.3.3) and 𝛿 = exp(−100 log 𝑛·

𝑡) ≤ 1
10𝑛2 . Let 𝑉 be the value of the objective function in Eq. (7.5) when evaluated

on 𝛼′𝑖 and 𝛽′𝑖.
We make two claims. We claim that 𝛼′𝑖 and 𝛽′𝑖 satisfy the inequality constraints

in Eq. (7.5). This implies that value(𝐴,𝐵) ≤ 𝑉 since Eq. (7.5) is a minimization
problem. Our second claim is that 𝑉 ≤ value(𝐴)+value(𝐵)+200𝑛6𝛿. The two claims
combined complete the proof of the lemma.

We start with the proof of the second claim. We want to show that 𝑉 ≤ value(𝐴)+
value(𝐵) + 200𝑛6𝛿. We get the following inequality:

𝑉 =
1

2

𝑛∑︁
𝑖,𝑗=1

𝛼′𝑖𝛼
′
𝑗𝑘(𝑎

𝑖, 𝑎𝑗) +
1

2

𝑛∑︁
𝑖,𝑗=1

𝛽′𝑖𝛽
′
𝑗𝑘(𝑏

𝑖, 𝑏𝑗) −
𝑛∑︁

𝑖,𝑗=1

𝛼′𝑖𝛽
′
𝑗𝑘(𝑎

𝑖, 𝑏𝑗)

≤ 1

2

𝑛∑︁
𝑖,𝑗=1

𝛼′𝑖𝛼
′
𝑗𝑘(𝑎

𝑖, 𝑎𝑗) +
1

2

𝑛∑︁
𝑖,𝑗=1

𝛽′𝑖𝛽
′
𝑗𝑘(𝑏

𝑖, 𝑏𝑗)

since the third sum is non-negative. Therefore it is sufficient to show two inequalities
1
2

∑︀𝑛
𝑖,𝑗=1 𝛼

′
𝑖𝛼
′
𝑗𝑘(𝑎

𝑖, 𝑎𝑗) ≤ value(𝐴) + 100𝑛6𝛿 and 1
2

∑︀𝑛
𝑖,𝑗=1 𝛽

′
𝑖𝛽
′
𝑗𝑘(𝑏

𝑖, 𝑏𝑗) ≤ value(𝐵) +

100𝑛6𝛿 to establish the inequality 𝑉 ≤ value(𝐴) + value(𝐵) + 200𝑛6𝛿. We prove the
first inequality. The proof for the second inequality is analogous. We use the definition
of 𝛼′𝑖 = 𝛼*𝑖 + 10𝑛2𝛿:

1

2

𝑛∑︁
𝑖,𝑗=1

𝛼′𝑖𝛼
′
𝑗𝑘(𝑎

𝑖, 𝑎𝑗)
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=
1

2

𝑛∑︁
𝑖,𝑗=1

(𝛼*𝑖 + 10𝑛2𝛿)(𝛼*𝑗 + 10𝑛2𝛿)𝑘(𝑎𝑖, 𝑎𝑗)

≤ 1

2

𝑛∑︁
𝑖,𝑗=1

(︀
𝛼*𝑖𝛼

*
𝑗𝑘(𝑎

𝑖, 𝑎𝑗) + 20𝑛3𝛿 + 100𝑛4𝛿2
)︀

≤ value(𝐴) + 100𝑛6𝛿,

where in the first inequality we use that 𝛼*𝑖 ≤ 𝑛 and 𝑘(𝑎𝑖, 𝑎𝑗) ≤ 1.

Now we prove the first claim. We show that the inequality constraints are satisfied
by 𝛼′𝑖 and 𝛽′𝑖. We prove that the inequality

𝑛∑︁
𝑗=1

𝛼′𝑗𝑘(𝑎
𝑖, 𝑎𝑗)−

𝑛∑︁
𝑗=1

𝛽′𝑗𝑘(𝑎
𝑖, 𝑏𝑗) ≥ 1 (7.7)

is satisfied for all 𝑖 = 1, . . . , 𝑛. The proof that the inequality −
∑︀𝑛

𝑗=1 𝛽
′
𝑗𝑘(𝑏

𝑖, 𝑏𝑗) +∑︀𝑛
𝑗=1 𝛼

′
𝑗𝑘(𝑏

𝑖, 𝑎𝑗) ≤ −1 is satisfied is analogous.

We lower bound the first sum of the left hand side of Eq. (7.7) by repeatedly using
the definition of 𝛼′𝑖 = 𝛼*𝑖 + 10𝑛2𝛿:

𝑛∑︁
𝑗=1

𝛼′𝑗𝑘(𝑎
𝑖, 𝑎𝑗)

= (𝛼*𝑖 + 10𝑛2𝛿) +
∑︁

𝑗 : 𝑗 ̸=𝑖

𝛼′𝑗𝑘(𝑎
𝑖, 𝑎𝑗)

≥ 10𝑛2𝛿 + 𝛼*𝑖 +
∑︁

𝑗 : 𝑗 ̸=𝑖

𝛼*𝑗𝑘(𝑎
𝑖, 𝑎𝑗)

= 10𝑛2𝛿 +
𝑛∑︁

𝑗=1

𝛼*𝑗𝑘(𝑎
𝑖, 𝑎𝑗)

≥ 1 + 10𝑛2𝛿.

In the last inequality we used the fact that 𝛼*𝑖 satisfy the inequality constraints of
SVM Eq. (7.3).

We upper bound the second sum of the left hand side of Eq. (7.7) by using the
inequality 𝛽′𝑗 ≤ 2𝑛 and 𝑘(𝑎𝑖, 𝑏𝑗) ≤ 𝛿 for all 𝑖, 𝑗:

𝑛∑︁
𝑗=1

𝛽′𝑗𝑘(𝑎
𝑖, 𝑏𝑗) ≤ 2𝑛2𝛿.

Finally, we can show that the inequality constraint is satisfied:

𝑛∑︁
𝑗=1

𝛼′𝑗𝑘(𝑎
𝑖, 𝑎𝑗)−

𝑛∑︁
𝑗=1

𝛽′𝑗𝑘(𝑎
𝑖, 𝑏𝑗) ≥ 1 + 10𝑛2𝛿 − 2𝑛2𝛿 ≥ 1.
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Proof of Lemma 7.3.2. To analyze the YES case, we consider the dual SVMs (see
Definition 7.2.2) of the three SVMs Eqs. (7.3) to (7.5):

1. The dual SVM of SVM Eq. (7.3):

maximize
𝛼1,...,𝛼𝑛≥0

𝑛∑︁
𝑖=1

𝛼𝑖 −
1

2

𝑛∑︁
𝑖,𝑗=1

𝛼𝑖𝛼𝑗𝑘(𝑎
𝑖, 𝑎𝑗). (7.8)

2. The dual SVM of SVM Eq. (7.4):

maximize
𝛽1,...,𝛽𝑛≥0

𝑛∑︁
𝑖=1

𝛽𝑖 −
1

2

𝑛∑︁
𝑖,𝑗=1

𝛽𝑖𝛽𝑗𝑘(𝑎
𝑖, 𝑎𝑗). (7.9)

3. The dual SVM of SVM Eq. (7.5):

maximize
𝛼1,...,𝛼𝑛≥0
𝛽1,...,𝛽𝑛≥0

𝑛∑︁
𝑖=1

𝛼𝑖 +
𝑛∑︁

𝑖=1

𝛽𝑖 − 1

2

𝑛∑︁
𝑖,𝑗=1

𝛼𝑖𝛼𝑗𝑘(𝑎
𝑖, 𝑎𝑗) − 1

2

𝑛∑︁
𝑖,𝑗=1

𝛽𝑖𝛽𝑗𝑘(𝑏
𝑖, 𝑏𝑗)

+
𝑛∑︁

𝑖,𝑗=1

𝛼𝑖𝛽𝑗𝑘(𝑎
𝑖, 𝑏𝑗).

(7.10)

Since the optimal values of the primal and the dual SVMs are equal, we have that
value(𝐴), value(𝐵) and value(𝐴,𝐵) are equal to the optimal values of the dual SVMs
Eq. (7.8), Eq. (7.9) and Eq. (7.10), respectively (see Fact 7.2.3).

Let 𝛼*1, . . . , 𝛼*𝑛 and 𝛽*1 , . . . , 𝛽
*
𝑛 be the optimal assignments to dual SVMs Eq. (7.8)

and Eq. (7.9), respectively.
Our goal is to lower bound value(𝐴,𝐵). Since Eq. (7.10) is a maximization problem,

it is sufficient to show an assignment to 𝛼𝑖 and 𝛽𝑗 that gives a large value to the
objective function. For this we set 𝛼𝑖 = 𝛼*𝑖 and 𝛽𝑗 = 𝛽*𝑗 for all 𝑖, 𝑗 = 1, . . . , 𝑛. This
gives the following inequality:

value(𝐴,𝐵) ≥
𝑛∑︁

𝑖=1

𝛼*𝑖 +
𝑛∑︁

𝑖=1

𝛽*𝑖 − 1

2

𝑛∑︁
𝑖,𝑗=1

𝛼*𝑖𝛼
*
𝑗𝑘(𝑎

𝑖, 𝑎𝑗) − 1

2

𝑛∑︁
𝑖,𝑗=1

𝛽*𝑖 𝛽
*
𝑗 𝑘(𝑏

𝑖, 𝑏𝑗)

+
𝑛∑︁

𝑖,𝑗=1

𝛼*𝑖𝛽
*
𝑗 𝑘(𝑎

𝑖, 𝑏𝑗)

≥ value(𝐴) + value(𝐵) +
𝑛∑︁

𝑖,𝑗=1

𝛼*𝑖𝛽
*
𝑗 𝑘(𝑎

𝑖, 𝑏𝑗),

where we use the fact that value(𝐴) and value(𝐵) are the optimal values of dual SVMs
Eq. (7.8) and Eq. (7.9), respectively.
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To complete the proof of the lemma, it suffices to show the following inequality:

𝑛∑︁
𝑖,𝑗=1

𝛼*𝑖𝛽
*
𝑗 𝑘(𝑎

𝑖, 𝑏𝑗) ≥ 1

4
exp(−100 log 𝑛 · (𝑡− 1)). (7.11)

Notice that so far we did not use the fact that there is a close pair of vectors
𝑎𝑖 ∈ 𝐴 and 𝑏𝑗 ∈ 𝐵 such that Hamming(𝑎𝑖, 𝑏𝑗) ≤ 𝑡 − 1. We use this fact now. We
lower bound the left hand side of Eq. (7.11) by the summand corresponding to the
close pair:

𝑛∑︁
𝑖,𝑗=1

𝛼*𝑖𝛽
*
𝑗 𝑘(𝑎

𝑖, 𝑏𝑗) ≥ 𝛼*𝑖𝛽
*
𝑗 𝑘(𝑎

𝑖, 𝑏𝑗) ≥ 𝛼*𝑖𝛽
*
𝑗 exp(−100 log 𝑛 · (𝑡− 1)),

where in the last inequality we use Hamming(𝑎𝑖, 𝑏𝑗) ≤ 𝑡− 1 and the definition of the
Gaussian kernel.

The proof is completed by observing that 𝛼*𝑖 ≥ 1
2

and 𝛽*𝑖 ≥ 1
2

which follows from
Fact 7.2.3 and Lemma 7.3.3.

Hardness for higher approximation factor. The reason for the choice of 𝜀 =
exp(−𝜔(log2 𝑛)) approximation factor is two-fold. First, in Eq. (7.6) we have to set
𝐶 ≥ Ω(log 𝑛) to be able to distinguish the cases. Second, 𝑡 can be as large as 𝑑 and
we set 𝑑 to be any 𝜔(log 𝑛). In [Rub18] it was shown that approximately solving the
Hamming close pair problem with any 1 + 𝑜(1) factor requires 𝑛2−𝑜(1) time for any
𝑑 ≥ 𝜔(log 𝑛) assuming SETH (by a reduction from the orthogonal vectors problem).
This allows us to set 𝐶 to be any 𝐶 ≥ 𝜔(log 𝑛) and 𝑡 = 1 (after appropriately scaling
the vectors). This gives hardness for any 𝜀 ≤ 𝑛−𝜔(1). Similar argument allows to
improve the approximation factor for other variants of the SVM problem as well as
the kernel ridge regression and kernel PCA.

7.3.2 Hardness for SVM with the bias term

In the previous section we showed hardness for SVM without the bias term. In this
section we show hardness for SVM with the bias term.

Theorem 7.3.4. Let 𝑥1, . . . , 𝑥𝑛 ∈ {−1, 0, 1}𝑑′ be 𝑛 vectors and let 𝑦1, . . . , 𝑦𝑛 ∈ {−1, 1}
be 𝑛 labels. Let 𝑘(𝑥, 𝑥′) , exp (−𝐶‖𝑥− 𝑥′‖22) be the Gaussian kernel with 𝐶 ,
100 log 𝑛.

Consider the corresponding hard-margin SVM with the bias term:

minimize
𝛼1,...,𝛼𝑛≥0, 𝑏

1

2

𝑛∑︁
𝑖,𝑗=1

𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑘(𝑥
𝑖, 𝑥𝑗)

subject to 𝑦𝑖𝑓(𝑥
𝑖) ≥ 1, 𝑖 = 1, . . . , 𝑛,

(7.12)

where 𝑓(𝑥) , 𝑏+
∑︀𝑛

𝑖=1 𝛼𝑖𝑦𝑖𝑘(𝑥
𝑖, 𝑥).
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Consider any 𝜀 , exp(−𝜔(log2 𝑛)). Approximating the optimal value of Eq. (7.12)
within the multiplicative factor (1+ 𝜀) requires almost quadratic time assuming SETH.
This holds for the dimensionality 𝑑′ , 𝑂(log3 𝑛) of the input vectors.

The same hardness result holds for any additive exp(−𝜔(log2 𝑛)) approximation
factor.

