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IMPROVED BOUNDS FOR FIVE-TERM ARITHMETIC PROGRESSIONS

JAMES LENG, ASHWIN SAH, AND MEHTAAB SAWHNEY

Abstract. Let r5(N) be the largest cardinality of a set in {1, . . . , N} which does not contain 5
elements in arithmetic progression. Then there exists a constant c ∈ (0, 1) such that

r5(N) ≪
N

exp((log logN)c)
.

Our work is a consequence of recent improved bounds on the U4-inverse theorem of the first author
and the fact that 3-step nilsequences may be approximated by locally cubic functions on shifted
Bohr sets. This combined with the density increment strategy of Heath-Brown and Szemerédi,
codified by Green and Tao, gives the desired result.

1. Introduction

Let [N ] = {1, . . . , N} and rk(N) denote the size of the largest S ⊆ {1, . . . , N} such that S has
no k-term arithmetic progressions. The first nontrivial upper bound on r3(N) came from work of
Roth [28] which proved

r3(N) ≪ N(log logN)−1.

A long series of works improved the bounds in the case k = 3. This includes works of Heath-Brown
[16], Szemerédi [35], Bourgain [5,6], Sanders [30,31], Bloom [2], and Bloom and Sisask [3]. Recently,
in breakthrough work, Kelley and Meka [18] proved that

r3(N) ≪ N exp(−Ω((logN)1/12));

modulo the constant 1/12 this matches the lower bound construction of Behrend [1]. The constant
1/12 was refined to 1/9 in work of Bloom and Sisask [4].

For higher k, establishing that rk(N) = o(N) was a long standing conjecture of Erdős and Turán.
In seminal works, Szemerédi [33] first established the estimate r4(N) = o(N) and then in later work
Szemerédi [34] established his eponymous theorem that

rk(N) = o(N).

Due to the uses of van der Waerden theorem and the regularity lemma (which was introduced in
this work), Szemerédi’s estimate was exceedingly weak. In seminal work Gowers [7, 8] introduced
higher order Fourier analysis and proved the first “reasonable” bounds for Szemerédi’s theorem:

rk(N) ≪ N(log logN)−ck .

The only previous improvement to this result for k ≥ 4 was work on the case k = 4 of Green and
Tao [13, 14] which ultimately established that

r4(N) ≪ N(logN)−c.

Our main result is a “quasi-logarithmic” bound in the case k = 5.

Theorem 1.1. There is c ∈ (0, 1) such that

r5(N) ≪ N

exp((log logN)c)
.

Remark. Throughout this paper, we will abusively write log for max(log(·), ee). This is to avoid
trivial issues regarding inputs which are small.
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Our work relies crucially on a recent improved inverse theorem for the Gowers U4-norm due to
the first author [22, Theorem 7]. We first formally define the Gowers Uk-norm.

Definition 1.2. Given f : Z/NZ → C and k ≥ 1, we define

‖f‖2kUk = Ex,h1,...,hk∈Z/NZ∆h1,...,hk
f(x)

where ∆hf(x) = f(x)f(x+ h) is the multiplicative discrete derivative (extended to vectors h in the
natural way). This is known to be well-defined and a norm (seminorm if k = 1).

Theorem 1.3. There exists an absolute constant C ≥ 1 such that the following holds. Let N be
prime, let δ > 0, and suppose that f : Z/NZ → C is a 1-bounded function with

‖f‖U4(Z/NZ) ≥ δ.

There exists a degree 3 nilsequence F (g(n)Γ) such that it has dimension bounded by (log(1/δ))C ,
complexity bounded by C, such that F is 1-Lipschitz, and such that

∣∣En∈[N ]f(n)F (g(n)Γ)
∣∣ ≥ 1/ exp((log(1/δ))C ).

A key maneuver in this paper is our deduction of a variant of the U4-inverse theorem which lends
itself to the analysis of multiple nilsequences simultaneously and may be of independent interest.
Although it is known that having a large U4-norm does not necessarily imply direct correlation
with a cubic phase function due to the existence of bracket polynomials, one can hope to achieve
correlation on a dense, structured host set (for us, a Bohr set).

Proposition 1.4. There exists an absolute constant C ≥ 1 such that the following holds. Let N be
prime, let δ > 0, and suppose that f : Z/NZ → C is a 1-bounded function with

‖f‖U4(Z/NZ) ≥ δ.

There exist S ⊆ (1/N)Z with |S| ≪ (log(1/δ))C , and y ∈ Z/NZ such that the following holds: there
is a locally cubic phase function φ : y +B(S, 1/100) → R/Z such that

|Et∈Z/NZ1t∈y+Bf(t)e(−φ(t))| ≫ 1/ exp((log(1/δ))C ).

We refer the reader to Definitions 2.1 and 2.2 for precise definitions of Bohr set and locally cubic
phase function. We remark that an analogous result to Proposition 2.3 for higher Uk-norms is false;
this can be seen by examining the function e({an{bn}}{cn}dn). We discuss this issue in more detail
in Section 1.1.

1.1. Proof outline. The starting point of our work involves combining the density increment strat-
egy of Heath-Brown [16] and Szemerédi [35], which was reformulated in a robust manner by Green
and Tao [13] when proving that r4(N) ≪ N exp(−Ω(

√
log logN)), with the improved U4-inverse

theorem Theorem 1.3 of the first author. The crucial difference between the density increment
strategy of Roth [28] versus Heath-Brown [16] and Szemerédi [35] is that one finds correlations with
“many functions” to deduce a density increment.

If we apply Theorem 1.3 directly with the density increment strategy as codified by Green and
Tao [13], we would at the very least need that, given a polynomial sequence g(n) with g(0) = idG
on a nilmanifold G/Γ of degree 3 with complexity M and dimension d, we have

min
1≤n≤N

dG/Γ(idG, g(n)) ≪MO(dO(1))N−1/dO(1)
.

When g(n) is a polynomial sequence of degree 3 on the torus such results can be derived from
work of Schmidt [32] on small fractional parts of polynomials. While directly deriving such a
result for nonabelian nilmanifolds does not appear implausible, at present the distribution theory of
nilmanifolds only has such “polynomial in d” dependencies when dealing with test functions having
vertical frequency, due to work of the first author [23].
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The crucial step in our work therefore is solving such a Schmidt-type problem for nilmanifolds via
representing 3-step nilmanifolds as sums of exponentials of locally cubic functions on Bohr sets (see
Proposition 2.3). The analogue of such a result for 2-step nilmanifolds (without bounds) appears
in work of Green and Tao [10, Proposition 2.3]. That such a result is true is a miracle of small
numbers which is most easily seen via bracket polynomials. (In work of Green and Tao [13] regarding
r4(N), one operates with a versions of the U3-inverse theorem proven directly for locally quadratic
functions on Bohr sets.)

At an informal level, the U4-inverse theorem may be rephrased as follows: if ‖f‖U4 is large for
1-bounded f , then f correlates with a bracket exponential phase e(H(n)) where H(n) is (essentially)
a sum of terms of the form

an3, an2{bn}, an{bn2}, an{bn}{cn}, an{{bn}{cn}}, {an}{bn}{cn}, an{bn{cn}} mod 1

plus terms which are obviously of “lower degree”. By the work of Green and Tao, various lower order
terms may be viewed as quadratic functions on Bohr sets. Now note that

{x}y + y{x} = xy − ⌊x⌋⌊y⌋+ {x}{y}.
Therefore

{x}y + y{x} = xy + {x}{y} mod 1.

Furthermore note that e({x}{y}) is after appropriate smoothing a Lipschitz function on (R/Z)2

and therefore is well-approximated by a weighted sum of exponentials of the form e(kx + ℓy) for
k, ℓ ∈ Z. Given this (and noting the analogous fact for e({x}{y}{z})) we may rewrite our basis of
degree 3 functions as

an3, an2{bn}, an{bn}{cn} mod 1;

the most crucial of these manipulations is

an{bn{cn}} = abn2{cn} − {an}bn{cn} mod 1.

The miracle is that we do not have any nested {·} and all of the brackets surround linear functions.
Therefore, upon restricting the fractional parts to lie in certain narrow ranges away from the dis-
continuities in the fraction part (i.e., Bohr set-type conditions) the functions an2{bn}, an{bn}{cn}
are seen to be “locally cubic”. That is, discrete fourth-order derivatives vanish given that all points
in the corresponding 4-dimensional hypercube lie in an appropriate Bohr set. The existence of such
a miracle can be seen by examining carefully all “fractional part” expressions required in work of
Green–Tao–Ziegler [12, Appendix E] on the U4-inverse theorem. For the U5-inverse theorem and
higher, we have the function e({an{bn}}{cn}dn) and fractional part identities do not allow one to
“remove iterated floor functions”.

To actually prove the desired representation of a step 3 nilsequence, we partition the nilmanifold
via a partition of unity. Operating within a partition of unity, we may manipulate the nilmanifold
(as in [10, Proposition 2.3]) via explicitly operating in Mal’cev coordinates of the first kind. This
allows us to manipulate the floor and fractional expressions as suggested by the bracket polynomial
formalism in the previous paragraphs. Identifying various fundamental domains with the torus and
applying Fourier expansion appropriately eventually gives the desired decomposition.

We remark for technical reasons it turns out to be useful to manipulate our nilsequence to be N -
periodic and living on a nilmanifold for which the Lie bracket structure constants are integers which
are sufficiently divisible. The first task is accomplished via appropriately quantifying a construction
of Manners [24] (see Proposition C.2) and the second is accomplished via a “clearing denominators”
trick on the Mal’cev basis (see Lemma C.1). One can see that such a manipulation might be useful
by noting that if the structure constants of G/Γ are sufficiently divisible then ψexp(Γ) = Zd where
ψexp is the map to Mal’cev coordinates of the first kind (see Lemma 2.5). In general ψexp(Γ) is not

even a lattice in Qd.
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Finally, given a correlation with a locally cubic function on a Bohr set, we are now in position
to run the density increment strategy of Heath-Brown [16] and Szemerédi [35] as codified by Green
and Tao [13]. Our proof is very close to that of Green and Tao [13], although there are slight
simplifications afforded in our situation since the dimension of our Bohr sets are “quasi-quasi-
logarithmic”. In particular, it is possible to operate by considering single atoms in the Bohr partition
and avoid the use of regular Bohr sets. Our situation at this point is closely analogous to having
access to the U3-inverse theorem of Sanders [29] and aiming to prove bounds of the form r4(N) ≪
N exp(−(log logN)c).

Notation. We use standard asymptotic notation. Given functions f = f(n) and g = g(n), we write
f = O(g), f ≪ g, g = Ω(f), or g ≫ f to mean that there is a constant C such that |f(n)| ≤ Cg(n)
for sufficiently large n. We write f ≍ g or f = Θ(g) to mean that f ≪ g and g ≪ f , and write
f = o(g) or g = ω(f) to mean f(n)/g(n) → 0 as n→ ∞. Subscripts on asymptotic notation indicate
dependence of the bounds on those parameters. We will use the notation [x] = {1, 2 . . . , ⌊x⌋}.

We use the notations of Appendix A with regards to nilmanifolds. We write ∆hf(x) = f(x)f(x+ h)
for the multiplicative discete derivative and ∂hf(x) = f(x)− f(x+ h) for the additive discrete de-
rivative (for functions over appropriate domains and codomains). The Gowers U s-norm on a finite
abelian group G is then defined via

‖f‖2sUs := Ex,h1,...,hs∈G∆h1,...,hsf(x)

for f : G→ C, which is known to be well-defined and a norm for s ≥ 2 and a seminorm for s = 1.

1.2. Organization of paper. In Section 2 we prove the main technical result regarding approx-
imating nilsequences as local cubics on Bohr sets. In Section 3 we deduce the main result via
a density increment argument. In Appendix A we collect various conventions and defintions re-
garding nilmanifold. In Appendix B we essentially reproduce [13, Appendix A] and note that it
verbatim extends to higher degree polynomials. In Appendix C, we manipulate Theorem 1.3 to
prove Theorem C.3 which gives correlation with a periodic nilsequence where the underlying nil-
manifold has appropriately divisible Lie bracket structure constants. Finally, in Appendix D we
collect a number of deferred technical lemmas.

2. Converting nilsequences to local cubics on a Bohr set

The key idea is to work with a presentation of our nilsequence coming from Theorem 1.3, and
manipulate it into an approximate form composed of locally cubic functions on Bohr sets.

We will first define Bohr sets formally.

Definition 2.1. Given S ⊆ Z/NZ and ρ ∈ (0, 1), we define the (centered) Bohr set

B(S, ρ) := {x ∈ Z/NZ : ‖ξx/p‖R/Z < ρ for all ξ ∈ S}.
Given α = (αξ)ξ∈S ∈ (R/Z)S , we define the uncentered Bohr set

Bα(S, ρ) := {x ∈ Z/NZ : ‖ξx/p − aξ‖R/Z < ρ for all ξ ∈ S}.
The parameter |S| is the rank and ρ is the radius.

We next define the notion of local polynomial structure; we will care specifically about the case
of degree s = 3.

Definition 2.2. Given S ⊆ G and f : S → H, we say that f is locally degree s ≥ 0 if for all
x, h1, . . . , hs+1 such that x+

∑s+1
j=1 ǫjhj ∈ S for all ǫ = (ǫ1, . . . , ǫs+1) ∈ {0, 1}s+1, we have

∂h1,...,hs+1f(x) = 0.

Remark. We will primarily be concerned with S ⊆ Z/NZ and H = R/Z.
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Proposition 2.3. Suppose we are given a degree 3 nilmanifold G/Γ of dimension d, complexity M ,
and all Lie bracket structure constants divisible by 12. Furthermore suppose that F : G/Γ → C is
smooth with Lipschitz norm bounded by L and let η ∈ (0, 1/2).

Then there exist data such that

sup
n∈Z/NZ

∣∣∣∣F (g(n)Γ)−
∑

i∈I

wi1n∈yi+B(S,1/100)e(φi(n))

∣∣∣∣ ≤ η

such that:

• S ⊆ (1/N)Z with size at most d+ 1;

• I is an index set of size at most O(Mη−1)O(dO(1)) and |wi| ≤ O(Mη−1)O(dO(1)) for all i ∈ I;
• yi ∈ Z/NZ for all i ∈ I;
• φi : Z/NZ → R/Z is locally cubic on yi +B(S, 1/100).

Then, Proposition 1.4 directly follows from a slightly modified version of Theorem 1.3 (namely
Theorem C.3) and Proposition 2.3. Theorem C.3 allows one to essentially assume that the under-
lying nilsequence is N -periodic and various structure constants are sufficiently divisible.

Proof of Proposition 1.4. By Theorem C.3, there exists a nilmanifold G/Γ and a polynomial se-
quence g(n) such that

∣∣En∈Z/NZf(n)F (g(n)Γ)
∣∣ ≥ 1/ exp((log(1/δ))C ) =: 2η

with g(0) = idG and G/Γ having dimension d, complexity at most M and all structure constants
divisible by 12 with

d ≤ (log(1/δ))O(1)

M ≤ exp((log(1/δ))O(1)).

We now approximate F (g(n)Γ) by a function H(n) such that supn∈Z/NZ |F (g(n)Γ) −H(n)| ≤ η
using Proposition 2.3. As f is 1-bounded, we immediately have

∣∣En∈Z/NZf(n)H(n)
∣∣ ≥

∣∣En∈Z/NZf(n)F (g(n)Γ)
∣∣− En∈Z/NZ|H(n)− F (g(n)Γ)| ≥ η.

We have some additional guarantees on the structure of H (in particular, some associated data
S, I, wi, yi, φi). Applying Pigeonhole on the index set I and using that the wi are sufficiently
bounded, there exist y ∈ Z/NZ, S a set of at most size d+1, ρ ∈ [1/20, 1/10], and φ : Z/NZ → R/Z
locally cubic on y +B(S, ρ) such that

∣∣En∈Z/NZf(n)1n∈y+B(S,ρ)e(−φ(n))
∣∣ ≥ 1/ exp((log(1/δ))O(1)). �

In order to prove Proposition 2.3, we will need a number of quantitative and structural lemmas
about nilsequences. These arguments are deferred to Appendix D. We first require the following
quantitative partition of unity for nilmanifolds.

