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IMPROVED BOUNDS FOR SZEMERÉDI’S THEOREM

JAMES LENG, ASHWIN SAH, AND MEHTAAB SAWHNEY

Abstract. Let rk(N) denote the size of the largest subset of [N ] = {1, . . . , N} with no k-term

arithmetic progression. We show that for k ≥ 5, there exists ck > 0 such that

rk(N) ≪ N exp(−(log logN)ck ).

Our proof is a consequence of recent quasipolynomial bounds on the inverse theorem for the

Gowers Uk-norm as well as the density increment strategy of Heath–Brown and Szemerédi as

reformulated by Green and Tao.

1. Introduction

Let [N ] = {1, . . . , N} and rk(N) denote the size of the largest S ⊆ [N ] such that S has no

k-term arithmetic progressions. The first nontrivial upper bound on r3(N) came from work of

Roth [20] which proved

r3(N) ≪ N(log logN)−1.

A long series of works improved this bound, including works of Heath-Brown [14], Szemerédi [26],

Bourgain [4, 5], Sanders [21, 22], Bloom [1], and Bloom and Sisask [2]. In breakthrough work,

Kelley and Meka [15] very recently proved

r3(N) ≪ N exp(−c(logN)1/12);

the constant 1/12 was refined to 1/9 in work of Bloom and Sisask [3].

For higher k, a long-standing conjecture of Erdős and Turán stated that rk(N) = o(N).

In seminal works, Szemerédi [24, 25] first established the estimate r4(N) = o(N) and then

established his eponymous theorem that

rk(N) = o(N).

Due to uses of van der Waerden theorem and the regularity lemma (which was introduced in

this work), Szemerédi’s density saving was exceedingly small. In breakthrough work, Gowers

[6, 7] introduced higher order Fourier analysis and proved the first “reasonable” bounds for

Szemerédi’s theorem:

rk(N) < N(log logN)−2−2k+9

.

The only improvement to this result for k ≥ 4 was work of Green and Tao [9,13] which ultimately

established that

r4(N) ≪ N(logN)−c,

and recent work of the authors [17] which proved

r5(N) ≪ N exp(−(log logN)c).

Our main result is an extension of this bound for all k ≥ 5.

Theorem 1.1. Fix k ≥ 5. There is ck ∈ (0, 1) such that

rk(N) ≪ N exp(−(log logN)ck).

Leng was supported by NSF Graduate Research Fellowship Grant No. DGE-2034835. Sah and Sawhney were

supported by NSF Graduate Research Fellowship Program DGE-2141064.
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1.1. Proof outline and techniques.

1.1.1. Local and global inverse theorems. The primary input to our result will be the main re-

sult of recent work of the authors [18], i.e., quasipolynomial bounds on the inverse theorem for

the Gowers Uk+1-norm. Given an inverse theorem, the deduction of Szemerédi’s theorem via a

standard density increment strategy is essentially folklore and was recorded in work of Green

and Tao [11] (although, prior to [18] the resulting bounds would be far from matching those

of Gowers [7]). However, if one naively follows this script using [18], one obtains a bound of

N exp(−(log log logN)−Ωk(1)) which is weaker than the work of Gowers [7]. Furthermore, Gow-

ers’s argument makes use of a “local” inverse theorem that in fact gives a slightly stronger corre-

lation compared to the bound given for the “global” inverse theorem in [18] (namely, polynomial

versus quasipolynomial). Thus, this global nature of [18] must be exploited. Additionally, use

of global inverse theorems necessitates understanding of nilsequences and polynomial sequences

on nilpotent Lie groups, as opposed to merely polynomials as in the work of Gowers [7].

1.1.2. Schmidt-type decomposition problems. This is done via the improved density increment

strategy of Heath–Brown [14] and Szemerédi [26] which involves extracting a set of functions to

correlate with instead of simply one and using this to give a multiplicative density increment.

Such a strategy was given a robust formulation in work of Green and Tao [9] on four-term pro-

gressions; in particular, their reformulation avoided the explicit Fourier-analytic formulas used

in [14, 26] and thus is applicable to the higher order setting. The strategy here runs smoothly

given the inverse theorem, modulo resolving a certain Schmidt-type problem for nilsequences.

In particular, given a polynomial sequence g(n) with g(0) = idG on a nilmanifold G/Γ of degree

k with complexity M and dimension d, one needs to prove that

min
1≤n≤N

dG/Γ(idG, g(n)Γ) ≪ MOk(d
Ok(1))N−1/dOk(1)

.

In particular, the polynomial dependence on dimension within the exponent is key.

We in fact require a certain slightly stronger result (decomposing [N ] into long arithmetic

progressions P such that the diameters of the sets {g(n)Γ: n ∈ P} are small), which is the heart

of the matter for this work. When the underlying nilpotent group G is abelian, this is easily

deduced from a result of Schmidt [23] (see Lemma 2.3, or [9, Section 6] in the quadratic case).

For general degree 2 nilmanifolds such a problem was implicitly solved in work of Green

and Tao [9] and for degree 3 nilmanifolds it was essentially solved in recent work of the

authors [17]. More precisely, [17] essentially proves that given a list of bracket expressions

(ain⌊bin⌋⌊cin⌋)1≤i≤d that

min
1≤n≤N

‖ain⌊bin⌋⌊cin⌋‖R/Z ≤ N−1/dO(1)

and via an explicit computation with fundamental domains on degree 3 nilmanifolds one may

reduce to such a situation. The proof given in [17] relies on the fact that 3 is sufficiently small

and in particular that it is possible to reduce to a situation in which there are no “nested integer

part operations” as one attempts to solve the “bracket Schmidt” problem in one go.