Proof. Consider a hard instance from Theorem 7.1.2 for SVM without the bias term.
Let 𝑥1, . . . , 𝑥𝑛 ∈ {0, 1}𝑑 be the 𝑛 binary vectors of dimensionality 𝑑 , 𝜔(log 𝑛) and
𝑦1, . . . , 𝑦𝑛 ∈ {−1, 1} be the 𝑛 corresponding labels. For this input consider the dual
SVM without the bias term (see Definition 7.2.2):

maximize
𝛾1,...,𝛾𝑛≥0

𝑛∑︁
𝑖=1

𝛾𝑖 − 1

2

𝑛∑︁
𝑖,𝑗=1

𝛾𝑖𝛾𝑗𝑦𝑖𝑦𝑗𝑘(𝑥
𝑖, 𝑥𝑗). (7.13)

We will show how to reduce SVM without the bias term Eq. (7.13) to SVM with
the bias term. By Theorem 7.1.2 this will give hardness result for SVM with the bias
term. We start with a simpler reduction that will achieve almost what we need except
the entries of the vectors will not be from the set {−1, 0, 1}. Then we will show how
to change the reduction to fix this.

Consider 2𝑛 vectors 𝑥1, . . . , 𝑥𝑛,−𝑥1, . . . ,−𝑥𝑛 ∈ {−1, 0, 1}𝑑 with 2𝑛 labels 𝑦1, . . . , 𝑦𝑛,
−𝑦1, . . . ,−𝑦𝑛 ∈ {−1, 1}. Consider an SVM with the bias term for the 2𝑛 vectors, that
is, an SVM of the form Eq. (7.12). From Definition 7.2.2 we know that its dual SVM
is

maximize
𝛼1,...,𝛼𝑛≥0
𝛽1,...,𝛽𝑛≥0

𝑛∑︁
𝑖=1

𝛼𝑖 +
𝑛∑︁

𝑗=1

𝛽𝑗 − 1

2

𝑛∑︁
𝑖,𝑗=1

𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑘(𝑥
𝑖, 𝑥𝑗) − 1

2

𝑛∑︁
𝑖,𝑗=1

𝛽𝑖𝛽𝑗𝑦𝑖𝑦𝑗𝑘(𝑥
𝑖, 𝑥𝑗)

+
𝑛∑︁

𝑖,𝑗=1

𝛼𝑖𝛽𝑗𝑦𝑖𝑦𝑗𝑘(𝑥
𝑖,−𝑥𝑗)

subject to
𝑛∑︁

𝑖=1

𝛼𝑖𝑦𝑖 =
𝑛∑︁

𝑗=1

𝛽𝑗𝑦𝑗.

(7.14)
Consider any setting of values for 𝛼𝑖 and 𝛽𝑗. Notice that if we swap the value

of 𝛼𝑖 and 𝛽𝑖 for every 𝑖, the value of the objective function of Eq. (7.14) does not
change. This is implies that we can define 𝛾𝑖 ,

𝛼𝑖+𝛽𝑖

2
and set 𝛼𝑖 = 𝛽𝑖 = 𝛾𝑖 for every

𝑖. Because of the convexity of the optimization problem, the value of the objective
function can only increase after this change. Clearly, the equality constraint will be
satisfied. Therefore, without loss of generality, we can assume that 𝛼𝑖 = 𝛽𝑖 = 𝛾𝑖 for
some 𝛾𝑖 and we can omit the equality constraint.

We rewrite Eq. (7.14) in terms of 𝛾𝑖 and divide the objective function by 2:

maximize
𝛾1,...,𝛾𝑛≥0

𝑛∑︁
𝑖=1

𝛾𝑖 − 1

2

𝑛∑︁
𝑖,𝑗=1

𝛾𝑖𝛾𝑗𝑦𝑖𝑦𝑗𝑘(𝑥
𝑖, 𝑥𝑗) +

1

2

𝑛∑︁
𝑖,𝑗=1

𝛾𝑖𝛾𝑗𝑦𝑖𝑦𝑗𝑘(𝑥
𝑖,−𝑥𝑗). (7.15)
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Notice that Eq. (7.15) and Eq. (7.13) are almost the same. The only difference is
the third term

1

2

𝑛∑︁
𝑖,𝑗=1

𝛾𝑖𝛾𝑗𝑦𝑖𝑦𝑗𝑘(𝑥
𝑖,−𝑥𝑗)

in Eq. (7.15). We can make this term to be equal to 0 and not change the first two
terms as follows. We append an extra coordinate to every vector 𝑥𝑖 and set this
coordinate to be large enough value 𝑀 . If we set 𝑀 = +∞, the third term becomes
0. The first term does not depend on the vectors. The second term depends only on
the distances between the vectors (which are not affected by adding the same entry
to all vectors). Thus, the first two terms do not change after this modification.

We showed that we can reduce SVM without the bias term Eq. (7.13) to the SVM
with the bias term Eq. (7.14). By combining this reduction with Theorem 7.1.2 we
obtain hardness for SVM with the bias term. This is almost what we need except
that the reduction presented above produces vectors with entries that are not from
the set {−1, 0, 1}. In every vector 𝑥𝑖 or −𝑥𝑖 there is an entry that has value 𝑀 or
−𝑀 , respectively. In the rest of the proof we show how to fix this, by bounding 𝑀
by 𝑂(log3 𝑛) and distributing its contribution over 𝑂(log3 𝑛) coordinates.

Final reduction. The final reduction is as follows:

∙ Take a hard instance for the SVM without the bias term from Theorem 7.1.2.
Let 𝑥1, . . . , 𝑥𝑛 ∈ {0, 1}𝑑 be the 𝑛 binary vectors of dimensionality 𝑑 , 𝜔(log 𝑛)
and 𝑦1, . . . , 𝑦𝑛 ∈ {−1, 1} be the 𝑛 corresponding labels.

∙ Append log3 𝑛 entries to each of the vectors 𝑥𝑖, 𝑖 = 1, . . . , 𝑛 and set the entries
to be 1.

∙ Solve SVM Eq. (7.12) on the 2𝑛 vectors 𝑥1, . . . , 𝑥𝑛,−𝑥1, . . . ,−𝑥𝑛 ∈ {−1, 0, 1}𝑑
with 2𝑛 labels 𝑦1, . . . , 𝑦𝑛,−𝑦1, . . . ,−𝑦𝑛 ∈ {−1, 1}. Let 𝑉 be the optimal value
of the SVM divided by 2.

∙ Output 𝑉 .

Correctness of the reduction From the above discussion we know that we output
the optimal value 𝑉 of the optimization problem Eq. (7.15). Let 𝑉 ′ be the optimal
value of SVM Eq. (7.13).

By Theorem 7.1.2 it is sufficient to show that |𝑉 − 𝑉 ′| ≤ exp(−𝜔(log2 𝑛)) to
establish hardness for SVM with the bias term. We will show that |𝑉 − 𝑉 ′| ≤
𝑛𝑂(1) exp(− log3 𝑛). This gives hardness for additive approximation of SVM with the
bias term. However, |𝑉 −𝑉 ′| ≤ exp(−𝜔(log2 𝑛)) is also sufficient to show hardness for
multiplicative approximation (see the discussion on the approximation in the proof
of Theorem 7.1.2).

In the rest of the section we show that |𝑉 − 𝑉 ′| ≤ 𝑛𝑂(1) exp(− log3 𝑛). Let 𝛾′𝑖 be
the assignment to 𝛾𝑖 that achieves 𝑉 ′ in SVM Eq. (7.13). Let 𝛾*𝑖 be the assignment
to 𝛾𝑖 that achieves 𝑉 in Eq. (7.15). We will show that 𝛾′𝑖 ≤ 𝑂(𝑛) for all 𝑖 = 1, . . . , 𝑛.
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It is also true that 𝛾*𝑖 ≤ 𝑂(𝑛) for all 𝑖 = 1, . . . , 𝑛 and the proof is analogous. Since
𝑥1, . . . , 𝑥𝑛 are different binary vectors and 𝑘(𝑥𝑖, 𝑥𝑗) is the Gaussian kernel with the
parameter 𝐶 = 100 log 𝑛, we have that 𝑘(𝑥𝑖, 𝑥𝑗) ≤ 1/𝑛10 for all 𝑖 ̸= 𝑗. This gives the
following upper bound:

𝑉 ′ =
𝑛∑︁

𝑖=1

𝛾′𝑖 − 1

2

𝑛∑︁
𝑖,𝑗=1

𝛾′𝑖𝛾
′
𝑗𝑦𝑖𝑦𝑗𝑘(𝑥

𝑖, 𝑥𝑗) ≤
𝑛∑︁

𝑖=1

(︂
𝛾′𝑖 −

(︂
1

2
− 𝑜(1)

)︂
(𝛾′𝑖)

2

)︂
.

Observe that every non-negative summand on the right hand side is at most 𝑂(1).
Therefore, if there exists 𝑖 such that 𝛾′𝑖 ≥ 𝜔(𝑛), then the right hand side is negative.
This contradicts the lower bound 𝑉 ′ ≥ 0 which follows by setting all 𝛾𝑖 to be 0 in
Eq. (7.13).

By plugging 𝛾′𝑖 into Eq. (7.15) and using the fact that 𝛾′𝑖 ≤ 𝑂(𝑛), we obtain the
following inequality:

𝑉 ≥ 𝑉 ′ +
1

2

𝑛∑︁
𝑖,𝑗=1

𝛾′𝑖𝛾
′
𝑗𝑦𝑖𝑦𝑗𝑘(𝑥

𝑖,−𝑥𝑗) ≥ 𝑉 ′ − 𝑛𝑂(1) exp(− log3 𝑛). (7.16)

In the last inequality we use 𝑘(𝑥𝑖,−𝑥𝑗) ≤ exp(− log3 𝑛) which holds for all 𝑖, 𝑗 = 1, ..., 𝑛
(observe that each 𝑥𝑖 and 𝑥𝑗 ends with log3 𝑛 entries 1 and use the definition of the
Gaussian kernel).

Similarly, by plugging 𝛾*𝑖 into Eq. (7.13) and using the fact that 𝛾*𝑖 ≤ 𝑂(𝑛), we
obtain the following inequality:

𝑉 ′ ≥ 𝑉 − 1

2

𝑛∑︁
𝑖,𝑗=1

𝛾*𝑖 𝛾
*
𝑗 𝑦𝑖𝑦𝑗𝑘(𝑥

𝑖,−𝑥𝑗) ≥ 𝑉 − 𝑛𝑂(1) exp(− log3 𝑛). (7.17)

Inequalities Eq. (7.16) and Eq. (7.17) combined give the desired inequality |𝑉 −
𝑉 ′| ≤ 𝑛𝑂(1) exp(− log3 𝑛).

7.3.3 Hardness for soft-margin SVM

Theorem 7.3.5. Let 𝑥1, . . . , 𝑥𝑛 ∈ {−1, 0, 1}𝑑 be 𝑛 vectors and let 𝑦1, . . . , 𝑦𝑛 ∈ {−1, 1}
be 𝑛 labels. Let 𝑘(𝑥, 𝑥′) , exp (−𝐶‖𝑥− 𝑥′‖22) be the Gaussian kernel with 𝐶 ,
100 log 𝑛.

Consider the corresponding soft-margin SVM with the bias term:

minimize
𝛼1,...,𝛼𝑛≥0, 𝑏

𝜉1,...,𝜉𝑛≥0

𝜆

2

𝑛∑︁
𝑖,𝑗=1

𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑘(𝑥
𝑖, 𝑥𝑗) +

1

𝑛

𝑛∑︁
𝑖=1

𝜉𝑖

subject to 𝑦𝑖𝑓(𝑥
𝑖) ≥ 1− 𝜉𝑖, 𝑖 = 1, . . . , 𝑛,

(7.18)

where 𝑓(𝑥) , 𝑏+
∑︀𝑛

𝑖=1 𝛼𝑖𝑦𝑖𝑘(𝑥
𝑖, 𝑥).

Consider any 𝜀 , exp(−𝜔(log2 𝑛)) and any 0 < 𝜆 ≤ 1
𝐾𝑛2 for a large enough con-

stant 𝐾 > 0. Approximating the optimal value of Eq. (7.18) within the multiplicative
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factor (1 + 𝜀) requires almost quadratic time assuming SETH. This holds for the
dimensionality 𝑑 , 𝑂(log3 𝑛) of the input vectors.

The same hardness result holds for any additive exp(−𝜔(log2 𝑛)) approximation
factor.

Proof. Consider the hard instance from Theorem 7.3.4 for the hard-margin SVM. The
dual of the hard-margin SVM is Eq. (7.14). From the proof we know that the optimal
𝛼𝑖 and 𝛽𝑖 satisfy 𝛼𝑖 = 𝛽𝑖 = 𝛾*𝑖 ≤ 2𝐾𝑛 for some large enough constant 𝐾 > 0 for all
𝑖 = 1, . . . , 𝑛. Thus, without loss of generality we can add these inequalities to the set
of constraints. We compare the resulting dual SVM to Definition 7.2.1 and conclude
that the resulting dual SVM is a dual of a soft-margin SVM with the regularization
parameter 𝜆 , 1

𝐾𝑛2 . Therefore, the hardness follows from Theorem 7.3.4.

7.4 Hardness for kernel ridge regression

We start by stating helpful definitions and lemmas. We will use the following lemma
which is a consequence of the binomial inverse theorem.

Lemma 7.4.1. Let 𝑋 and 𝑌 be two square matrices of equal size. Then the following
equality holds:

(𝑋 + 𝑌 )−1 = 𝑋−1 −𝑋−1(𝐼 + 𝑌 𝑋−1)−1𝑌 𝑋−1.

Definition 7.4.2 (Almost identity matrix). Let 𝑋 ∈ R𝑛×𝑛 be a matrix. We call it
almost identity matrix if 𝑋 = 𝐼 + 𝑌 and |𝑌𝑖,𝑗| ≤ 𝑛−𝜔(1) for all 𝑖, 𝑗 = 1, . . . , 𝑛.

We will need the following two lemmas.

Lemma 7.4.3. The product of two almost identity matrices is an almost identity
matrix.

Proof. Follows easily from the definition.

Lemma 7.4.4. The inverse of an almost identity matrix is an almost identity matrix.

Proof. Let 𝑋 be an almost identity matrix. We want to show that 𝑋−1 is an almost
identity matrix. We write 𝑋 = 𝐼 − 𝑌 such that |𝑌𝑖,𝑗| ≤ 𝑛−𝜔(1) for all 𝑖, 𝑗 = 1, . . . , 𝑛.
We have the following matrix equality

𝑋−1 = (𝐼 − 𝑌 )−1 = 𝐼 + 𝑌 + 𝑌 2 + 𝑌 3 + . . .