Lemma 2.4. Fix ε ∈ (0, 1/2) and a nilmanifold G/Γ of degree s, dimension d, and complexity M .
There exists an index set I and a collection of nonnegative smooth functions τj : G/Γ → R for j ∈ I
such that:

• L := (M/ε)Os(dOs(1));
• For all g ∈ G, we have

∑
j∈I τj(gΓ) = 1;

• |I| ≤ L;
• For each j ∈ I, there exists β ∈ [−L,L]d so that for any gΓ ∈ supp(τj) there exist g′ ∈ gΓ

such that logG(τj(g
′)) ∈ ∏d

i=1[βi − ε, βi + ε];
• τj are L-Lipschitz on G/Γ.

We also require the algebraic fact that if the Lie bracket structure constants of G/Γ are sufficiently
divisible then ψexp(Γ) = Zd.
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Lemma 2.5. There exists and integer Cs ≥ 1 such that the following holds. Fix a nilmanifold G/Γ
of degree s and a Mal’cev basis X such that all Lie bracket structure constants of G/Γ are divisible
by Cs. Then ψexp(Γ) = Zd.

Remark. We may take C3 = 12.

Next we need the conversion between the nilmanifold distance and distance in coordinates of the
first kind (on Rd).

Lemma 2.6. Fix a nilmanifold G/Γ of degree s, dimension d, and complexity M . If ‖ψexp(x) −
ψexp(y)‖∞ ≤ ε and ‖ψexp(x)‖∞ ≤ L then

dG/Γ(xΓ, yΓ) ≤ ε(LM)Os(dOs(1)).

We also require the following basic estimate regarding Fourier expansion of Lipschitz functions
on the torus; this follows immediately by quantifying the proof in [36, Proposition 1.1.13] (see
e.g. [26, Lemma A.8]).

Lemma 2.7. Fix 0 < ε < 1/2, and let F : (R/Z)d → C with ‖F‖Lip ≤ L with metric d(x, y) =

max1≤i≤d‖xi − yi‖R/Z for x, y ∈ (R/Z)d. There exists an absolute constant C > 0 such that there

exist cξ with
∑

ξ |cξ| ≤ (3CLdε−1)5d and

sup
x∈(R/Z)d

∣∣∣∣F (x)−
∑

|ξ|≤(CLdε−1)2

cξe(ξ · x)
∣∣∣∣ ≤ ε.

We finally require the following elementary lemma regarding how local degree acts with respect
to multiplication; this is once again deferred to Appendix D. (Recall we are defining local degree
with respect to ∂ as opposed to ∆, and the following is not true if we replace C by R/Z.)

Lemma 2.8. If S ⊆ G and fj : S → C are locally degree dj functions, then g =
∏k

j=1 fk is a locally

degree
∑k

j=1 dj function.

We are ready to proceed.

Proof of Proposition 2.3. We break the proof into a series of steps.
Step 1: Polynomial sequence and group multiplication in coordinates. Note that as we
are dealing with nilpotent groups of step at most 3 we have

log(eXeY ) = X + Y +
1

2
[X,Y ] +

1

12
([X, [X,Y ]]− [Y, [X,Y ]])

by the Baker–Campbell–Hausdorff formula. Let dj = dimG1 − dimGj+1 and let our Mal’cev basis
be (Xk)k∈[d] such that (Xk)k>dj spans logGj+1 for j ∈ {0, 1, 2}. Note that by definition Γ is the

set of elements of the form
∏d

i=1 exp(tiXi) for ti ∈ Z. Recall that we have

[Xi,Xj ] =

d∑

k=1

cijkXk

for cijk integers divisible by 12 and of absolute value at most M due to the complexity assumption.
As [logGi, logGj ] ⊆ logGi+j , we have that cijk = 0 for k ≤ da+b+1 if i > da and j > db.

As g(n) is a polynomial sequence with g(0) = idG, by Taylor expansion we have

g(n) = gn1 g
(n2)
2 g

(n3)
3

with gi ∈ Gi. Therefore

log(g(n)) = log

(
exp(n log(g1)) exp

((
n

2

)
log(g2)

)
exp

((
n

3

)
log(g3)

))
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= log

(
exp(n log(g1) +

(
n

2

)
log(g2) +

n

2

(
n

2

)
[log(g1), log(g2)] +

(
n

3

)
log(g3)

)

with [log(g1), log(g2)] ∈ log(G3). Therefore we have

g(n) = exp

( d∑

j=1

pj(n)Xj

)
(2.1)

with pj(0) = 0 and pj being at most degree 1 if 1 ≤ j ≤ d1, at most degree 2 if d1 + 1 ≤ j ≤ d2,
and at most degree 3 if d2 + 1 ≤ j ≤ d3 = d. We next realize multiplication of two elements
corresponding to Mal’cev coordinates of the first kind as

(x1, . . . , xd) ∗ (y1, . . . , yd)
= (x1 + y1, . . . , xd1 + yd1 , xd1+1 + yd1+1 + φd1+1(x≤d1 , y≤d1), . . . , xd2 + yd2 + φd2(x≤d1 , y≤d1),

xd2+1 + yd2+1 + φd2+1(x≤d2 , y≤d2) + ϕd2+1(x≤d1 , y≤d1), . . . , xd + yd + φd(x≤d2 , y≤d2) + ϕd(x≤d1 , y≤d1))

where φj are bilinear forms with integral coefficients and ϕj are cubic forms with integral coef-
ficients. This is an immediate consequence of the Baker–Campbell–Hausdorff formula and using
the assumption that the Lie bracket structure constants are all divisible by 12. Furthermore these
coefficients are of height at most O(Md)O(1) and since [G2, G2] ⊆ G4 = IdG, the bilinear form φj
for j ∈ [d1 + 1, d2] has all coordinates 0 on the box [d1 + 1, d2]

2.
Step 2: Explicit representation of nilsequence with coordinates. We can represent the
coordinates of g(n)Γ in a fundamental domain with respect to Mal’cev coordinates of the first kind
via iterated floor and fractional parts. These coordinates are not smooth at the boundary and thus
we decompose F via a partition of unity (and using different fundamental domains for each part).
This will allow us to manipulate such coordinate functions without needing to worry very precisely
about the minor discontinuities.

Let L = O(M)O(dO(1)). We write

F =
∑

i∈I

Fi

with Fi = Fτi where τi is as in Lemma 2.4 applied with parameter ε = 10−3. This will allow us
to represent Fτi on the fundamental domain (with respect to Mal’cev coordinates of the first kind)∏d

j=1[β
(i)
j − 1/2, β

(i)
j + 1/2), where β(i) ∈ [−L,L]d and

supp(Fτi) ⊆ supp(τi) ⊆
d∏

j=1

[β
(i)
j − 10−3, β

(i)
j + 10−3).

We now define nonstandard floor and ceiling functions for each i ∈ I and j ∈ [d] so that

{t}i,j ≡ t mod 1

t = {t}i,j + ⌊t⌋i,j
{t}i,j ∈ [β

(i)
j − 1/2, β

(i)
j + 1/2).

For nearly the entire remainder of the proof, we will focus on massaging the representation of
Fi(x) into a more convenient form. Given x ∈ G such that ψexp(x) = (x1, . . . , xd), consider γ with
Mal’cev coordinates of the first kind:

(−⌊xj⌋i,j)j∈[d1], (−⌊xj + φj(x≤d1 ,−⌊x≤d1⌋i)⌋i,j)d1+1≤j≤d2 ,

(−⌊xj + ϕj(x≤d1 ,−⌊x≤d1⌋i) + φj(x≤d2 , x
∗
≤d2)⌋i,j)d2+1≤j≤d3 , (2.2)

where x∗≤d2
has coordinates equal to those on the first line of (2.2) (so it implicitly depends on i)

and ⌊x≤d1⌋i = (⌊x1⌋i,1, . . . , ⌊x1⌋i,d1). Furthermore let {x≤d1}i = x − ⌊x≤d1⌋i. Note that γ ∈ Γ by
Lemma 2.5.
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Thus xΓ has coordinates

({xj}i,j)j∈[d1], ({xj + φj(x≤d1 ,−⌊x≤d1⌋i)}i,j)d1+1≤j≤d2 ,

({xj + ϕj(x≤d1 ,−⌊x≤d1⌋i) + φj(x≤d2 , x
∗
≤d2)}i,j)d2+1≤j≤d (2.3)

which is in the specified fundamental domain
∏d

j=1[β
(i)
j − 1/2, β

(i)
j + 1/2) for Fi. Recall also that

φj for j ∈ [d2 + 1, d] has certain 0 coefficients.
Let x∗[d1+1,d2]

denote the vector with d2 coordinates, the first d1 of which are zero and the last

d2 − d1 of which are (−⌊xj + φj(x≤d1 ,−⌊x≤d1⌋i)⌋i,j)d1+1≤j≤d2 . Let yj = xj + φj(x≤d1 ,−⌊x≤d1⌋i),
y∗[d1+1,d2]

analogously be a vector of these coordinates and d1 many 0s, and let {y[d1+1,d2]}∗i =

(0, . . . , 0, {yd1+1}i,d1+1, . . . , {yd2}i,d2).
Note that we have the identity

−y⌊z⌋2 = ⌊y⌋1z − yz − ⌊y⌋1⌊z⌋2 + {y}1{z}2,
where the subscripts 1 and 2 indicate potentially different shift types. Therefore

φj(x≤d2 , x
∗
≤d2) = φj(x≤d2 ,−⌊x≤d1⌋i) + φj(x≤d2 , x

∗
[d1+1,d2]

)

= φj(x≤d2 ,−⌊x≤d1⌋i) + φj(x≤d1 , x
∗
[d1+1,d2]

)

= φj(x≤d2 ,−⌊x≤d1⌋i) + φj(⌊x≤d1⌋i, y∗[d1+1,d2]
)− φj(x≤d1 , y

∗
[d1+1,d2]

)

+ φj(⌊x≤d1⌋i, x∗[d1+1,d2]
) + φj({x≤d1}i, {y[d1+1,d2]}∗i ).

The equality φj(x≤d2 , x
∗
[d1+1,d2]

) = φj(x≤d1 , x
∗
[d1+1,d2]

) follows as φj has no nonzero coordinates on

the box [d1 + 1, d2]
2.

This implies that

({xj + ϕj(x≤d1 ,−⌊x≤d1⌋i) + φj(x≤d2 , x
∗
≤d2)}i,j)d2+1≤j≤d

= ({xj + ϕj(x≤d1 ,−⌊x≤d1⌋i) + φj(x≤d2 ,−⌊x≤d1⌋i) + φj(⌊x≤d1⌋i, y∗[d1+1,d2]
)

− φj(x≤d1 , y
∗
[d1+1,d2]

) + φj({x≤d1}i, {y[d1+1,d2]}∗i )}i,j)d2+1≤j≤d;

we are able to drop φj(⌊x≤d1⌋i, x∗[d1+1,d2]
) as φj has integral coefficients and we are taking fractional

parts. Therefore we have coordinates of the form

({xj}i,j)j∈[d1], ({xj − φj(x≤d1 , ⌊x≤d1⌋i)}i,j)d1+1≤j≤d2 ,

({xj + ϕ∗
j (x≤d1 , ⌊x≤d1⌋i) + φ∗j (x≤d2 , ⌊x≤d1⌋i) + φj({x≤d1}i, {y[d1+1,d2]}∗)}i,j)d2+1≤j≤d3 . (2.4)

Here ϕ∗
j are degree at most 3 polynomials and φ∗j is a bilinear form. Additionally, all coefficients

are integral with heights bounded by (O(Md))O(1).
Let us briefly take stock of what has been accomplished in the last manipulation. Note that there

are no longer any “iterated” floor expressions and the only terms being “floored” are x≤d1 . The Bohr
sets we will ultimately take therefore are determined by these coordinates only.

We now “lift” Fi from a function on G/Γ to F̃i on (R/Z)d. This can be done via identifying

(R/Z)d with the fundamental domain
∏d

j=1[β
(i)
j − 1/2, β

(i)
j + 1/2) with respect to ψexp. Now, F̃i

is seen to be O(LM/ε)O(dO(1))-Lipschitz on (R/Z)d by Lemma 2.6. (We are also using that the

support of F̃i is close to the center of the torus, so the torus metric and ℓ∞ on Rd are the same
where it matters.)

Therefore it is sufficient to consider F̃i with coordinates given by

(xj)j∈[d1], (xj − φj(x≤d1 , ⌊x≤d1⌋i))d1+1≤j≤d2 ,

(xj + ϕ∗
j(x≤d1 , ⌊x≤d1⌋i) + φ∗j (x≤d2 , ⌊x≤d1⌋i) + φj({x≤d1}i, {y[d1+1,d2]}∗i ))d2+1≤j≤d3 , (2.5)

which live on the torus.
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We now “smooth” {x≤d1}i and {y[d1+1,d2]}∗i . We replace {·}i,j with a 1-periodic function {·}i,j,sm
which agrees with {x}i,j if {x}i,j ∈ [β

(i)
j − 1/4, β

(i)
j + 1/4) and is O(1)-Lipschitz when viewed as a

function on R/Z. Given this we write {x≤d1}sm and {y[d1+1,d2]}∗sm for the associated vectors where
smooth fractional parts have been used.

We claim that it suffices to consider F̃i with coordinates given by

(xj)j∈[d1], (xj − φj(x≤d1 , ⌊x≤d1⌋i))d1+1≤j≤d2 ,

(xj + ϕ∗
j(x≤d1 , ⌊x≤d1⌋i) + φ∗j (x≤d2 , ⌊x≤d1⌋i) + φj({x≤d1}sm, {y[d1+1,d2]}∗sm))d2+1≤j≤d3 . (2.6)

Note that if {x≤d1}sm 6= {x≤d1}i or {y[d1+1,d2]}sm 6= {y[d1+1,d2]}∗i we immediately see that one of

the coordinates in the first two lines has been forced outside the support of F̃i and thus the value
is already by construction zero in both coordinates. Otherwise the coordinates in (2.5) and (2.6)
match and the representation has been unchanged.

Step 3: Fourier expansion of nilsequence. Now, F̃i : (R/Z)
d → C is a Lipschitz function.

Therefore by Lemma 2.7 with parameter τ ,

sup
z∈(R/Z)d

∣∣∣∣F̃i(z)−
∑

|ξ|≤O(Mτ−1)O(dO(1))

cξe(ξ · z)
∣∣∣∣ ≤ τ

with |cξ| ≤ O(Mτ−1)O(dO(1)).
Using this Fourier representation, we have

sup
x∈G

∣∣∣∣Fi(xΓ)−
∑

|ξ|≤O(Mτ−1)O(dO(1))

cξe

( d∑

j=1

Tξ,jxj + ϕ̃ξ(x≤d1 , ⌊x≤d1⌋i) + φ̃ξ(x≤d2 , ⌊x≤d1⌋i)

+ φ̃′ξ({x≤d1}sm, {y[d1+1,d2]}∗sm)
)∣∣∣∣ ≤ τ

such that ϕ̃ is at most a degree 3 polynomial, φ̃ξ is a bilinear form, and φ̃′ξ is also bilinear. Further-

more all coefficients involved are integers bounded by (Mτ−1)O(dO(1)).
The final smoothing we perform before we specialize to the polynomial sequence under consider-

ation is to remove the {·}sm{·}sm terms. Note that the function

(x, y) → e(T{x}i,j,sm{y}i,j,sm)
is O(TLO(1))-Lipschitz. Choosing ξ = (Mτ−1)−O(dO(1)) sufficiently small and replacing each of the
possible d1 · (d2 − d1) possible combinations for the “smoothed parts” simultaneously in each term
we find that

sup
x∈G

∣∣∣∣Fi(xΓ)−
∑

k∈I

cke

( d∑

j=1

Tk,jxj + ϕ̃k(x≤d1 , ⌊x≤d1⌋) + φ̃k(x≤d2 , ⌊x≤d1⌋))
)∣∣∣∣ ≤ 2τ (2.7)

with |I| ≤ (Mτ−1)O(dO(1)), |ck| ≤ (Mτ−1)O(dO(1)), ϕ̃k is an at most degree 3 polynomial, φ̃k is a

bilinear form, and all coefficients of these forms bounded by (Mτ−1)O(dO(1)). Here we have used
Lemma 2.7 on (R/Z)2 many times and multiplied the representations together.