1.1.3. Iterative Schmidt refinement. The key observation required for our work, at least at a

heuristic level, is a procedure for solving such “bracket Schmidt” problems even when there are

nested brackets. As a simple example, consider bracket expressions (ain⌊bin⌊cin⌋⌋)1≤i≤d. We

will solve the Schmidt problem via iteratively “reducing” the number of brackets from the inside-

out (at the cost of passing to subprogressions). In particular, using Dirichlet’s theorem, one can

break [N ] into arithmetic progressions P each of length N1/dO(1)
such that when restricted to

each arithmetic progression, every function ⌊cin⌋ is a linear function (i.e., it is a locally linear
2



function on each P ). Since the only locally linear functions on a progression agree with genuinely

linear functions, we can replace ⌊cin⌋ by di,Pn + ei,P and reduce to considering the bracket

expression ain⌊bin(di,Pn+ ei,P )⌋ when restricted to P . One can then iterate this argument on

the “inner quadratics” bin(di,Pn + ei,P ) (essentially using abelian Schmidt as discussed above

for degree 2 in this case). We may find a decomposition into long arithmetic progressions Q

such that ⌊bin(di,Pn + ei,P )⌋ is locally quadratic (and hence agrees with a global quadratic)

on each Q. Thus, restricted to any such Q, our original functions ain⌊bin⌊cin⌋⌋ agrees with

a genuine cubic. Finally, we can decompose these progressions Q into ones where the cubics

are approximately constant mod 1 (using abelian Schmidt for degree 3). While in theory this

approach can be made to work for all such bracket Schmidt problems, this however necessitates

working with bracket functions and rather quickly becomes messy to handle.

This procedure can be adapted to work with polynomial sequences on nilmanifolds directly

due to an unpublished observation of Green and Tao. This is the approach we take in the present

work. The crucial point is that given a polynomial sequence g(n) with respect to a group G

given a filtration G0 = G1 > G2 > · · · > Gk > idG, the polynomial sequence g(n) mod G2 is

a standard polynomial. Thus one can apply Schmidt to a standard polynomial and therefore

(after passing to long subprogressions) one may factor g(n) mod G2 = ε(n) · γ(n) where ε is

smooth and γ lies in the lattice Γ mod G2. One may then lift ε, γ from G mod G2 to ε̃, γ̃ on

G and analyze the polynomial sequence ε̃−1gγ̃−1 which now lives in the group G2. One can

iterate this procedure and inductively reduce G2 to G3 and so on, which allows us to solve the

Schmidt problem for our nilmanifold. We remark that this procedure is an induction on the

length of the filtration whereas the (closely related) approach taken in [11] is phrased as an

induction on dimension. This difference is crucial for getting bounds in which the exponent

depends polynomially on dimension.

1.2. Organization and notation. All definitions regarding nilsequences and associated com-

plexity will be exactly as in [18, Section 3,4]. We refer the reader to that paper for all such

definitions; we will only require degree filtrations in this paper.

We use standard asymptotic notation. Given functions f = f(n) and g = g(n), we write

f = O(g), f ≪ g, g = Ω(f), or g ≫ f to mean that there is a constant C such that |f(n)| ≤
Cg(n) for sufficiently large n. We write f ≍ g or f = Θ(g) to mean that f ≪ g and g ≪ f ,

and write f = o(g) or g = ω(f) to mean f(n)/g(n) → 0 as n → ∞. Subscripts on asymptotic

notation indicate dependence of the bounds on those parameters. We will use the notation

[x] = {1, 2 . . . , ⌊x⌋}. In this paper x = ⌊x⌋ + {x} where {x} ∈ [0, 1) and ⌊x⌋ ∈ Z; we remark

this is different than in [18]. We write ‖x‖R/Z = dist(x,Z) for x ∈ R. Furthermore throughout

this paper we abusively write log for max(log(·), ee); this is to avoid trivial issues with small

numbers.

Finally, in terms of organization, in Section 2 we solve the Schmidt problem for nilsequences

and in Section 3 we prove Theorem 1.1.

Acknowledgments. The third author thanks Mark Sellke and Dmitrii Zakharov for helpful

and motivating conversations. We thank Ben Green for helpful comments on the manuscript.

2. Schmidt’s problem for nilsequences

In this section, we prove that given a list of nilsequences on [N ], one can decompose [N ] into

a controlled set of arithmetic progressions such that the nilsequences are almost constant on

these sequences.
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Lemma 2.1. Consider nilmanifolds Gi/Γi for 1 ≤ i ≤ T , each given a degree k filtration,

having complexity bounded by M , dimension bounded by d, and for each 1 ≤ i ≤ T let gi(n) be

a polynomial sequence with respect to the specified degree k-filtration on Gi.

We may decompose [N ] into disjoint arithmetic progressions P1, . . . ,PL such that following

conditions hold:

• N/L ≥ NΩk(1/(Td)Ok(1));

• We have

max
1≤i≤T
1≤j≤L

max
n,n′∈Pj

dGi/Γi
(gi(n)Γi, gi(n

′)Γi) ≤ MOk(d
Ok(1)) ·N−Ωk(1/(Td)Ok(1)).