To show that 𝑋−1 is an almost identity, we will show that the absolute value of every
entry of 𝑍 , 𝑌 + 𝑌 2 + 𝑌 3 + . . . is at most 𝑛−𝜔(1). Let 𝜀 ≤ 𝑛−𝜔(1) is an upper bound
on |𝑌𝑖,𝑗| for all 𝑖, 𝑗 = 1, . . . , 𝑛. Then |𝑍𝑖,𝑗| ≤ 𝑍 ′𝑖,𝑗, where 𝑍 ′ , 𝑌 ′ + (𝑌 ′)2 + (𝑌 ′)3 + . . .
and 𝑌 ′ is a matrix consisting of entries that are all equal to 𝜀. The proof follows since
𝑍 ′𝑖,𝑗 =

∑︀∞
𝑘=1 𝜀

𝑘𝑛𝑘−1 ≤ 10𝜀 ≤ 𝑛−𝜔(1).

In the rest of the section we prove Theorem 7.1.4.
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Proof of Theorem 7.1.4. We reduce the BHCP problem to the problem of computing
the sum of the entries of 𝐾−1.

Let 𝐴 and 𝐵 be the two sets of binary vectors from the BHCP instance. Let
𝐾 ∈ R2𝑛×2𝑛 be the corresponding kernel matrix. We can write the kernel matrix 𝐾
as combination of four smaller matrices 𝐾1,1, 𝐾1,2, 𝐾2,1, 𝐾2,2 ∈ R𝑛×𝑛:

𝐾 =

[︂
𝐾1,1 𝐾1,2

𝐾2,1 𝐾2,2

]︂
.

𝐾1,1 is the kernel matrix for the set of vectors 𝐴 and 𝐾2,2 is the kernel matrix for the
set of vectors 𝐵. We define two new matrices 𝑋, 𝑌 ∈ R2𝑛×2𝑛: 𝑋 ,

[︂
𝐾1,1 0
0 𝐾2,2

]︂
and 𝑌 ,

[︂
0 𝐾1,2

𝐾2,1 0

]︂
.

For any matrix 𝑍, let 𝑠(𝑍) denote the sum of all entries of 𝑍. Using Lemma 7.4.1,
we can write 𝐾−1 as follows:

𝐾−1 = (𝑋 + 𝑌 )−1 = 𝑋−1 −𝑋−1(𝐼 + 𝑌 𝑋−1)−1𝑌 𝑋−1.

We note that the matrix 𝑋 is an almost identity and that |𝑌𝑖,𝑗| ≤ 𝑛−𝜔(1) for all
𝑖, 𝑗 = 1, . . . , 2𝑛. This follows from the fact that we use the Gaussian kernel function
with the parameter 𝐶 = 𝜔(log 𝑛) and the input vectors are binary. Combining this
with Lemmas 7.4.3 and 7.4.4 allows us to conclude that matrices 𝑋−1(𝐼 + 𝑌 𝑋−1)−1

and 𝑋−1 are almost identity. Since all entries of the matrix 𝑌 are non-negative, we
conclude that

𝑠(𝑋−1(𝐼 + 𝑌 𝑋−1)−1𝑌 𝑋−1) = 𝑠(𝑌 )(1± 𝑛−𝜔(1)).

We obtain that

𝑠(𝐾−1) = 𝑠(𝑋−1)− 𝑠(𝑋−1(𝐼 + 𝑌 𝑋−1)−1𝑌 𝑋−1)

= 𝑠(𝑋−1)− 𝑠(𝑌 )(1± 𝑛−𝜔(1))

= 𝑠
(︀
(𝐾1,1)−1

)︀
+ 𝑠

(︀
(𝐾2,2)−1

)︀
− 𝑠(𝑌 )(1± 𝑛−𝜔(1)).

Fix any 𝛼 , exp(−𝜔(log2 𝑛)). Suppose that we can estimate each 𝑠(𝐾−1),
𝑠 ((𝐾1,1)−1) and 𝑠 ((𝐾2,2)−1) within the additive factor of 𝛼. This allows us to estimate
𝑠(𝑌 ) within the additive factor of 10𝛼. This is enough to solve the BHCP problem.
We consider two cases.

Case 1. There are no close pairs, that is, for all 𝑖, 𝑗 = 1, . . . , 𝑛 we have ‖𝑎𝑖−𝑏𝑗‖22 ≥ 𝑡
and exp(−𝐶‖𝑎𝑖 − 𝑏𝑗‖22) ≤ 𝛿 , exp(−𝐶𝑡). Then 𝑠(𝑌 ) ≤ 2𝑛2𝛿.

Case 2. There is a close pair. That is, ‖𝑎𝑖′ − 𝑏𝑗
′‖22 ≤ 𝑡 − 1 for some 𝑖′, 𝑗′. This

implies that exp(−𝐶‖𝑎𝑖′ − 𝑏𝑗
′‖22) ≥ Δ , exp(−𝐶(𝑡− 1)). Thus, 𝑠(𝑌 ) ≥ Δ.

Since 𝐶 = 𝜔(log 𝑛), we have that Δ ≥ 100𝑛2𝛿 and we can distinguish the two
cases assuming that the additive precision 𝛼 = exp(−𝜔(log2 𝑛)) is small enough.
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Precision. To distinguish 𝑠(𝑌 ) ≤ 2𝑛2𝛿 from 𝑠(𝑌 ) ≥ Δ, it is sufficient that Δ ≥
100𝑛2𝛿 and 𝛼 ≤ Δ/1000. We know that Δ ≥ 100𝑛2𝛿 holds because 𝐶 = 𝜔(log 𝑛).
Since Δ ≤ exp(−𝐶𝑑), we want to choose 𝐶 and 𝑑 such that the 𝛼 ≤ Δ/1000 is
satisfied. We can do that because we can pick 𝐶 to be any 𝐶 = 𝜔(log 𝑛) and the
BHCP problem requires almost quadratic time assuming SETH for any 𝑑 = 𝜔(log 𝑛).

We get that additive 𝜀 approximation is sufficient to distinguish the cases for any
𝜀 = exp(−𝜔(log2 𝑛)). We observe that 𝑠(𝐾−1) ≤ 𝑂(𝑛) for any almost identity matrix
𝐾. This means that (1 + 𝜀) multiplicative approximation is sufficient for the same 𝜀.
This completes the proof of the theorem.

7.5 Hardness for kernel PCA

In this section, we present the full proof of quadratic hardness for kernel PCA. It will
also be helpful for kernel ridge regression in the next section.

Given a matrix 𝑋, we denote its trace (the sum of the diagonal entries) by tr(𝑋)
and the total sum of its entries by 𝑠(𝑋). In the context of the matrix 𝐾 ′ defining our
problem, we have the following equality:

tr(𝐾 ′) = tr((𝐼 − 1𝑛)𝐾(𝐼 − 1𝑛))

= tr(𝐾(𝐼 − 1𝑛)
2) = tr(𝐾(𝐼 − 1𝑛))

= tr(𝐾)− tr(𝐾1𝑛) = 𝑛− 𝑠(𝐾)/𝑛 .

Since the sum of the eigenvalues is equal to the trace of the matrix and tr(𝐾 ′) =
𝑛−𝑠(𝐾)/𝑛, it is sufficient to show hardness for computing 𝑠(𝐾). The following lemma
completes the proof of the theorem.

Lemma 7.5.1. Computing 𝑠(𝐾) within multiplicative error 1 + 𝜀 for parameter 𝜀 =
exp(−𝜔(log2 𝑛)) requires almost quadratic time assuming SETH.

Proof. As for SVMs, we will reduce the BHCP problem to the computation of 𝑠(𝐾).
Let 𝐴 and 𝐵 be the two sets of 𝑛 binary vectors coming from an instance of the
BHCP problem. Let 𝐾𝐴, 𝐾𝐵 ∈ R𝑛×𝑛 be the kernel matrices corresponding to the sets
𝐴 and 𝐵, respectively. Let 𝐾𝐴,𝐵 ∈ R2𝑛×2𝑛 be the kernel matrix corresponding to the
set 𝐴 ∪𝐵. We observe that

𝑠 , (𝑠(𝐾𝐴,𝐵)− 𝑠(𝐾𝐴)− 𝑠(𝐾𝐵))/2

=
𝑛∑︁

𝑖,𝑗=1

𝑘(𝑎𝑖, 𝑏𝑗)

=
𝑛∑︁

𝑖,𝑗=1

exp(−𝐶‖𝑎𝑖 − 𝑏𝑗‖22).

Now we consider two cases.
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Case 1. There are no close pairs, that is, for all 𝑖, 𝑗 = 1, . . . , 𝑛 we have ‖𝑎𝑖−𝑏𝑗‖22 ≥ 𝑡
and exp(−𝐶‖𝑎𝑖 − 𝑏𝑗‖22) ≤ 𝛿 , exp(−𝐶𝑡). Then 𝑠 ≤ 𝑛2𝛿.

Case 2. There is a close pair. That is, ‖𝑎𝑖′ − 𝑏𝑗
′‖22 ≤ 𝑡 − 1 for some 𝑖′, 𝑗′. This

implies that exp(−𝐶‖𝑎𝑖′ − 𝑏𝑗
′‖22) ≥ Δ , exp(−𝐶(𝑡− 1)). Thus, 𝑠 ≥ Δ.

Since 𝐶 = 100 log 𝑛, we have that Δ ≥ 𝑛10𝛿 and we can distinguish the two cases.

Precision. To distinguish 𝑠 ≥ Δ from 𝑠 ≤ 𝑛2𝛿, it is sufficient that Δ ≥ 2𝑛2𝛿.
This holds for 𝐶 = 100 log 𝑛. The sufficient additive precision is exp(−𝐶𝑑) =
exp(−𝜔(log2 𝑛)). Since 𝑠(𝐾) ≤ 𝑂(𝑛2) for any Gaussian kernel matrix 𝐾, we also
get that (1 + 𝜀) multiplicative approximation is sufficient to distinguish the cases for
any 𝜀 = exp(−𝜔(log2 𝑛)).

7.6 Hardness for training the final layer

We start by formally defining the class of “nice” loss functions and “nice” activation
functions.

Definition 7.6.1. For a label 𝑦 ∈ {−1, 1} and a prediction 𝑦′ ∈ R, we call the loss
function loss(𝑦, 𝑦′) : {−1, 1} × R → [0,∞) nice if the following three properties hold:

∙ loss(𝑦, 𝑦′) = 𝑙(𝑦𝑦′) for some convex function 𝑙 : R → [0,∞).

∙ For some sufficiently large constant 𝐾 > 0, we have that (i) 𝑙(𝑦) ≤ 𝑜(1) for all
𝑦 ≥ 𝑛𝐾, (ii) 𝑙(𝑦) ≥ 𝜔(𝑛) for all 𝑦 ≤ −𝑛𝐾, and (iii) 𝑙(𝑦) = 𝑙(0)± 𝑜(1/𝑛) for all
𝑦 ∈ ±𝑂(𝑛−𝐾).

∙ 𝑙(0) > 0 is some constant strictly larger than 0.

We note that the hinge loss function loss(𝑦, 𝑦′) = max(0, 1− 𝑦𝑦′) and the logistic
loss function loss(𝑦, 𝑦′) = 1

ln 2
ln
(︀
1 + 𝑒−𝑦𝑦

′)︀ are nice loss functions according to the
above definition.

Definition 7.6.2. A non-decreasing activation functions 𝑆 : R → [0,∞) is “nice”
if it satisfies the following property: for all sufficiently large constants 𝑇 > 0 there
exist 𝑣0 > 𝑣1 > 𝑣2 such that 𝑆(𝑣0) = Θ(1), 𝑆(𝑣1) = 1/𝑛𝑇 , 𝑆(𝑣2) = 1/𝑛𝜔(1) and
𝑣1 = (𝑣0 + 𝑣2)/2.

The ReLU activation 𝑆(𝑧) = max(0, 𝑧) satisfies these properties since we can
choose 𝑣0 = 1, 𝑣1 = 1/𝑛𝑇 , and 𝑣2 = −1 + 2/𝑛𝑇 . For the sigmoid function 𝑆(𝑧) =

1
1+𝑒−𝑧 , we can choose 𝑣1 = − log(𝑛𝑇 − 1), 𝑣0 = 𝑣1 + 𝐶, and 𝑣2 = 𝑣1 − 𝐶 for some
𝐶 = 𝜔(log 𝑛). In the rest of the proof we set 𝑇 , 1000𝐾, where 𝐾 is the constant
from Definition 7.6.1.
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We now describe the proof of Theorem 7.1.7. We use the notation 𝛼 , (𝛼1, . . . , 𝛼𝑛)
T.

Invoking the first property from Definition 7.6.1, we observe that the optimization
problem Eq. (7.2) is equivalent to the following optimization problem:

minimize
𝛼∈R𝑛

𝑚∑︁
𝑖=1

𝑙(𝑦𝑖(𝑀𝛼)𝑖), (7.19)

where 𝑀 ∈ R𝑚×𝑛 is the matrix defined as 𝑀𝑖,𝑗 , 𝑆(𝑥𝑖 · 𝑤𝑗) for 𝑖 = 1, . . . ,𝑚 and
𝑗 = 1, . . . 𝑛. That is, 𝑀𝑖,𝑗 is equal to the output of the 𝑗-th hidden units on the 𝑖-th
input vector. For the rest of the section we will use 𝑚 = Θ(𝑛).4

Let 𝐴 , {𝑎1, . . . , 𝑎𝑛} ⊆ {0, 1}𝑑 and 𝐵 , {𝑏1, . . . , 𝑏𝑛} ⊆ {0, 1}𝑑 with 𝑑 , 𝜔(log 𝑛)
be the input to the orthogonal vectors problem. To show the promised hardness, we
define a matrix 𝑀 as a vertical concatenation of 3 smaller matrices: 𝑀1, 𝑀2 and 𝑀2

(repeated).

𝑀 ,

⎡⎣ 𝑀1

𝑀2

𝑀2

⎤⎦ .