We now specialize to the case of interest. Note that our primary concern is with the case where
x = g(n) and therefore xj = pj(n). Using the representation (2.7) and collecting terms we have

sup
n∈Z

∣∣∣∣Fi(g(n)Γ)−
∑

k∈I

cke(Hk(n))

∣∣∣∣ ≤ 2τ

where Hk : Z → R is a sum of terms of the form

• αn3 + βn2 + γn
9



• (αn2 + βn+ γ)⌊pj(n)⌋i,j for 1 ≤ j ≤ d1
• (αn+ β)⌊pj(n)⌋i,j⌊pk(n)⌋i,k for 1 ≤ j ≤ k ≤ d1
• γ⌊pj(n)⌋i,j⌊pk(n)⌋i,k⌊pℓ(n)⌋i,ℓ for 1 ≤ j ≤ k ≤ ℓ ≤ d1;

note that one can always collect terms so that there are at most dO(1) terms in each expression.
Step 4: N-periodicity and introducing Bohr sets. Let ρ = 1/100, which will be the radius
of our Bohr sets. Now, note that the expressions e(Hk(n)) are not “obviously” N -periodic. We will
artificially make them so via a partition of unity argument. There exist smooth χ1, . . . , χ103 such

that χj : (R/Z) → R are nonnegative with supp(χj) ⊆ [j/103, (j+2)/103) mod 1 and
∑103

j=1 χj = 1.
We have

Fi(g(n)Γ) =
∑

j∈[103]

χj(n/N)Fi(g(n)Γ),

sup
n∈Z

j∈[103]

∣∣∣∣Fi(g(n)Γ)χj(n/N)− χj(n/N)
∑

k∈I

cke(Hk(n))

∣∣∣∣ ≤ O(τ).

Now fix j ∈ [103]; such a term only contributes when n/N ∈ [j/103, (j + 2)/103) mod 1. Next
note that each pℓ(n) = αℓn for ℓ ≤ d1 and because the initial nilsequence g(n)Γ is N -periodic, by
[22, Lemma A.12] we have that αℓ ∈ (1/N)Z.

Note that in order for χj(n/N)Fi(g(n)Γ) to be nonzero, we need that

• n/N ≡ [j/103, (j + 2)/103) mod 1

• {pℓ(n)}i,ℓ ∈ [β
(i)
ℓ − 10−3, β

(i)
ℓ + 10−3) for all ℓ ∈ [d1].

These conditions are clearly N -periodic and in fact all such n lie in a shifted Bohr set with frequency
set S = {1/N} ∪ {αℓ}1≤ℓ≤d1 ⊆ (1/N)Z. If the corresponding shifted Bohr set is empty we know
that χj(n/N)Fi(g(n)Γ) = 0 and we approximate χj(n/N)Fi(g(n)Γ) by 0. Else there is yj ∈ Z/NZ

such that yj/N ≡ [j/103, (j + 2)/103) mod 1 and {αℓyj}i,ℓ ∈ [β
(i)
ℓ − 10−3, β

(i)
ℓ + 10−3) for ℓ ∈ [d1].

Letting Ji be the set of j for which this shifted Bohr set is nonempty, we have

sup
n∈Z
j∈Ji

∣∣∣∣Fi(g(n)Γ)χj(n/N)− 1n∈y+B(S,ρ)χj(n/N)
∑

k∈I

cke(Hk(n))

∣∣∣∣ ≤ O(τ).

We now apply Fourier expansion on χj using Lemma 2.7 on the torus R/Z and appropriately

chosen error parameter τ ′ = (Mτ−1)−O(dO(1)). We find

sup
n∈Z
j∈Ji

∣∣∣∣Fi(g(n)Γ)χj(n/N)−1n∈yj+B(S,ρ)χj(n/N)
∑

k∈I,|ξ|≤(τ ′)−O(1)

ckdξe(Hk(n)+ ξn/N)

∣∣∣∣ ≤ O(τ) (2.8)

with |dξ| ≤ (τ ′)−O(1).
Given n ∈ yj + B(S, ρ), we will now replace Hk(n) by Hk,j(n) so that the latter is N -periodic

(and it will be locally cubic on yj +B(S, ρ)). We fix an interval Ij ∈ [−N,N) of integers of length
at most ⌈N/50⌉ such that for each n ∈ yj + B(S, ρ) there is a unique integer n′ ∈ Ij such that
n′ ≡ n mod N . This exists since 1/N ∈ S. We then define Hk,j(n) ≡ Hk(n

′) mod 1 for such
n ∈ yj + B(S, ρ) and Hk,j(n) = 0 otherwise; note that Hk,j(n) is taking values in R/Z which is
sufficient as we are plugging these values into the exponential function.

It is easy to see that (2.8) holds with Hk(n)+ ξ ·n/N replaced by Hk,j(n) since everything in the
inequality except for potentially Hk(n) is N -periodic (recall S ⊆ (1/N)Z), and there is a supremum
over n ∈ Z on the outside. So, we have

sup
n∈Z
j∈Ji

∣∣∣∣Fi(g(n)Γ)χj(n/N)− 1n∈yj+B(S,ρ)

∑

k∈I,|ξ|≤(τ ′)−O(1)

ckdξe(Hk,j(n) + ξn/N)

∣∣∣∣ ≤ O(τ)
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where Hk,j(n) is N -periodic by construction. Taking τ = ηM−O(dO(1)) and summing over j and i
then finishes the proof modulo showing that Hk,j(n) is a locally cubic function on yj +B(S, ρ).
Step 5: Local cubicity on shifted Bohr sets. Fix i, j ∈ Ji, and k ∈ I. We wish to show local
cubicity of Hk,j on yj +B(S, ρ). Suppose that n, h1, h2, h3 ∈ Z/NZ are such that n+

∑3
ℓ=1 ǫℓhℓ ∈

yj + B(S, ρ) for all (ǫ1, ǫ2, ǫ3) ∈ {0, 1}3. We consider the representatives of n +
∑3

ℓ=1 ǫℓhℓ in

Ij; we see that there exist n′, h′1, h
′
2, h

′
3 ∈ Z such that n′ +

∑3
ℓ=1 ǫℓh

′
ℓ ≡ n +

∑3
ℓ=1 ǫℓhℓ mod N

and n′ +
∑3

ℓ=1 ǫℓh
′
ℓ ∈ Ij for all ǫ ∈ {0, 1}3. Indeed, one can look at the representatives of each

n+
∑3

ℓ=1 ǫℓhℓ in Ij , and use the fact that if t1+ t2 ≡ t3+ t4 mod N with ti ∈ Ij then t1+ t2 = t3+ t4
(since Ij has length at most ⌈N/50⌉).

Therefore it suffices to prove that Hk : Z → R is locally cubic on yj + B(S, ρ). Recalling the
classification of Hk(n) as a sum of terms of various kinds, it suffices to verify this for each individual
function type which is combined to give Hk(n).

Note that pure polynomials are always the correct degree (on all of Z). By Lemma 2.8 it suffices
to verify that ⌊αℓn⌋i,ℓ is locally linear on yj +B(S, ρ) for 1 ≤ ℓ ≤ d1.

Given n, n+ h1, n+ h2, n+ h1 + h2 ∈ yj +B(S, ρ) we have that

⌊αℓn⌋i,ℓ − ⌊αℓ(n + h1)⌋i,ℓ − ⌊αℓ(n+ h2)⌋i,ℓ + ⌊αℓ(n+ h1 + h2)⌋i,ℓ ∈ Z,
∣∣⌊αℓn⌋i,ℓ − ⌊αℓ(n+ h1)⌋i,ℓ − ⌊αℓ(n+ h2)⌋i,ℓ + ⌊αℓ(n + h1 + h2)⌋i,ℓ

∣∣

=
∣∣{αℓn}i,ℓ − {αℓ(n+ h1)}i,ℓ − {αℓ(n+ h2)}i,ℓ + {αℓ(n+ h1 + h2)}i,ℓ

∣∣ ≤ 1/2,

the inequality using that ρ = 1/100 and every αℓ(n + ǫ1h1 + ǫ2h2) must be close in R/Z to αℓyj.

Additionally, we recall {αℓyj} ∈ [β
(i)
ℓ −10−3, β

(i)
ℓ +10−3) which implies that there is no discontinuity

in {·}i,ℓ in the area of consideration.
Therefore

⌊αℓn⌋i,ℓ − ⌊αℓ(n+ h1)⌋i,ℓ − ⌊αℓ(n + h2)⌋i,ℓ + ⌊αℓ(n+ h1 + h2)⌋i,ℓ = 0

for n, n+ h1, n+ h2, n + h1 + h2 ∈ yj +B(S, ρ) as desired. This (finally) completes the proof. �

3. Proof of Theorem 1.1 given Proposition 1.4

In this section, we convert Proposition 1.4 into a density increment using the strategy of Heath-
Brown [16] and Szemerédi [35]. Our treatment is closely modeled on that of Green and Tao [13];
the crucial idea is that one may group together a large number of phases before passing to a
subprogression.

Throughout this section we will consider a function f : [N ′] → [0, 1] such that En∈[N ′]f(n) = 0.
By Bertrand’s postulate, we may find a prime N such that 1024N ′ ≤ N ≤ 2048N ′. We may thus
embed [N ′] inside Z/(NZ) and lift f to Z/NZ (mapping inputs not congruent to an element of [N ′]
to 0). We define quintilinear operator

Λ(f1, . . . , f5) = Ex,y∈Z/NZ

5∏

k=1

fk(x+ (k − 1)y) and Λ(f) = Λ(f, f, f, f, f).

We now state the key claim for this section, which we will prove in Section 3.3

Proposition 3.1. Fix a constant c > 0. There exist c′ > 0 and C > 0 such that the following
holds. Consider a function f : [N ′] → [0, 1] such that En∈[N ′]f(n) = δ > 0 and a prime N such that

1024N ′ ≤ N ≤ 2048N ′. Let M(δ) = exp((log(1/δ))C ). At least one of the following possibilities
always holds:

• N ′ ≤ exp(M(δ));
•
∣∣Λ(f)− Λ(δ1[N ′])

∣∣ ≤ cδ5;
11



• There exists an arithmetic progression P of length at least N1/M(δ) such that

En∈Pf(n) ≥ (1 + c′)δ.

With this, we can prove the main result.

Proof of Theorem 1.1 given Proposition 3.1. Suppose that A ⊆ [N ] has size δN and has no 5-term
arithmetic progressions. We now perform the density increment strategy using A0 = A, N ′

0 = N ,
and δ0 = δ.

For each N ′
i choose a prime Ni between 1024N ′

i ≤ Ni ≤ 2048N ′
i . If N ′

i ≤M(δi), we immediately
terminate. Else note that

∣∣Λ(1Ai)− Λ(δi1[N ′

i ]
)
∣∣ ≥ |Λ(δi1[N ′

i ]
)
∣∣− |Ai|N−2

i ≫ δ5i

as Ai is free of 5-term arithmetic progressions. Therefore the third case in the trichotomy must
hold and there exists a long progression Pi on which the density of Ai increases by a factor of at
least (1 + c′). Let Ai+1 be Ai ∩ Pi rescaled so that Pi starts at 0 and has common difference 1, let
N ′

i+1 = |Pi|, and let δi+1 = |Ai ∩ Pi|/|Pi| ≥ (1 + c′)δi.
Since the density of a set cannot exceed 1, we must terminate in at most O(log(1/δ)) iterations.

If we terminate at i, we must have

N (1/M(δ))O(log(1/δ)) ≤ N ′
i ≤ exp(M(δi)) ≤ exp(M(δ)).

Rearranging this gives exactly that

logN ≤M(δ)O(log(1/δ))

or, as desired,

δ ≪ 1

exp((log logN)Ω(1))
. �

3.1. Inverse theorem relative to linear and cubic factors. We introduce a framework for
studying functions satisfying a correlation as given by Proposition 1.4, considering a σ-algebra (or
factor) which incorporates the information of the approximate value of our linear and cubic functions
on [N ]. Our treatment closely follows that of Green and Tao [13] (and uses elements from Peluse
and Prendiville [25]).

Definition 3.2. We define a factor B of Z/NZ to be a partition Z/NZ =
⊔

B∈B B. We define B(x)
for x ∈ Z/NZ to be the part of B that contains x.

We say B′ refines B if every part of B can be written as a disjoint union of parts of B′. We define
a join of a sequence of factors to be the partition (discarding empty parts)

B1 ∨ · · · ∨ Bd := {B1 ∩ · · · ∩Bd : Bi ∈ Bi}.
Define a function φ : S → R/Z for S ⊆ Z/NZ to be irrational if φ takes on irrational values.

Define the factor Bφ,K with respect to φ of resolution K as the partition

((Z/NZ) \ S) ⊔
⊔

0≤j≤K−1

{x ∈ Z/NZ : ‖φ(x)− j/K‖R/Z ≤ 1/(2K)}.

(Since φ is irrational this is indeed a disjoint partition.) We further say that φ respects a factor B
if B refines S ⊔ ((Z/NZ) \ S).

We define a factor of complexity (d1, d2) and resolutionK via the data of irrational linear functions
φ1, . . . , φd1 (defined on Z/NZ) and irrational locally cubic functions φ′1, . . . , φ

′
d2

(defined on subsets
of Z/NZ) which respect

∨
1≤j≤d1

Bφj ,K . The associated factor is
∨

1≤j≤d1
Bφj ,K ∨∨

1≤j≤d1
Bφ′

j ,K
.

Finally, given a factor B we define ΠBf by

ΠBf(x) = Ey∈B(x)f(y).
12



Remark. We ensure all functions φ we consider are irrational in order to avoid issues regarding
the hitting exactly the boundary of the factor. Note that if a locally cubic function φ respects a
partition B then we see that the support set is in the σ-algebra generated by B. In particular, we
can treat φ as either “undefined” on an atom B or as locally cubic on the associated atom.

We now restate Proposition 1.4 in the language of factors.

Lemma 3.3. There exists C > 0 such that the following holds. Fix η > 0 and let f be a function
f : Z/NZ → [0, 1] such that ‖f‖U4(Z/NZ) ≥ η.

Let M(η) = exp((log(1/η))C ) and fix an integer K ≥ exp(M(η)). Suppose that N ≥ 8K. There
exist d ≤M(η) and a factor B of complexity (d, 1) and resolution K such that

‖ΠBf‖L1(Z/NZ) ≥ exp(−M(η)).

Proof. By Proposition 1.4, there exist ρ = 1/100, S ⊆ (1/N)Z with |S| ≪ (log(1/η))C (say |S| = d),
and y ∈ Z/NZ such that B = B(S, ρ) is a Bohr set and φ : y + B → R/Z is a locally cubic phase
function such that

|Et∈Z/NZ1t∈y+Bf(t)e(−φ(t))| ≥ exp(−(log(1/η))C/2).

Let C ′ be a sufficiently large constant and assumeK ≥ exp((log(1/η))C
′

). Take φi : Z/NZ → R/Z
to be φi(x) = aix− aiy + α where α is an irrational which is smaller than (2K)−1 and ai ∈ S.

Note that y +B is exactly the set

T1 =
{
x ∈ Z/NZ : sup

ai∈S
‖aix− aiy‖R/Z ≤ ρ

}
.

Note that the set

T2 =
{
x ∈ Z/NZ : sup

ai∈S
‖aix− aiy + α‖R/Z ≤ (2K)−1 · (2⌊Kρ⌋ − 1)

}

is measurable with respect to the factor
∨

1≤j≤d Bφj ,K . Also, T2 ⊆ T1 since |α| ≤ 1/(2K) and

(2K)−1 · (2⌊Kρ⌋ − 1) + (2K)−1 ≤ ρ. Furthermore we have

T1 \ T2 ⊆
{
x ∈ Z/NZ : sup

ai∈S
‖aix− aiy‖R/Z ∈ [ρ− 2/K, ρ)

}

and thus we have

|T2 \ T1| ≤ |S| · (5/K)|T1| ≤ 5dN/K

as long as 8K ≤ N . Here we have used that S ⊆ Z/NZ where N is prime.
So, since C ′ is large with respect to C and f is 1-bounded we have

|Et∈Z/NZ1t∈T2f(t)e(−φ(t))| ≫ exp(−(log(1/η))C/2).

The locally cubic function we will consider is φ∗ : T2 → R/Z given by φ∗(x) = φ(x) + α. This is
well-defined as T2 ⊆ T1 = y +B. Let B =

∨
1≤j≤d Bφj ,K ∨ Bφ′,K and note that

sup
x∈Z/NZ

∣∣e(−φ(x))−ΠB[e(−φ∗(x))]
∣∣ ≤ π/K

since z 7→ e(z) is a 2π-Lipschitz function on R/Z. Therefore

|Et∈Z/NZf(t)ΠB[e(−φ∗(x))]| ≫ exp(−(log(1/η))C ).