The key ingredient in this proof is a result of Schmidt [23] regarding finding small fractional

parts of polynomials. We will need a version of this result with explicit quantification; this is

explicitly stated in work of the authors [17, Proposition 3.7] although the argument is essentially

verbatim from a paper of Green and Tao [9, Appendix A] generalized from quadratics to all

degrees.

Proposition 2.2. Fix an integer k ≥ 1. There exist ck > 0 such that the following holds. Let

α1, . . . , αd be real numbers. Then

min
1≤n≤N

max
1≤i≤d

‖αin
k‖R/Z ≪k dN−ck/d

2
.

As stated this result is for pure monomial phases and only provides a single point with small

fractional part. This statement however can be “upgraded” via a straightforward iterative

argument which is implicit in say [9, Proposition 6.4] (where the quadratic case is handled).

Lemma 2.3. Fix an integer k ≥ 0. Consider polynomials Q1, . . . , Qd of degree k. Then there

exist disjoint arithmetic progressions P1, . . . ,PL such that following conditions hold:

• N/L ≥ NΩk(1/d
Ok(1))

• We have

max
1≤i≤T
1≤j≤L

max
n,n′∈Pj

‖Qj(n)−Qj(n
′)‖R/Z ≤ 2 ·N−Ωk(1/d

Ok(1)).

Proof. We proceed by induction on k. The case k = 0 is trivial as Qj(·) are constant. Fur-

thermore we may assume that N ≥ exp(dΩk(1)) else we may break [N ] into singleton arithmetic

progressions.

Let Qj(n) =
∑k

ℓ=0 αj,ℓn
ℓ. Applying Proposition 2.2, there exists D ≤ N1/2 such that

max
1≤j≤d

‖αj,kD
k‖R/Z ≪k dN−ck/(2d

2) =: τ.

We break [N ] into arithmetic progressions of common difference D and with lengths between

2−1τ−1/(2k) and τ−1/(2k). Label these progressions R1, . . . ,RL′ with starting points si for 1 ≤
i ≤ L′. We have

Qj(Dn+ si) = αj,kD
knk +Qj,i(n)

for appropriately defined polynomials Qj,i(n) of degree at most k − 1. Note that for n, n′ ∈
[τ−1/(2k)], we have

‖Q(Dn+ si)−Q(Dn′ + si)‖R/Z = ‖αj,kD
k(nk − (n′)k) +Qj,i(n)−Qj,i(n

′)‖R/Z
≤ 2τ−1/2 · ‖αj,kD

k‖R/Z + ‖Qj,i(n)−Qj,i(n
′)‖R/Z

≤ 2τ1/2 + ‖Qj,i(n)−Qj,i(n
′)‖R/Z.

4



The result now follows by induction applied to each Qj,i(n) for 1 ≤ i ≤ L′ on the interval

[τ−1/(2k)] and using these decompositions to split the Ri into our final decomposition. Letting

N ′ = τ−1/(2k), the number of arithmetic progressions resulting is bounded by

(2N/N ′) · (N ′)1−c1/dc2 ≤ N1−Ωk(1/d
Ok(1)),

where c1, c2 are the implicit constants for the inductive hypothesis k−1. The result follows. �

We next require the following lemma controlling coefficients of polynomials which live in a

restricted range mod 1. It will be convenient to recall the smoothness norm of a polynomial

P (n) =
∑k

i=0 αi

(n
i

)
which is defined as

‖P‖C∞[N ] := max
1≤i≤k

N i‖αi‖R/Z.

Lemma 2.4. Fix an integer k ≥ 1. There exists ck > 0 such that if ε ∈ (0, ck) then the

following holds. Consider a polynomial P (n) =
∑k

i=0 αi

(n
i

)
. Suppose that for n, n′ ∈ [N ], we

have ‖P (n)− P (n′)‖R/Z ≤ ε. Then

‖P‖C∞[N ] ≪k ε.

Proof. Note that
∣∣∣∣

N∑

n=1

e(P (n))

∣∣∣∣ ≥ N/2.

By a quantitative version of Weyl which may be found in Green and Tao [12, Proposition 4.3],

there exists q ∈ N with q ≪k 1 such that

‖qP‖C∞[N ] ≪k 1.

Let 1 ≤ t ≤ ⌊N/(2k)⌋ be an integer and note that

αk · tk =
k∑

i=0

(−1)k−i

(
k

i

)
· P (t · i+ 1).

Via the triangle inequality, we therefore have

‖αk · tk‖R/Z ≤ 2k−1ε.

Take t to be a prime between ⌊N/(4k)⌋ and ⌊N/(2k)⌋. Combining this with the estimate

‖qαk‖R/Z ≪k N−k implies that ‖αk‖R/Z ≪k ε ·N−k. The result then follows by induction on k

and applying the result for the degree (k − 1) polynomial P ′(n) =
∑k−1

i=0 αi

(
n
i

)
. �

With this we are in position to deduce the result for nilsequences along the lines sketched in

Section 1.1.3.