Both matrices 𝑀1,𝑀2 ∈ R𝑛×𝑛 are of size 𝑛 × 𝑛. Thus, the number of rows of 𝑀
(equivalently, the number of training examples) is 𝑚 , 3𝑛. We describe the two
matrices 𝑀1,𝑀2 below. Recall that 𝑣0, 𝑣1, and 𝑣2 are given in Definition 7.6.2.

We select the input examples and weights so that the matrices 𝑀1 and 𝑀2 have
the following structure.

∙ (𝑀1)𝑖,𝑗 , 𝑆 (𝑣0 − (𝑣2 − 𝑣0)𝑎
𝑖 · 𝑏𝑗). For any two real values 𝑣, 𝑣′ ∈ R we write 𝑣 ≈

𝑣′ if 𝑣 = 𝑣′ up to an inversely super-polynomial additive factor. In other words,
|𝑣 − 𝑣′| ≤ 𝑛−𝜔(1). We observe that if two vectors 𝑎𝑖 and 𝑏𝑗 are orthogonal, then
the corresponding entry (𝑀1)𝑖,𝑗 = 𝑆(𝑣0) = Θ(1) and otherwise (𝑀1)𝑖,𝑗 ≈ 0. We
will show that a

(︀
1 + 1

4𝑛

)︀
-approximation of the optimal value of the optimization

problem Eq. (7.19) will allow us to decide whether there is an entry in 𝑀1 that
is 𝑆(𝑣0) = Θ(1). This will give the required hardness.

It remains to show how to construct the matrix 𝑀1 using a neural network.

We set the weights for the 𝑗-th hidden unit to be
(︂

𝑏𝑗

1

)︂
. That is, 𝑑 weights

are specified by the vector 𝑏𝑗, and we add one more input with weight 1. The
𝑖-th example (corresponding to the 𝑖-th row of the matrix 𝑀1) is the vector(︂

−(𝑣2 − 𝑣0)𝑎
𝑖

𝑣0

)︂
. The output of the 𝑗-th unit on this example (which corre-

sponds to the entry (𝑀1)𝑖,𝑗) is equal to

𝑆

(︂(︂
−(𝑣2 − 𝑣0)𝑎

𝑖

𝑣0

)︂
·
(︂

𝑏𝑗

1

)︂)︂
= 𝑆

(︀
𝑣0 − (𝑣2 − 𝑣0)𝑎

𝑖 · 𝑏𝑗
)︀

= (𝑀1)𝑖,𝑗

4Note that our reduction does not explicitly construct 𝑀 . Instead, the values of the matrix are
induced by the input examples and weights.
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as required.

∙ (𝑀2)𝑖,𝑗 , 𝑆
(︀
𝑣1 − (𝑣2 − 𝑣1)𝑏𝑖 · 𝑏𝑗

)︀
, where 𝑏𝑖 is a binary vector obtained from

the binary vector 𝑏𝑖 by complementing all bits. We observe that this forces
the diagonal entries of 𝑀2 to be equal to (𝑀2)𝑖,𝑖 = 𝑆(𝑣1) = 1/𝑛1000𝐾 for all
𝑖 = 1, . . . , 𝑛 and the off-diagonal entries to be (𝑀2)𝑖,𝑗 ≈ 0 for all 𝑖 ̸= 𝑗.5

To complete the description of the optimization problem Eq. (7.19), we assign
labels to the inputs corresponding to the rows of the matrix 𝑀 . We assign label 1 to
all inputs corresponding to rows of the matrix 𝑀1 and the first copy of the matrix
𝑀2. We assign label −1 to all remaining rows of the matrix 𝑀 corresponding to the
second copy of matrix 𝑀2.

The proof of the theorem is completed by the following two lemmas.

Lemma 7.6.3. If there is a pair of orthogonal vectors, then the optimal value of
Eq. (7.19) is upper bounded by (3𝑛− 1)𝑙(0) + 𝑜(1).

Proof. To obtain an upper bound on the optimal value in the presence of an orthogonal
pair, we set the vector 𝛼 to have all entries equal to 𝑛100𝐾 . For this 𝛼 we have

∙ |(𝑀1𝛼)𝑖| ≥ Ω(𝑛100𝐾) for all 𝑖 = 1, . . . , 𝑛 for which there is exists 𝑗 = 1, . . . , 𝑛
with 𝑎𝑖 · 𝑏𝑗 = 0. Let 𝑞 ≥ 1 be the number of such 𝑖.

∙ |(𝑀1𝛼)𝑖| ≤ 𝑛−𝜔(1) for all 𝑖 = 1, . . . , 𝑛 for which there is no 𝑗 = 1, . . . , 𝑛 with
𝑎𝑖 · 𝑏𝑗 = 0. The number of such 𝑖 is 𝑛− 𝑞.

By using the second property of Definition 7.6.1, the total loss corresponding to 𝑀1

is upper bounded by

𝑞 · 𝑙(Ω(𝑛100𝐾)) + (𝑛− 𝑞) · 𝑙(𝑛−𝜔(1)) ≤ 𝑞 · 𝑜(1) + (𝑛− 𝑞) · (𝑙(0) + 𝑜(1/𝑛))

≤ 𝑙1 , (𝑛− 1) · 𝑙(0) + 𝑜(1).

Finally, the total loss corresponding to the two copies of the matrix 𝑀2 is upper
bounded by

2𝑛 · 𝑙(±𝑂(𝑛−800𝐾)) = 2𝑛 · (𝑙(0)± 𝑜(1/𝑛))

≤ 𝑙2 , 2𝑛 · 𝑙(0) + 𝑜(1).

The total loss corresponding to the matrix 𝑀 is upper bounded by 𝑙1 + 𝑙2 ≤ (3𝑛 −
1) · 𝑙(0) + 𝑜(1) as required.

Lemma 7.6.4. If there is no pair of orthogonal vectors, then the optimal value of
Eq. (7.19) is lower bounded by 3𝑛 · 𝑙(0)− 𝑜(1).

5For all 𝑖 ̸= 𝑗 we have 𝑏𝑖 · 𝑏𝑗 ≥ 1. This holds because all vectors 𝑏𝑖 are distinct and have the same
number of 1s.
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Proof. We first observe that the total loss corresponding to the two copies of the
matrix 𝑀2 is lower bounded by 2𝑛 · 𝑙(0). Consider the 𝑖-th row in both copies of
matrix 𝑀2. By using the convexity of the function 𝑙, the loss corresponding to the
two rows is lower bounded by 𝑙((𝑀2𝛼)𝑖) + 𝑙(−(𝑀2𝛼)𝑖) ≥ 2 · 𝑙(0). By summing over
all 𝑛 pairs of rows we obtain the required lower bound on the loss.

We claim that ‖𝛼‖∞ ≤ 𝑛106𝐾 . Suppose that this is not the case and let 𝑖 be the
index of the largest entry of 𝛼 in magnitude. Then the 𝑖-th entry of the vector 𝑀2𝛼 is

(𝑀2𝛼)𝑖 = 𝛼𝑖(𝑀2)𝑖,𝑖 ± 𝑛 · 𝛼𝑖 · 𝑛−𝜔(1)

≥ 𝛼𝑖

𝑛1000𝐾
− 𝛼𝑖𝑛

−𝜔(1) ,

where we recall that the diagonal entries of matrix 𝑀2 are equal to (𝑀2)𝑖,𝑖 = 𝑆(𝑣1) =
1/𝑛𝐾 . If |𝛼𝑖| > 𝑛106𝐾 , then |(𝑀2𝛼)𝑖| ≥ 𝑛1000𝑘. However, by the second property in
Definition 7.6.1, this implies that the loss is lower bounded by 𝜔(𝑛) for the 𝑖-row
(for the first or the second copy of 𝑀2). This contradicts a simple lower bound of
4𝑛 · 𝑙(0) on the loss obtained by setting 𝛼 = 0 to be the all 0s vector. We use the
third property of a nice loss function which says that 𝑙(0) > 0.

For the rest of the proof, we assume that ‖𝛼‖∞ ≤ 𝑛106𝐾 . We will show that the
total loss corresponding to 𝑀1 is lower bounded by 𝑛 · 𝑙(0)− 𝑜(1). This is sufficient
since we already showed that the two copies of 𝑀2 contribute a loss of at least 2𝑛 · 𝑙(0).

Since all entries of the matrix 𝑀1 are inversely super-polynomial (there is no pair
of orthogonal vectors), we have that |(𝑀1𝛼)𝑖| ≤ 𝑛−𝜔(1) for all 𝑖 = 1, . . . , 𝑛. Using the
second property again, the loss corresponding to 𝑀1 is lower bounded by

𝑛 · 𝑙(±𝑛−𝜔(1)) ≥ 𝑛 · (𝑙(0)− 𝑜(1/𝑛))

≥ 𝑛 · 𝑙(0)− 𝑜(1)

as required.

7.7 Gradient computation

Finally, we consider the problem of computing the gradient of the loss function for
a given set of examples. We focus on the network architecture as in the previous
section. Specifically, let 𝐹𝛼,𝐵(𝑎) ,

∑︀𝑛
𝑗=1 𝛼𝑗𝑆(𝑎, 𝑏

𝑗) be the output of a neural net for
some function 𝑆 : R𝑑 × R𝑑 → R, where:

∙ 𝑎 is an input vector from the set 𝐴 , {𝑎1, . . . , 𝑎𝑚} ⊆ {0, 1}𝑑;

∙ 𝐵 , {𝑏1, . . . , 𝑏𝑛} ⊆ {0, 1}𝑑 is a set of vectors defining the neural network;

∙ 𝛼 , (𝛼1, . . . , 𝛼𝑛)
T ∈ R𝑛 is an 𝑛-dimensional real-valued vector defining the

neural network.

We first prove the following lemma.
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Lemma 7.7.1. For some loss function 𝑙 : R → R, let 𝑙(𝐹𝛼,𝐵(𝑎)) be the loss for
input 𝑎 when the label of the input 𝑎 is +1. Consider the gradient of the total loss
𝑙𝛼,𝐴,𝐵 ,

∑︀
𝑎∈𝐴 𝑙(𝐹𝛼,𝐵(𝑎)) at 𝛼1 = . . . = 𝛼𝑛 = 0 with respect to 𝛼1, . . . , 𝛼𝑛. The sum of

the entries of the gradient is equal to 𝑙′(0)
∑︀

𝑎∈𝐴,𝑏∈𝐵 𝑆(𝑎, 𝑏), where 𝑙′(0) is the derivative
of the loss function 𝑙 at 0.

Proof.

𝜕𝑙𝛼,𝐴,𝐵

𝜕𝛼𝑗

=
∑︁
𝑎∈𝐴

𝜕𝑙(𝐹𝛼,𝐵(𝑎))

𝜕𝐹𝛼,𝐵(𝑎)
𝑆(𝑎, 𝑏𝑗) = 𝑙′(0)

∑︁
𝑎∈𝐴

𝑆(𝑎, 𝑏𝑗) (since 𝐹𝛼,𝐵(𝑎) = 0).

For the hinge loss function, we have that the loss function is 𝑙(𝑦) = max(0, 1− 𝑦)
if the label is +1. Thus, 𝑙′(0) = −1. For the logistic loss function, we have that the
loss function is 𝑙(𝑦) = 1

ln 2
ln (1 + 𝑒−𝑦) if the label is +1. Thus, 𝑙′(0) = − 1

2 ln 2
in this

case. It is important that for both loss functions the derivative is non-zero.

Proof of Theorem 7.1.8. Since all ℓ𝑝-norms are within a polynomial factor, it suffices
to show the statement for the ℓ1-norm.

We set 𝑆(𝑎, 𝑏) , max(0, 1−2𝑎·𝑏), which can be easily implemented using the ReLU
activation function. Using Lemma 7.7.1, we get that the ℓ1-norm of the gradient of
the total loss function is equal to |𝑙′(0)|

∑︀
𝑎∈𝐴,𝑏∈𝐵[𝑎 · 𝑏 = 0], where [𝐸] = 1 if the event

𝐸 happens and [𝐸] = 0 otherwise. Since 𝑙′(0) ̸= 0, the expression allows to count the
number of orthogonal pairs of vectors and thus we can reduce the orthogonal vectors
problem to the gradient computation problem. Note that if there is no orthogonal
pair, then the ℓ1-norm is 0 and otherwise it is a constant strictly greater than 0. Thus,
approximating the ℓ1-norm within any finite factor allows us to distinguish the two
cases.

Sigmoid activation function. We show that our hardness result holds also for
the sigmoid activation function.

Theorem 7.7.2. Consider a neural net with of size 𝑛 with the sigmoid activation
function 𝜎(𝑧) , 1

1+𝑒−𝑧 . Approximating the ℓ𝑝 norm (for any 𝑝 ≥ 1) of the gradient
of the empirical risk for 𝑚 examples within the multiplicative factor of 𝑛𝐶 for any
constant 𝐶 > 1 takes at least Ω(𝑛𝑚)1−𝑜(1) time assuming SETH.

Proof. We set 𝑆(𝑎, 𝑏) , 𝜎(−10𝐶(log 𝑛)𝑎 · 𝑏). Using Lemma 7.7.1, we get that the ℓ1
norm of the gradient is equal to |𝑙′(0)|

∑︀
𝑎∈𝐴,𝑏∈𝐵

1
1+𝑒10𝐶(log𝑛)𝑎·𝑏 . It is easy to show that

this quantity is at least |𝑙′(0)|/2 if there is an orthogonal pair and at most |𝑙′(0)|/(2𝑛𝐶)
otherwise. Since 𝑙′(0) ̸= 0, we get the required approximation hardness.

Polynomial activation function. On the other hand, by using the polynomial
lifting technique, we can show that changing the activation function can lead to
non-trivially faster algorithms:
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Theorem 7.7.3. Consider a neural net with one hidden layer of size 𝑛, with the
polynomial activation function 𝑆(𝑧) , 𝑧𝑟 for some integer 𝑟 ≥ 2. Computing the
gradients of the empirical loss function for 𝑚 examples in R𝑑 can be done in time
𝑂((𝑛+𝑚)𝑑𝑟).