ΠB is self-adjoint with respect to the standard inner product (see e.g. [25, Lemma 4.3(ii)]) so

Et∈Z/NZ|ΠB[f(t)]| ≥ |Et∈Z/NZΠB[f(t)]e(−φ∗(t))| = |Et∈Z/NZf(t)ΠB[e(−φ∗(t))]|
≫ exp(−(log(1/η))C ).

This gives the desired result. �
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We now prove an associated Koopman–von Neumann theorem; our proof is closely modeled after
[13, Theorem 5.6].

Lemma 3.4. There exists C > 0 such that the following holds. Fix η > 0, let f be a function
f : Z/NZ → [0, 1], and let B∗ denote an initial factor.

Let M(η) = exp(log(1/η)O(1)) and let N ≥ 10M(η). There exist d1, d2 ≤ M(η) such that the
following holds. There exists an integer K ≤ M(η) and a factor of B′ of complexity (d1, d2) and
resolution K such that if B = B∗ ∨ B′ then

‖f −ΠBf‖U4(Z/NZ) ≤ η.

Proof. We create the factor B as a join given by applying Lemma 3.3 iteratively. Set B0 = B∗.

• If ‖f −ΠBif‖U4(Z/NZ) ≤ η, we terminate. Set i∗ = i and output B′ =
∨

0≤i′<i∗ B′
i′ .

• If ‖f −ΠBif‖U4(Z/NZ) ≥ η, then set K = ⌈exp(M(η))⌉. By Lemma 3.3 there exists B′
i such

that
‖ΠB′

i
(f −ΠBif)‖L1(Z/NZ) ≥ exp(−(log(1/η))C ).

Here B′
i =

∨
1≤j≤di

B
φ
(i)
j ,K

∨ Bφ′

i,K
where φ

(i)
j (for j ≤ di ≤ exp((log(1/η))O(1)))) are ir-

rational linear functions on Z/NZ and φ′i is a locally cubic function respecting the factor∨
1≤j≤d Bφj ,K . We set Bi+1 = Bi ∨ B′.

Note that B = B∗ ∨ B′
i∗ = Bi∗ . Observe that

‖ΠB′(f −ΠBif)‖L1(Z/NZ) ≤ ‖ΠB′(f −ΠBif)‖L2(Z/NZ) = ‖ΠB′ΠBi+1(f −ΠBif)‖L2(Z/NZ)

≤ ‖ΠBi+1(f −ΠBif)‖L2(Z/NZ) = ‖ΠBi+1f −ΠBif‖L2(Z/NZ)

= (‖ΠBi+1f‖2L2(Z/NZ) − ‖ΠBif‖2L2(Z/NZ))
1/2.

The final equality is the Pythagorean theorem with respect to projections (this follows from e.g. [25,
Lemma 4.3(iv)]).

Thus ‖ΠBi+1f‖2L2(Z/NZ) − ‖ΠBif‖2L2(Z/NZ) ≥ exp(−(log(1/η))O(1)) and hence the iteration lasts

only exp((log(1/η))O(1)) steps. Therefore the final B′ is generated by at most exp((log(1/η))O(1))
linear functions and a similar number of locally cubic functions. This completes the proof. �

3.2. Density increment onto cubic Bohr set. We next need that Λ is controlled by the U4-
norm and the L1-norm. The proof is by now standard and hence is omitted (see [13, Lemma 3.2]
and [9, Theorem 3.2]).

Lemma 3.5. Let N be prime and fi : Z/NZ → C. Then we have:

|Λ(f1, f2, f3, f4, f5)| ≤ min
1≤i≤5

‖fi‖L1(Z/NZ)

∏

j 6=i

‖fj‖L∞(Z/NZ),

|Λ(f1, f2, f3, f4, f5)| ≤ min
1≤i≤5

‖fi‖U4(Z/NZ)

∏

j 6=i

‖fj‖L∞(Z/NZ).

Given this we may now prove that there exists a density increment onto a piece of the partition
given by Lemma 3.4. The proof is identical to [13, Lemma 5.8].

Proposition 3.6. Fix c > 0. There exist C > 0 and c′ > 0 such that the following holds. Given
a function f : [N ′] → [0, 1] such that En∈[N ′]f(n) = δ > 0, extend it by 0s to a function on Z/NZ

where N is prime with 1024N ′ ≤ N ≤ 2048N ′. Suppose that

|Λ(f)− Λ(δ1[N ′])| ≥ cδ5.

Let B∗ = [N ′] ⊔ ((Z/NZ) \ [N ′]) be an initial factor. Let M(δ) = exp((log(1/δ))C ) and suppose
that N ≥M(δ). Then there exist d1, d2,K ≤M(δ), a factor B of complexity (d1, d2) and resolution
K, and an atom Ω∗ of B ∨ B∗ such that
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• Pn∈Z/NZ[n ∈ Ω∗] ≥ exp(− exp((log(1/δ))C ));
• E[f(n)|n ∈ Ω∗] ≥ (1 + c′)δ.

Proof. We may clearly assume δ is sufficiently small. By Lemma 3.4, there exists a factor B of
complexity (d1, d2) and resolution K with d1, d2,K ≤ exp((log(1/δ))O(1)) such that

‖f −ΠB∨B∗f‖U4(Z/NZ) ≤ cδ5/10.

By telescoping and the second part of Lemma 3.5 we have
∣∣Λ(f)− Λ(ΠB∨B∗f)

∣∣ ≤ 5‖f −ΠB∨B∗f‖U4(Z/NZ) ≤ cδ5/2.

Therefore we have

|Λ(ΠB∨B∗f)− Λ(δ1[N ′])| ≥ cδ5/2.

Let B′ = B∨B∗ and g = min(ΠB′f, (1+ c′)δ) and assume that c′ ≤ max(c, 1)/105 . Let Ω′ = {x ∈
Z/NZ : g(x) 6= ΠB′f(x)} and notice that

|Λ(ΠB′f)− Λ(g)| ≤ 5‖ΠB′f − g‖L1(Z/NZ) ≤ 5P[n ∈ Ω′]

|Λ(δ1[N ′])− Λ(g)| ≤ 5(1 + c′)4δ4‖δ1[N ′] − g‖L1(Z/NZ)

‖g − δ1[N ′]‖L1(Z/NZ) ≤ P[n ∈ Ω′] + ‖δ1[N ′] −ΠB′f‖L1(Z/NZ).

The first and second inequality follow from the first part of Lemma 3.5 while the final inequality
follows from the triangle inequality.

Suppose that the lemma is false. Note that there are at most 2(2K)d1+d2 atoms of B′ and define
an atom to be small if it has measure at most (2K)−d1−d2 · (cδ5)/40. We therefore have that on
every atom which is not small,

ΠB′f ≤ (1 + c′)δ

(else we take Ω∗ to be that atom) and therefore P[n ∈ Ω′] ≤ cδ5/20. Thus by the first inequality
above and the triangle inequality we find

|Λ(δ1[N ′])− Λ(g)| ≥ |Λ(δ1[N ′])− Λ(ΠB′f)| − 5P[n ∈ Ω∗] ≥ cδ5/4.

By the second inequality, this implies that

‖δ1[N ′] − g‖L1(Z/NZ) ≥ cδ/100.

By the third inequality we have that

‖δ1[N ′] −ΠB′f‖L1(Z/NZ) ≥ cδ/200.

For a function h let h+ = max(h, 0). For mean zero functions, ‖h‖L1(Z/NZ) = 2‖h+‖L1(Z/NZ). This
allows us to derive the contradiction since

‖δ1[N ′] −ΠB′f‖L1(Z/NZ) = 2‖(ΠB′f − δ1[N ′])+‖L1(Z/NZ)

≤ 2c′δ + 2((2K)−d1−d2 · (cδ5)/40)(2(2K)d1+d2) ≤ 4c′δ < cδ/200. �

3.3. Density increment onto subprogression. We now finish the argument by partitioning
factors in our cubic Bohr partition into long progressions. This is a technical modification of an
argument of Green and Tao [13] for multiple quadratics (the case of a single polynomial is handled
in Gowers [9]); as input they must provide, in the case of quadratics, an explicit implicit constant for
a result of Schmidt [32] which provides recurrence for multiple polynomials mod 1 simultaneously.
We require the analogous result for arbitrary degrees.

Proposition 3.7. Fix an integer k ≥ 1. There exist c = c(k) > 0 such that the following holds. Let
α1, . . . , αd be real numbers. Then

min
1≤n≤N

max
1≤i≤d

‖αin
k‖R/Z ≪k dN

−c/d2 .
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We defer the proof of this input to Appendix B; it is an essentially verbatim copy of [13, Appen-
dix A].

Proof of Proposition 3.1. Step 1: Setup. Let M = exp((log(1/δ))C ) where C > 0 will be chosen
later. Let us assume N ′ > exp(M(δ)) and |Λ(f)−Λ(δ1[N ′])| > cδ5. Our aim is to find a progression

of length at least N1/M(δ) where our density is incremented
Let B∗ = [N ′] ⊔ ((Z/NZ) \ [N ′]) be an initial factor. Let M ′(δ) = exp((log(1/δ))C

′

) where C ′

is chosen appropriately so as to apply Proposition 3.6. By assumption we have N ≥ M ′(δ). So
there exist d1, d2,K ≤ M ′(δ), a factor B of complexity (d1, d2) and resolution K, and an atom Ω∗

of B ∨ B∗ such that

• Pn∈Z/NZ[n ∈ Ω∗] ≥ exp(− exp((log(1/δ))C
′

));

• E[f(n)|n ∈ Ω∗] ≥ (1 + 2c′)δ.

Now our aim is to partition Ω∗ into few arithmetic progressions, namely at most X = 7dN1−Ω(1/d7)

progressions. The number of elements of Ω∗ in progressions of length at most c′δ|Ω∗|/X is at most
c′δ|Ω∗|. Letting the union of short progressions be Ω′, we have that

E[f(n)|n ∈ Ω∗ \ Ω′] ≥ (1 + c′)δ.

Therefore there is a progression of length longer than c′δ|Ω∗|/X with density at least (1 + c′)δ. We
have

c′δ|Ω∗|/X ≥ N1/M(δ)

due to our assumption N ′ > exp(M(δ)), assuming C > 0 is chosen sufficiently large. (This is where
the dependence in the first item of Proposition 3.1 comes from.)

We may write

Ω∗ = [N ′] ∩
⋂

i∈I1

{x : ‖φi(x)− ji/K‖R/Z ≤ 1/(2K)} ∩
⋂

i∈I2

{x : ‖ϕi(x)− ji/K‖R/Z ≤ 1/(2K)}

where φi are linear functions on Z/NZ and ϕi : T → R are locally cubic functions on

T := [N ′] ∩
⋂

i∈I1

{x : ‖φi(x)− ji/K‖R/Z ≤ 1/(2K)}.

We additionally have |I1|, |I2|,K ≤M ′(δ) =: d. (The fact that Ω∗ ⊆ [N ′] is evident from E[f(n)|n ∈
Ω∗] > 0, recalling that f is extended by 0s in Proposition 3.6.)
Step 2: Partitioning T into progressions where the cubic phases are near-constant. Our
goal will be to partition T into subprogressions on which each ϕi for i ∈ I2 is roughly constant
mod 1. In fact, we will find a collection of progressions, say of the form {a+ bn : n ∈ [L]}, so that

for n ∈ [L] we have ϕi(a+ bn) = κ + P
(a,b)
i (n) mod 1, where P

(a,b)
i is a real polynomial of degree

at most 3 with coefficients of size O(L−4).
We first partition

T =
⊔

j∈J1

Tj

where Tj are progressions and |J1| ≪ 2|I1|N1−1/(|I1|+1). To do this, we may use [13, Proposition 6.3]
(which is a simple application of Kronecker approximation, or Proposition 3.7 for k = 1).

Since Tj is a progression, we may write Tj = {aj + dj , . . . , aj +Mjdj} where Mj = |Tj|. Since
each ϕi is locally cubic on this progression, we may write

ϕi(aj + djn) = α
(j)
i n3 + β

(j)
i n2 + γ

(j)
i n+ δ

(j)
i mod 1

for i ∈ I2 and n ∈ [Mj ] where j ∈ J1. Next, we perform three intermediate partitions of Tj in order
to iteratively “reduce the degree” of the function ϕi until we see that it is roughly constant on our
subprogressions.
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First, choose 1 ≤ rj ≤M
1/3
j so that

max
i∈I2

‖α(j)
i r3j‖R/Z ≪ dM

−c(3)/(3d2)
j .

Then we can partition [Mj] into at most M
1−c(3)/(120d2)
j progressions of difference rj and length

roughly M
c(3)/(120d2)
j . This corresponds to a partition

Tj =
⊔

k3∈D3

Tj,k3

with |D3| ≤M
1−c(3)/(120d2)
j and |Tj,k3 | ∼M

c(3)/(120d2)
j . Furthermore, we have

Tj,k3 = {aj + (bj,k3 + rjt)dj : t ∈ [|Tj,k3 |]}
for some integer bj,k3 . We have

ϕi(aj + (bj,k3 + rjn)dj) = α
(j)
i (bj,k3 + rjn)

3 + β
(j)
i (bj,k3 + rjn)

2 + γ
(j)
i (bj,k3 + rjn) + δ

(j)
i

= α
(j,k3)
i n2 + β

(j,k3)
i n+ γ

(j,k3)
i + {α(j)

i r3j}n3 mod 1.

By construction, {α(j)
i r3j} is close to 0 mod 1 (namely, it is ≪ dM

−c(3)/(3d2)
j ≪ |Tj,k3 |−30).

We can thus consider the quadratic function obtained by removing this part, and repeat the same
process on each Tj,k3 . We obtain iterative decompositions

Tj,k3 =
⊔

k2∈D
(k3)
2

Tj,k3,k2 , Tj,k3,k2 =
⊔

k1∈D
(k3,k2)
1

Tj,k3,k2,k1

where:

|D(k3)
2 | ≤ |Tj,k3|1−c(2)/(120d2), |D(k3,k2)

1 | ≤ |Tj,k3,k2 |1−c(1)/(120d2)

|Tj,k3,k2 | ∼ |Tj,k3 |c(2)/(120d
2), |Tj,k3,k2,k1 | ∼ |Tj,k3,k2 |c(1)/(120d

2).

Additionally, we will find that if Tj,k3,k2,k1 = {a+ bn : n ∈ [|Tj,k3,k2,k1 |]} then

ϕi(a+ bn) = α
(j,k3,k2,k1)
i n3 + β

(j,k3,k2,k1)
i n2 + γ

(j,k3,k2,k1)
i n+ κ

(j,k3,k2,k1)
i mod 1

where
|α(j,k3,k2,k1)

i |+ |β(j,k3,k2,k1)i |+ |γ(j,k3,k2,k1)i | ≪ |Tj,k3,k2,k1 |−4.

The number of such Tj,k3,k2,k1 partitioning Tj is in total at most

M
1−c(3)/(12d2)
j (M

c(3)/(12d2)
j )1−c(2)/(12d2)

(
(M

c(3)/(12d2)
j )c(2)/(12d

2)
)1−c(1)/(12d2) ≤M

1−Ω(1/d6)
j .

(In the rare cases of any j such that Mj ≤ exp(O(d6)) we may simply partition Mj into progressions
of length 1 appropriately.)

Finally, choosing appropriate value p = Ω(1/d6), the total number of subprogressions is

∑

j∈J1

M1−p
j ≤ |J1|p

( ∑

j∈J1

Mj

)1−p

≤ |J1|pN1−p ≤ N1−Ω(1/d7).

Step 3: Partitioning Ω∗ into few progressions. From the previous part, we have a partition of

T into at most N1−Ω(1/d7) progressions of various lengths so that for a progression {a+bn : n ∈ [L]}
that appears, we have

ϕi(a+ bn) = κ+ P
(a,b)
i (n) mod 1

where P
(a,b)
i is a real polynomial of degree at most 3 with coefficients of size O(L−4). Recalling

Ω∗ ⊆ T , we can now intersect these progressions with Ω∗. Note that Ω∗ merely imposes a condition

on each ϕi for i ∈ I2. Since each P
(a,b)
i (n) is at most degree 3, within the range n ∈ [L] it hits
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the cutoffs for the condition for ϕi at most 2 · 3 = 6 times in the real numbers. Since P
(a,b)
i (n) has

small coefficients (so is small on n ∈ [L]), there is no rounding wraparound and the same holds for
its image mod 1 over the domain n ∈ [L].

The upshot is that each progression is cut into at most 7 pieces by the condition on ϕi defining
Ω∗ for each i ∈ I2. This gives at most 7|I2| ≤ 7d total pieces.