Proof of Lemma 2.1. Consider the degree k filtration of the group Gi, Gi,0 = Gi,1 > Gi,2 >

· · · > Gi,k > idGi
. We say the group Gi has a degree k filtration of type t if Gi,t = Gi (i.e., the

first (t + 1) groups in the filtration match). We prove the result by backwards induction on t

assuming that all groups Gi have degree k filtrations of type t; note that the result is trivial

when t = k + 1 and we aim to prove the claim when t = 1. So, consider the case where the

filtration has type t for some 1 ≤ t ≤ k and suppose that we already know cases of larger type.

Let Xi = {X1,i, . . . ,Xdim(Gi),i} denote the Mal’cev basis for Gi. By the classification of

polynomial sequences (see [10, Lemma 6.7]), we have

gi(n) = exp

( dim(Gi)∑

j=1

Pi,j(n) ·Xj,i

)

5



where if Xj,i ∈ (Xi ∩ log(Gi,ℓ)) \ (Xi ∩ log(Gi,ℓ+1)) then the degree of polynomial Pi,j(n) is

bounded by ℓ.

We consider the polynomials Pi,j(n) for 1 ≤ i ≤ T and 1 ≤ j ≤ dim(Gi) − dim(Gi,t+1).

The degrees of Pi,j(n) are all at most t ≤ k and the total number of polynomials number

consideration is bounded by T · d. By applying Lemma 2.3, there exists a decomposition of [N ]

into arithmetic progressions P1, . . . ,PL such that:

• N/L ≥ NΩk(1/(dT )Ok(1))

• We have

max
1≤i≤T

1≤j≤dim(Gi)−dim(Gi,t+1)

max
1≤s≤L

max
n,n′∈Ps

‖Pi,j(n)− Pi,j(n
′)‖R/Z ≤ 2 ·N−Ωk(1/(dT )Ok(1)).

We break the progressions Ps into two classes: the first class (s ∈ S) if the progression has

length bounded by
√

N/L and the second class (s ∈ L) otherwise. For progressions which are

short, we break each such progression into singletons; after this there are at most L+
√
N/L ·

L ≤ 2
√
NL progressions which is qualitatively identical to before. For each s ∈ L, we write

Ps = {asn+ bs}n∈[|Ps|] where |Ps| denotes the length of the progression.

Using the second condition above and applying Lemma 2.4, we see that for each long pro-

gression Ps, we have for all i, j that

Pi,j(asn+ bs) = Pi,j,s,small(n) + Pi,j,s,int(n)

where:

• deg(Pi,j,s,int),deg(Pi,j,s,small) ≤ deg(Pi,j)

• Pi,j,s,int maps Z → Z

• If Pi,j,s,small(n) =
∑t

r=0 αi,j,s,small,r

(n
r

)
then

|αi,j,s,small,r| ≤ N−r ·N−Ωk(1/(dT )Ok(1))

for 1 ≤ r ≤ t and |αi,j,s,small,0| ≤ 1.

We have implicitly used |Ps| ≥
√

N/L ≥ NΩk(1/(dT )Ok(1)
for s ∈ L here.

The key trick is to now “reduce” the polynomial sequence gi to one which lives in Gi,t+1.

Define

• εi,s(n) = exp
(∑dim(Gi)−dim(Gi,t+1)

j=1 Pi,j,s,small(n) ·Xj

)

• γi,s(n) =
∏dim(Gi)−dim(Gi,t+1)

j=1 exp(Xj)
Pi,j,s,int(n)

• g′i,s(n) = εi,s(n)
−1 · g(asn+ bs) · γi,s(n)−1

Note that εi,s, γi,s are polynomial sequences with respect to the filtration given on Gi by

the classification of polynomial sequences (see [10, Lemma 6.7]) and the fact that the set of

polynomial sequences form a group. Therefore g′i,s is also seen to be a polynomial sequence.

The crucial point, however, is that by the Baker–Campbell–Hausdorff formula, we have that

g′i,s only takes on values in Gi,t+1. (We are using the assumption on type that Gi = G0,i = Gt,i,

so any commutator is in G2t,i 6 Gt+1,i since t ≥ 1.)

Therefore we may inductively apply the claim for each long progression Ps, to the polynomials

g′i,s on Gi,t+1 where we take the filtration on Gi intersected with Gi,t+1 (note that the filtration is

still degree k). The corresponding Mal’cev basis is given by taking the last dim(Gi,t+1) elements

of Xi. By induction therefore we may break each long Ps into Ls such progressions Ps,r where

Ls ≤ |Ps|1−Ωk(1/(Td)Ok(1)) and such that

max
s∈L

1≤r≤Ls

max
n,n′∈Ps,r

dGi/Γi
(g′i,s(n)Γi, g

′
i,s(n

′)Γi) ≤ MOk(d
Ok(1)) ·N−Ωk(1/d

Ok(1)).

Here we are using [16, Lemma B.9] to compare distances between Gi and Gi,t+1.
6



Furthermore note that γi,s takes values only in Γ by the definition of a Mal’cev basis and

that for n, n′ ∈ [|Ps|] we have

dGi
(εi,s(n), idGi

) ≤ MOk(d
Ok(1)) and dGi

(εi,s(n), εi,s(n
′)) ≤ MOk(d

Ok(1)) ·N−Ωk(1/(dT )Ok(1)).

This is due to our bounds on the smoothness norm of Pi,j,s,small and [16, Lemma B.3].