Note that the running time of the “standard” back-propagation algorithm is
𝑂(𝑑𝑛𝑚) for networks with this architecture. Thus our algorithm improves over back-
propagation for a non-trivial range of parameters, especially for quadratic activation
function when 𝑟 = 2.

We start by defining the network architecture more formally. We consider a neural
network computing a function 𝑓 : R1×𝑑 → R defined as 𝑓(𝑥) , 𝑆(𝑥𝐴)𝛼, where

∙ 𝑥 ∈ R1×𝑑 is an input row vector of dimensionality 𝑑.

∙ 𝐴 ∈ R𝑑×𝑛 is a matrix with 𝑗-th column specifying weights of edges connecting
the input units with the 𝑗-th hidden unit.

∙ 𝑆 takes as an input a row vectors with 𝑛 entries and applies the non-linearity
𝑆(𝑧) = 𝑧𝑟 entry-wise.

∙ 𝛼 ∈ R𝑛 is column vector with 𝛼𝑗 specifying the weight of the edge that connects
the 𝑗-th hidden unit with the output linear unit.

Let 𝑋 ∈ R𝑚×𝑑 be the matrix specifying 𝑚 inputs vectors. The 𝑖-th row of 𝑋
specifies the 𝑖-th input vector. Let 𝑤 , 𝑓(𝑋) ∈ R𝑚 be the column vector after
applying the function 𝑓 on every row of the input matrix 𝑋. Let 𝑙 : R𝑚 → R be the
total loss function defined as 𝑙(𝑤) ,

∑︀𝑚
𝑖=1 𝑙𝑖(𝑤𝑖) for some functions 𝑙𝑖 : R → R.

Let
𝜕𝑙

𝜕𝛼
,

(︂
𝜕𝑙

𝜕𝛼1

, . . . ,
𝜕𝑙

𝜕𝛼𝑛

)︂T

∈ R𝑛

be the vector of gradients for weights 𝛼1, . . . , 𝛼𝑚. Let 𝜕𝑙
𝜕𝐴

∈ R𝑑×𝑛 be the matrix that
specifies gradient of 𝑙 with respect to entries 𝐴𝑘,𝑗. That is,(︂

𝜕𝑙

𝜕𝐴

)︂
𝑘,𝑗

,
𝜕𝑙

𝜕𝐴𝑘,𝑗

for 𝑘 = 1, . . . , 𝑑 and 𝑗 = 1, . . . , 𝑛.

Theorem 7.7.4. We can evaluate 𝜕𝑙
𝜕𝛼

and 𝜕𝑙
𝜕𝐴

in 𝑂((𝑛+𝑚)𝑑𝑟).

Proof. Let 𝑙′(𝑤) ,
(︁

𝜕𝑙1
𝜕𝑤1

, . . . , 𝜕𝑙𝑚
𝜕𝑤𝑚

)︁
∈ R𝑚 denote the vector that collects all 𝜕𝑙𝑖

𝜕𝑤𝑖
. Let

𝑋(𝑟) ∈ R𝑚×𝑑𝑟 and 𝐴(𝑟) ∈ R𝑑𝑟×𝑛 be two matrices such that for every 𝑖 = 1, . . . ,𝑚
and every 𝑗 = 1, . . . , 𝑛 we have (𝑋(𝑟)𝐴(𝑟))𝑖,𝑗 = (𝑋𝐴)𝑟𝑖,𝑗, which in turn is equal to the
output of the 𝑗-th hidden unit on the 𝑖-th input vector. Such matrices can be easily
constructed using the polynomial lifting technique.
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We note that

𝜕𝑙𝑖
𝜕𝛼𝑗

=
𝜕𝑙𝑖
𝜕𝑤𝑖

· (output of the 𝑗-th hidden unit on the 𝑖-th input vector)

= 𝑙′𝑖(𝑤𝑖) · (𝑋(𝑟)𝐴(𝑟))𝑖,𝑗.

This gives

𝜕𝑙

𝜕𝛼
=
(︀
𝑋(𝑟)𝐴(𝑟)

)︀T
𝑙′(𝑤)

=
(︀
𝐴(𝑟)

)︀T (︁(︀
𝑋(𝑟)

)︀T
𝑙′(𝑤)

)︁
.

The last expression can be evaluated in the required 𝑂((𝑛+𝑚)𝑑𝑟) time.
We note that

𝜕𝑙

𝜕𝐴𝑘,𝑗

=
𝑛∑︁

𝑖=1

𝜕𝑙𝑖
𝜕𝐴𝑘,𝑗

=
𝑛∑︁

𝑖=1

𝑋𝑖,𝑘 · 𝑟 · (input to the 𝑗-th hidden unit)𝑟−1 · 𝛼𝑗 · 𝑙′𝑖(𝑤𝑖).

For two matrices 𝐴 and 𝐵 of equal size let 𝐴 ∘𝐵 be the entry-wise product. We
define the column vector 𝑣𝑘 ∈ R𝑚: (𝑣𝑘)𝑖 , 𝑋𝑖,𝑘 · 𝑟 · 𝑙′𝑖(𝑤𝑖) for 𝑘 = 1, . . . , 𝑑. Then the
𝑘-th row of 𝜕𝑙

𝜕𝐴
is equal to (𝑣T𝑘𝑋

(𝑟−1)𝐴(𝑟−1)) ∘ 𝛼T. We observe that we can compute

(𝑣T𝑘𝑋
(𝑟−1)𝐴(𝑟−1)) ∘ 𝛼T = ((𝑣T𝑘𝑋

(𝑟−1))𝐴(𝑟−1)) ∘ 𝛼T

in 𝑂((𝑛+𝑚)𝑑𝑟−1) time. Since we have to do that for every 𝑘 = 1, . . . , 𝑑, the stated
runtime follows.

7.8 Conclusions

We have shown that a range of kernel problems require quadratic time for obtaining
a high accuracy solution unless the strong exponential time hypothesis is false. These
problems include variants of kernel SVM, kernel ridge regression, and kernel PCA.
We also gave a similar hardness result for training the final layer of a depth-2 neural
network. This result is general and applies to multiple loss and activation functions.
Finally, we proved that computing the empirical loss gradient for such networks takes
time that is essentially “rectangular”, i.e., proportional to the product of the network
size and the number of examples.

We note that our quadratic (rectangular) hardness results hold for general inputs.
There is a long line of research on algorithms for kernel problems with running times
depending on various input parameters, such as its statistical dimension [YPW+17],
degrees of freedom [Bac13] or effective dimensionality [MM16]. It would be interesting
to establish lower bounds on the complexity of kernel problems as a function of the
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aforementioned input parameters.
Our quadratic hardness results for kernel problems apply to kernels with ex-

ponential tails. A natural question is whether similar results can be obtained for
“heavy-tailed” kernels, e.g., the Cauchy kernel.6 We note that similar results for the
linear kernel do not seem achievable using our techniques.7

Several of our results are obtained by a reduction from the (exact) bichromatic
Hamming closest pair problem or the orthogonal vectors problem. This demonstrates
a strong connection between kernel methods and similarity search, and suggests that
perhaps a reverse reduction is also possible. Such a reduction could potentially lead
to faster approximate algorithms for kernel methods: although the exact closest pair
problem has no known sub-quadratic solution, efficient and practical sub-quadratic
time algorithms for the approximate version of the problem do exist (see, e.g., [AI06,
Val12, AR15, AIL+15, ACW16]).

6For the kernel density evaluation problem we were, in fact, able to obtain faster algorithms for
“polynomially-decaying” kernels which include the Cauchy kernel. See Chapter 8.

7In particular, assuming a certain strengthening of SETH, known as the “non-deterministic
SETH” [CGI+16], it is provably impossible to show SETH hardness for any of the linear variants of
the studied ERM problems, at least via deterministic reductions. This is due to the fact that these
problems have short certificates of optimality via duality arguments. Also, it should be noted that
linear analogs of some of the problems considered in this section (e.g., linear ridge regression) can
be solved in 𝑂(𝑛𝑑2) time using SVD methods.
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Chapter 8

Kernel density evaluation

Kernel density evaluation is a basic computational task with many applications. Given
a kernel function 𝑘 : R𝑑 × R𝑑 → [0, 1] and a dataset 𝑃 ⊂ R𝑑, we define the kernel
density function of 𝑃 at a point 𝑞 ∈ R𝑑 as:

KDF𝑃 (𝑞) ,
1

|𝑃 |
∑︁
𝑝∈𝑃

𝑘(𝑝, 𝑞).

The task of computing KDF can be formulated in multiple ways:

∙ As a data structure problem: given 𝑃 , build a data structure supporting KDF
evaluation queries for a given 𝑞,

∙ In the batch setting: given two sets 𝑃 and 𝑄, compute KDF𝑃 (𝑞) for all 𝑞 ∈ 𝑄,
or

∙ In the “all pairs” setting: given two sets 𝑃 and 𝑄, compute

𝑘(𝑃,𝑄) ,
∑︁
𝑞∈𝑄

KDF𝑃 (𝑞). (8.1)

The batch version of the problem has been studied extensively. In particular, the
celebrated Fast Multipole Method gives an efficient approximate algorithm for this
problem in low dimensions [GS91] and has been very influential in scientific computing.
Unfortunately, the complexity of this approach scales exponentially with the dimen-
sion, while many applications require evaluating kernel densities for high-dimensional
point-sets. This includes kernel density estimation, a classic tool in non-parametric
statistics, where the kernel function is used to extend the empirical distribution func-
tion over a discrete set of points smoothly to the whole space. This in turn yields
algorithms for mode estimation [GSM03], outlier detection [SZK14], density based clus-
tering [RW10] and other problems. Another class of applications stems from applying
kernel methods (e.g., regression [SSPG16]) to objects described by point-clouds or
distributions, by extending kernel functions to pairs of sets [GFKS02]. Computing
over such set kernels requires many “all-pairs” evaluations as defined in Equation 8.1.
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Yet another application is kernel mean estimation using an empirical average (see,
e.g., [MFS+17], section 3.4.2).

A popular method for evaluating kernel densities in high dimensions involves
random sampling [IHG08]. Under the assumption that KDF𝑃 (𝑥) ≥ 𝜇 for some
𝜇 ∈ (0, 1], sampling Θ( 1

𝜇𝜖2
log(1/𝛿)) points in 𝑃 suffices to estimate the desired value

up to a factor of 1+ 𝜖 with probability 1− 𝛿. This yields a data structure whose query
time is equal to the number of samples times 𝑑. The query time can be improved
further: in a very recent work [CS17] showed that for several kernels, one can reduce
the query time to roughly 𝑑√

𝜇𝜖2
. Their approach applies to multiple popular kernels,

including Gaussian, exponential and 𝑡-Student for constant 𝑡. However, their technique
is tailored to the specific cases since it requires a hash function family with collision
probability matching the kernel in a certain way. It is unclear how to generalize it to
handle more general kernels. All of the aforementioned results translate to the batch
setting, with the running time essentially equal to the query time bound multiplied
by |𝑄|.

The main disadvantage of the above high-dimensional results is that the value of
𝜇 can be arbitrarily low, leading to high query time. Unfortunately, there is evidence
that one cannot obtain fast query times (independent of 𝜇) for arbitrary kernels.
Unconditional lower bounds have already been shown for core-sets [PT18a, PT18b]
(with almost matching upper bounds) and in a slightly more general computational
model [CS17]. Moreover, in Section 8.6 we demonstrate that in the “all-pairs” setting,
approximating KDF values for kernels with exponential tails (such as Gaussian) up
to a constant factor requires 𝑛2−𝑜(1) time (where 𝑛 = |𝑄| = |𝑃 |) unless SETH fails.
This holds even if the values are lower bounded by 𝜇 = exp(− log𝑂(1) 𝑛); the bound
can be strengthened further to any 𝑛−𝜔(1) by using the recent result of [Rub18]. This
gives evidence that, for kernels that decay fast enough, there is no algorithm with a
runtime of 𝑛2−Ω(1)/𝜇𝑜(1). This leads to the natural question: What class of kernels
admits efficient kernel density evaluation?

8.1 Our results

We present a data structure with a small query time, independent of 𝜇, for kernels
whose value changes at most polynomially with the distance. Formally:

Definition 8.1.1 ((𝑙, 𝑡)-smooth function). We call a function 𝑘 : R𝑑 × R𝑑 → R
(𝑙, 𝑡)-smooth if for all 𝑝, 𝑝′, 𝑞 ∈ R𝑑 with 𝑝 ̸= 𝑞 and 𝑝′ ̸= 𝑞 we have

max

(︂
𝑘(𝑝, 𝑞)

𝑘(𝑝′, 𝑞)
,
𝑘(𝑝′, 𝑞)

𝑘(𝑝, 𝑞)

)︂
≤ 𝑙max

(︂
‖𝑝− 𝑞‖
‖𝑝′ − 𝑞‖

,
‖𝑝′ − 𝑞‖
‖𝑝− 𝑞‖

)︂𝑡

.

Note that kernel functions do not need to be non-increasing or non-decreasing in
the distance to be smooth. This general class of kernels includes several well-studied
functions [Gen01, Ras04]. For example:
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∙ Rational Quadratic kernel 𝑘(𝑝, 𝑞) = 1
(1+‖𝑝−𝑞‖2)𝛽 is (1, 2𝛽)-smooth.1

∙ 𝑡-Student kernel 𝑘(𝑝, 𝑞) = 1
1+‖𝑝−𝑞‖𝑡 is (1, 𝑡)-smooth.

Smooth kernels are frequently used in machine learning and statistics, often yield-
ing results similar to or better than the (more popular) Gaussian kernel (see, e.g.,
[SGPS15] (supplementary material section)). For such kernels, we give a data struc-
ture with the query time of

𝑙2𝑂(𝑡)𝑑 log(𝑛Φ)/𝜀2 log(1/𝛿),

where Φ is the aspect ratio of the data and query points (see Theorem 8.3.1). Further-
more, if we assume a natural kernel decay property (satisfied by the above kernels), the
query time becomes 𝑙2𝑂(𝑡)𝑑 log(𝑛)/𝜀2 log(1/𝛿), removing the dependence on the aspect
ratio (see Section 8.4). This improves over the aforementioned algorithm of [CS17]
for a wide class of kernel functions. In particular, we achieve the query time of

𝑂(𝑑 log(𝑛)/𝜀2 log(1/𝛿))

for the Cauchy kernel, and more generally for the Rational Quadratic kernel with
𝛽 = 𝑂(1). The above results assume that the distance function ‖𝑝− 𝑞‖ is induced by
the Euclidean norm.