Thus, we have a partition of Ω∗ into at most 7dN1−Ω(1/d7) pieces, which combined with the
argument above completes the proof. �

References

[1] F. A. Behrend, On sets of integers which contain no three terms in arithmetical progression, Proc. Nat. Acad.
Sci. U.S.A. 32 (1946), 331–332. 1

[2] T. F. Bloom, A quantitative improvement for Roth’s theorem on arithmetic progressions, J. Lond. Math. Soc.
(2) 93 (2016), 643–663. 1

[3] Thomas F Bloom and Olof Sisask, Breaking the logarithmic barrier in Roth’s theorem on arithmetic progressions,
arXiv:2007.03528. 1

[4] Thomas F Bloom and Olof Sisask, An improvement to the Kelley-Meka bounds on three-term arithmetic progres-
sions, arXiv:2309.02353. 1

[5] J. Bourgain, On triples in arithmetic progression, Geom. Funct. Anal. 9 (1999), 968–984. 1
[6] Jean Bourgain, Roth’s theorem on progressions revisited, J. Anal. Math. 104 (2008), 155–192. 1
[7] W. T. Gowers, A new proof of Szemerédi’s theorem for arithmetic progressions of length four, Geom. Funct.

Anal. 8 (1998), 529–551. 1
[8] W. T. Gowers, Arithmetic progressions in sparse sets, Current developments in mathematics, 2000, Int. Press,

Somerville, MA, 2001, pp. 149–196. 1
[9] W. T. Gowers, A new proof of Szemerédi’s theorem, Geom. Funct. Anal. 11 (2001), 465–588. 14, 15

[10] B. Green and T. Tao, Quadratic uniformity of the Möbius function, Ann. Inst. Fourier (Grenoble) 58 (2008),
1863–1935. 3

[11] B. Green and T. Tao, The quantitative behaviour of polynomial orbits on nilmanifolds, Ann. of Math. (2) 175

(2012), 465–540. 19, 20, 21, 25, 26, 28, 33
[12] B. Green, T. Tao, and T. Ziegler, An inverse theorem for the Gowers U4-norm, Glasg. Math. J. 53 (2011), 1–50.

3
[13] Ben Green and Terence Tao, New bounds for Szemerédi’s theorem. II. A new bound for r4(N), Analytic number

theory, Cambridge Univ. Press, Cambridge, 2009, pp. 180–204. 1, 2, 3, 4, 11, 12, 14, 15, 16, 21, 22, 23
[14] Ben Green and Terence Tao, New bounds for Szemerédi’s theorem, III: a polylogarithmic bound for r4(N),

Mathematika 63 (2017), 944–1040. 1
[15] Ben Green, Terence Tao, and Tamar Ziegler, An inverse theorem for the Gowers Us+1[N ]-norm, Ann. of Math.

(2) 176 (2012), 1231–1372. 28, 29
[16] D. R. Heath-Brown, Integer sets containing no arithmetic progressions, J. London Math. Soc. (2) 35 (1987),

385–394. 1, 2, 4, 11
[17] Bernard Host and Bryna Kra, Nilpotent structures in ergodic theory, Mathematical Surveys and Monographs,

vol. 236, American Mathematical Society, Providence, RI, 2018. 28
[18] Zander Kelley and Raghu Meka, Strong bounds for 3-progressions, arXiv:2302.05537. 1
[19] M. Lazard, Sur les groupes nilpotents et les anneaux de Lie, Ann. Sci. École Norm. Sup. (3) 71 (1954), 101–190.

20
[20] A. Leibman, Polynomial sequences in groups, J. Algebra 201 (1998), 189–206. 20
[21] A. Leibman, Polynomial mappings of groups, Israel J. Math. 129 (2002), 29–60. 20
[22] J. Leng, The partition rank vs. analytic rank problem for cyclic groups I. Equidistribution for periodic nilsequences,

arXiv:2306.13820. 2, 10, 25, 26, 28, 32, 34, 35
[23] J. Leng, The partition rank vs. analytic rank problem for cyclic groups II. multiparameter nilsequences and

applications, Forthcoming. 2, 32
[24] F. Manners, Periodic nilsequences and inverse theorems on cyclic groups, arXiv:1404.7742. 3, 26, 27, 28
[25] S. Peluse and S. Prendiville, A polylogarithmic bound in the nonlinear Roth theorem, Int. Math. Res. Not. IMRN

(2022), 5658–5684. 12, 13, 14
[26] Sarah Peluse, Ashwin Sah, and Mehtaab Sawhney, Effective bounds for Roth’s theorem with shifted square

common difference, arXiv:2309.08359. 6
[27] Georg Pólya, Über ganzwertige ganze funktionen, Rendiconti del Circolo Matematico di Palermo (1884-1940) 40

(1915), 1–16. 31
[28] K. F. Roth, On certain sets of integers. II, J. London Math. Soc. 29 (1954), 20–26. 1, 2

18



[29] T. Sanders, On the Bogolyubov-Ruzsa lemma, Anal. PDE 5 (2012), 627–655. 4
[30] Tom Sanders, On Roth’s theorem on progressions, Ann. of Math. (2) 174 (2011), 619–636. 1
[31] Tom Sanders, On certain other sets of integers, J. Anal. Math. 116 (2012), 53–82. 1
[32] Wolfgang M. Schmidt, Small fractional parts of polynomials, Regional Conference Series in Mathematics, No.

32, American Mathematical Society, Providence, RI, 1977. 2, 15
[33] E. Szemerédi, On sets of integers containing no four elements in arithmetic progression, Number Theory (Colloq.,

János Bolyai Math. Soc., Debrecen, 1968), Colloq. Math. Soc. János Bolyai, vol. 2, North-Holland, Amsterdam-
London, 1970, pp. 197–204. 1

[34] E. Szemerédi, On sets of integers containing no k elements in arithmetic progression, Acta Arith. 27 (1975),
199–245. 1

[35] E. Szemerédi, Integer sets containing no arithmetic progressions, Acta Math. Hungar. 56 (1990), 155–158. 1, 2,
4, 11

[36] T. Tao, Higher order Fourier analysis, Graduate Studies in Mathematics, vol. 142, American Mathematical
Society, Providence, RI, 2012. 6

[37] T. Tao and J. Teräväinen, Quantitative bounds for Gowers uniformity of the Möbius and von Mangoldt functions,
arXiv:2107.02158. 19

Appendix A. Conventions regarding nilsequences and effective equidistribution

We begin this appendix by giving the precise definition of the complexity of a nilmanifold; this
definition is exactly as in [37, Definition 6.1].

Definition A.1. Let s ≥ 1 be an integer and let K > 0. A filtered nilmanifold G/Γ of degree s and
complexity at most K consists of the following:

• a nilpotent, connected, and simply connected Lie group G of dimension m, which can be
identified with its Lie algebra logG via the exponential map exp: logG→ G;

• a filtration G• = (Gi)i≥0 of closed connected subgroups Gi of G with

G = G0 = G1 > G1 > · · · > Gs > Gs+1 = IdG

such that [Gi, Gj ] ⊆ Gi+j for all i, j ≥ 0 (equivalently [logGi, logGj ] ⊆ logGi+j);
• a discrete cocompact subgroup Γ of G; and
• a linear basis X = {X1, . . . ,Xm} of logG, known as a Mal’cev basis.

We, furthermore, require that this data obeys the following conditions:

(1) for 1 ≤ i, j ≤ m, one has Lie algebra relations

[Xi,Xj ] =
∑

i,j<k≤m

cijkXk

for rational numbers cijk of height at most K (we will often refer to these as the Lie bracket
structure constants);

(2) for each 1 ≤ i ≤ s, the Lie algebra logGi is spanned by {Xj : m− dim(Gi) < j ≤ m}; and
(3) the subgroup Γ consists of all elements of the form exp(t1X1) · · · exp(tmXm) with ti ∈ Z.

We note that the conditions imply [G,Gs] = IdG, i.e., Gs is contained in the center of G (com-
mutes with every element).

Next, we will define polynomial sequences in filtered nilpotent groups. This concrete definition
is equivalent (by [11, Lemma 6.7]) to the one given in [11].

Definition A.2. We adopt the conventions of Definition A.1. Let G be a filtered nilpotent group
of degree s. A function g : Z → G is a polynomial sequence if there exist elements gi ∈ Gi for
i = 0, . . . , s such that

g(n) = g0g
(n1)
1 · · · g(

n
s)

s ,

where
(n
i

)
= 1

i!

∏i−1
j=0(n − j), for all n ∈ Z. We say a polynomial sequence g(n) is N -periodic with

respect to a lattice Γ if
g(n)g(n +N)−1 ∈ Γ
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for all n ∈ Z.

We will denote the set of polynomial sequences g : Z → G relative to the filtration G• of G by
poly(Z, G•). It turns out that poly(Z, G•) is a group under the natural multiplication of sequences–
this is due to Lazard [19] and Leibman [20,21].

Now we can define Mal’cev coordinates, the explicit metrics on G and G/Γ used in our work,
and the precise definition of the Lipschitz norm of functions on G/Γ. These definitions are exactly
as in [11, Appendix A].

Definition A.3. We adopt the conventions of Definition A.1. Given a Mal’cev basis X and g ∈ G,
there exists (t1, . . . , tm) ∈ Rm such that

g = exp(t1X1 + t2X2 + . . . tmXm).

We define Mal’cev coordinates of first kind ψexp = ψexp,X : G→ Rm for g relative to X by

ψexp(g) := (t1, . . . , tm).

Given g ∈ G there also exists (u1, . . . , um) ∈ Rm such that

g = exp(u1X1) · · · exp(umXm),

and we define the Mal’cev coordinates of second kind ψ = ψX : G→ Rm for g relative to X by

ψ(g) := (u1, . . . , um).

We then define a metric d = dX on G by

d(x, y) := inf

{ n∑

i=1

min(‖ψ(xix−1
i+1)‖, ‖ψ(xi+1x

−1
i )‖) : n ∈ N, x1, . . . , xn+1 ∈ G,x1 = x, xn+1 = y

}
,

where ‖·‖ denotes the ℓ∞-norm on Rm, and define a metric on G/Γ by

d(xΓ, yΓ) = inf
γ,γ′∈Γ

d(xγ, yγ′).

Furthermore, for any function F : G/Γ → C, we define

‖F‖Lip := ‖F‖∞ + sup
x,y∈G/Γ

x 6=y

|F (x)− F (y)|
d(x, y)

.

We recall the notion of a horizontal character and the notion of a function F having a vertical
frequency; our definitions are exactly as in [11, Definitions 1.5, 3.3, 3.4, 3.5].

Definition A.4. Given a filtered nilmanifold G/Γ, the horizontal torus is defined to be

(G/Γ)ab := G/[G,G]Γ.

A horizontal character is a continuous homomorphism η : G → R/Z that annihilates Γ; such char-
acters may be equivalently viewed as characters on the horizontal torus. A horizontal character is
nontrivial if it is not identically zero.

Furthermore, if the nilmanifold G/Γ has degree s, the vertical torus is defined to be

Gs/(Gs ∩ Γ).

A vertical character is a continuous homomorphism ξ : Gs → R/Z that annihilates Γ ∩Gs. Setting
ms = dimGs, one may use the last ms coordinates of the Mal’cev coordinate map to identify Gs

and Gs/(Gs∩Γ) with Rms and Rms/Zms , respectively. Thus, we may identify any vertical character
ξ with a unique k ∈ Zms such that ξ(x) = k · x under this identification Gs/(Γ ∩ Gs) ∼= Rms/Zms .
We refer to k as the frequency of the character ξ, we write |ξ| := ‖k‖∞ to denote the magnitude of
the frequency ξ, and say that a function F : G/Γ → C has a vertical frequency ξ if

F (gs · x) = e(ξ(gs))F (x)
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for all gs ∈ Gs and x ∈ G/Γ.

Appendix B. Explicit dimension dependence for Schmidt’s polynomial recurrence

We now prove the explicit version of Schmidt’s polynomial recurrence (Proposition 3.7). The
proof we provide is essentially verbatim from [13, Appendix A]. For those familiar with the proof
presented there, the use of theta functions is unrelated to the fact that one is finding small fractional
parts of quadratic polynomials. Roughly speaking, the theta function is only used as a smooth
approximation of the neighborhood of points in a lattice which has nice Fourier properties.

Definition B.1. Suppose that Λ is a lattice of full rank in Rd. The dual lattice, denoted Λ∗, is
Λ∗ = {ξ ∈ Rd : ξ ·m ∈ Z for all m ∈ Λ}. For any t > 0 and x ∈ Rd, we define

ΘΛ(t, x) :=
∑

m∈Λ

e−πt‖x−m‖22 .

Finally define

AΛ := ΘΛ∗(1,~0) =
∑

ξ∈Λ∗

e−π‖ξ‖22 = det(Λ)
∑

m∈Λ

e−π‖m‖22 .

We next need a version of Weyl’s inequality; we take the statement from [11, Proposition 4.3].

Proposition B.2. There exists C = C(k) > 0 such that the following holds. Suppose that g : Z → R

is a polynomial of degree k and δ ∈ (0, 1/2). If N ≥ δ−C and
∣∣En∈[N ]e(g(n))

∣∣ ≥ δ

then there exists a positive integer ℓ such that ℓ ≤ δ−C and

‖ℓg‖C∞[N ] ≤ δ−C .

A crucial object of study for α ∈ Rd will be

FΛ,α(N) := det(Λ)E|n|≤NΘΛ(1, n
kα) =

∑

ξ∈Λ∗

e−π‖ξ‖22E|n|≤Ne(n
kξ · α);

the final equality is a consequence of the Poisson summation formula (cf. [13, (A.3), (A.5)]).
The following appears as [13, Lemma A.5 (i),(ii),(iii)] except with trivial modification for the

differing degree.

Lemma B.3. Let Λ be a lattice of full rank in Rd, let α ∈ Rd, and N > 0. We have the following
properties:

• (Contraction on N) For any c ∈ (10/N, 1), we have FΛ,α(N) ≫ cFΛ,α(cN);

• (Dilation of α) For any integer q ≥ 1, we have FΛ,α(N) ≫ 1
qFΛ,qkα(N/q);

• (Stability) Suppose that ‖α̃−α‖2 ≤ εN−k with ε ∈ (0, 1). Then FΛ,α(N) ≫ F(1+ε)Λ,(1+ε)α̃(N).

Proof. We prove each of the items in turn. For the first item, note that ΘΛ > 0 so

FΛ,α(N) = det(Λ)

∑
|n|≤N ΘΛ(1, n

kα)

2⌊N⌋+ 1
≥ det(Λ)

∑
|n|≤cN ΘΛ(1, n

kα)

2⌊N⌋+ 1
≥ cFΛ,α(cN)

2
.

For the second item, if q > N note that

FΛ,α(N) = det(Λ)E|n|≤NΘΛ(1, n
kα) ≥ det(Λ)

Θ(1,~0)

2N + 1
≥
Fλ,qkα(N/q)

3q
.

For q ≤ N , we have

FΛ,α(N) = det(Λ)

∑
|n|≤N ΘΛ(1, n

kα)

2⌊N⌋+ 1
≥ det(Λ)

∑
|n|≤N/q ΘΛ(1, n

k · qkα)
2⌊N⌋+ 1

≥
Fλ,qkα(N/q)

4q
.
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We now handle the final item; let X := ‖nkα −m‖2, X̃ = ‖nkα̃ −m‖2, and note that |X − X̃| ≤
‖nk(α − α̃)‖2 ≤ ε. We have that 4π + π(1 + ε)2X̃2 ≥ πX2 for all X ≥ 0 and X̃ ∈ [X ± ε]; the
inequality is trivial for X ≤ 2 and for X ≥ 2 we have that (1+ ε)(X − ε)−X = ε(X − (1+ ε)) ≥ 0.
Therefore

e−πX2 ≥ e−4π · e−π(1+ε)2X̃2
= e−4π · e−π‖nk(1+ε)α−(1+ε)m‖22 .

Summing over m ∈ Λ and |n| ≤ N , the desired result follows. �

The key point (which is identical to [13, Lemma A.6] modulo citing Weyl’s inequality for higher
degree polynomials) is noting that if FΛ,α(N) is small then there exists a vector in Λ∗ which is
nearly orthogonal to α.

Lemma B.4 (Schmidt alternative). There exists C = C(k) > 0 such that the following holds.
Suppose that α ∈ Rd and Λ ⊆ Rd is a full rank lattice. Let N be a positive integer. Then one of the
following always holds:

• FΛ,α(N) ≥ 1/2

• There exist positive integer q ≪ dAC
Λ and primitive ξ ∈ Λ∗ \ {0} such that

‖ξ‖2 ≪
√
d+

√
logAΛ and ‖qξ · α‖R/Z ≪ AC

ΛN
−k.