It therefore follows by [16, Lemma B.4] that for any s, r we have

max
n,n′∈Ps,r

dGi/Γi
(gi(asn+ bs)Γi, gi(asn

′ + bs)Γi)

= max
n,n′∈Ps,r

dGi/Γi
(εi,s(n)g

′
i,s(n)Γi, εi,s(n

′)g′i,s(n
′)Γi)

≤ max
n,n′∈Ps,r

dGi/Γi
(εi,s(n)g

′
i,s(n)Γi, εi,s(n)g

′
i,s(n

′)Γi)

+ max
n,n′∈Ps,r

dGi/Γi
(εi,s(n)g

′
i,s(n

′)Γi, εi,s(n
′)g′i,s(n

′)Γi)

≤ MOk(d
Ok(1)) sup

n,n′∈Ps,r

dGi/Γi
(g′i,s(n)Γi, g

′
i,s(n

′)Γi) + max
n,n′∈Ps,r

dGi
(εi,s(n), εi,s(n

′))

≤ MOk(d
Ok(1)) ·N−Ωk(1/(dT )Ok(1))

which completes the inductive step (our final decomposition is composed of all elements of the

short Ps indexed by s ∈ S and all Ps,r arising from the long progressions indexed by s ∈ L). We

are done, noting that the number of inductive steps (hence the decay in parameters) is bounded

in terms of k. �

3. Completing the proof

We are now run the Heath–Brown [14] and Szemerédi [26] density increment strategy as

reformulated by Green and Tao [9]. In the first subsection we recall a number of preliminaries

for the proof and in the second subsection we prove Theorem 1.1. Our treatment at this point

is quite close to that of [9] and we borrow certain elements from the density increment portion

of [19] as well.

3.1. Preliminaries for density increment. We first recall the definition of the Gowers U s-

norm over the integers.

Definition 3.1. Given f : Z/NZ → C and s ≥ 1, we define

‖f‖2sUs(Z/NZ) = Ex,h1,...,hs∈Z/NZ∆h1,...,hs
f(x)

where ∆hf(x) = f(x)f(x+ h) is the multiplicative discrete derivative (extended to vectors h in

the natural way).

Given a natural number N and a function f : [N ] → C, we choose a number Ñ ≥ 2sN and

define f̃ : Z/ÑZ → C via f̃(x) = f(x) for x ∈ [N ] and 0 otherwise. Then

‖f‖Us[N ] := ‖f̃‖
Us(Z/ÑZ)

/‖1[N ]‖Us(Z/ÑZ)
.

One can check that this definition does not depend on the choice of Ñ . This is well known to

be a seminorm for s ≥ 1 and a norm for s ≥ 2.

As mentioned, the main input for our result will be the following improved bound for the

U s-norm inverse theorem given as [18, Theorem 1.2].

Theorem 3.2. Fix δ ∈ (0, 1/2). Suppose that f : [N ] → C is 1-bounded and

‖f‖Us+1[N ] ≥ δ.
7



Then there exists a nilmanifold G/Γ of degree s, complexity at most M , and dimension at most

d as well as a function F on G/Γ which is at most K-Lipschitz such that

|En∈[N ][f(n)F (g(n)Γ)]| ≥ ε,

where we may take

d ≤ log(1/δ)Os(1) and ε−1,K,M ≤ exp(log(1/δ)Os(1)).

We now define the k-fold linear operator corresponding to counting k-term arithmetic pro-

gressions. Given functions fi : [N ] → C, define

Λk(f1, . . . , fk) = Ex,y∈{0,...,N}

k∏

j=1

fj(x+ (j − 1)y)

where fi are extended by 0 outside of [N ]. We also write

Λk(f) := Λk(f, . . . , f).

We have the following basic inequalities regarding the operator Λk. The proof is by now standard

and hence is omitted (see [9, Lemma 3.2] and [8, Theorem 3.2]).

Lemma 3.3. Consider functions fi : [N ] → C for 1 ≤ i ≤ k. Then we have

Λk(f1, . . . , fk) ≤ min
1≤i≤k

‖fi‖L1[N ] ·
∏

j 6=i

‖fj‖L∞[N ],

Λk(f1, . . . , fk) ≪k min
1≤i≤k

‖fi‖Uk−1[N ] ·
∏

j 6=i

‖fj‖L∞[N ].

We next define factors and the factor induced by function g of resolution K.

Definition 3.4. We define a factor B of [N ] to be a partition [N ] =
⊔

B∈B B. We define B(x)
for x ∈ [N ] to be the part of B that contains x. We say B′ refines B if every part of B can be

written as a disjoint union of parts of B′. We define a join of a sequence of factors to be the

partition (discarding empty parts)

B1 ∨ · · · ∨ Bd := {B1 ∩ · · · ∩Bd : Bi ∈ Bi}.
Next given a function g : [N ] → R and a resolution K, we define the factor induced by g of

resolution K to be

Bg,K =
⊔

j∈Z

{x ∈ [N ] : g(x) ∈ [j/K, (j + 1)/K).

Finally, given a factor B, we define ΠBf by

ΠBf(x) = Ey∈B(x)f(y).

A technical annoyance is that one may potentially have a large set of points near the cutoffs

when defining Bg,K . We define a notion of regularity capturing when a function g avoids such

issues, which is related to an idea introduced by Bourgain [4] with regards to Bohr sets.

Definition 3.5. The factor Bg,K is C-regular if

sup
r>0

(
1

2r

1

N

∣∣{x ∈ [N ] : ‖K · g(x)‖R/Z ≤ r
}
|
)

≤ C.