Other distance functions. We consider a more general version of our setting where
the kernel function is smooth with respect to a distance function 𝑠 : R𝑑×R𝑑 → [0,∞).
For example, we can consider the following generalization of the 𝑡-Student kernel
𝑘(𝑝, 𝑞) = 1

1+𝑠(𝑝,𝑞)𝑡
that is (1, 𝑡)-smooth with respect to 𝑠. For distance functions that

are constant power of ℓ2, as powering changes the smoothness parameters of the kernel
only by constant factors, we can immediately apply our algorithm. Using this fact,
we can also apply the algorithm to ℓ𝑤 norms with 𝑤 ∈ [1, 2) by embedding them
into (ℓ2)

2 [LN14]. More generally, it can be extended to other distance functions that
can be embedded into (ℓ2)

2 with some low distortion 𝐷 (see Section 8.5). Perhaps
surprisingly, this only multiplies the running time of the algorithm (by a factor of
𝐷𝑂(𝑡)), while the approximation factor remains equal to 1+𝜖. In particular, this yields
an algorithm for the ℓ∞ norm with the running time multiplied by a factor 𝑑𝑂(𝑡); in the
specific case of the 𝑡-Student kernel, the query time becomes 𝑑𝑂(𝑡) log(𝑛)/𝜖2 log(1/𝛿).
We complement the latter algorithm by showing that, assuming SETH, there is no
kernel density evaluation algorithm for the 𝑡-Student kernel under ℓ∞ norm with a
query time of 𝑑𝑂(1)2𝑡/10𝑛𝑜(1) and any constant approximation factor (see Section 8.6).

8.2 Preliminaries

For 𝑤 ≥ 1 and 𝑝 ∈ R𝑑, we refer to ‖𝑝‖𝑤 ,
(︁∑︀

𝑖∈[𝑑] |𝑝𝑖|𝑤
)︁1/𝑤

as the ℓ𝑤 distance. For

𝑤 = ∞ we define ‖𝑝‖∞ , max𝑖∈[𝑑] |𝑝𝑖| and refer to it as ℓ∞ distance. For 𝑤 = 2 we
1For 𝛽 = 1, it is often referred to as Cauchy kernel.

133



will sometimes omit the subscript and write ‖𝑝‖. For 𝑧 > 0 we write (ℓ𝑤)
𝑧 to denote

the distance function ‖𝑝‖𝑧𝑤 = (‖𝑝‖𝑤)𝑧.
For an event 𝐸 we set [𝐸] = 1 if the event 𝐸 happens and [𝐸] = 0 otherwise.

8.3 Algorithm for kernel density evaluation
We show the following theorem.

Theorem 8.3.1. Let 𝑘 : R𝑑 × R𝑑 → R be an (𝑙, 𝑡)-smooth function that can be
evaluated in time 𝑡𝑘 and 𝑃 be a point-set of 𝑛 points from R𝑑. For a query point
𝑞 ∈ R𝑑 let Φmax be the upper bound on distance between any two points from 𝑃 ∪ {𝑞}
and let Φmin be the lower bound on the distince between any two distinct points from
𝑃 ∪ {𝑞}. Define the “aspect ratio” Φ , Φmax/Φmin.

For any 𝜀 > 0, it is possible to preprocess the point-set 𝑃 in 𝑛𝑙2𝑂(𝑡)(𝑑+log(𝑛Φ))/𝜀2

time such that for any query point 𝑞 ∈ R𝑑 we can output a 1 + 𝜀 approximation to
KDF𝑃 (𝑞) in time 𝑙2𝑂(𝑡)𝑡𝑘 log(𝑛Φ)/𝜀

2.
The success probability can be amplified to 1 − 𝛿 by increasing the preprocessing

and the query time by a multiplicative factor of log(1/𝛿).

We note that typically 𝑡𝑘 = Θ(𝑑), e.g., for the Rational Quadratic and the 𝑡-
Student kernels. We note that the 𝑡-Student kernel 1

1+‖𝑝−1‖𝑡 is (1, 𝑡)-smooth and we
get the preprocessing time 𝑛2𝑂(𝑡)(𝑑 + log(𝑛Φ))/𝜀2 and 2𝑂(𝑡)𝑑 log(𝑛Φ)/𝜀2 query time.
If we replace the ℓ2 distance with ℓ𝑤, 𝑤 ≥ 1 distance, we get the preprocessing time
𝑛𝑑𝑂(𝑡) log(𝑛Φ)/𝜀2 and 𝑑𝑂(𝑡) log(𝑛Φ)/𝜀2 query time as the kernel function 1

1+‖𝑝−1‖𝑡𝑤
is

(𝑑𝑂(𝑡), 𝑡)-smooth (with respect to ℓ2). For 𝑤 ∈ [1, 2) we get improved runtimes in
Section 8.5.

Let 𝑊 , 1
𝑛

∑︀𝑛
𝑖=1𝑤𝑖 for some real values 𝑤𝑖 and our goal is to estimate 𝑊 . As

an example, think of 𝑤𝑖 = 𝑘(𝑝𝑖, 𝑞), where points 𝑝𝑖 come from the point-set 𝑃 =
{𝑝1, 𝑝2, . . . , 𝑝𝑛}. Then KDF𝑃 (𝑞) = 𝑊 and we recover the kernel density evaluation
problem.

Let 𝐻 be a family of hash functions ℎ : [𝑛] → 𝑆. Think of 𝑆 as a fairly small
set. For example, for the kernel density evaluation problem we will construct family
𝐻 with the set 𝑆 of size (roughly) |𝑆| ≤ 𝑂(log 𝑛). Fix any ℎ ∈ 𝐻 and let 𝑖𝑠 be a
uniformly random sample from ℎ−1(𝑠) for every 𝑠 ∈ 𝑆. That is, we pick a random
element from every “bucket” 𝑠 ∈ 𝑆. Then the random variable

𝑍 ,
1

𝑛

∑︁
𝑠∈𝑆

|ℎ−1(𝑠)|𝑤𝑖𝑠

is an unbiased estimator of the quantity 𝑊 = 1
𝑛

∑︀𝑛
𝑖=1𝑤𝑖, i.e., E[𝑍] = 𝑊 .

To be able to efficiently estimate 𝑊 , we also need to bound the variance of the
random variable 𝑍. We note that the variable depends on the family 𝐻. What
properties should the family 𝐻 of hash functions satisfy so that the random variable
has a small variance (over a uniformly random hash function ℎ ∈ 𝐻 and random
samples from the buckets)?
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It turns out that the following property is sufficient. There exists a quantity 𝑇
such that for any 𝑖, 𝑖′ ∈ [𝑛] we have the following bound: Prℎ←𝐻 [ℎ(𝑖) = ℎ(𝑖′)] ≤ 𝑇 𝑤𝑖

𝑤𝑖′
.

As we show below, if we have this property, then

Var[𝑍] ≤ (1 + 𝑇 )𝑊 2 = (1 + 𝑇 )E[𝑍]2.

Thus, by taking an average of 𝑂(𝑇/𝜀2) samples of 𝑍 we get a 1 ± 𝜀 approximation
of 𝑊 . Think of 𝑇 as a constant. For the kernel density evaluation problem we will
show that 𝑇 is a function only of 𝑙 and 𝑡—the smoothness parameters of the kernel
function. It remains to show the bound on the variance.

Var[𝑍] ≤ E[𝑍2] =
1

𝑛2
E
∑︁
𝑠∈𝑆

|ℎ−1(𝑠)|2𝑤2
𝑖𝑠

+
1

𝑛2
E
∑︁
𝑠 ̸=𝑠′

|ℎ−1(𝑠)|𝑤𝑖𝑠 |ℎ−1(𝑠′)|𝑤𝑖𝑠′
.

We bound the two terms separately. We start with the second term, which is equal
to

1

𝑛2
E

ℎ←𝐻
E
∀𝑠∈𝑆:

𝑖𝑠←ℎ−1(𝑠)

∑︁
�̸�=𝑠′

|ℎ−1(𝑠)|𝑤𝑖𝑠 |ℎ−1(𝑠′)|𝑤𝑖𝑠′

=
1

𝑛2
E
ℎ

∑︁
𝑠 ̸=𝑠′

(︂
|ℎ−1(𝑠)|E

𝑖𝑠
𝑤𝑖𝑠

)︂(︂
|ℎ−1(𝑠′)| E

𝑖𝑠′
𝑤𝑖𝑠′

)︂

≤ 1

𝑛2
E
ℎ

(︃∑︁
𝑠

|ℎ−1(𝑠)|E
𝑖𝑠
𝑤𝑖𝑠

)︃(︃∑︁
𝑠′

|ℎ−1(𝑠′)| E
𝑖𝑠′
𝑤𝑖𝑠′

)︃

=
1

𝑛2

(︃
𝑛∑︁

𝑖=1

𝑤𝑖

)︃2

= 𝑊 2.

Now we upper bound the first term:

1

𝑛2
E
∑︁
𝑠∈𝑆

|ℎ−1(𝑠)|2𝑤2
𝑖𝑠 =

1

𝑛2
E
ℎ

∑︁
𝑠

|ℎ−1(𝑠)|2 E
𝑖𝑠
𝑤2

𝑖𝑠

=
1

𝑛2
E
ℎ

∑︁
𝑠

|ℎ−1(𝑠)|
∑︁

𝑖′∈ℎ−1(𝑠)

𝑤2
𝑖′

=
1

𝑛2
E
ℎ

∑︁
𝑠

∑︁
𝑖∈[𝑛]

[𝑖 ∈ ℎ−1(𝑠)]
∑︁
𝑖′∈[𝑛]

[𝑖′ ∈ ℎ−1(𝑠)]𝑤2
𝑖′

=
1

𝑛2

∑︁
𝑖,𝑖′∈[𝑛]

E
ℎ

∑︁
𝑠

[𝑖, 𝑖′ ∈ ℎ−1(𝑠)]𝑤2
𝑖′
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=
1

𝑛2

∑︁
𝑖,𝑖′∈[𝑛]

Pr
ℎ
[ℎ(𝑖) = ℎ(𝑖′)]𝑤2

𝑖′

≤ 1

𝑛2
𝑇𝑤𝑖𝑤𝑖′

= 𝑇𝑊 2,

where in the inequality we use the bound Prℎ[ℎ(𝑖) = ℎ(𝑖′)] ≤ 𝑇 𝑤𝑖

𝑤𝑖′
. We get the

required bound on the variance.
We are ready to describe our faster algorithm for the kernel density evaluation

problem. Let 𝑘 be an (𝑙, 𝑡)-smooth kernel. Given a point-set 𝑃 = {𝑝1, . . . , 𝑝𝑛} ⊂ R𝑑

consisting of 𝑛 points, we preprocess the set in 𝑂(𝑛𝑡𝑑+ 𝑛𝑡 log(𝑛Φ)) time so that the
following holds. For a query point 𝑞 ∈ R𝑑, define 𝑤𝑖 , 𝑘(𝑝𝑖, 𝑞). The preprocessing
step is randomized and it induces a hash function ℎ : [𝑛] → 𝑆 with |𝑆| ≤ 𝑂(log(𝑛Φ)).
For every 𝑠 ∈ 𝑆, a uniformly random 𝑖𝑠 from ℎ−1(𝑠) can be sampled in 2𝑂(𝑡) time.
Thus, the random variable 𝑍 can be computed in

(︀
2𝑂(𝑡) + 𝑡𝑘

)︀
log(𝑛Φ) + 𝑂(𝑡𝑑) time

(the factor 𝑂(𝑡𝑑) comes from a projection step as described below). To get a 1 + 𝜀
approximation, we build 𝑂(𝑇/𝜀2) independent data structures and take average of
the random variables produced by the data structures. We show that 𝑇 ≤ 𝑙2𝑂(𝑡). The
final preprocessing time becomes 𝑛𝑙2𝑂(𝑡)(𝑑 + log(𝑛Φ))/𝜀2 and the final query time
becomes 𝑙2𝑂(𝑡)𝑡𝑘 log(𝑛Φ)/𝜀

2. To simplify the expression for the query time, we used
the fact that 𝑡𝑘 ≥ Ω(𝑑).

Preprocessing step. Let 𝑑′ be an integer (we will later set 𝑑′ = 10𝑡). Pick a
random 𝑑′-dimensional subspace of the 𝑑-dimensional space and let 𝐴′ ∈ R𝑑′×𝑑 be the
projection matrix to this subspace. Let 𝐴 ,

√︀
𝑑/𝑑′𝐴′ be the scaled projection matrix.

We map every point 𝑝 ∈ 𝑃 to 𝐴𝑝 ∈ R𝑑′ . In the rest of the section we will use the
following concentration inequality multiple times.

Lemma 8.3.2 ([DG03]). For all 𝐾 ≥ 2 and for all 𝑥 ∈ R𝑑 we have

Pr[‖𝑥‖/𝐾 ≤ ‖𝐴𝑥‖ ≤ 𝐾‖𝑥‖] ≥ 1−𝐾−𝑑
′/4.

After mapping the point-set 𝑃 to the 𝑑′-dimensional space, we build a 𝑑′-dimensional
quadtree for the points 𝐴𝑝, 𝑝 ∈ 𝑃 as follows. We choose a large enough 𝑑′-dimensional
axis-parallel box with equal side-lengths so that it contains all points. We recursively
split the box into smaller boxes as long as the box has more than one point in it. Let
𝑅 be the side-length of a box. If the box has more than one point, we split the box
into 2𝑑

′ equal and non-overlapping smaller boxes of side-length 𝑅/2. We bound the
time spent on the preprocessing at the end of the analysis.

Query step. In the preprocessing step we described the construction of the quadtree
such that the partitioning of the boxes stops when we reach a box with a single point.
For the sake of the simplicity of the description of the query step it is useful think
of the partitioning as infinite: we keep partitioning boxes with a single point. The
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actual implementation does not need infinite partitioning, it is only for the easy of
exposition.