(ξ ∈ Λ∗ is primitive if ξ/n /∈ Λ∗ for all n ≥ 2.)

Proof. We claim that it suffices to prove that if FΛ,α(N) ≤ 1/2, then there exists q ≪ AC
λ and a

vector

‖ξ‖2 ≪
√
d+

√
logAΛ and ‖qξ · α‖R/Z ≪ AC

ΛN
−k.

Note that the shortest vector in Λ∗ is easily seen to be ≫ A−1
Λ by considering the contribution

to AΛ by scalar multiples of the shortest vector. Therefore ξ is a multiple of ξ̃ which is primitive,

we have ‖ξ‖2/‖ξ̃‖2 ≪ (
√
d +

√
logAΛ)AΛ, and therefore q can be replaced by q′ = q‖ξ‖2/‖ξ̃‖2 ≪

(
√
d+

√
logAΛ)AΛ ·AC

Λ ≪ d ·AC+1
Λ . This gives the desired result.

Let M = 4(
√
d+

√
logAΛ) and note that

1/2 ≤ |FΛ,α(N)− 1| =
∣∣∣∣

∑

ξ∈Λ∗\{0}

e−π‖ξ‖22E|n|≤Ne(n
kξ · α)

∣∣∣∣

≤
∑

ξ∈Λ∗

‖ξ‖2≥M

e−π‖ξ‖22 +

(
sup
ξ∈Λ∗

‖ξ‖2≤M

∣∣∣E|n|≤Ne(n
kξ · α)

∣∣∣
)
·
∑

ξ∈Λ∗

e−π‖ξ‖22

≤ e−πM2/2
∑

ξ∈Λ∗

e−π‖ξ‖22/2 +AΛ sup
ξ∈Λ∗

‖ξ‖2≤M

∣∣∣E|n|≤Ne(n
kξ · α)

∣∣∣

= e−πM2/22d/2 det(Λ)
∑

m∈Λ

e−2π‖m‖22 +AΛ sup
ξ∈Λ∗

‖ξ‖2≤M

∣∣∣E|n|≤Ne(n
kξ · α)

∣∣∣

≤ 1/4 +AΛ sup
ξ∈Λ∗

‖ξ‖2≤M

∣∣∣E|n|≤Ne(n
kξ · α)

∣∣∣

where the equality follows from Poisson summation. We therefore have that
∣∣∣E|n|≤Ne(n

kξ · α)
∣∣∣ ≥ 1/(4AΛ)

and the result follows from Proposition B.2 as desired. �

The following appears as [13, Lemma A.7].
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Lemma B.5. Let Λ′ ⊆ Rd−1 and Λ ⊆ Rd be full-rank lattices with Λ′ ⊆ Λ, embedding Rd−1 in Rd

by putting 0 in the final coordinate. Suppose that α ∈ Rd and α′ ∈ Rd−1 satisfy α− α′ ∈ Λ. Then

FΛ,α(N) ≥ det(Λ)

det(Λ′)
FΛ′,α′(N).

We now combine Lemma B.4 and Lemma B.5 exactly as in [13, Proposition A.8].

Lemma B.6. There exists C = C(k) > 0 such that the following holds. Suppose α ∈ Rd and
Λ ⊂ Rd is full rank. If N > (dAΛ)

C and FΛ,α(N) ≤ 1/2, then there exist Λ′ ⊆ Rd−1 and α′ ∈ Rd−1

such that N ′ ≫ N(dAΛ)
−C and

AΛ′ ≪ (
√
d+

√
logAΛ)AΛ,

FΛ,α(N) ≥ (dAΛ)
−CFΛ′,α′(N∗).

Proof. By Lemma B.4 we have that there exist primitive ξ ∈ Λ∗ \ {0} and q ≪ dAC
Λ such that

‖ξ‖2 ≪
√
d+

√
logAΛ and ‖qξ · α‖R/Z ≪ AC

ΛN
−k.

By applying a rotation to both α and Λ, we may assume that ξ = ξded. Note that |ξd| ≫ A−1
Λ

and ‖ξ · qkα‖R/Z ≪ dA
O(1)
Λ N−k. Thus there exists β ∈ Rd such that β · ξ ∈ Z and

‖β − qkα‖2 ≤ |ξd|−1‖ξ · qkα‖R/Z ≪ dA
O(1)
Λ N−k.

We take N∗ ≫ (dAΛ)
−O(1)N such that ‖β − qkα‖2 ≤ N−k

∗ /d. We have that

FΛ,α(N) ≫ (dAΛ)
−O(1)FΛ,α(N

∗) ≫ (dAΛ)
−O(1)FΛ,qkα(N

∗/q)

≫ (dAΛ)
−O(1)F(1+1/d)Λ,(1+1/d)β (N

∗/q);

where we have applied the first, second, and then third item of Lemma B.3. Let π : (x1, . . . , xd) →
(x1, . . . , xd−1) and take α′ = (1 + 1/d)π(β), Λ′ = π((1 + 1/d)Λ), and N ′ = N∗/q. (That Λ′ is a
lattice uses that ξ is primitive.) Finally by Lemma B.5,

F(1+1/d)Λ,(1+1/d)β (N
∗/q) ≥ det((1 + 1/d)Λ)

det(Λ′)
· FΛ′,α′(N ′) = ((1 + 1/d)ξd)

−1FΛ′,α′(N ′)

and using the upper bound on ‖ξ‖2 we have the desired lower bound on FΛ,α(N). For the upper
bound of AΛ′ , by positivity of the exponential function we have

Aπ(Λ)

det(π(Λ))
≤ AΛ

det(Λ)

and therefore

AΛ′ ≤ (1 + 1/d)dAπ(Λ) ≤ AΛ
det(π(Λ))

det(Λ)
= AΛ · ‖ξ‖2

as desired. �

Iterating Lemma B.6 exactly as is done in [13, Proposition A.9] yields the following.

Proposition B.7. There exists C = C(k) > 0 such that the following holds. Let Λ ⊆ Rd be a lattice
of full rank with det(Λ) ≥ 1. Then for any integer N we have

FΛ,α(N) ≫ (dAΛ)
−Cd.

We now prove Proposition 3.7; our deduction once again is identical to [13, Proposition A.2].
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Proof of Proposition 3.7. Let R be a quantity to be chosen later; R≫ d3 throughout. Let Λ := RZd

and AΛ = Rd(
∑

m∈RZ e
−πm2

)d ≤ 2O(d)Rd. This along with Proposition B.7 implies that

FΛ,α(N) ≫ R−O(d2)

or
E|n|≤N

∑

m∈RZd

e−π‖nkα−m‖22 ≫ R−O(d2).

For N ≫ (2R)Ω(d2), there is n ∈ {1, . . . N} such that
∑

m∈RZd

e−π‖nkα−m‖22 ≫ R−O(d2).

If ‖nkα−m‖2 ≥
√
R for all m ∈ RZd, we have
∑

m∈RZd

e−π‖nkα−m‖22 ≤ e−πR/2
∑

m∈RZd

e−π‖nkα−m‖22/2

= e−πR/2 2d/2

det(Λ)

∑

ξ∈Λ∗

e−2π‖ξ‖22 exp(ξ · nkα)

≤ e−πR/2 2
d/2AΛ

det(Λ)
≪ e−πR/22O(d).

This is a contradiction; thus if N ≥ (2R)Ω(d2) and R≫ d3 then there exists 1 ≤ n ≤ N such that

‖nkαj‖R/Z ≤ 1/
√
R

for all j = 1, . . . , d. The result follows upon taking R = N c/d2 for an appropriately small constant
c (if N is small enough that R≫ d3 fails to hold, the result is trivial). �

Appendix C. Constructing an periodic nilsequence with integral structure

constants

For technical reasons, it will be advantageous to construct nilsequences where the underlying
nilmanifold has structure constants which are integral (and in fact divisible by a sufficient fixed
integer). This follows via a straightforward lifting procedure where one replaces the underlying
Mal’cev basis {e1, . . . , edim(G)} for Γ with {eL1 , . . . , eLdim(G)} for a sufficiently large constant L. This

is primarily to avoid needing various fractional part identities in the proof of Proposition 2.3.

Lemma C.1. Fix an integer K ≥ 1. Suppose we are given a degree s nilmanifold G/Γ with
dimension d and complexity M and F : G/Γ → C with Lipschitz norm bounded by L (with respect
to the metric dG/Γ).

There exist Γ̃, F̃ such that F̃ : G/Γ̃ → C such that for any g ∈ G we have

F (gΓ) = F̃ (gΓ̃).

Furthermore we have that Γ̃ has a Mal’cev basis X̃ with all Lie bracket structure constants (the values

cijk in Definition A.1) being integral and divisible by K, that G/Γ̃ (with X̃) has complexity bounded

by Os(K) · exp(O(M)), and that F has Lipschitz norm bounded by L · (K · exp(O(M)))Os(dOs(1)).

Proof. Let X = {X1, . . . ,Xd} denote the Mal’cev basis for the Lie algebra g implicit in the com-
plexity bound given for G/Γ. In order for X to be a Mal’cev basis we have:

• For each j = 0, . . . , d, the subspace hj := span(Xj+1, . . . ,Xd) is a Lie algebra ideal in g, and
hence Hj := exp(hj) is a normal Lie subgroup of G;

• If di = dim(Gi) then Gi = Hd−di ;
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• Each g ∈ G may be written uniquely as exp(t1X1) · · · exp(tmXm) for ti ∈ R;
• Γ are exactly the elements which can be written in the form exp(t1X1) · · · exp(tmXm) with
ti ∈ Z (and is a discrete cocompact subgroup).

We also require that the Lie algebra relations are appropriately filtered, corresponding to the con-
tainments [Gi, Gj ] ⊆ Gi+j .

We take X̃ = {R · X1, . . . , R · Xd} =: {X̃1, . . . , X̃d} for a large positive integer R to be chosen

later. We take Γ̃ = 〈exp(RXi)〉 and claim that X̃ is a valid Mal’cev basis for G, Γ̃. All conditions
for verifying a Mal’cev basis are trivial for us except for the fourth bullet point. The key point is
verifying that every element of the subgroup generated by elements exp(RXi) can be presented in
the desired form.

We take R = Cs · lcm(1, . . . ,M) ·K for some appropriate positive integer Cs. Note that

[X̃i, X̃j ] =
∑

i,j<k≤m

cijk ·R2Xk =
∑

i,j<k≤m

(Rcijk)X̃k.

The crucial point here is that Rcijk ∈ CsZ by construction. Let ei = exp(Xi) and supposed we have

a word in Γ̃ given by

w = e±R
i1
e±R
i2

· · · e±R
it

where each ± denotes an appropriate sign. Note eRi = exp(X̃i). We first use the Baker–Campbell–
Hausdorff formula to write

w = exp

( d∑

j=1

wjX̃j

)
.

Note that wj ∈ Z since the Lie bracket structure constants Rcijk are in CsZ, and Baker–Campbell–
Hausdorff only goes to finite height due to the bounded step of the nilpotent Lie group. Now we
iteratively pull out a single Mal’cev basis element “one at a time”. We have

exp(−w1X̃1)w = exp(−w1X̃1) exp

( d∑

j=1

wjX̃j

)
= exp

( d∑

j=2

w′
jX̃j

)

for some w′
j ∈ Z using Baker–Campbell–Hausdorff again. Note that we have eliminated use of X̃1 in

the right side (which uses the observation that cijk = 0 if k ≤ max(i, j)). We iterate this, obtaining

( 1∏

j=d

exp(−w∗
j X̃j)

)
w = exp(0) = idG

for appropriate w∗
j ∈ Z (note that the product has decreasing indices left-to-right). Solving for w

gives the result. This completes the proof that X̃ is a valid Mal’cev basis.

Now we define F̃ and verify various claims regarding bounds. Note that G/Γ̃ clearly has com-

plexity bounded by O(RM) which is as desired. Since Γ̃ ⊆ Γ, we may lift F from G/Γ to F̃ on G/Γ̃
in the obvious manner, composing with a quotient. It suffices to verify that this does not ruin the

Lipschitz norm. Let M ′ = exp(O(M)) · Os(K); we have that the diameter of G/Γ̃ is bounded by

(M ′)Os(dOs(1)) (cf. [11, Lemma A.16] with explicit dimension dependence [22, Lemma B.8]). Since

‖F̃‖∞ = ‖F‖∞ ≤ ‖F‖Lip ≤ L, it suffices to consider points which are within d
G/Γ̃

distance ε when

verifying the Lipschitz bound for F̃ as long as we are willing to lose a factor of ε−1.

Note that dG,X̃ (x, y) = (1/R)dG,X (x, y) since Mal’cev coordinates of the second kind in X , X̃
differ by a factor of R. Now consider x, y ∈ G/Γ̃ such that d

G/Γ̃
(x, y) ≤ (M ′)−Os(dOs(1)). There
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exist representatives of x̃ and ỹ for x and y with respect to Γ̃ such that

d
G/Γ̃

(x, y) = d
G,X̃

(x̃, ỹ) and d
G,X̃

(x̃, IdG) + d
G,X̃

(ỹ, IdG) ≤ (M ′)Os(dOs(1)).

Additionally, we claim that since x, y are sufficiently close in G/Γ̃, we find that

dG/Γ(x̃Γ, ỹΓ) = dG,X (x̃, ỹ).

The argument is as follows. If this is not true, then there is γ ∈ Γ \ {0} with dG,X (x̃, ỹγ) <
dG,X (x̃, ỹ). By approximate left-invariance of the metric on G ([11, Lemma A.5] with explicit
dimension dependence [22, Lemma B.4]) we see

dG,X (ỹ
−1x̃, γ) ≤ (M ′)Os(dOs(1))Rd

G/Γ̃
(x, y) ≤ (M ′)Os(dOs(1))ε.

Additionally,

dG,X (ỹ
−1x̃, idG) ≤ (M ′)Os(dOs(1))ε.

The triangle inequality yields

dG,X (γ, idG) ≤ (M ′)Os(dOs(1))ε.

Now, the metric is comparable to the L∞ distance in second kind Mal’cev coordinates up to a factor

of (M ′)Os(dOs(1)) ([11, Lemma A.4] with explicit dimension dependence [22, Lemma B.3]) as long as
ε is sufficiently small here, so we find

1 ≤ (M ′)Os(dOs(1))ε.

This as a contradiction as long as we take sufficiently small ε (which will be admissible in the bounds
we need). Finally,

|F̃ (xΓ̃)− F̃ (yΓ̃)| = |F (x̃Γ)− F (ỹΓ)| ≤ LdG/Γ(x̃, ỹ) = LdG,X (x̃, ỹ) = LRdG,X̃ (x̃, ỹ) = LRdG/Γ̃(x, y)

and we are done. �

Having constructed a nilsequence with integral Lie bracket structure constants, it will also prove
useful to construct a nilsequence which is additionally periodic. For this purpose, we quantify a
construction of Manners [24] which demonstrates that one may lift a nilsequence along a subset of
the support. We first give a quantified version of [24, Theorem 1.5].

Proposition C.2. There is an integer Cs ≥ 1 so that the following holds. Fix an integer K ≥ 1.
Suppose we have a degree s nilmanifold G/Γ with complexity M and F : G/Γ → C with Lipschitz
norm L. Furthermore suppose we have a polynomial sequence g : Z → G and a smooth function
φ : R/Z → [0, 1] with supp(φ) ∈ [(3K)−1, (2K)−1].

There exists a degree s nilmanifold G̃/Γ̃ with a polynomial sequence g̃ : Z → G̃ such that

F̃ (g̃(x)) = φ(x/N)F (g(x mod N)),

where x mod N is interpreted to lie in {0, . . . , N − 1}. Furthermore we may assume:

• G̃/Γ̃ has complexity bounded by OK(1)Os(1) +Os(M) and dimension at most Os(d);

• F̃ has Lipschitz norm bounded by L · Oφ,K(MOs(dOs(1)));

• g̃(n)−1g̃(n+N) ∈ Γ̃ for all n ∈ Z;
• If all Lie bracket structure constants of G/Γ are integers divisible by K then the Lie bracket

structure constants of G̃/Γ̃ are contained in K(Cs)
−1Z.