It turns out to be easy to obtain “regular” factors; a useful trick (motivated by the proof

of [10, Corollary 2.3]) is to consider a random shift of g and then apply the Hardy—Littlewood

maximal inequality. Given a function g and resolution K, we define the maximal function

Mg,K(t) := sup
r>0

1

2r

1

N

∣∣{x ∈ [N ] : ‖K · g(x)− t‖R/Z ≤ r}
∣∣.
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The Hardy–Littlewood maximal inequality (on the torus R/Z) implies that

Et∈[0,1][Mg,K(t)] = O(1).

Therefore we have the following elementary fact which will prove useful.

Fact 3.6. There exists a constant C = C3.6 > 0 such that the following holds. Given a function

g : [N ] → R and a resolution K, there exists a shift t ∈ [0, 1/K) such that Bg−t,K is C-regular.

3.2. Constructing factor approximation and density increment. The key claim which

we need to prove Theorem 1.1 is the following density increment lemma, phrased as a trichotomy.

Lemma 3.7. Fix an integer k ≥ 5 and a constant c > 0. Consider a function f : [N ] → [0, 1]

such that En∈[N ]f(n) = δ. There exist c′ = c′(c, k) and C = C(c, k) such that one of the

following always holds:

• N ≤ exp(log(1/δ)C );

• |Λk(f)− Λk(δ · 1[N ])| ≤ cδk;

• There exists an arithmetic progression P ⊆ [N ] of length at least N1/ exp(log(1/δ)C ) such

that

En∈Pf(n) ≥ (1 + c′)δ.

We prove Theorem 1.1 given Lemma 3.7; this is the standard density increment strategy.

Proof of Theorem 1.1 given Lemma 3.7. Suppose A ⊆ [N ] has no k-term arithmetic progres-

sions. We iteratively increase the density of A; set A = A1, N = N1 and δ = δ1 and we

iteratively define Ai ⊆ [Ni], and δi = |Ai|/Ni.

If Ni ≤ exp(log(1/δi)
C), we immediately terminate. Otherwise, note that as Ai is free of

k-term arithmetic progressions, we have that

|Λk(1Ai
)− Λk(δi · 1[Ni])| ≥ δki · |Λk(1[Ni])| − |Ai| ·N−2

i ≫k δki

where we have used that Ni ≥ exp(log(1/δi)
C) ≫ δ−k

i . Therefore, the third case in Lemma 3.7

occurs and there exists Pi+1 such that

|Ai ∩ Pi+1|/|Pi+1| ≥ (1 + c′)δi

and |Pi+1| ≥ N
1/ exp(log(1/δi)C)
i . We now rescale the arithmetic progression Pi+1 to [|Pi+1|] =:

[Ni+1], which sends Ai ∩ Pi+1 to a new set Ai+1, and then we continue the iteration.

Note that at every iteration the density δi increases by a multiplicative factor of at least

(1 + c′), so we must terminate in at most Ok(log(1/δ)) iterations. Thus there exists an index

j ≤ Ok(log(1/δ)) such that

N1/ exp(Ok(log(1/δ)
C+1)) ≤ Nj ≤ exp(log(1/δj)

C) ≤ exp(log(1/δ)C ).

This implies that

logN ≤ exp(Ok(log(1/δ)
Ok(1)))

and thus

δ ≤ exp(−(log logN)Ωk(1)). �

In order to prove Lemma 3.7, we first iterate Theorem 3.2 to obtain the following result.

Lemma 3.8. Fix a parameter η ∈ (0, 1/2) and k ≥ 5. There exists a constant C = Ck > 0

such that the following statement holds. If N ≥ exp(log(1/η)C ) and f : [N ] → R is 1-bounded

then there exist functions h1, . . . , hT : [N ] → R and d,M,K ≥ 1 such that:

• B =
∨

1≤i≤T Bhi,K satisfies ‖f −ΠBf‖Uk−1[N ] ≤ η;

• T,M,K ≤ exp(log(1/η)C ) and d ≤ log(1/η)C ;
9



• hi = Fi(gi(n)Γi) is a nilsequence where gi(n) takes values in a group Gi which is given

a degree (k − 2) filtration, Gi/Γi has complexity bounded by M and dimension bounded

by d, and Fi : Gi/Γi → R is M -Lipschitz;

• Bhi,K is C-regular for 1 ≤ i ≤ T .

Proof. The proof follows via applying Theorem 3.2 repeatedly. We begin the iteration by

setting B0 = [N ] (i.e., the trivial partition). At each stage we will construct hi+1 and then

set Bi+1 = Bi ∨ Bhi+1,K with K = ⌈exp(log(1/η)Ok(1))⌉, where the implicit constant is chosen

sufficiently large.

Step 1: If ‖f −ΠBi
f‖Uk−1[N ] ≤ η, we terminate.

Step 2: If ‖f − ΠBi
f‖Uk−1[N ] > η, then by Theorem 3.2, there exists nilsequence hi+1(n) =

Fi+1(gi+1(n)Γi+1) such that
∣∣En∈[N ][(f −ΠBi

f)(n)Fi+1(gi+1(n)Γi+1)]
∣∣ ≥ exp(− log(1/η)Ok(1))

and where Gi+1/Γi+1 has complexity bounded by exp(log(1/η)Ok(1)) and dimension bounded by

log(1/η)Ok(1), Fi+1 : Gi+1/Γi+1 → C is exp(log(1/η)Ok(1))–Lipschitz, Gi+1 has been given a de-

gree (k−2) filtration, and where gi+1(n) is a polynomial sequence with respect to this filtration.