Let 𝑞 ∈ R𝑑 be the query point and 𝐴𝑞 be the query point mapped into the 𝑑′-
dimensional space. Below we describe the hash function ℎ : [𝑛] → 𝑆. For a point 𝑝
and a real number 𝑟, let Ball(𝑝, 𝑟) be the Euclidean ball centered at the point 𝑝 and
of radius 𝑟.

For 𝑟 = 𝑅,𝑅/2, 𝑅/4, 𝑅/8, . . . we do the following. Consider all boxes with the
side-length 𝑟 that do not intersect Ball(𝐴𝑞,

√
𝑑′𝑟) and that are not covered by the

boxes considered in the previous iterations. We add 𝑟 to 𝑆 and for every point 𝑝𝑖
from any of the boxes considered in this iteration we assign ℎ(𝑖) = 𝑟.

We observe that this procedure partitions the point 𝐴𝑝, 𝑝 ∈ 𝑃 into subsets such
that the distances from 𝑞′ to all points from the same subset are “roughly” equal.

In what follows we bound the time needed to compute the random variable

𝑍 ,
1

𝑛

∑︁
𝑠∈𝑆

|ℎ−1(𝑠)|𝑘(𝑝𝑖𝑠 , 𝑞)

and variance of 𝑍. We note that even though we sample 𝑖𝑠 from the 𝑑′-dimensional
space, we compute the kernel value 𝑘(𝑝𝑖𝑠 , 𝑞) in the 𝑑-dimensional space.

Variance of 𝑍. Our goal is to show that Prℎ[ℎ(𝑖) = ℎ(𝑖′)] ≤ 𝑇 𝑤𝑖

𝑤𝑖′
for 𝑇 ≤ 𝑙2𝑂(𝑑′).

We will show that Prℎ[ℎ(𝑖) = ℎ(𝑖′)] ≤ 𝑇 min
(︁

𝑤𝑖

𝑤𝑖′
,
𝑤𝑖′
𝑤𝑖

)︁
. We observe that it is sufficient

to show

Pr
ℎ
[ℎ(𝑖) = ℎ(𝑖′)] ≤ 2𝑂(𝑑′) min

(︂
‖𝑝𝑖 − 𝑞‖
‖𝑝𝑖′ − 𝑞‖

,
‖𝑝𝑖′ − 𝑞‖
‖𝑝𝑖 − 𝑞‖

)︂𝑡

as the rest follows from the smoothness property as stated in Definition 8.1.1. For
the rest we set 𝑑′ , 10𝑡.

Without loss of generality ‖𝑝𝑖′ − 𝑞‖ ≥ ‖𝑝𝑖 − 𝑞‖. Let 𝐾 , ‖𝑝𝑖′ − 𝑞‖/‖𝑝𝑖 − 𝑞‖ ≥ 1.
Our goal is to show Prℎ[ℎ(𝑖) = ℎ(𝑖′)] ≤ 2𝑂(𝑑′)𝐾−𝑡. Note that if 𝐾 ≤ 1000, then the
inequality is immediate for large enough hidden constant in the 2𝑂(𝑑′) factor. Thus,
we assume that 𝐾 > 1000. We claim that ℎ(𝑖) = ℎ(𝑖′) implies

‖𝐴𝑝𝑖′ − 𝐴𝑞‖ ≤ 10‖𝐴𝑝𝑖 − 𝐴𝑞‖. (8.2)

Indeed, let 𝑟 , ℎ(𝑖) = ℎ(𝑖′). By the construction of the partition, both points 𝐴𝑝𝑖′
and 𝐴𝑝𝑖, lie outside Ball(𝐴𝑞,

√
𝑑′𝑟). That is,

𝐴𝑝𝑖′ , 𝐴𝑝𝑖 ̸∈ Ball(𝐴𝑞,
√
𝑑′𝑟). (8.3)

Furthermore, they are not covered by boxes of side-length 2𝑟 that do not intersect
Ball(𝐴𝑞,

√
𝑑′2𝑟), which implies that

𝐴𝑝𝑖′ , 𝐴𝑝𝑖 ∈ Ball(𝐴𝑞,
√
𝑑′4𝑟). (8.4)

Eqs. (8.3) and (8.4) together imply Eq. (8.2). Eq. (8.2) and 𝐾 > 1000 together imply
that either the event ‖𝐴𝑝𝑖′ − 𝐴𝑞‖ ≤ (𝐾/10)−1/2‖𝑝𝑖′ − 𝑞‖ or the event ‖𝐴𝑝𝑖 − 𝐴𝑞‖ ≥
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(𝐾/10)1/2‖𝑝𝑖 − 𝑞‖ holds. We call the first event 𝐸1 and the second event 𝐸2. We use
Lemma 8.3.2 and conclude

Pr
ℎ
[ℎ(𝑖) = ℎ(𝑖′)] ≤ Pr[𝐸1 or 𝐸2]

≤ Pr[𝐸1] + Pr[𝐸2]

≤ 2 · (𝐾/10)−𝑑
′/8

≤ 2𝑂(𝑑′)𝐾−𝑡

as required.
Time needed to compute 𝑍. For every 𝑟 we sample a uniformly random point

from the union of boxes. To bound the time needed to compute 𝑍, we need to bound
two quantities: the number of different boxes considered per side-length 𝑟 and the
number of different values 𝑟 per query. We start by bounding the first quantity—
the number of boxes. From the analysis of the variance we know that all boxes of
side-length 𝑟 are contained in Ball(𝐴𝑞,

√
𝑑′4𝑟). Thus, the number of boxes is upper

bounded by

Volume(Ball(𝐴𝑞,
√
𝑑′4𝑟))/Volume(box with side-length 𝑟) ≤ 2𝑂(𝑑′),

where we use the fact that the volume of a 𝑑-dimensional ball of radius 𝑟 is upper
bounded by 2𝑂(𝑑)

√
𝑑
𝑑 𝑟

𝑑 [Bal97]. This implies that a uniformly random 𝑖𝑟 from ℎ−1(𝑟) can

be sampled in 2𝑂(𝑑′) time. To bound the number of different values 𝑟 considered in
a query step, we use the definition of Φmax and Φmin. Using Lemma 8.3.2 we argue
that the largest distance between any two points from {𝐴𝑝 | 𝑝 ∈ 𝑃} ∪ {𝐴𝑞} is upper
bounded by Φ′max ≤ 𝑛𝑂(1)Φmax with all but arbitrarily small constant probability.
Similarly, the smallest distance between any two distinct points is lower bounded
by Φ′min ≥ 𝑛−𝑂(1)Φmin with all but arbitrary small constant probability. Let Φ′ ,
Φ′max/Φ

′
min. Since the side-length of the considered boxes decreases by a factor of 2 in

every iteration, the number of different values 𝑟 that are considered is upper bounded
by |𝑆| ≤ 𝑂(log Φ′) ≤ 𝑂(log(𝑛Φ)) as promised.

Finally, we account for the time needed to compute 𝐴𝑞, which is 𝑂(𝑑′𝑑).
Preprocessing time. The time needed to compute 𝐴𝑝, 𝑝 ∈ 𝑃 is 𝑂(𝑛𝑑′𝑑). Since

the number of quantities 𝑟 is 𝑂(log(𝑛Φ)), the total time spend on building the multi-
dimensional quadtree is 𝑂(𝑛𝑑′𝑑+ 𝑛𝑑′ log(𝑛Φ)).

8.4 Removing the aspect ratio
In this section we introduce a natural decay property for kernels that is satisfied for
many smooth kernels such as 𝑡-Student, rational quadratic and other non-smooth
kernels such as Guassian or exponential. As we will see, this property allows us to
get rid of the dependence on the aspect ratio Φ in Theorem 8.3.1.

Definition 8.4.1 ((𝛼, 𝛾, 𝜀)-decay). For 𝛼, 𝛾 ≥ 1 and 𝜀 > 0 we call a function 𝑘 :
R𝑑 × R𝑑 → R (𝛼, 𝛾, 𝜀)-decaying, if for all 𝑛 ≥ 2 the following holds.
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∙ for all 𝑝, 𝑝′, 𝑞 with 𝑛−𝛾‖𝑝− 𝑞‖ ≥ ‖𝑝′ − 𝑞‖ ≥ 𝑛−𝛼, 𝑘(𝑝, 𝑞) ≤ 𝜀𝑘(𝑝′, 𝑞)/𝑛;

∙ for all 𝑝, 𝑞 with ‖𝑝− 𝑞‖ < 𝑛−𝛼, 𝑘(𝑝, 𝑞) = (1± 𝜀) 𝑘(𝑞, 𝑞).

That is, the function 𝑘 decays sufficiently fast for all pairs of points that are suffi-
ciently far, and at the same time does not change by much for points that are “close”.
This property makes it possible to consider only 𝑂(𝛾 log 𝑛) different scales when esti-
mating kernel density (although the actual scales could be quite different for different
queries). We show that for (𝑂(1), 𝑂(1), 𝜀)-decaying function we can approximate
KDF𝑃 (𝑞) within a factor of 1±𝑂(𝜀) and get rid of the aspect ratio. We note that the
Rational Quadratic kernel and the 𝑡-Student kernel are (𝑂(1), 𝑂(1), 1/𝑛10)-decaying
as long the parameters 𝛽 and 𝑡 (resp.) can be lower bounded by an arbitrary small
constant.

In Theorem 8.3.1 we provided an algorithms whose preprocessing and the query
runtime bounds depend on the aspect ratio Φ. In this section we show that essentially
the same algorithm allows to get rid of the dependency on Φ if the (𝑙, 𝑡)-smooth kernel
function 𝑘 is also (𝛼, 𝛾, 𝜀)-decaying.

We define 𝑚 , |{𝑝 ∈ 𝑃 | ‖𝑝− 𝑞‖ ≤ 𝑛−𝛼}| to be the number of points in 𝑃 that
are at distance less than 𝑛−𝛼 from 𝑞. Let 𝑧 , min𝑝∈𝑃 max(‖𝑝− 𝑞‖, 𝑛−𝛼) be the closest
distance from 𝑞 to 𝑝, 𝑝 ∈ 𝑃 thresholded at 𝑛−𝛼. The following expression follows
immediately from Definition 8.4.1.

𝑚𝑘(𝑞, 𝑞) +
∑︁
𝑝∈𝑃 :

𝑧≤‖𝑝−𝑞‖≤𝑧𝑛𝛾

𝑘(𝑝, 𝑞) = (1±𝑂(𝜀))KDF𝑃 (𝑞). (8.5)

To estimate the left hand size of Eq. (8.5), we modify the algorithm from The-
orem 8.3.1. The points 𝑝 ∈ 𝑃 with 𝑧 ≤ ‖𝑝 − 𝑞‖ ≤ 𝑧𝑛𝛾 are mapped to 𝐴𝑝 and by
Lemma 8.3.2 and the construction of the hash function, the points will be be assigned
at most 𝑂(log 𝑛𝛾) ≤ 𝑂(𝛾 log 𝑛) different hash values. Thus, to estimate the contribu-
tion from these points we only need to examine 𝑂(𝛾 log 𝑛) different hash values. To be
able to examine these hash values, we must be able to approximate min𝑝∈𝑃 ‖𝐴𝑝−𝐴𝑞‖,
which can be done in 𝑂(𝑑′ log 𝑛) ≤ 𝑂(𝑡 log 𝑛) time for a given 𝐴𝑞 after 2𝑂(𝑡)𝑛 log 𝑛
preprocessing of 𝐴𝑝, 𝑝 ∈ 𝑃 (Theorems 2.10 and 3.16 in [HPIM12]). After examining
these hash values, we can count the number of points that are left and are closer than
the examined points in 2𝑂(𝑑′) time.

Altogether we arrive at the following theorem.

Theorem 8.4.2. Let 𝑘 be an (𝑙, 𝑡)-smooth function that is also (𝛼, 𝛾, 𝜀)-decaying.
After 𝑛𝑙2𝑂(𝑡)(𝑑 + 𝛾 log 𝑛)/𝜀2 time preprocessing, for a given 𝑞 we can approximate
KDF𝑃 (𝑞) within the factor of 1 +𝑂(𝜀) in 𝑙2𝑂(𝑡)𝑡𝑘𝛾 log(𝑛)/𝜀

2 time.
For the Rational Quadratic kernel and the 𝑡-Student kernel we get the runtime

bounds with 𝛾 = 𝑂(1) as long as the parameters 𝛽 and 𝑡 (resp.) can be lower bounded
by an arbitrary small constant.
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8.5 Algorithms via embeddings

8.5.1 A useful tool

We will use the following theorem which is a variant of Theorem 116 from [LN14].

Theorem 8.5.1. Let 2 > 𝑤 ≥ 1, 𝑅 > 0 and Φ ≥ 2 be real numbers. There exists a
mapping 𝑓 : R𝑑 → R𝑂(𝑑 log(Φ𝑑/𝜀)/𝜀) such that for any 𝑝, 𝑞 ∈ R𝑑 with 𝑅 ≤ ‖𝑝−𝑞‖𝑤 ≤ Φ𝑅,
we have

(1− 𝜀)‖𝑝− 𝑞‖𝑤𝑤 ≤ ‖𝑓(𝑝)− 𝑓(𝑞)‖22 ≤ (1 + 𝜀)‖𝑝− 𝑞‖𝑤𝑤.

The embedding can be computed in 𝑂(𝑑 log(Φ𝑑/𝜀)/𝜀) time.

The proof in [LN14] of the theorem starts by noting that it is sufficient to construct
an embedding 𝑓0 : R → R𝑂(log(𝜑/𝜀)/𝜀) such that for any 𝑥, 𝑦 ∈ R with |𝑥− 𝑦| ≤ 𝜑𝑅 we
have

(1− 𝜀)|𝑥− 𝑦|𝑤 − 𝜀𝑅𝑤 ≤ ‖𝑓0(𝑥)− 𝑓0(𝑦)‖22 ≤ (1 + 𝜀)|𝑥− 𝑦|𝑤𝑤 + 𝜀𝑅𝑤.