Given this we deduce a variant of the U4-inverse theorem from Theorem 1.3. This argument is
essentially a combination of Lemma C.1, Proposition C.2, and the argument of [24, Theorem 1.4].
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Theorem C.3. Suppose we have an integer K ≥ 1. There exists a constant C = CK > 0 such
that the following holds. Let N be prime, let δ > 0, and suppose that f : Z/NZ → C is a 1-bounded
function with

‖f‖U4(Z/NZ) ≥ δ.

There exists a degree 3 nilsequence F (g(n)Γ) such that it has dimension bounded by (log(1/δ))C ,
complexity bounded by OK(1), such that F is 1-Lipschitz, and such that

∣∣En∈[N ]f(n)F (g(n)Γ)
∣∣ ≥ 1/ exp((log(1/δ))C ).

Furthermore, all Lie bracket structure constants of G (the cijk in Definition A.1) are integers divis-
ible by K, g(n)g(n +N)−1 ∈ Γ for all n ∈ Z, and g(0) = idG.

Remark. In all our applications, we will take K = 12.

We deduce Theorem C.3 from Proposition C.2; this is essentially as in the proof of [24, Theo-
rem 1.4].

Proof of Theorem C.3. By adjusting constants appropriately, we may assume that N is larger than
an absolute constant (and for small N apply the U2-inverse theorem noting all Lie bracket structure
constants for an abelian nilmanifold are 0).

We take a partition of unity of R/Z denoted φ1, . . . , φ20K : R/Z → R such that supp(φj) ⊆
[j/(20K), j/(20K) + 1/(10K)] mod 1. We abusively denote φi : Z/NZ → R via φi(n) := φi(n/N).
Recalling that ‖·‖U4(Z/NZ) is a norm, we have

‖f‖U4(Z/NZ) ≤
20K∑

i=1

‖φif‖U4(Z/NZ).

Thus there exists an index k such that ‖φkf‖Uk(Z/NZ) ≥ δ/(20K). Applying a translation, we may

assume that supp(φkf) is contained in [⌈N/(3K)⌉, ⌊N/(2K)⌋] mod N .
Applying Theorem 1.3, we have that there exists degree 3 nilsequence F1(g1(n)Γ1) on G/Γ1 with

complexity O(1), dimension (log(1/δ))O(1) , and Lipschitz constant 1 such that

|En∈[N ]φk(n/N)f(n)F1(g1(n)Γ)| ≥ 1/ exp((log(1/δ))O(1)).

By Lemma C.1, we may construct Γ2, F2 with Lie bracket structure constants for G/Γ2 being
integers divisible by K · Cs (where s = 3) such that

|En∈[N ]φk(n/N)f(n)F2(g(n)Γ2)| ≥ 1/ exp((log(1/δ))O(1)).

Furthermore G/Γ2 has complexity bounded by O(K) and F2 has Lipschitz norm bounded by

(2K)O(dO(1)). Next, we may write

En∈[N ]φk(n/N)f(n)F2(g2(n)Γ2) = En∈[N ]f(n)φk(n/N)F2(g2(n)Γ2)

and apply Proposition C.2 to φ(x/N)F2(g2(x)Γ2). In particular, we obtain F3, G3, Γ3, and g3(n)
such that

En∈[N ]f(n)φk(n/N)F2(g2(n)Γ2) = En∈Z/NZf(n)F3(g3(n)Γ)

with F3 having Lipschitz norm (OK(1))O(dO(1)), G3/Γ3 having complexity (OK(1))O(dO(1)), g3(n)
being N -periodic, and all Lie structure constants divisible by K.

Note that we do not necessarily have g3(0) 6= idG3 . This may be repaired by defining g(n) =
{g3(0)}−1g3(n)g3(0){g3(0)}−1 where g3(0){g3(0)}−1 = [g3(0)] ∈ Γ3 and {g3(0)} has Mal’cev coor-
dinates of the second kind bounded by 1/2. Taking

F (xΓ3) := F3({g3(0)}xΓ3)

we have
En∈Z/NZf(n)F3(g3(n)Γ3) = En∈Z/NZf(n)F (g(n)Γ3).
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As left-multiplication by bounded elements preserves the metric up to an admissible multiplicative

factor ([22, Lemma B.4]), we find that F has Lipschitz norm (OK(1))O(dO(1)). Thus, rescaling F to
have Lipschitz norm 1 will keep the correlation sufficiently large. Furthermore as left-multiplying a
fixed element and right-multiplying a fixed element in Γ3 does not change whether our polynomial
sequence is N -periodic on G3/Γ3 this completes the proof. �

We now prove Proposition C.2. We use the construction of Manners [24, Theorem 1.5]; we modify
the construction slightly to match the definition of filtration used in this paper.

Proof of Proposition C.2. Step 1: Setup and constructing the proposed Mal’cev basis. We
consider the given degree s nilpotent Lie group G with filtration

G = G0 = G1 > G2 > · · · > Gs > IdG .

Let gj = logG(Gj).
For i ≥ 0, let G+i denote the prefiltration Gi > Gi+1 > Gi+2 > · · · > Gs > IdG. Let

Hi = poly(Z, G+i), where we define polynomial sequences with respect to prefiltrations as in
[15, Definition B.1] with the prefiltration Z > Z > {0} > · · · on the domain Z (see also [11, p. 28],
which includes the formal definition of prefiltrations).

By the Filtered Lazard–Leibman theorem of Green, Tao, and Ziegler [15, Proposition B.6], Hi

are not only groups but also can be given the prefiltration

H0 > H1 > H2 > · · · > Hs > IdH0 .

This implies that one has the genuine filtration

H1 = H1 > H2 > · · · > Hs > IdH0 .

We now define the semidirect product Hi ⋊R by defining a group operation ∗ via

(x 7→ g(x), t) ∗ (x 7→ g′(x), t′) = (x 7→ g(x+ t′)g′(x), t+ t′).

Note that this is slightly different than that given in the work of Manners [24], since we take
right-quotients by the cocompact subgroup, and in fact this is rather the opposite group of the
semidirect product of the opposite groups (but we suppress such notational dependence). The
semidirect product in question is embedding t ∈ R as the “shift by t” automorphism. Additionally,
we abusively identify g ∈ poly(Z, G+i) with a function R → G+i defined by using Taylor expansion
and then allowing the argument to vary over reals instead of integers using the Lie group structure;
this extension is unique due to a generalization of the identity theorem.

One can easily prove that

H0 ⋊R > H1 ⋊R > H2 ⋊ {0} > · · · > Hs ⋊ {0} > IdH0⋊R

is a prefiltration; this follows immediately from the proof given in [17, Proposition 14]. (The only
nontrivial aspect involves the ⋊R component, and it is not too hard to show that it suffices to check
relevant properties at the level of the generators (idH0 , t) since we have the above prefiltration on
H0.)

Let X1, . . . ,Xd denote the Mal’cev basis on the Lie algebra associated to G (which is adapted to
the s-step filtration given at the beginning). We construct the desired Mal’cev basis for H0 ⋊R as
follows:

• Let Z = (0,K).
• Let Yi,k = (n 7→

(
n
k

)
Xi, 0); if Xi ∈ gj \ gj+1 define the level of Yi,k to be j − k. We

restrict attention to Yi,k of nonnegative level and level at most s. (Note that there are no
contributions with j = 0.)

• We order the Mal’cev basis left-to-right by increasing level; within level we order with
increasing k, and then in increasing order of i. Z is inserted as the first element of level 1.
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Remark. By Taylor expansion (see [15, Lemma B.9]) we see that this is a Lie basis of the necessary
group, filtered with respect to the desired prefiltration. Note that a priori the Lie algebra of
poly(Z, G+0) is some abstract space, but we can utilize the embedding H0 = poly(Z, G+0) →֒ GZ

and the corresponding representation of Lie algebras to yield the above form of writing elements of
the tangent space.

Our goal is now to verify that the discrete cocompact subgroup Γ̃ = poly(Z,Γ) ⋊ (KZ) is the

push-forward of Zdim(G̃) for Mal’cev coordinates of the second kind. This algorithmic proof will also
immediately verify the remaining property of the Mal’cev basis (regarding rationality of the Lie
bracket structure constants). After this, we will give the necessary nilsequence lifting construction
and verify the necessary properties.
Step 2: Verifying Mal’cev properties modulo the semidirect product. We first prove that
the Yi,k graded as above form a Mal’cev basis for

H0 > H1 > H2 > · · · > Hs > IdH0

with discrete cocompact subgroup Γ′ = poly(Z,Γ). We proceed by induction upwards by step. Note
that handling the final step is trivial as the group Hs is abelian.

Assume the inductive hypothesis that Hj+1 ∩ Γ′ is the image of the integer lattice in Mal’cev
coordinates of the second kind (which necessarily uses only those basis elements of level at least
j + 1). Using Taylor expansion (see [15, Lemma B.9]), we may write an element Hj ∩ Γ′ as

n 7→
s−j∏

i=0

g
(ni)
i+j (C.1)

where gi ∈ Gi+j ∩ Γ. (gi ∈ Γ easily follows from our polynomial lying in Γ′ = poly(Z,Γ) sequence.)
Now, for our given value of j, we prove by an induction on ℓ that the set of polynomials of the

form

n 7→
s−j∏

i=0

g
(ni)
i+j

with gi+j ∈ Gi+j+1 ∩ Γ for 0 ≤ i ≤ ℓ and gi ∈ Gi+j ∩ Γ for ℓ + 1 ≤ i ≤ s − j is generated by the
level j + 1 elements and the largest s − j − ℓ “types” of level j elements of the Mal’cev basis for
H0. (Here “types” means in the sense of the parameter k we used to define the ordering on the Yi,k
above.) The case ℓ = s− j is exactly the above inductive assumption regarding Hj+1 ∩ Γ′, and the
case ℓ = 0 is exactly what we need to complete the (outer) induction.

We now suppose that this is known for some s− j ≥ ℓ ≥ 1, and wish to prove the result for ℓ− 1.
We may write

(
n 7→

s−j∏

i=0

g
(ni)
i+j

)
=

(
n 7→

ℓ−1∏

i=0

g
(ni)
i+j

)(
n 7→ g

(nℓ)
ℓ+j

)(
n 7→

s−j∏

i=ℓ+1

g
(ni)
i+j

)
= ABC,

where A,B,C are defined in the obvious way. Note that A ∈ Hj+1 ∩ Γ′. We may write gℓ+j =∏
r exp(trXr) for tr ∈ Z and Xr ∈ gℓ+j. Note that

D−1B =

(∏

r

(
n 7→ exp(trXr)

(nℓ)
))−1(

n 7→ g
(nℓ)
ℓ+j

)
∈ Hj ∩ Γ′

where D is defined in the obvious way. The Taylor expansion of the polynomial (D−1B)C (in a
similar form to (C.1)) trivially has its coordinates of index 0, . . . , ℓ− 1 being the identity (plugging
in the values n = 0, 1, . . . , ℓ− 1). The ℓth Taylor coordinate is in Gℓ+j+1 ∩Γ′, considering the value
n = ℓ. Thus

ABC = D(D−1AD)(D−1BC),
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where D−1BC has the form

n 7→
s−j∏

i=ℓ

g
′(ni)
i+j

for g′i+j ∈ Gi+j ∩ Γ and additionally g′ℓ+j ∈ Gℓ+j+1 ∩ Γ.

Note that D−1BC is of the correct form of Taylor series to apply the inductive hypothesis (since
g′ℓ+j ∈ Gℓ+j+1), yielding

D−1BC =
∏

µ∈M

exp(tµXµ) · F = EF

where M ranges over the s− j − ℓ “types” of level j elements of the Mal’cev basis of H0, from ℓ+1
to s − j inclusive, and is arranged in the correct order within the product E, and F ∈ Hj+1 ∩ Γ′.
Finally, we may write

ABC = DE(E−1(D−1AD)E · F ),
and note that Hj+1 is normal in H0 due to the original prefiltration we established, so we find
E−1(D−1AD)E ∈ Hj+1 ∩ Γ′. Thus we have

ABC = DEF ′

where D,E form the necessary ordered product for the Mal’cev second kind representation, and
F ′ ∈ Hj+1 ∩ Γ′. Finally, we recall the induction hypothesis for Hj+1 ∩ Γ′ to finish.
Step 3: Semidirect product and Lie bracket structure constants. We now handle the
generator Z. Note that given an element (p, t) ∈ poly(Z,Γ)⋊ (KZ), we may write

(p, t) = (idG, t) ∗ (p, 0)
and therefore if Z was the highest element of the ordering (which would correspond to a situation
where the filtration contains H1⋊{0} instead of H1⋊R) we would easily be done. Instead, though,
it is inserted right before the Mal’cev basis components for H1. Note however that

(idG,−K) ∗ (p−1, 0) ∗ (idG,K) ∗ (p, 0) = (p−1,−K) ∗ (p,K) = (x 7→ p−1(x+K)p(x), 0)

and recall that derivatives of polynomials in Hj ∩ poly(Z,Γ) are in Hj+1 ∩ poly(Z,Γ) due to the
definitions of the shifted filtrations on G. Therefore we may commute (idG, t) across the product of
the level 0 terms in the representation above, and we will introduce only terms of level 1 and higher

(and they will lie in Γ̃). Then using the Mal’cev representation for H1 ∩Γ′ finishes. This completes
our discussion that the generators listed form a Mal’cev basis.

We now compute the Lie bracket structure constants associated to the Mal’cev basis. We will
compute all structure constants via the identity

[V,W ] =
d

ds

d

dt
exp(sV ) exp(tW ) exp(−sV ) exp(−tW )

which holds for any Lie group and the associated Lie bracket.
We first compute the constants associated with Z. Note that

[Yi,k, Z] =
d

dt0

d

dt1

(
n 7→ exp(t0Xi)

(nk), 0
)
(idG,Kt1)

(
n 7→ exp(t0Xi)

−(nk), 0
)
(idG,−Kt1)

∣∣∣∣
t0,t1=0

=
d

dt0

d

dt1

(
n 7→ exp(t0Xi)

(nk)−(
n−Kt1

k ), 0
)∣∣∣∣

t0,t1=0

= logH0⋊R

(
n 7→ exp(Xi)

− d
dt1

(n−Kt1
k )

∣∣
t0=0 , 0

)
=

(
n 7→ − d

dt1

(
n−Kt1

k

)
Xi

∣∣∣∣
t1=0

, 0

)
,

where the last line follows from considering the relationship between the differential structure on
H0 and on G (which allows us to “implicitly differentiate in the obvious way”). The coefficients of
d
dt1

(
n−Kt1

k

)∣∣
t1=0

are all integer multiples of Kt/k! for 1 ≤ t ≤ k − 1. We may easily express this in
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terms of various Yi,k′ for k′ < k, and the structure constants clearly have the desired form, lying in
K(Cs)

−1Z for an appropriate integer Cs.
We next compute the structure constants associated with two polynomials. Notice that

[Yi,k, Yj,ℓ]

=
d

dt1

d

dt2

(
n 7→ exp(t1Xi)

(nk), 0
)(
n 7→ exp(t2Xj)

(nℓ), 0
)(
n 7→ exp(t1Xi)

−(nk), 0
)(
n 7→ exp(t2Xj)

−(nℓ), 0
)∣∣∣∣

t1,t2=0

=
d

dt1

d

dt2

(
n 7→ exp

(
t1t2

(
n

k

)(
n

ℓ

)
[Xi,Xj ]

)
, 0

)∣∣∣∣
t1,t2=0

=

(
n 7→

(
n

k

)(
n

ℓ

)
[Xi,Xj ], 0

)
.

The second equality follows from using Baker–Campbell–Hausdorff to multiply the polynomial se-
quences (as pointwise functions, say) and collapse them, and then noting that we may discard
terms with higher powers than t11 and t12. The only relevant remaining term is the t1t2 which has
the claimed form.

Note that as
(n
k

)(n
ℓ

)
is an integer-valued polynomial, by Polya’s classification of integer polyno-

mials [27], it follows that this may be written as an integral combination of binomial coefficients
with coefficients bounded by Os(1). We obtain a representation in terms of various Yi′,k′ where
k′ ≤ k + ℓ and Xi′ shows up in the expansion of [Xi,Xj ]. We are done with this part of the proof,
which includes verifying the well-definedness of various lifted filtrations, Mal’cev bases, and also the
rationality properties of the Lie bracket structure constants.
Step 4: Lifting the nilsequence and checking quantitative dependences. We now actually
define the desired function. We are given a polynomial sequence g(x) and we define q(x) = g(xN/K).
We define

g̃(x) = (q, 0) ∗ (idG,Kx/N).