Taking either the real or imaginary part of Fi+1, we may assume that Fi+1 : Gi+1/Γi+1 → R

and thus that
∣∣En∈[N ][(f −ΠBi

f)(n)Fi+1(gi+1(n)Γi+1)]
∣∣ ≥ exp(− log(1/η)Ok(1)).

Note that for any t ∈ [0, 1/K), this implies that
∣∣∣∣En∈[N ]

[
(f −ΠBi

f)(n)
⌊K(Fi+1(gi+1(n)Γi+1) + t)⌋

K

]∣∣∣∣

≥
∣∣En∈[N ][(f −ΠBi

f)(n)Fi+1(gi+1(n)Γi+1)]
∣∣− 2/K

≥ exp(− log(1/η)Ok(1))

given that the implicit constant defining K is chosen sufficiently large. Recall here ⌊x⌋ is

defined in the standard manner that x = ⌊x⌋ + {x} where ⌊x⌋ ∈ Z and {x} ∈ [0, 1). We then

take t ∈ [0, 1/K), such that BFi+1(gi+1(n)Γi+1)+t,K is C-regular; this exists for C larger than an

absolute constant by Fact 3.6.

Note that
⌊K(Fi+1(gi+1(n)Γi+1) + t)⌋

K

is measurable with respect to Bhi+1,K by construction and it is bounded by log(1/η)Ok(1). There-

fore since ΠBhi+1,K
is self-adjoint we have

En∈[N ][|ΠBhi+1,K
(f −ΠBi

f)(n)|]

≥ (1 + ‖Fi+1‖L∞(Gi+1/Γi+1))
−1 ·

∣∣∣∣En∈[N ]

[
(f −ΠBi

f)(n)
⌊K(Fi+1(gi+1(n)Γi+1) + t)⌋

K

]∣∣∣∣

≥ exp(− log(1/η)Ok(1)).

Step 3: We now return back to Step 1 and keep on iterating this procedure until it terminates.

This completes the proof modulo showing that the iteration terminates in a small number of

steps. To show this, note that

‖ΠBhi+1,K
(f −ΠBi

f)‖L1[N ] ≤ ‖ΠBhi+1,K
(f −ΠBi

f)‖L2[N ] = ‖ΠBhi+1,K
ΠBi+1(f −ΠBi

f)‖L2[N ]

≤ ‖ΠBi+1(f −ΠBi
f)‖L2[N ] = ‖ΠBi+1f −ΠBi

f‖L2[N ]

= (‖ΠBi+1f‖2L2[N ] − ‖ΠBi
f‖2L2[N ])

1/2.
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The final equality is the Pythagorean theorem with respect to projections (this follows from

e.g. [19, Lemma 4.3(iv)]). We deduce

‖ΠBi+1f‖2L2[N ] − ‖ΠBi
f‖2L2[N ] ≥ exp(− log(1/η)Ok(1)).

Since for all i we have ‖ΠBi
f‖L2[N ] ≤ ‖f‖L2[N ] ≤ 1, there are at most exp(log(1/η)Ok(1))

iterations as desired. �

We now complete the proof of Lemma 3.7 and therefore the proof of Theorem 1.1. The first

part of the proof is finding a density increment on a factor derived from nilsequences, which is

essentially identical to that of [9, Lemma 5.8]. In the second part, we apply our nilsequence

Schmidt-type result Lemma 2.1 to find a long arithmetic progression with density increment.

Proof of Lemma 3.7. Without loss of generality, we may assume that c is smaller than an ab-

solute constant. Furthermore we may assume that N ≥ exp(log(1/δ)Ω(1)) (where the implicit

constant may depend on c, k) and |Λk(f)− Λk(δ · 1[N ])| ≥ cδ5.

Step 1: Increment on a factor. By applying Lemma 3.8, there exists factor B (derived from

nilsequences of appropriate complexity, with parameters below) such that

‖ΠBf − f‖Uk−1[N ] ≤ c∗δk

where we choose c∗ sufficiently small in terms of c. Via telescoping and the second inequality

in Lemma 3.3, we have

|Λk(f)− Λk(ΠBf)| ≤ cδk/2

as long as c∗ was chosen appropriately, and therefore

|Λk(ΠBf)− Λk(δ · 1[N ])| ≥ cδk/2.

Take c′ = min(c, 1)/(10k)5 . Let g = min(ΠBf, (1 + c′)δ). The crucial claim is that if Ω′ =

{n ∈ [N ] : g(n) 6= ΠBf(n)} = {n ∈ [N ] : ΠBf(n) > (1 + c′)δ} then Ω′ must have sufficiently

large measure. To see this note that:

|Λk(ΠBf)− Λk(g)| ≤ k‖ΠBf − g‖L1[N ] ≤ kPn∈[N ][n ∈ Ω′],

|Λk(δ1[N ])− Λk(g)| ≤ k(1 + c′)k−1δk−1‖δ1[N ] − g‖L1[N ],

‖g − δ1[N ]‖L1[N ] ≤ Pn∈[N ][n ∈ Ω′] + ‖δ1[N ] −ΠBf‖L1[N ].