The embedding for 𝑑 dimensions follows by concatenating 𝑑 one-dimensional embed-
dings, one for each dimension. The one-dimensional embedding is shown assuming
𝜑 = 𝑑𝑂(1), but in fact it works for arbitrary 𝜑 since the parameter 𝑑 is not tied to the
dimensionality of the original space for the map 𝑓0. Furthermore, we note that the
argument works for all 𝑤 ∈ [1, 2), even though it is stated that 𝑤 ∈ (1, 2). This is
because the argument is a discretization of the mapping in Remark 5.10 from [MN04],
which holds for 𝑤 = 1 as well. Overall, we obtain the following:

Theorem 8.5.2 ([LN14]). Let 2 > 𝑤 ≥ 1, 𝑅 > 0 and 𝜑 ≥ 2 be real numbers.
There exists a mapping 𝑓 : R𝑑 → R𝑂(𝑑 log(𝜑/𝜀)/𝜀) such that for any 𝑝, 𝑞 ∈ R𝑑 with
‖𝑝− 𝑞‖𝑤 ≤ 𝜑𝑅, we have

(1− 𝜀)‖𝑝− 𝑞‖𝑤𝑤 − 𝜀𝑅𝑤𝑑 ≤ ‖𝑓(𝑝)− 𝑓(𝑞)‖22 ≤ (1 + 𝜀)‖𝑝− 𝑞‖𝑤𝑤 + 𝜀𝑅𝑤𝑑.

Furthermore, in the statement of Theorem 8.5.2, if 𝑝 and 𝑞 additionally satisfy
𝑑𝑅 ≤ ‖𝑝− 𝑞‖𝑤, then

(1− 2𝜀)‖𝑝− 𝑞‖𝑤𝑤 ≤ ‖𝑓(𝑝)− 𝑓(𝑞)‖22 ≤ (1 + 2𝜀)‖𝑝− 𝑞‖𝑤𝑤.

This allows us to rewrite Theorem 8.5.2 in terms of the “aspect ratio” Φ and gives
Theorem 8.5.1.

8.5.2 Algorithms

Suppose that a kernel function 𝑘 : R𝑑 ×R𝑑 → R is (𝑙, 𝑡)-smooth with respect to some
distance function 𝑠 : R𝑑 × R𝑑 → R. That is,

max

(︂
𝑘(𝑝, 𝑞)

𝑘(𝑝′, 𝑞)
,
𝑘(𝑝′, 𝑞)

𝑘(𝑝, 𝑞)

)︂
≤ 𝑙max

(︂
𝑠(𝑝, 𝑞)

𝑠(𝑝′, 𝑞)
,
𝑠(𝑝′, 𝑞)

𝑠(𝑝, 𝑞)

)︂𝑡

.
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Furthermore, suppose that the distance function 𝑠 can be embedded into (ℓ𝑤)
𝑧 with

distortion 𝐷 for some constants 𝑤 ∈ [1, 2) and 𝑧 > 0. That is, for some map
𝑓 : R𝑑 → R𝑑′ and for all 𝑝, 𝑞 ∈ R𝑑 we have

‖𝑓(𝑝)− 𝑓(𝑞)‖𝑧𝑤 ≤ 𝑠(𝑝, 𝑞) ≤ 𝐷‖𝑓(𝑝)− 𝑓(𝑞)‖𝑧𝑤. (8.6)

By Theorem 8.5.1 we know that there exists an embedding 𝑓 ′ : R𝑑′ → R𝑑′′ of (ℓ𝑤)𝑤
into (ℓ2)

2. We use this theorem and combine it with Eq. (8.6). We conclude that for
any 𝑅 > 0 and Φ ≥ 2 and for 𝑑′′ = 𝑂(𝑑′ log(Φ𝐷𝑑′)) we have the following. For all
𝑝, 𝑞 ∈ R𝑑 such that 𝑅 ≤ 𝑠(𝑝, 𝑞) ≤ Φ𝑅:

‖𝑓 ′(𝑓(𝑝))− 𝑓 ′(𝑓(𝑞))‖2𝑧/𝑤2 ≤ 𝑠(𝑝, 𝑞) ≤ 𝑂(𝐷)𝑂(1)‖𝑓 ′(𝑓(𝑝))− 𝑓 ′(𝑓(𝑞))‖2𝑧/𝑤2 .

This allows us to check that the kernel 𝑘 is (𝑙𝑂(𝐷)𝑂(𝑡), 𝑂(𝑡))-smooth with respect to
ℓ2 for points 𝑝, 𝑝′, 𝑞 that satisfy 𝑅 ≤ 𝑠(𝑝, 𝑞), 𝑠(𝑝′, 𝑞) ≤ Φ𝑅. We use Theorem 8.3.1 and
obtain the following result.

Theorem 8.5.3. Let 𝑘 be an (𝑙, 𝑡)-smooth kernel with respect to a distance function 𝑠.
Let 𝑡𝑘 be the time needed to evaluate 𝑘. Suppose that 𝑠 can be embedded into (ℓ𝑤)

𝑧 with
distortion 𝐷 for some constants 𝑤 ∈ [1, 2) and 𝑧 > 0. We assume that 𝐷 ≥ 2. Let
𝑓 : R𝑑 → R𝑑′ be the embedding and let 𝑡𝑓 be the time needed to perform the embedding.
For a point-set 𝑃 ⊂ R𝑑 of size |𝑃 | = 𝑛 and a query 𝑞 ∈ R𝑑 let Φ be the upper bound
on the aspect ratio on 𝑃 ∪ {𝑞} with respect to 𝑠 (similarly as in Theorem 8.3.1). Let
𝑑′′ , 𝑂(𝑑′ log(Φ𝐷𝑑′)).

For any 𝜀 > 0, it is possible to preprocess the point-set 𝑃 in 𝑛𝑙𝑂(𝐷)𝑂(𝑡)(𝑡𝑓 +
𝑑′′ + log(𝑛Φ𝐷))/𝜀2 time such that for any query point 𝑞 ∈ R𝑑 we can output a 1 + 𝜀
approximation to KDF𝑃 (𝑞) in time 𝑙𝑂(𝐷)𝑂(𝑡)(𝑡𝑓 + 𝑑′′ + 𝑡𝑘 log(𝑛Φ𝐷))/𝜀2.

We illustrate the use of Theorem 8.5.3 by obtaining an algorithm for the kernel
function 𝑘(𝑝, 𝑞) = 1

1+𝑠(𝑝,𝑞)𝑡
, where 𝑠(𝑝, 𝑞) = EMD(𝑝, 𝑞) is the planar earth mover’s

distance between 𝑝, 𝑞 ∈ R𝑑. We interpret 𝑝 and 𝑞 as two measures over a two-
dimensional grid of size

√
𝑑×

√
𝑑. The distance between two points from the grid are

measured in ℓ1.

Theorem 8.5.4. Let 𝑘(𝑝, 𝑞) = 1
1+EMD(𝑝,𝑞)𝑡

be a kernel function and 𝑃 ⊂ R
√
𝑑×
√
𝑑

be a set of 𝑛 measures. Let Φ be an upper bound on the aspect ratio of 𝑃 ∪ {𝑞}
for a query measure 𝑞 ∈ R

√
𝑑×
√
𝑑. It is possible to preprocess the set of measures

𝑃 in time 𝑛(log 𝑑)𝑂(𝑡)(𝑑 log(Φ) + log 𝑛)/𝜀2 such that the following holds. Given a
query measure 𝑞 ∈ R

√
𝑑×
√
𝑑, we can approximate KDF𝑃 (𝑞) within time 1 + 𝜀 factor in

(log 𝑑)𝑂(𝑡)𝑑3 log(𝑛Φ)/𝜀2.

Proof. It is known that the earth mover’s distance embeds into ℓ1 with distortion
𝐷 ≤ 𝑂(log 𝑑) [Cha02, IT03, NS07]. The resulting dimensionality is 𝑑′ = 𝑂(𝑑) and
the embedding can be computed in time 𝑡𝑓 = 𝑂(𝑑). It is known how to evaluate
EMD(𝑝, 𝑞) in time 𝑡𝑘 = 𝑂(𝑑3) for arbitrary two measures 𝑝 and 𝑞 (using the “Hungar-
ian” method [Law76]). The guarantees follow from Theorem 8.5.3 by observing that
the kernel function 𝑘(𝑝, 𝑞) is (1, 𝑡)-smooth with respect to 𝑠(𝑝, 𝑞) = EMD(𝑝, 𝑞).
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Using Theorem 8.5.3, for any 1 ≤ 𝑤 ≤ 2 and 𝑡 > 0, we can answer queries for the
kernel function 𝑘(𝑝, 𝑞) = 1

1+‖𝑝−𝑞‖𝑡𝑤
in time 2𝑂(𝑡)𝑑 log(𝑛Φ𝑑)/𝜀2 after 𝑛2𝑂(𝑡)(𝑑 log(Φ𝑑) +

log(𝑛Φ))/𝜀2 time preprocessing.

8.6 Hardness for kernel density evaluation

Hardness for ℓ∞ distance. Let 𝑠(𝑝, 𝑞) , ‖𝑝 − 𝑞‖∞ be the ℓ∞ distance function.
Consider the kernel function 𝑘(𝑝, 𝑞) , 1

1+𝑠(𝑝,𝑞)𝑡
for some parameter 𝑡 > 0. Let 𝑃 ⊂ R𝑑

be a set of size |𝑃 | = 𝑛 and let 𝑠(𝑃, 𝑞) , min𝑝∈𝑃 𝑠(𝑝, 𝑞). Let 𝐶 > 1 be a parameter
and consider two cases.

∙ 𝑠(𝑃, 𝑞) ≤ 1. In this case we have KDF𝑃 (𝑞) =
1
|𝑃 |
∑︀

𝑝∈𝑃 𝑘(𝑝, 𝑞) ≥ 1
2𝑛

.

∙ 𝑠(𝑃, 𝑞) ≥ 𝐶. In this case we have KDF𝑃 (𝑞) ≤ 1
𝐶𝑡 .

Consider the setting 𝑡 , 2 log𝐶 𝑛. If we have 𝑠(𝑃, 𝑞) ≤ 1, then we get KDF𝑃 (𝑞) ≥
1
2𝑛

and, if we have 𝑠(𝑃, 𝑞) ≥ 𝐶, then we get KDF𝑃 (𝑞) ≤ 1
𝑛2 . Thus, if we can

approximate the value of KDF𝑃 (𝑞) within any constant factor, then we can distinguish
𝑠(𝑃, 𝑞) ≤ 1 from 𝑠(𝑃, 𝑞) ≥ 𝐶. In particular, we consider the case 𝐶 , 3. It is
known that, assuming SETH, deciding whether 𝑠(𝑃, 𝑞) ≤ 1 or 𝑠(𝑃, 𝑞) ≥ 3 for any
𝑑 ≥ 𝜔(log 𝑛) requires Ω(𝑛1−𝑜(1)) time even if we allow an arbitrary polynomial time
𝑛𝑂(1) preprocessing of the point-set 𝑃 . This follows from [Ind01, Wil05].

This implies that approximating KDF𝑃 (𝑞) for 𝑠(𝑝, 𝑞) = ‖𝑝 − 𝑞‖∞ and any 𝑑 ≥
𝜔(log 𝑛) within any constant factor and with any polynomial time 𝑛𝑂(1) preprocessing
cannot be done in 𝑑𝑂(1)2𝑡/10𝑛𝑜(1) query time. Indeed, otherwise for 𝑡 = 2 log3 𝑛 we
would get a better than 𝑛1−𝑜(1) query time, which would contradict SETH.

Hardness for the Gaussian kernel. Similarly as in Chapter 7, we will perform
a reduction from the bichromatic Hamming close pair (BHCP) problem. We will use
the unbalanced version of the BHCP problem. Let 𝛼 > 0 be a real-valued constant
and consider any 𝑑 ≥ 𝜔(log 𝑛). Given two sets 𝑃,𝑄 ⊆ {0, 1}𝑑 of sizes |𝑃 | = 𝑛, |𝑄| = 𝑚
for 𝑚 = 𝑛𝛼 and an integer 𝑡 ∈ {0, . . . , 𝑑}, our goal is to determine if there is a pair
of vectors 𝑝 ∈ 𝑃 and 𝑞 ∈ 𝑄 such that Hamming(𝑝, 𝑞) < 𝑡. Assuming SETH, we know
that this requires Ω(𝑛𝑚)1−𝑜(1) time. See Chapter 2.

Consider the value of 𝑘(𝑃,𝑄) as defined in Eq. (8.1) for the Gaussian kernel
𝑘(𝑝, 𝑞) , exp(−𝐶‖𝑝 − 𝑞‖2) with the parameter 𝐶 , 10𝛼 log 𝑛. We observe that
exp(−𝐶‖𝑝 − 𝑞‖2) = exp(−𝐶 · Hamming(𝑝, 𝑞)) for any binary vectors 𝑝 and 𝑞. We
distinguish two cases.

∙ There exist 𝑝′ ∈ 𝑃 and 𝑞′ ∈ 𝑄 such that Hamming(𝑝′, 𝑞′) < 𝑡. Then KDF𝑃 (𝑞) ≥
1
𝑛
exp(−𝐶 · Hamming(𝑝′, 𝑞′)) ≥ 1

𝑛
exp(−𝐶(𝑡− 1)).

∙ For all 𝑝 ∈ 𝑃 we have Hamming(𝑝, 𝑞) ≥ 𝑡. Then KDF𝑃 (𝑞) ≤ 𝑚 exp(−𝐶𝑡),
which is much smaller than 1

𝑛
exp(−𝐶(𝑡− 1)) by our choice of 𝐶 = 10𝛼 log 𝑛.
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Thus, since we can choose arbitrary 𝑑 ≥ 𝜔(log 𝑛), we cannot approximate 𝑘(𝑃,𝑄)
within any additive factor 𝜇 ≤ exp(−𝜔(log2 𝑛)) in less than (𝑛𝑚)1−𝑜(1) time assuming
SETH. Furthermore, the same reduction gives Ω(𝑛𝑚)1−𝑜(1) lower bound for approxi-
mating 𝑘(𝑃,𝑄) within any multiplicative constant factor.

The Ω(𝑛𝑚)1−𝑜(1) lower bound for additive approximation can be further strength-
ened to any 𝜇 ≤ 𝑛−𝜔(1) by using [Rub18]. This conditionally rules out algorithms of
the form (𝑛𝑚)1−Ω(1)/𝜇𝑜(1).
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