Note that g̃(x) isN -periodic as g̃(x+N) = g̃(x)∗(idG,K). We now define F̃ on poly(R, G)/poly(Z,Γ)×
[0,K) via

F̃ (x · poly(Z,Γ), t) = φ(t/K) · F (x(0)Γ).

This extends uniquely to H0 ⋊R if we enforce right-Γ̃-invariance, which yields

F̃ (x · poly(Z,Γ), t) = φ({t/K}) · F (x(−K⌊t/K⌋)Γ).

That F̃ is appropriately Lipschitz and that we can then descend this construction to a proper
filtration will be checked last.

The key point is the following computation:

F̃ (g̃(x)) = F̃ ((q, 0) ∗ (idG,Kx/N)) = F̃ ((q(·+Kx/N),Kx/N))

= φ({x/N})F (q(Kx/N −K⌊x/N⌋)) = φ({x/N})F (g(x −N⌊x/N⌋))
= φ({x/N})F (g(x mod N)).

We now check that the function |F̃ | is appropriately Lipschitz with respect to the Mal’cev basis

specified. Since F̃ is bounded by ‖F‖∞‖φ‖∞, note that for x, y ∈ (H0⋊R)/Γ̃ if d
(H0⋊R)/Γ̃

(x, y) ≥ ε

we have

F̃ (x)− F̃ (y)

d
(H0⋊R)/Γ̃

(x, y)
≤ 2ε−1‖F‖∞‖φ‖∞.
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We now assume that ε ≤ OK(M)−Os(d)Os(1)
to be chosen later. The diameter of (H0⋊R)/(poly(Z,Γ)⋊

KZ) is bounded by OK(M)Os(d)Os(1)
by [22, Lemma B.8]1 , so there exist x̃, ỹ such that

d
(H0⋊R)/Γ̃

(x, y) = d(H0⋊R)(x̃, ỹ) and d
G,X̃

(x̃, IdG) + d
G,X̃

(ỹ, IdG) ≤ OK(M)Os(dOs(1)).

Furthermore we may chose the fundamental representatives x̃ and ỹ such that the second coordi-
nate is in [0,K) (by multiplying by an appropriate element of IdG⋊(KZ) on the right and noting
that the metric is right-invariant). Note that if the second coordinate of the representative x̃ is out-

side the range [1/4, 2/3], the assumption on the support of φ guarantees that F̃ (x̃Γ) = F̃ (ỹΓ) = 0
and therefore verifying the Lipschitz constant in this case is trivial. (This uses that ε is sufficiently
small.)

Else we denote x̃ = (x∗, x′) with x∗ ∈ H0 and x′ ∈ [1/4, 2/3] and ỹ analogously. We now have
∣∣F̃ (x̃Γ̃)− F̃ (ỹΓ̃)

∣∣ =
∣∣φ(x′/K)F (x∗(0)Γ)− φ(y′/K)F (y∗(0)Γ)

∣∣

≤ ‖φ‖∞
∣∣F (x∗(0)Γ) − F (y∗(0)Γ)

∣∣+
∣∣φ(x′/K)− φ(y′/K)

∣∣‖F‖∞.

Let ψ denote the second Mal’cev coordinates with respect to the basis specified for (H0 ⋊ R)/Γ̃.
Note that x′, y′ are controlled only by Z in the Mal’cev basis and thus we can bound the second
term by ∣∣φ(x∗/K)− φ(y∗/K)

∣∣ .K ‖ψ′‖∞ ·
∣∣ψ(x̃)− ψ(ỹ)

∣∣.
To bound the first term, note that dG/Γ(x

∗(0)Γ, y∗(0)Γ) ≤ dG(x
∗(0), y∗(0)).

Let x̃ = exp((x′/K)Z)
∏

k,ℓ exp(xk,ℓYk,ℓ) and analogously for ỹ where the product over Yk,ℓ is
taken in the ordering specified for the Mal’cev basis. We have

x∗(0) =
∏

k,ℓ

exp

((
0

ℓ

)
xk,ℓXk

)
and y∗(0) =

∏

k,ℓ

exp

((
0

ℓ

)
yk,ℓXk

)
.

Note that the only terms which contribute to the above product are Yk,0 = (n 7→
(
n
0

)
Xk) = (n 7→

Xk). If Xk ∈ gj \ gj+1, this has level precisely j and thus the product (removing terms which are
the identity) are in the correct order for the Mal’cev basis on G.

Therefore we have

dG(x
∗(0), y∗(0)) ≤ OK(M)Os(dOs(1))max

k
|xk,0 − yk,0|

≤ OK(M)Os(dOs(1))
(
max
k,ℓ

|xk,ℓ − yk,ℓ|+ |x′/K − y′/K|
)

≤ OK(M)Os(dOs(1))dH0⋊R(x̃, ỹ).

The first line follows from [23, Lemma B.3] applied on the Mal’cev basis X of G and the second
inequality is trivial. The final inequality follows from [23, Lemma B.3] and that maxk,ℓ |xk,0−yk,0|+
|x′/K−y′/K| corresponds (up to constants) to the L∞ distance in the Mal’cev coordinates when Z

is placed first in the order and one may return to the original distance at the cost of OK(M)Os(d)Os(1)

by [23, Lemma B.3]. (Shifting Z to the first position is clearly a 1-rational change of basis.)
Step 5: Reducing to a proper filtration. We now (finally) perform the last reduction to place
our polynomial sequence on a proper filtration. By inspection we have

g̃(x) = (h∗0)(h
∗
1)
(x1)

with h∗i ∈ Hi ⋊R for i ≤ 1. Let h∗0 = {h∗0}[h∗0] such that [h∗0] ∈ Γ̃ and ‖ψ({h∗0})‖ ≤ 1.

1We have proven that the constructed basis is a filtered basis for the Lie algebra. Separating by level and then by
“type”, we see that the filtered basis has nesting property of degree ≤ 2s2. [22, Lemma B.8] is proven under only the
assumption that the basis for the Lie algebra exhibits this nesting property.

32



For p̃ ∈ H1 ⋊R define F ∗(p̃Γ̃) = F̃ ({h∗0}p̃Γ̃), and note that

F̃ (g̃(x)Γ̃) = F̃ ({h∗0}[h∗0](h∗1)(
x
1)Γ̃) = F̃ ({h∗0}([h∗0]h∗1[h∗0]−1)(

x
1)[h∗0]Γ̃)

= F ∗(([h∗0]h
∗
1[h

∗
0]
−1)(

x
1)Γ̃).

Since left-multiplication by bounded elements is suitably Lipschitz and since H1 ⋊ R is normal

in H0 ⋊ R, we have that ([h∗0]h
∗
1[h

∗
0]
−1)(

x
1) is a polynomial sequence with respect to the filtration

H1 ⋊R = H1 ⋊R > H2 ⋊ {0} > · · · > Hs ⋊ {0} > IdH1⋊R.
Note that pre- or post-multiplication by a fixed constant does not change N -periodicity. Fur-

thermore note that Z and all level 1 and higher elements in the order given by removing all level 0
elements gives a valid Mal’cev basis with respect to the proper filtration

H1 ⋊R = H1 ⋊R > H2 ⋊ {0} > · · · > Hs ⋊ {0} > IdH1⋊R .

Thus the polynomial sequence ([h0]h
∗
1[h0]

−1)(
x
1) with respect to the function F̃ (·) on nilmanifold

(H1⋊R)/(Γ̃∩(H1⋊R)) with this filtration and Mal’cev basis provides the desired construction. �

Appendix D. Deferred lemmas

We first prove the necessary partition of unity result on a nilmanifold.

Proof of Lemma 2.4. The key trick is to consider a “smoothed sum” of fundamental domains and
perform a partition of unity. Let δ be a constant to be specified later and let f(x) ≥ 0 be a
smooth bump function on R with supp(f) ∈ [−1/4, 1/4],

∫
R
f(x)dx = 1, and ‖f‖∞ ≤ O(1). Let

Hj be smooth functions indexed by j ∈ S of size O(1/δ) which are nonnegative with supp(Hj) ∈
[jδ, (j + 2)δ], ‖Hj‖∞ ≤ O(1), and

∑
j∈S Hj(x) equal to 1 for |x| ≤ 3/2 and 0 for x ≥ 2.

For each g ∈ G and β ∈ R, there exists a unique γi ∈ Γ such that ψ(gγi) ∈ [β, 1−β)d (see e.g. [11,
Lemma A.14]). Define for β ∈ Rd the function Tβ : G→ Γ such that ψ(gTβ(g)) ∈ [−β, 1−β)d; note

that this function suffers from discontinuities at the boundaries of [−β, 1 − β)d.
Note that for all g ∈ G we have

1 =

∫

β∈R
f(β)dβ =

∫

β∈Rd

d∏

i=1

(∑

j∈S

Hj(ψi(gTβ(g)))

)
f(β)dβ

=
∑

j1,...,jd∈S

∫

β∈R

d∏

k=1

Hjk(ψk(gTβ(g)))f(β)dβ.

The functions in our collection will be indexed by j1, . . . , jd and are defined by

τj1,...,jd(gΓ) =

∫

β∈R

d∏

k=1

Hjk(ψ(gTβ(g)))f(β)dβ.

This is a well-defined function since gTβ(g) = gγTβ(gγ) for all γ ∈ Γ. Furthermore note that
‖τj1,...,jd‖∞ ≤ exp(O(d)). We will use these as our partition of unity.

Let L = O(M)Os(dOs(1)) with implicit constants chosen sufficiently large. We consider points
xΓ, yΓ; we may find x̃, ỹ ∈ G such that

dG/Γ(xΓ, yΓ) = dG(x̃, ỹ), ψ(x̃), ψ(ỹ) ∈ [0, 1)d, and dG(x̃, idG) + dG(ỹ, idG) ≤ L.

If dG(γ, idG) ≥ L3 then note that for g ∈ G with dG(g, idG) ≤ L we have

dG(gγ, idG) ≥ dG(gγ, g) − dG(g, idG) ≥ L−1dG(γ, idG)− dG(g, idG) ≥ L−1(L3)− L ≥ L2/2 > 3,
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using quantitative approximate left-invariance of the metric ([22, Lemma B.4]). Therefore we have

dG(Tβ(x̃), idG) + dG(Tβ(ỹ), idG) ≤ 2L3 for |β| ≤ 2. Let Γ̃ ⊆ Γ be the set of all γ̃ ∈ Γ such that

dG(γ̃, idG) ≤ 2L3 and note that |Γ̃| ≤ LOs(dOs(1)).
We now show the desired properties of a partition of unity. Let β be drawn from the probability

distribution f(β). Let η := dG(x̃, ỹ) and note that for γ ∈ Γ̃ we have ‖ψ(x̃γ) − ψ(ỹγ)‖ ≤ η ·
LOs(dOs(1)) =: η′. Therefore

Pβ[Tβ(x̃) 6= Tβ(ỹ)] ≤
∑

γ∈Γ̃

Pβ[ψ(x̃γ) ∈ [−β, 1− β)d ∩ ψ(ỹx̃−1(x̃γ)) /∈ [−β, 1− β)d]

≤
∑

γ∈Γ̃

d∑

i=1

Pβ[ψi(x̃γ) ∈ [−β − η′,−β] ∪ [1− β − η′, 1− β)] ≤ ηδ−1LOs(dOs(1)).

Thus
∣∣∣∣τj1,...,jd(x̃Γ)− τj1,...,jd(ỹΓ)

∣∣∣∣ ≤
∫

β∈R

∣∣∣∣
d∏

k=1

Hjk(ψ(x̃Tβ(x̃)))−
d∏

k=1

Hjk(ψ(ỹTβ(x̃)))

∣∣∣∣f(β)dβ

+ δ−O(d) · Pβ[Tβ(x̃) 6= Tβ(ỹ)]

≤ δ−O(d)ηLOs(dOs(1)),

which demonstrates the necessary Lipschitz bound.
Finally we check the supports; note that in order for τj1,...,jd(gΓ) to be nonzero, there exists

γ ∈ Γ such that ψ(gγ) ∈ ∏d
k=1[jkδ, (jk + 2)δ]. Let g̃ be such that ψ(g̃) = ((jk + 1)δ)1≤k≤d ∈

[−2, 2]d. We have ‖ψ(gγ) − ψ(g̃)‖ ≤ δ. Thus, taking the fundamental domain for G/Γ which is∏d
k=1[(jk+1)δ−1/2, (jk+1)δ+1/2) (with respect to ψ) we have that the support is contained within a

δ-ball of the center. Note as ψexp ◦ψ−1 is a polynomial with coefficients bounded by O(M)Os(dOs(1))

and degree Os(1) ([22, Lemma B.1]) we have the desired result taking δ = εM−Os(dOs(1)) (and
appropriately modifying the definition of L). �

We next need that sufficiently divisible structure constants prove that ψ−1
exp(Γ).

Proof of Lemma 2.5. First, consider any element of Γ which can be written γ =
∏d

i=1 exp(tiXi)

for ti ∈ Z. We inductively prove that
∏d

i=j exp(tiXi) is in ψ−1
exp(Z

d). Suppose we have shown that∏d
i=j+1 exp(tiXi) = exp(

∑d
i=j+1 uiXi) with ui ∈ Z, for some 1 ≤ j ≤ d− 1 (the base case j = d− 1

is obvious). Then

d∏

i=j

exp(tiXi) = exp(tjXj) exp

( d∑

i=j+1

uiXi

)
= exp

(
tjXj +

d∑

i=j+1

uiXi + · · ·
)

where the remainder is a finite list of commutators of tjXj and
∑d

i=j+1 uiXi coming from the
Baker–Campbell–Hausdorff formula. As the coefficients are rationals with denominators bounded
by Cs, it follows immediately from the condition on divisibility of Lie bracket structure constants
that the inductive step holds. We deduce ψexp(Γ) ⊆ Zd.

For the reverse inclusion, we also use induction. We show for all 1 ≤ j ≤ d − 1 that for any

ui ∈ Z, exp(
∑d

i=j uiXi) can be written in the form
∏d

i=j exp(tiXi) for ti ∈ Z. Suppose we have the

result for j + 1, so that we have exp(
∑d

i=j+1 uiXi) =
∏d

i=j+1 exp(tiXi). Then

exp(−ujXj) exp

( d∑

i=j

uiXi

)
= exp

( d∑

i=j+1

u′iXi

)
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for u′i ∈ Z using the Baker–Campbell–Hausdorff formula, the divisibility assumption, and the filtered
nature of the Mal’cev basis. (The term on the far left is tailored to cancel the Xj part.) Again, the

inductive step immediately follows. This demonstrates ψ−1
exp(Z

d) ⊆ Γ, and we are done. �

We next prove a comparison estimate between the distance in Mal’cev coordinates of the first
kind and the associated torus metric.

Proof of Lemma 2.6. Note that
dG/Γ(xΓ, yΓ) ≤ dG(x, y).

As ψ◦ψ−1
exp is a polynomial of degree Os(1) with coefficients bounded by O(M)Os(dOs(1)) ([22, Lemma

B.1]) we have that

‖ψ(x)‖∞ ≤ (LM)Os(dOs(1)) and ‖ψ(x) − ψ(y)‖∞ ≤ ε(LM)Os(dOs(1)).

The result then follows from [22, Lemma B.3]. �

We now give the short proof of Lemma 2.8.

Proof of Lemma 2.8. It is evidently enough to show it for two functions f1, f2. Additionally, recall
the product rule

∂h(fg) = (∂hf) · (Thg) + f · (∂hg) (D.1)

where Thg(x) = g(x + h) defines the translation operator. Note that all translation operators
commute with all other operations such as discrete derivatives and products, and other translations.
Also, this is valid at a point x so long as x, x+ h are in the domains of f, g.

Let s = d1 + d2. Suppose we are given x, h1, . . . , hs+1 with x+ {0, h1}+ · · ·+ {0, hs+1} ⊆ S. We
have, by iterating (D.1),

∂h1,...,hs+1(f1f2)(x) =
∑

T1⊔T2=[s+1]

(∂(hj)j∈T1
f1)(x) · T∑

j∈T1
hj
(∂(hj )j∈T2

f2)(x). (D.2)

This is seen to be valid since every element of the cube x+{0, h1}+ · · ·+{0, hs+1} is in the domain
S. Now, for every disjoint partition T1 ⊔ T2 = [s+ 1] we have either |T1| ≥ d1 + 1 or |T2| ≥ d2 + 1.
By the given condition of fj being locally degree dj + 1, we see one of the two terms in (D.2) is
always 0. The result follows. �
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