The first and second inequality follow from the first part of Lemma 3.3 and telescoping while

the final inequality follows from the triangle inequality. We simplify the inequalities slightly; as

En∈[N ][δ1[N ]] = En∈[N ][f ] = En∈[N ][ΠBf ], we have

‖δ1[N ] −ΠBf‖L1[N ] = 2‖max(ΠBf − δ1[N ], 0)‖L1[N ] ≤ 2c′δ + 2Pn∈[N ][n ∈ Ω′].

Given this and using the upper bound on c′, we deduce

|Λk(ΠBf)− Λk(g)| ≤ k‖ΠBf − g‖L1[N ] ≤ kPn∈[N ][n ∈ Ω′],

|Λk(δ1[N ])− Λk(g)| ≤ 2kδk−1‖δ1[N ] − g‖L1[N ],

‖g − δ1[N ]‖L1[N ] ≤ 3Pn∈[N ][n ∈ Ω′] + 2c′δ.

Therefore

cδk/2 ≤ |Λk(δ · 1[N ])− Λk(ΠBf)| ≤ |Λk(δ · 1[N ])− Λk(g)|+ |Λk(ΠBf)− Λk(g)|
≤ kPn∈[N ][n ∈ Ω′] + 2kδk−1‖δ1[N ] − g‖L1[N ] ≤ 7kPn∈[N ][n ∈ Ω′] + 4kc′δk;

thus we have Pn∈[N ][n ∈ Ω′] ≥ cδk/(20k).
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Step 2: Increment on a progression. We are now in position to apply the nilsequence

Schmidt-type result Lemma 2.1. Recall that we applied Lemma 3.8 to find B, and hence we

may write B =
∨

1≤i≤T Bhi,K where:

• T,M,K ≤ exp(log(1/δ)C ) and d ≤ log(1/δ)C ;

• hi = Fi(gi(n)Γi) is a nilsequence where gi(n) takes values in a group Gi which is given a

degree (k − 2) filtration, Gi/Γi has complexity bounded by M and dimension bounded

by d, and Fi : Gi/Γi → R is M -Lipschitz;

• Bhi,K is C-regular for 1 ≤ i ≤ T .

Here C is a slightly larger value than the constant Ck in Lemma 3.8, depending only on k.

We now apply Lemma 2.1 to gi(n) for 1 ≤ i ≤ T . We obtain a decomposition of [N ] into

arithmetic progressions P1, . . . ,PL such that

• N/L ≥ N−1/ exp(log(1/δ)Ok(1));

• We have

max
1≤i≤T
1≤j≤L

max
n,n′∈Pj

dGi/Γi
(gi(n)Γi, gi(n

′)Γi) ≤ exp(log(1/δ)Ok(1)) ·N−1/ exp(log(1/δ)Ok(1)).

We now consider Pj which intersect Ω′. Call a progression in the decomposition crossing if

it intersects Ω′ and [N ] \ Ω′ and a progression contained if it is fully within in Ω′. Since Ω′ is

measurable in terms of B, for a progression to be crossing it must “cross a boundary” defining

Bhi,K for at least one 1 ≤ i ≤ T . If a progression Pj crosses one of these boundaries defined

by hi then all points in map close to this boundary, since the function Fi is M -Lipschitz. In

particular, by regularity of each Bhi,K , the measure (with respect to the uniform distribution

on [N ]) of improper progressions is bounded by

≪k T · exp(log(1/δ)Ok(1)) ·N−1/ exp(log(1/δ)Ok(1)) = exp(log(1/δ)Ok(1)) ·N−1/ exp(log(1/δ)Ok(1)).

Let Ω∗ denote the union of all the contained progressions which have length at least N ′ =

cc′δk+1/(400k) · N/L (hence certainly Ω∗ ⊆ Ω′). Let I be the set of all 1 ≤ i ≤ L so that Pi

either has length at most N ′ or is crossing. We easily see that

0 ≤ Pn∈[N ][n ∈ Ω′]− Pn∈[N ][n ∈ Ω∗] ≤
∑

i∈I

Pn∈[N ][n ∈ Pi] ≤ cc′δk+1/(200k);

in the final inequality we have used that N ≥ exp(log(1/δ)Ω(1)) for a sufficiently large implicit

constant.

Finally, this implies that

En∈Ω∗ [f ] =
En∈[N ][f · 1n∈Ω∗ ]

Pn∈[N ][n ∈ Ω∗]
≥

En∈[N ][f · 1n∈Ω′ ]− cc′δk+1/(200k)

Pn∈[N ][n ∈ Ω′]

≥
En∈[N ][f · 1n∈Ω′ ]

Pn∈[N ][n ∈ Ω′]
− cc′δk+1/(200k)

cδk/(20k)

=
En∈[N ][ΠBf · 1n∈Ω′ ]

Pn∈[N ][n ∈ Ω′]
− c′δ/10

≥ (1 + c′)δ − c′δ/10 ≥ (1 + c′/2)δ.

By pigeonhole, this implies that there exists a contained arithmetic progression Pi having length

at least cc′δk+1/(400k) · N/L ≥ N−1/ exp(log(1/δ)Ok(1)) on which the density of f is at least

(1 + c′/2)δ. Adjusting the value of c′, this completes the proof. �
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